

Summary

www.vsni.co.uk

Genstat[®] Reference Manual (Release 22)

Part 1: Summary

Genstat Release 22 was developed by VSN International Ltd, in collaboration with practising statisticians at Rothamsted and other organisations in Britain, Australia, New Zealand and The Netherlands.

Published by:

E-mail: Website: VSN International, 2 Amberside, Wood Lane, Hemel Hempstead, Hertfordshire HP2 4TP, UK info@genstat.co.uk http://www.genstat.co.uk/

First published 1989, as the *Genstat 5 Release 2 Reference Summary* This edition published 2022, for Genstat Release 22

Citation:

VSN International (2022). *Genstat Reference Manual (Release 22), Part 1 Summary*. VSN International, Hemel Hempstead, UK.

Genstat is a registered trade of VSN International. All rights reserved.

© 2022 VSN International

Contents

- 1 The Genstat language 1
 - 1.1 Syntax of the command language <u>1</u>
 - 1.2 Glossary of terminology $\underline{2}$
 - 1.3 Data structures 11
 - 1.4 Program control 12
- 2 Data handling 15
 - 2.1 Input and output 15
 - 2.2 Calculations and manipulation <u>16</u>
 - 2.3 Graphics <u>21</u>
- 3 Statistical analyses 23
 - 3.1 Basic and nonparametric statistics 23
 - 3.2 Regression and generalized linear models 24
 - 3.3 Analysis of variance 27
 - 3.4 Design of experiments 30
 - 3.5 REML analysis of linear mixed models <u>32</u>
 - 3.6 Multivariate and cluster analysis <u>35</u>
 - 3.7 Time series 37
 - 3.8 Repeated measurements <u>37</u>
 - 3.9 Survival analysis <u>38</u>
 - 3.10 Bayesian methods 39
 - 3.11 Spatial statistics $\underline{39}$
 - 3.12 Six sigma <u>40</u>
 - 3.13 Survey analysis 41
 - 3.14 Data mining <u>41</u>
 - 3.15 Statistical genetics and QTL estimation 42
 - 3.16 Microarray data 44
 - 3.17 Ecological data 44
- 4 Syntax summary $\underline{46}$
 - 4.1 Commands <u>46</u>
 - 4.2 Functions for calculations <u>492</u>
 - 4.3 Functions for model formulae 507
- 5 List of commands <u>509</u>

Conventions

Genstat system words are shown in the Courier typeface e.g. CALCULATE. In the syntax summary, elements of the language to be substituted by the user are in italics, e.g. *variate*. New directives, procedures or functions in Release 22, or options and parameters of existing directives or procedures that have been modified in Release 22, are marked by the symbol[†].

1 The Genstat language

Genstat has a clear but powerful command language which provides access to the very wide set of facilities summarized in Sections 2 and 3. Alternatively, many standard operations and analyses can be run using the menus in Genstat's Windows interface.

1.1 Syntax of the command language

Input to Genstat is known as a Genstat program. This is made up of statements each of which may use one of the standard Genstat commands (known as directives); alternatively, it may use a Genstat procedure, that is, a subprogram of statements. You can write your own procedures, or use those in the Library distributed with Genstat, or in the library provided at your site.

Whether the statement uses a directive or a procedure, the syntax is identical. First you give the name of the directive (or procedure), then options, and then parameters. Finally, you indicate the end of the statement, either by typing a colon or by ending the line (by typing <RETURN>). Long statements can be continued onto succeeding lines by typing the continuation character (\) before <RETURN>.

Some statements will have neither options nor parameters: for example

PAGE

to start a new page in output. Others may have no options: for example

```
PRINT STRUCTURE=X,Y; DECIMALS=0,2
```

prints the contents of data structures x and Y with zero and two decimal places respectively. In this statement, there are two parameter settings defining two lists running in parallel. Parameter settings are always in parallel like this, and are separated from one another by semicolons. Options are enclosed in square brackets, and set aspects that apply to all the (parallel) parameter values. They are also separated from one another by semicolons. For example

```
PRINT [CHANNEL=2; INDENTATION=5] STRUCTURE=X,Y; DECIMALS=0,2
```

prints X and Y to output channel 2 with a five-character indentation at the start of each line. Nearly all options, and some parameters, have default values chosen to be those required most often, and so will usually not need to be set.

Settings of options and parameters can be lists (as above), expressions or formulae. Lists may be of numbers (as with DECIMALS above), or identifiers (as with STRUCTURE) or strings. An identifier is the name that you give to a Genstat data structure (for example x or y), and which you then use to refer to it in the program. They must start with a letter (for Genstat this means the alphabetic characters A to Z, in capitals or lower case, as well as the percent and underline characters) and then contain either letters or digits (the numerical characters 0 to 9); Genstat takes notice of only the first 32 characters. (This is the default in Releases 4.2 onwards, but you can use the SET directive to request that Genstat take notice of only the first eight characters as in earlier releases.) Where a list of identifiers provides *input* to a directive or procedure, you can put an expression instead; this will then be evaluated (to give a list of identifiers containing the results) before the directive or procedure is used. A string is a list of characters. Usually the start and end of the string must be marked by a single quote ('). Strings occur within the Text data structure. Also, the settings of some options and parameters are lists of string "tokens" that can be chosen from a defined list; these do not need to start and end with single quotes. The separator between items in lists is comma; spaces can be included anywhere between items but do not act as separators. Formal definitions of expressions, formulae, and all the other concepts of the Genstat language are in the Guide to the Genstat Command Language, Part 1, Section 1.2.

Names of directives, procedures, options and parameters are examples of Genstat system words. They can be given in capital or small letters (or in mixtures of both) and, provided you are only using directives and official Genstat Library procedures, they can always be abbreviated to four characters. The same rules apply to string tokens in directives and Library procedures. However, if you or your site have defined your own procedures, you may have chosen names that differ only in the fifth or subsequent characters. If you supply more characters, Genstat will check the name up to the 32nd character, and ignore any characters after that. (You can, however, use the SET directive to request that Genstat also ignores the ninth and subsequent characters, as in releases before 4.2.)

Names of options and parameters can often be abbreviated to fewer than four characters, and there are also rules by which the option or parameter name, with its accompanying equals character, can be omitted altogether. The most useful of these is that, if the first parameter of the directive is the one that comes first in the statement, then the name of the parameter can be omitted: for example

PRINT [CHANNEL=2; INDENTATION=5] X,Y; DECIMALS=0,2

1 The Genstat Language

as STRUCTURE is the first parameter of PRINT. The same rule holds for options:

PRINT [2; INDENTATION=5] X,Y; DECIMALS=0,2

as CHANNEL is the first option of PRINT. Full details of the rules are in the *Guide to the Genstat Command* Language, Part 1, Section 1.2.

A final point about the first parameter is that its setting determines the length of the parallel lists. The lists for other parameters will be repeated (or recycled) if they are shorter. (If they are longer, Genstat gives an error diagnostic.) For example

PRINT A, B, C, D; DECIMALS=0, 2

prints A with zero decimal places, B with two, and then (recycling the DECIMALS list), C with zero and D with two.

1.2 Glossary of terminology

Backing store	is a system provided by Genstat for the convenient storage of data structures and procedures. The OPEN directive allows you to open a backing-store file, the STORE directive stores information and RETRIEVE allows you to access it later on (perhaps in a subsequent run of Genstat). When a data structure is stored, Genstat keeps not only the data values but also all the other associated information (for example level and label definitions of factors, sub-structures of pointers and so on).
Bracket	
Round brackets ()	are used to enclose a list of numbers to be pre- or post-multiplied
	or to enclose the arguments of a function; they also occur in expressions.
Square brackets []	are used to enclose a list of option settings or to enclose the
	suffix list of a pointer; also, when preceded by $\$$, they enclose lists of unit names or numbers for a qualified identifier.
Curly brackets { }	are each synonymous with the corresponding square bracket.
Channel	Genstat accesses the files on the computer via <i>channels</i> . For each type of file, there is a set of numbered channels that can be used to reference different files in the various input/output directives. For example, there are five input channels, numbered 1 up to 5. Likewise, there are five output channels. Genstat distinguishes between the different types of channel, so you can have one file attached to input channel 3 and a different file simultaneously attached to output channel 3. (See the OPEN directive.)
Character	The characters used to form Genstat statements are a subset of those available on most computers. For the Genstat language they are classified as brackets, digits, letters, punctuation symbols, simple operators, or special symbols.
Comment	A comment consists of any series of characters that the computer can represent, enclosed by double quotes ("); comments are ignored and can appear anywhere in a Genstat program.
Data structure	These are used to store information within Genstat, such as numbers, character strings or even identifiers of other data structures. Directives known as declarations are available to form each of the available types.
Device	is a type of plotter selected by the DEVICE directive for use by

	1.2 Glossary of Terminology 3	\$
	Genstat's high-resolution graphics commands.	
Diagonal matrix	is a data structure that stores the diagonal elements of a square matrix whose other values are all zero. Diagonal matrices can be declared using the DIAGONALMATRIX directive.	
Digit	The numerical characters 0 to 9 are known as digits in Genstat.	
Directive	is a standard form of instruction in the Genstat language requesting a particular action or analysis. All Genstat directives have the same syntax.	5
Directive name	is a system word used to request a particular action or analysis from Genstat. Directive names may be abbreviated to four characters; if characters 5-8 are given, they must match the standard form, e.g. TREATMENTSTRUCTURE can be written as TREA, TREAT, TREATM, and so on, but not as TREATS. (Also see procedure.)	r e S
Expression	is an arithmetic expression consisting of lists and functions separated by operators. An expression data structure stores a Genstat expression, and can be declared using the EXPRESSION directive.	ı
Factor	is a data structure that specifies an allocation of the units into groups. It is thus a vector that, unlike the variate or the text, takes only a limited set of values, one for each group. The groups are referred to by numbers known as levels; you can also define textual labels. Factors can be declared using the FACTOR directive.	5
Fixed format	In fixed format, data values are arranged in specific <i>fields</i> on each line of the file. Each field consists of a fixed number of characters. There is no need for separating spaces. When data are read in fixed format in Genstat (by the READ directive), the tab character is not permitted, nor are comments.	f e
Formula	is a model formula of lists and operators defining the list of model terms involved in an analysis. A formula data structure stores a Genstat formula, and can be defined using the FORMULA directive.	•
Frame	In Genstat graphics, <i>frame</i> refers to the available plotting area. (See the FRAME and GRAPH directives.)	•
Free format	In <i>free format</i> , the data values are separated by one or more spaces (or tabs), and can otherwise be arranged any way you like, on one or more lines, so long as the correct order is maintained. The SEPARATOR option of the READ directive allows separators other than spaces to be requested.	,
Function	denotes a standard operation in an expression or formula, with the form " <i>function-name</i> (sequence of <i>lists</i> and/or <i>expressions</i> separated by ;)". The function-name is a system word and may be abbreviated to four characters; if characters 5-8 are given, they must match the standard form. A wide range of functions are available, for operations ranging from transformations to the	5 7 9

4	1 The Genstat Language
	calculation of summary statistics.
Identifier	is the name given to a particular data structure within a Genstat program. The first character of an identifier must be a letter; any others can be either letters or digits. Only the first 32 characters are significant; subsequent characters are ignored. The directive SET allows you to specify whether or not the case of the letters (small or capital) is to be significant, e.g. whether LENGTH is the same as Length, or whether only the first eight characters should be significant (as in Releases before 4.2).
Inconsistent structure	Genstat data structures that depend on other structures can be left in an inconsistent form if these other structures are deleted. For example, a table depends on its classifying factors.
Item	is a number, a string, an identifier, a system word, a missing value, or an operator.
Justification	is the process of ensuring that columns of information line up down the left-hand side (left justification) or down the right-hand side (right justification).
Label	of a factor is one of the possible textual values that the factor can store.
Letter	Letters in Genstat are the upper-case (capital) letters A to Z , the lower-case letters a to z , the underline symbol (_), and the percent character (%).
Level	of a factor is one of the possible (numerical) values that the factor can store.
Line printer	is the general term used to denote a character-based graphics device.
List	is a sequence of items separated by commas. In an identifier list, each item is an identifier or an unnamed structure, while number or string lists contain numbers or strings respectively. Lists can contain pre- or post-multipliers. Identifier and number lists can contain progressions.
Loop	is a series of Genstat commands that is repeated several times, possibly operating on different data structures each time. (See the FOR directive.)
LRV structure	is a compound data structure storing latent roots and vectors, mainly used in multivariate analysis. They can be declared using the LRV directive.
Macro	is a Genstat text structure containing a section of a Genstat program. The text must have an unsuffixed identifier. It can be substituted into the program, by giving its identifier, preceded by a contiguous pair of substitution symbols (##). The substitution takes place as soon as Genstat reads the pair of hashes. (However, Genstat also has the EXECUTE directive, which allows a text containing a list of statements to be executed for example within a loop or procedure.)

	1.2 Glossary of Terminology5
Margin	The margin of a Genstat table is a section of the table that contains summaries over the values of one or more of the classifying factors. A marginal term of a term T in a statistical model is a term composed of factors or variates that are a subset of those of T .
Matrix	is a data structure that stores a rectangular array of numbers. Matrices can be declared using the MATRIX directive.
Missing value	is denoted within a Genstat program by one asterisk (*). When reading data, a series of contiguous asterisks or an asterisk followed by letters or digits is treated as a missing value too, and other characters can also be defined to represent missing values.
Multiplier	allows repetitive lists to be specified concisely. A multiplier may be a number, or the substitution symbol (#) followed by a single- valued numerical data structure.
Post-multiplier	is given immediately after the second of a pair of round brackets enclosing a list of identifiers, numbers, or strings, and has the effect of repeating the entire list, as a whole, the specified number of times.
Pre-multiplier	occurs immediately before the initial (round) bracket of a pair enclosing a list of identifiers, numbers, or strings and has the effect of repeating each item, in turn, the specified number of times.
Number	is a sequence of digits, optionally containing a decimal point (.). The sequence can be preceded by a sign (+ or $-$) and can be followed by an exponent: i.e. the letter E or D (in upper or lower case) optionally followed by spaces, then a sequence of digits optionally preceded by a sign.
Operator	is a symbol or symbols denoting an operation in an expression or formula:
Simple	+ (addition), - (subtraction), * (multiplication or product), / (division or nesting), . (interaction), = (assignment), < (less
Compound	than), > (greater than) ** (exponentiation), *+ (matrix multiplication), -* (crossed
	<pre>deletion), -/ (nested deletion), // (pseudo-term linkage), .EQ. or == (equality), .NE. or /= or <> (non-equality), .LE. or <= (less than or equal to), .GE. or >= (greater than or equal to), .LT. (less than), .GT. (greater than), .EQS. (string equality), .NES. (string non-equality), .IN. (set inclusion), .NI. (set non-inclusion), .IS. (identifier equivalence), .ISNT. (identifier non-equivalence), .AND. (logical <i>and</i>), .OR. (logical <i>or</i>), .EOR. (logical <i>either or</i>), .NOT. (logical <i>not</i>). Only + - * // -* and // may occur in formulae, while* -/ and // cannot occur (as operators) in expressions.</pre>
Precedence	The list below shows the order in which the operators are
(1) (2)	evaluated when they are used in expressions, if brackets are not used to make the order explicit: .NOT. Monadic - .ISISNTINNI. *+

1 The Genstat Language

(3) (4)	** /
(5) (6)	+ Dyadic - < > == <= >= /= <> .LTGTEQLE.
(7)	.GENENES. .ANDOREOR.
(8)	
	(Monadic minus means the use of the minus sign in a negative
	number: for example, – 1.) Within each class, operations are done from left to right within a expression, unless brackets are used to indicate some other order.
Option	Options specify arguments that are global within a Genstat statement: i.e. they apply to all the items in the parameter list(s). Often, but not always, options have default values and so need not be specified.
Option name	is a system word that identifies a particular option setting. It can
Option sequence	be abbreviated to the minimum number of characters required to distinguish it from the options that precede it in the prescribed order for the directive or procedure concerned; for directives, four characters are always sufficient. is a series of option settings separated by semi-colons (;).
	has the form
Option setting	option-name = list, expression or formula
	" <i>option-name</i> =" can be omitted if the settings are given in the prescribed order for the directive or procedure concerned: i.e. the name may be omitted for the first setting if this is for the first prescribed option, and for subsequent settings if the previous setting was for the option immediately before the current one in the prescribed order.
Parameter Parameter name	Parameters specify parallel lists of arguments for a statement: i.e. the statement (with its option settings) operates for the first item in each list, then the second, and so on. The number of times that this happens is determined by the length of the parameter list that is first in the prescribed order for the directive or procedure concerned. Subsequent lists are recycled if they are shorter than the first list. is a system word that identifies which parameter is being set. It
	may be abbreviated to the minimum number of characters required to distinguish it from the parameters that precede it in the prescribed order for the directive or procedure concerned; for directives, four characters are always sufficient.
Parameter sequence	is a series of parameter settings separated by semi-colons (;).
Parameter setting	has the form
	parameter-name = list, expression or formula" parameter-
	<i>name</i> =" can be omitted if the settings are given in the prescribed order for the directive or procedure concerned: i.e. the name may be omitted for the first setting if this is for the first prescribed parameter, and for subsequent settings if the previous setting was for the parameter immediately before the current one in the prescribed order. For directives or procedures with only a single parameter, no parameter name is defined.

	1.2 Glossary of Terminology	7
Pen	All the elements of a high-resolution graph, such as symb- lines, axes, titles, labels, annotation, and filled polygons drawn by <i>pens</i> , which have associated definitions cover various attributes, like colour, font, and symbol type. The also indicates the plotting method, that is, what kind of plot i be drawn. See the PEN directive.	are ring pen
Pointer	is a data structure that stores a series of identifiers, pointing other data structures. Pointers can be declared using POINTER directive.	
Procedure	This is a structure that contains Genstat statements, and fulfils role of the subroutine in the Genstat language. The use of procedure looks just like the use of a Genstat directive. All of structures within the procedure are local (i.e. they cannot referenced, or confused, with data structures outside procedure); input and output structures for the procedure defined by option and parameter settings in the procedure ca	of a data t be the are all.
Procedure name	is a letter followed by letters and/or digits. Procedure names be defined with up to 32 characters; if more than 32 are giv characters 33 onwards are ignored. The case of the letters (sn or capital) is also ignored. When using a procedure, the name be abbreviated to as few as four characters, provided there is ambiguity with the names of directives or other procedu Directives and procedures in the official Genstat library are defined to have names that are distinct within the first f characters so there should be no problem unless you (or y site) have defined procedures with ambiguous names. If Genstat selects the command to use according to the follow order of priority: directives, user-defined procedures, procedu in libraries attached by the user (in order of channel numb procedures in the site library, and procedures in the offi- library.	ven, nall can s no ires. e all four vour so, ving ures per),
Procedure Library	The Genstat Procedure Library contains procedures contribu- not only by the writers of Genstat but also by knowledgea Genstat users from many application areas and countries. T Library is controlled by an Editorial Board, who check that procedures are useful and reliable, and maintain standards for documentation. It is regularly extended and updat independently to the releases of Genstat itself, and these revi- versions are distributed automatically to all supported Gen sites. Information about the Library is available using procedu in the help module of the Library. Other modules cover, example, manipulation, graphics and various types of statist analysis. These procedures are all accessed automatically Genstat, when required. Instructions for authors of procedu can be obtained using procedure NOTICE. You can also for your own procedure libraries using the STORE directive.	able The the ted, ised astat ures for ical y by ures
Program	is a series of statements, ending with the statement $\ensuremath{\texttt{STOP}}$.	
Progression	Lists of numbers ascending or descending with equal increme can be specified succinctly using the form " <i>number</i> , <i>number</i> , <i>number</i> " where the first two numbers define the first elements in the list (and thus the increment) and the list ends w	 two

8	1 The Genstat Language
	the value beyond which the third number would be passed. For lists with an increment of plus or minus one, the second number can be omitted, to give the form " <i>number number</i> ".
Punctuation symbol colon (:)	The Genstat punctuation symbols are: indicates the end of a statement;
comma(,)	separates items;
double quote (")	is used to show the beginning and end of a comment;
equals (=)	separates an option name or parameter name from its setting;
newline	is synonymous with colon, by default, but directive SET can
semi-colon (;)	request that it be ignored; separates lists;
single quote (')	is used to show the beginning and end of a string (left single
space	quote (`) is synonymous with single quote); can appear between items or can be omitted altogether if the
tab	items are already separated by another punctuation symbol, a bracket, an operator, or an ampersand; the tab character is treated as a synonym of space everywhere
	except within texts and comments or if reading in fixed format (when it is treated as a fault).
Qualified identifier	These may occur in a list of identifiers to define subsets of the values of a data structure (i.e. sub-structures). The form is " <i>identifier</i> \$ <i>qualifier</i> ", where the <i>qualifier</i> is a sequence of identifier lists enclosed in square brackets. For factors, variates, and texts, the qualifier has a single list, each element of which defines a subset of the vector concerned. For matrices there are two lists running in parallel, one for each dimension. For a symmetric matrix, there can be either one or two lists, depending on whether or not its two dimensions are to be subset in the same way; one list forms a symmetric matrix, and two lists forms a rectangular matrix, For a diagonal matrix there is a single list. Tables cannot be qualified. The elements of the qualifier lists can be scalars, numbers, variates, quoted strings, or texts. The set of units defined by an element in the qualification list is built up, by taking its values one at a time. Positive numbers (or texts or strings) add units to the set, while negative numbers delete the corresponding units from the set (if already there). A missing value can be used to include all the units, and one of these will be included implicitly at the start of the qualification list if the first element of the list is negative. More details, and examples, are given in Section 4.1.6 of the <i>Guide to the Genstat Command Language: Part 1 Syntax and Data Management</i> .
Save structure	is a special-purpose structure defined within Genstat for saving information, for example from an analysis, so that further output can be obtained without repeating all the calculations.
Scalar	is a data structure that stores a single number. Scalars can be declared using the SCALAR directive.
Special symbol ampersand (&)	The special symbols in Genstat are as follows: repeats the previous statement name (unless that statement

repeats the previous statement name (unless that statement contained a syntax error) and any option settings that are not

	1.2 Glossary of Terminology	9
asterisk (*)	explicitly changed; denotes a missing value (and is also used as an operator	r);
backslash()	is the continuation symbol, typed at the end of a line to	indicate
dollar (\$)	that the current statement continues onto the next line unnecessary when directive SET has been used to spec newline is to be ignored); precedes a list of unit names or numbers (enclosed in	cify that
exclamation mark (!)	brackets) that define subsets of a factor, variate, symmetric matrix, diagonal matrix, or text; indicates an unnamed structure (vertical bar (+) is synor	matrix,
hash (#)	with exclamation mark); is the substitution symbol; when used on its own (i.e. for	ollowed
	just by a punctuation symbol) it represents the default set an option; alternatively, it can be followed by the identiti data structure whose values are to be inserted at that po Genstat statement (the substitution takes place immu- before the statement is executed). A pair of con- substitution symbols (##) is used to introduce a macro.	fier of a bint in a ediately
SSPM structure	is a compound data structure storing sums of squa products, means and ancillary information for use in reg and multivariate analysis. SSPMs can be declared using the directive.	gression
Standard order	The values of a set of factors are said to be in <i>standard</i> their units are arranged so that the levels of the first factor in the same order as in its levels vector then, within each the first factor, the levels of the second factor are a similarly, and so on. (See the GENERATE directive.)	or occur level of
Statement	is an instruction in the Genstat language; it has the form	1
statement-name [option-sequence	e] parameter-sequence terminator	
Start and a start of the start	If no option settings are given, the square brackets omitted. The <i>terminator</i> is colon (:), ampersand ($\&$) or 1 (unless directive SET has indicated that this is to be igned in the name of eichers a direction on a proved has	newline
Statement name	is the name of either a directive or a procedure.	
String	is a sequence of characters forming one unit (or line) of a text structure. In most contexts, the string must be quo enclosed in single quotes ('). Quoted strings may contain the characters available on the computer. However, i quote ('), double quote ("), or the continuation symbol required as characters within a quoted string, they must typed twice to distinguish this use from their act respectively, terminating the string, introducing a co- within the string, or indicating continuation. Newline w quoted string is taken to terminate the current (quoted) stri- begin another one, unless the newline is within a com- preceded by an (unduplicated) continuation symbol (\), o directive SET has specified that newline is to be i Unquoted strings can occur in unnamed texts, or in op parameter settings where you have to specify a particula from a prescribed set of alternatives; an unquoted strin have a letter as its first character and contain only le digits.	n any of f single f single l (\) are each be tion in, omment within a ring and ment or or unless ignored. ption or ar string ng must

10	1 The Genstat Language
Subfile	Backing store files are partitioned into subfiles. These are self- contained, and can be used completely independently of each other.
Subset selection	An identifier list can contain qualified identifiers, each defining a list of subsets of the values of the data structure concerned.
Suffix	Elements of pointers can be referred to by suffixes. Each suffix takes the form of an identifier list enclosed in square brackets; the list can contain numbers, scalars, or variates to reference an element or elements by number, or texts or quoted strings to reference by label. A null list within the brackets is taken to mean all the elements of the pointer in turn. Where a pointer has other pointers as its elements, their elements can be referred to in the same way, and so the original identifier may be followed by several suffix lists each contained in its own pair of square brackets; these define a list of elements, one for each combination of an element from each suffix list, taking the combinations in an order in which the last list cycles through its elements fastest, then the next to last list, and so on.
Symmetric matrix	is a data structure that stores the lower triangle (including the diagonal) of a symmetric square matrix.
System word	is a letter followed by letters and/or digits with a special meaning within the Genstat language, e.g. directive, option, parameter, or function names. The case of the letters (small/capital) is not significant; the abbreviation rules vary according to context.
Table	is a data structure that stores a multi-dimensional array of numbers, each dimension classified by a factor. Thus a table can be used to hold a summary of data that are classified (by the factors) into groups. Tables can be declared using the TABLE directive.
Text	is a data structure that stores a series of strings, each one representing a line of textual information. Texts can be declared using the $TEXT$ directive.
Tree	is a data structure that represents hierarchical structures like classification trees, identification keys and regression trees. Trees can be declared using the TREE directive.
TSM structure	is a compound data structure storing a model for use in Box- Jenkins modelling of time series. TSMs can be declared using the ${\tt TSM}$ directive.
Unknown cell	of a table is used to store the relevant summary of all the observations for which any of the classifying factors of the table has a missing value; these observations cannot be assigned to any cell of the table itself. (See TABLE.)
Unnamed structure	An identifier list may contain unnamed variates, scalars, texts, pointers, expressions, or formulae. An unnamed structure consists of an exclamation mark, followed by the type code, and then the values contained in round brackets. The type code is E for expression, F for formula, P for pointer, S for scalar, T for

text, or ${\bf \triangledown}$ for variate. If no code is given, variate is assumed by default.
is a data structure that stores a series of numbers. Variates can be declared using the VARIATE directive.
is a series of values, notionally arranged in a column. Genstat has

 Window
 In high-resolution graphics, a window is a rectangular segment of the frame used to plot a particular graph. (See the FRAME directive.)

1.3 Data structures

Variate

Vector

Data structures store the information on which a Genstat program operates. Structures can be defined, or declared, by a Genstat statement known as a declaration. The directive for declaring each type of structure has the same name as given to that type of structure, for example SCALAR to declare a scalar (or single-valued numerical structure), and so on. These are the directives, with details of their corresponding data structures:

single number
series of numbers
series of character strings (or lines of text)
series of group allocations (using a pre-defined set of numbers or
strings to indicate the groups)
rectangular matrix
symmetric matrix
diagonal matrix
table (to store tabular summaries like means, totals etc)
single identifier
series of identifiers (e.g. to represent a set of structures)
arithmetic expression
model formula (to be fitted in a statistical analysis)
latent roots and vectors
sums of squares and products with associated information such
as means
tree (as used to represent classification trees, identification keys
and regression trees)
model for Box-Jenkins modelling of time series

You can rename a data structure, or create a new one with attributes the same as those of an existing structure.

RENAME 1	renames a data structure, to give it a new identifier
DUPLICATE Í	forms new data structures with attributes taken from an existing
S	structure
PDUPLICATE C	duplicates a pointer, with all its components
SETNAME S	sets the identifier of a data structure to be one specified in a text

You can also define data structures whose contents are customized for particular tasks.

STRUCTURE	defines a customized data structure
DECLARE	declares one or more customized data structures

1 The Genstat Language

There are commands to access and display the attributes of data structures, and to work out the best formats for printing their values.

DUMP	prints attributes of data structures and other internal information
DECIMALS	sets the number of decimals for a structure, using its round-off
GETATTRIBUTE	accesses attributes of data structures
LIST	lists details of the data structures that currently exist in your
	program
MINFIELDWIDTH	calculates minimum field widths for printing data structures

1.4 Program control

A Genstat program consists of a sequence of one or more *jobs*. The first job starts automatically at the start of the program. Subsequent jobs can be initialized by the JOB and ENDJOB directives:

JOB	starts a Genstat job (ending the previous one if necessary)
ENDJOB	ends a job

The whole program is terminated by a STOP directive:

```
STOP ends a Genstat program
```

Statements within a program can be repeated using a FOR loop. The loop is introduced by a FOR statement. This is followed by the series of statements that is to repeated (that is, the contents of the loop), and the end of the loop is marked by an ENDFOR statement. Parameters of the FOR directive allow lists of data structures to be specified so that the statements in the loop operate on different structures each time that it is executed.

FOR	indicates the start of a loop
ENDFOR	marks the end of a loop

Genstat has two ways of choosing between sets of statements. The block-if structure consists of one or more alternative sets of statements. The first set is introduced by an IF statement. There may then be further sets introduced by ELSIF statements. Then there may be a final set introduced by an ELSE statement, and the whole structure is terminated by an ENDIF structure. The IF statement, and each ELSIF statement, contains a single-valued logical expression. Genstat evaluates each one in turn and executes the statements following the first TRUE logical found; if none of them is true, Genstat executes the statements following the ELSE statement (if any).

IF introduces a block-if structure

ELSIF	introduces an alternative set of statements in a block-if structure
ELSE	introduces a default set of statements for a block-if structure
ENDIF	marks the end of a block-if structure

The multiple-selection structure consists of several sets of statements. The first is introduced by a CASE statement. Subsequent sets are introduced by OR statements. There can then be a final, default, set introduced by an ELSE statement, and the end of the structure is indicated by an ENDCASE statement. The parameter of the CASE statement is an expression which must produce a single number. Genstat rounds this to the nearest integer, *n* say, and then executes the *n*th set of statements. If there is no *n*th set, the statements following the ELSE statement are executed (if any).

CASE	introduces a multiple-selection structure	
OR introduces an alternative set of statements for a multiple-selection structure		
ELSE	introduces a default set of statements for a multiple-selection	
	structure	
ENDCASE	marks the end of a multiple-selection structure	

1.4 Program control

Sequences of statements can be formed into Genstat procedures for convenient future use. The use of a procedure looks just like one of the Genstat directives, with its own options and parameters, which transfer information to and from the procedure. Otherwise the procedure is completely self-contained. The start of a procedure is indicated by a PROCEDURE statement. Then OPTION and PARAMETER statements can be given to define the arguments of the procedure. These are followed by the statements to be executed when the procedure is called, terminated by an ENDPROCEDURE statement.

PROCEDURE	introduces a procedure, and defines its name
OPTION	defines the options of a procedure
PARAMETER	defines the parameters of a procedure
CALLS	lists library procedures called by a procedure
ENDPROCEDURE	indicates the end of a procedure
WORKSPACE	accesses "private" data structures for use in procedures

Any control structure (job, block-if structure, loop, multiple-selection structure or procedure) can be abandoned using an EXIT statement. Also, execution of any of these structures can be interrupted explicitly with a BREAK statement, or implicitly by using DEBUG. Once DEBUG has been entered, Genstat will produce breaks automatically at regular intervals, until it meets an ENDDEBUG statement. You can also issue a faults, warnings or messages.

EXIT	exits from a control structure
BREAK	suspends the execution of a control structure
ENDBREAK	continues execution of a control structure, following a break
DEBUG	can cause a break to take place after the current statement (and
	at specified intervals thereafter), or immediately after the next
	fault
ENDDEBUG	cancels DEBUG
FAULT	evaluates a logical expression to decide whether to issue a
	diagnostic, i.e. a fault, warning or message
DISPLAY	prints, or reprints, diagnostic messages

Macros within a procedure are substituted as soon as they are met during the definition of the procedure. However, it is also possible to execute a set of statements (contained in a text) during execution of the procedure. This can also be useful within loops.

FYFC	TTTTE
ĽAĽ	

executes the statements contained within a text

Other commands that may be useful in programs and procedures include the following:

CAPTION COMMANDINFORMATION	prints captions in standardized formats provides information about whether (and how) a command has been implemented
COUNTER	increments a multi-digit counter using non base-10 arithmetic
GET	accesses details of the "environment" of a Genstat job
GETTEMPFOLDER	gets the name of the Genstat temporary folder
SET	sets details of the "environment" of a Genstat job
ENQUIRE	provides details about files opened by Genstat
GETATTRIBUTE	accesses attributes of structures
CHECKARGUMENT	checks the arguments of a procedure
LIBEXAMPLE	accesses examples and source code of library procedures
SETCALCULATE	performs Boolean set calculations on the contents of vectors or pointers
SETRELATE	compares the sets of values in two data structures
SPSYNTAX	puts details about the syntax of commands into a spreadsheet
SYNTAX	obtains details of the syntax of a command and the source code of a procedure

1 The Genstat Language

ASSIGN	sets elements of pointers and dummies
DELETE	deletes the attributes and values of structures
DUPLICATE	forms new data structures with attributes taken from an existing
	structure
%LOG	adds text into the Input Log window in the Genstat client
%MESSAGEBOX	displays text in a dialog in the Genstat client
%OPEN	open a binary file for use with %WRITE
%FPOSITION	returns the current position in the binary file opened by %OPEN
%WRITE	writes values of data structures to a binary file opened by %OPEN
%CLOSE	closes the binary file opened by %OPEN
%SLEEP	pauses execution of the server for a time specified in seconds
%TEMPFILE	creates a unique temporary file in the Genstat temporary folder

In some implementations of Genstat, it is possible to suspend the execution of Genstat and return to the operating system of the computer to execute commands, for example to list or edit files on the computer. Likewise, it may be possible to halt the execution of Genstat to execute some other computer program. You can also execute code within an external DLL using the EXTERNAL directive and the OWN function. The OWN directive provides another way of running a user's program from within Genstat. The OWN subroutine, within the Fortran code of Genstat, needs to be modified to call the program. The new code must then be recompiled and linked into a new version of Genstat.

SUSPEND	suspends the execution of Genstat to carry out operating-system commands
PASS	runs another computer program, taking data from Genstat and transferring results back
SHELLEXECUTE	launches executables or opens files in another application using their file extension
EXTERNAL	declares an external function in a DLL for use by the \ensuremath{OWN} function
OWN	executes the user's own code linked into Genstat
BGXGENSTAT	runs WinBUGS or OpenBUGS from Genstat in batch mode using scripts
RXGENSTAT	submits a set of commands externally to R and reads the output

2 Data handling

2.1 Input and output

Data can be read into Genstat data structures using the READ and SPLOAD directives or the FILEREAD and TX2VARIATE procedures:

READ	reads data from an input file, an unformatted file or a text
FILEREAD	reads data from a text file, assumed to be in a rectangular array
SPLOAD	loads data from a Genstat spreadsheet file
TX2VARIATE	reads values into a variate from a text structure

Files can be connected to input, output or other channels during execution of a Genstat program. Channels can also be closed, terminating the connection, so that they can be attached to other files.

OPEN	opens files and connects them to Genstat input/output channels
CLOSE	closes files, freeing the channels to which they were attached

The channel from which input statements are taken can be changed, as can the channel to which output is sent. It is also possible to send a transcript (or copy) of input and/or output to output files, to skip sections of input or output files, and to obtain information about the files connected to each channel.

INPUT	specifies the channel from which subsequent statements should be read
RETURN	returns to the previous input channel
OUTPUT	specifies the channel to which future output should be sent
COPY	requests a transcript of subsequent input and/or output
SKIP	skips lines of input or output files
ENQUIRE	provides details about files opened by Genstat

The following commands allow you to generate output.

PRINT CAPTION LIST	prints data in tabular form to an output file or text prints captions and titles in standardized formats lists details of the data structures that currently exist in your
	program
PAGE	moves to the top of the next page of an output file
PFACLEVELS	prints levels and labels of factors
PLINK	prints a link to a graphics file into an HTML file
DISPLAY	repeats the last Genstat diagnostic
DUMP	prints attributes of data structures and other internal information
DECIMALS	sets the number of decimals for a structure, using its round-off
MINFIELDWIDTH	calculates minimum field widths for printing data structures

You can copy, delete and rename files:

FCOPY	makes copies of files
FDELETE	deletes files
FRENAME	renames files

You can define menus:

QDIALOG	produces a modal dialog box to obtain a response from the user
QUESTION	obtains a response using a Genstat menu (formed using
	QDIALOG)
QFACTOR	allows the user to decide to convert texts or variates to factors
QLIST	presents a sequence of menus to obtain a response from a list

The values of a data structure, with all its defining information, can be stored in a sub-file of a "backing-

2 Data handling

store" file. It can then be retrieved in a later job, without the need to repeat the definitions. The current state of the whole job can also be dumped to an unformatted file, so that it can be picked up and continued on a later occasion.

STORE	stores data structures in a backing-store file
RETRIEVE	retrieves data structures from a backing-store file
CATALOGUE	displays the contents of a backing-store file
MERGE	copies sub-files of backing-store files into a single file
RECORD	dumps the complete details of a job
RESUME	reads and restarts a recorded job

Genstat has several additional commands for accessing data from spreadsheets, databases and other systems. However, these may be unavailable in some implementations.

CSPRO	reads a data set from a CSPro survey data file and dictionary, and loads it into Genstat or puts it into a spreadsheet file
EXPORT	outputs data structures in foreign file formats, or as plain or comma-delimited text
IMPORT	reads data in a foreign file format, and loads it or converts it to a spreadsheet file
DBCOMMAND	runs an SQL command on an ODBC database
DBEXPORT	update an ODBC database table using data from Genstat
DBIMPORT	loads data into Genstat from an ODBC database
DBINFORMATION	loads information on the tables and columns in an ODBC database
DDEEXPORT	sends data or commands to a Dynamic Data Exchange server
DDEIMPORT	gets data from a Dynamic Data Exchange (DDE) server
GRIBIMPORT	reads data from a GRIB2 meteorological data file, and loads it or converts it to a spreadsheet file
SPCOMBINE	combines spreadsheet and data files, without reading them into Genstat
%CD	changes the current directory

2.2 Calculations and manipulation

The directive CALCULATE allows arithmetic calculations on the values of any numeric data structure; logical tests can also be done on numerical and textual values. Functions and operators are available for a very wide range of calculations on matrices and tables. Another general directive is EQUATE, which allows values to be copied from one set of data structures to another; the structures must store values of the same mode (for example, numbers or text), but need not be of the same type. Structure values can be deleted to save space within Genstat; attributes can also be deleted so that the structure can be redefined, for example as another type. Contents of data structures are a subset of those in another. You can also find all the locations where a number, identifier or string occurs within a data structure.

CALCULATE	performs arithmetic and logical calculations
DELETE	allows values and attributes of data structures to be deleted
EQUATE	copies values between sets of data structures
SETRELATE	compares the sets of values in two data structures
GETLOCATIONS	finds locations of an identifier within a pointer, or a string within
	a factor or text, or a number within any numerical data structure

There are several general directives for manipulating vectors (variates, factors or texts). Units of vectors can be sorted into systematic order or into random order. Boolean arithmetic can be performed on their contents, or you can form all the ways of partitioning them into subsets. A "restriction" can be associated with a vector, so that subsequent statements operate on only a subset of its units. A default length and

2.2 Calculations and manipulation

labelling can be defined for vectors formed later in the job. Facilities for specific types of vector allow interpolation of values for variates, monotonic regression, calculation of regression quantiles, generation of factor values, and concatenation, editing and searching of text.

SORT	sorts units of vectors into alphabetic or numerical order of an
	index vector, or forms a factor from a variate or text
SETCALCULATE	performs Boolean set calculations on the contents of vectors and
	pointers
SETALLOCATIONS	runs through all ways of allocating a set of objects to subsets
RESTRICT	defines a "restriction" on the units of a vector
UNITS	defines default length or labelling for vectors defined
	subsequently in the job
INTERPOLATE	calculates variates of interpolated values
FRQUANTILES	forms regression quantiles
MONOTONIC	fits an increasing monotonic regression
GROUPS	forms a factor (or grouping variable) from a variate or text,
	together with the set of distinct values that occur
CONCATENATE	concatenates together lines of text vectors
EDIT	line editor for units of text vectors
TXBREAK	breaks a text structure into individual words
TXCONSTRUCT	forms a text structure by appending or concatenating values of
	scalars, variates, texts, factors or pointers; allows the case of
	letters to be changed or values to truncated and reversed
TXFIND	finds a subtext within a text structure
TXINTEGERCODES	converts textual characters to and from their corresponding
	integer codes
TXPOSITION	locates strings within the lines of a text structure
TXREPLACE	replaces a subtext within a text structure

Another general directive allows you to run many algorithms from the Numerical Algorithms Group Library, for example to build mathematical models.

NAG

calls an algorithm from the NAG Library

Other facilities for vectors are provided by the procedures in the Genstat Procedure Library, including

APPEND	appends a list of vectors of compatible types
FACAMEND	permutes the levels and labels of a factor
FACCOMBINATIONS	forms a factor to indicate observations with identical values of a set of variates, texts or factors
FACDIVIDE	represents a factor by factorial combinations of a set of factors
FACEXCLUDEUNUSED	redefines the levels and labels of a factor to exclude those that are unused
FACGETLABELS	obtains the labels for a factor if it has been defined with labels, or constructs labels from its levels otherwise
FACMERGE	merges levels of factors
FACPRODUCT	forms a factor with a level for every combination of other factors
FACSORT	sorts the levels of a factor according to an index vector
FACLEVSTANDARDIZE	redefines a list of factors so that they have the same levels or labels
FACUNIQUE	redefines a factor so that its levels and labels are unique
FBETWEENGROUPVECTORS	forms variates and classifying factors containing within-group summaries to use e.g. in a between-group analysis
FDISTINCTFACTORS	checks sets of factors to remove any that define duplicate classifications
FMFACTORS	forms a pointer of factors representing a multiple-response

2 Data handling

FFREERESPONSEFACTOR	forms multiple-response factors from free-response data
FREGULAR	expands vectors onto a regular two-dimensional grid
FRESTRICTEDSET	forms vectors with the restricted subset of a list of vectors
FROWCANONICALMATRIX	puts a matrix into row canonical, or reduced row echelon, form
FSTRING	forms a single string from a list of strings in a text
FTEXT	forms a text structure from a variate
FUNIQUEVALUES	redefines a variate or text so that its values are unique
FWITHINTERMS	forms factors to define terms representing the effects of one factor within another factor
FVSTRING	forms a string listing the identifiers of a set of data structures
GRANDOM	generates pseudo-random numbers from probability distributions
GRMNOMIAL	generates multinomial pseudo-random numbers
GRMULTINORMAL	generates multivariate normal pseudo-random numbers
JOIN	joins or merges two sets of vectors together, based on classifying
	keys
MVFILL	replaces missing values in a vector with the previous non-missing
	value
ORTHPOLYNOMIAL	calculates orthogonal polynomials
QUANTILE	calculates quantiles of the values in a variate
RANK	produces ranks, from the values in a variate, allowing for ties
RESHAPE	reshapes a data set with classifying factors for rows and columns, into a reorganized data set with new identifying factors
SAMPLE	samples from a set of units, possibly stratified by factors
SVSAMPLE	constructs stratified random samples
STACK	combines several data sets by "stacking" the corresponding
	vectors
STANDARDIZE	standardizes columns of a data matrix to have mean 0 and variance 1
SUBSET	forms vectors containing subsets of the values in other vectors
TXPAD	pads strings of a text structure with extra characters so that their
	lengths are equal
TXPROGRESSION	forms a text containing a progression of strings
TXSPLIT	splits a text into individual texts, at positions on each line marked
	by separator character(s)
TX2VARIATE	converts text structures to variates
UNSTACK	splits vectors into individual vectors according to levels of a factor
VEQUATE	equates values across a set of data structures
VINTERPOLATE	performs linear and inverse linear interpolation between variates

There are several procedures for calculating or fitting splines, and for manipulating series of observations of a theoretical curve.

SPLINE	calculates a set of basis functions for M-, B- or I-splines
LSPLINE	calculates design matrices to fit a natural polynomial or
	trignometric L-spline as a linear mixed model
NCSPLINE	calculates natural cubic spline basis functions (for use e.g. in
	REML)
PENSPLINE	calculates design matrices to fit a penalized spline as a linear
	mixed model
PSPLINE	calculates design matrices to fit a P-spline as a linear mixed
	model
RADIALSPLINE	calculates design matrices to fit a radial-spline surface as a linear
	mixed model
TENSORSPLINE	calculates design matrices to fit a tensor-spline surface as a linear
	mixed model

ALIGNCURVE	forms an optimal warping to align an observed series of	
	observations with a standard series	
BASELINE	estimates a baseline for a series of numbers whose minimum	
	value is drifting	
PEAKFINDER	finds the locations of peaks in an observed series	

Directives are available for eigenvalue, QR and singular-value decompositions of matrices, and to form the values of SSPM structures.

FLRV	calculates latent roots and vectors (that is, eigenvalues and
	eigenvectors)
QRD	calculates QR decompositions of matrices
SVD	calculates singular-value decompositions of matrices
FSSPM	calculates values for SSPM structures (sums of squares and
	products, means, etc.)

Procedures in the Library for operating on matrices include

FCORRELATION	forms the correlation matrix for a list of variates
PARTIALCORRELATIONS	calculates partial correlations for a list of variates
FHADAMARDMATRIX	forms Hadamard matrices
FPROJECTIONMATRIX	forms a projection matrix for a set of model terms
FRTPRODUCTDESIGNMATRIX	forms summation, or relationship, matrices for model terms
FVCOVARIANCE	forms the variance-covariance matrix for a list of variates
GINVERSE	calculates the generalized inverse of a matrix
LINDEPENDENCE	finds the linear relations associated with matrix singularities
MPOWER	forms integer powers of a square matrix
POSSEMIDEFINITE	calculates a positive semi-definite approximation of a non-
	positive semi-definite symmetric matrix
VMATRIX	copies values and row/column labels from a matrix to variates
	and texts

Tables can be formed containing summaries of values in variates: totals, minimum and maximum values, quantiles, numbers of missing and non-missing values, means and variances. Manipulations of multi-way structures include the ability to add various types of marginal summaries to tables, and to combine "slices" of tables, of matrices or of variates.

TABULATE	forms tables of summaries of the values of a variate
MARGIN	calculates or deletes margins of tables
COMBINE	combines or omits "slices" of tables, matrices or variates

Procedures in the Library for operating on tables include

BACKTRANSFORM	calculates back-transformed means with approximate standard errors and confidence intervals
MEDIANTETRAD	gives robust identification of multiple outliers in 2-way tables
MTABULATE	tabulates data classified by multiple-response factors
PERCENT	expresses the body of a table as percentages of one of its margins
SVBOOT	bootstraps data from random surveys
SVCALIBRATE	performs generalized calibration of survey data
SVGLM	fits generalized linear models to survey data
SVREWEIGHT	modifies survey weights adjusting to ensure that their overall sum
	weights remains unchanged
SVSAMPLE	constructs stratified random samples
SVSTRATIFIED	analyses stratified random surveys by expansion or ratio raising
SVTABULATE	tabulates data from random surveys, including multistage surveys

2 Data handling

and surveys with unequal probabilities of selection
forms survey weights
inserts the contents of a sub-table into a table
forms summary tables of modes of values
sorts tables so their margins are in ascending or descending order
combines several tables into a single table
expresses tables as percentages of control cells
forms a variate and set of classifying factors from a table

Directives are available for adding and removing branches of trees, and to assist in the construction and use of trees.

BASSESS	assesses potential splits for regression and classification trees
BCUT	cuts a tree at a defined node, discarding nodes and information
	below it
BIDENTIFY	identifies specimens using a tree
BJOIN	extends a tree by joining another tree to a terminal node
BGROW	adds new branches to a node of a tree

There are also procedures for displaying and pruning trees. These are provide basic utilities for tree-based analysis, and are used by the existing procedures for classification trees, identification keys and regression trees (BCLASSIFICATION, BKEY and BREGRESSION).

BCONSTRUCT	constructs a tree
BGRAPH	plots a tree
BPRINT	displays a tree
BPRUNE	prunes a tree using minimal cost complexity

Formulae and expressions can be interpreted, revised or constructed automatically from the contents of pointers.

FARGUMENTS	forms lists of arguments involved in an expression
FCLASSIFICATION	forms classification sets for the terms in a formula or breaks a
	formula up into separate formulae (one for each term)
REFORMULATE	modifies a formula or an expression to operate on a different set
	of data structures
SET2FORMULA	forms a model formula using structures supplied in a pointer

Values can be assigned to dummies and pointers.

ASSIGN	sets values of dummies a	and
--------	--------------------------	-----

Aspects of the "environment" of the current job can be modified, such as whether or not Genstat starts output from a statistical analysis at the top of a new page, or whether it should pause during interactive output. New defaults can be set for options and parameters. Details of the environmental settings can be copied into Genstat data structures. Attributes of data structures can also be accessed.

pointers

SETOPTION sets or modifies defaults of options of Genstat directive	s or
procedures	
SETPARAMETER sets or modifies defaults of parameters of Genstat directive	s or
procedures	
GET gets details of the "environment" of a Genstat job	
GETATTRIBUTE accesses attributes of data structures	
GETNAME forms the name of a structure according to its IPRINT attril	oute

There are also various specialist mathematical facilities

BPCONVERT	converts bit patterns between integers, pointers of set bits and textual descriptions
FPARETOSET	forms the Pareto optimal set of non-dominated groups
GALOIS	forms addition and multiplication tables for a Galois finite field
NCONVERT	converts integers between base 10 and other bases
PERMUTE	forms all possible permutations of the integers 1n
PRIMEPOWER	decomposes a positive integer into its constituent prime powers

2.3 Graphics

2.3 Graphics

The following directives for produce the plots in "line-printer" style, i.e. using the characters of ordinary textual output:

LPCONTOUR	produces contour maps of two-way arrays of numbers
LPGRAPH	produces scatter plots and line graphs
LPHISTOGRAM	plots histograms

Genstat can also produce high-resolution plots. The relevant directives have two main purposes. There are those that define the "graphics environment" for subsequent plots, and those that do the plotting. Often the default environment, set up at the start of a program, will be satisfactory. To change the graphics environment, the following directives can be used:

XAXIS defines the x-axis in each graphical window	
YAXIS defines the y-axis in each graphical window	
ZAXIS defines the z-axis in each graphical window	
AXIS defines an oblique axis for high-resolution graphics	
DEVICE switches between graphics devices	
FRAME defines the positions of the windows within the frame	
PEN defines the properties of the graphics "pens"	
DFONT defines the default font for high-resolution graphics	
DKEEP saves information about the graphics environment in Genst	at data
structures	
DLOAD loads the graphics environment settings from an external	file
DSAVE saves the current graphics environment settings to an extern	nal file
GETRGB provides a standard sequence of colours (defined by the	initial
defaults of the Genstat pens)	

The directives for plotting high-resolution graphs are:

DGRAPH DHISTOGRAM DPIE DCONTOUR DBITMAP DSHADE DSURFACE D3GRAPH	plots bar charts produces scatter plots and line graphs plots histograms produces pie charts produces contour maps plots a bit map of RGB colours produces a shade diagram of 3-dimensional data draws a perspective plot of a two-way array of numbers plots a 3-dimensional graph produces 3-dimensional histograms
DSTART	starts a sequence of related plots
DFINISH	ends a sequence of related plots
DDISPLAY	redraws the current graphical display
DCLEAR	clears a graphics screen

Other facilities, provided by procedures in the Library include:

2 Data handling

calculates the optimum aspect ratio for a graph draws box-and-whisker diagrams (schematic plots) adds arrows to an existing plot plots bar charts for one or two-way tables plots a biplot from an analysis by PCP, CVA or PCO plots circular data forms a band of graduated colours for graphics plots 3-part compositional data within a barycentric triangle plots a correlation matrix draws a 2-dimensional scatter plot with confidence, prediction and/or equal-frequency ellipses superimposed adds error bars to a graph adds a key to a graph adds text to a graphics frame plots a function plots an h-scattergram produces diagnostic plots for space-time clustering plots discrete data like mass spectra, discrete probability functions produces a scatter-plot matrix for one or two sets of variables plots dot histograms produces a dot-plot creates probability distribution plots calculates an estimate of the spectrum of a spatial point pattern plots the results of a genome-wide scan for $QTL \times E$ effects in multiple environments plots the results of a genome-wide QTL search in a single environment trial adds reference lines to a graph produces model-checking plots of residuals produces a scatter-plot matrix displays spider-web and star plots plots tables adds text to a graph produces horizontal bars displaying a continuous time record produces one-dimensional density (or violin) plots produces density plots for large data sets draws two-dimensional graphs with marginal distribution plots alongside the y- and x-axes produces polar plots forms multiple windows in a plot-matrix for high-resolution graphics plots displays to assess genotype+genotype-by-environment variation determines whether points lie within a specified polygon plots the Lorenz curve and calculates the Gini and asymmetry coefficients prints a link to a graphics file into an HTML file performs a Cate-Nelson graphical analysis of bivariate data draws "rugplots" to display the distribution of one or more samples opens a graphical file and specifies the device number on basis of its extension produces a simple stem-and-leaf chart produces trellis plots for each level of one or more factors plots rose diagrams of circular data like wind speeds

22

BANK BOXPLOT DARROW DBARCHART DBTPLOT DCIRCULAR DCOLOURS DCOMPOSITIONAL DCORRELATION DELLIPSE DERRORBAR DKEY DFRTEXT DFUNCTION DHSCATTERGRAM DKSTPLOT DMASS DMSCATTER DOTHISTOGRAM DOTPLOT DPROBABILITY DPSPECTRALPLOT DQMQTLSCAN DOSOTLSCAN DREFERENCELINE DRESTDUALS DSCATTER DSPIDERWEB DTABLE DTEXT DTIMEPLOT DXDENSITY DXYDENSITY DXYGRAPH DYPOLAR FFRAME GGEBIPLOT TNSTDE LORENZ PLINK RCATENELSON RUGPLOT SETDEVICE STEM TRELLIS WINDROSE

3 Statistical analyses

3.1 Basic and nonparametric statistics

Many simple statistical operations, including calculation of summary statistics, t-tests, one- and two-way analysis of variance and non-parametric tests are provided by procedures in the Library:

TALLYforms a simple tally table of the distinct values in a vectorVSUMMARYSummarizes a variate, with classifying factors, into a data matrix of variates and factorsTTESTperforms a one- or two-sample t-testA2WAYperforms analysis of variance of a balanced or unbalanced design with up to two treatment factorsA2DISPLAYprovides further output following an analysis of variance by A2WAYA2KEEPcopies information from an A2WAY analysis into Genstat data structuresAONEWAYprovides one-way analysis of varianceBLANDALTMANproduces Bland-Altman plots to assess the agreement between two variatesCHISQUAREcalculates chi-square statistics for one- and two-way tablesCHIPERMTESTcalculates one- or two-sample binomial testsPNTESTcalculates one- or two-sample binomial testsPNTESTcalculates summary statistics and tests of circular dataCASSOCIATIONcalculates summary statistics and tests of circular dataCASSOCIATIONcalculates summary statistics and tests of varianceFRIEDMANperforms Friedman's nonparametric analysis of varianceGSTATISTICcalculates kendall's coefficient of agreement for nominally scaled dataRCONCORDANCEcalculates kendall's Coefficient of Concordance (synonym CONCORD)KOLMOG2performs a Kolmogorov-Sminnoff two-sample testKRUSKALcaries out a Kruskal-Wallis one-way analysis of varianceKUMAREperforms a Man-Whitney U testMONEMAREcalculates kendall's ronk correlation coefficient t LCONCORDANCECONCORDANCEcalculates Kenda	VSUMMARYSummarizes a variate, with classifying factors, into a data matrix of variates and factorsTTESTperforms a one- or two-sample 1-testA2WAYperforms analysis of variance of a balanced or unbalanced design with up to two treatment factorsA2DISPLAYprovides further output following an analysis of variance by A2WAYA2KEEPcopies information from an A2WAY analysis into Genstat data structuresAONEWAYprovides one-way analysis of varianceBLANDALTMANproduces Bland-Altman plots to assess the agreement between two variatesCHISQUAREcalculates chi-square statistics for one- and two-way tablesCHIPERNTESTcalculates one- or two-sample binomial testsFNTESTcalculates one- or two-sample Dioson testsFCORRELATIONforms the product moment correlation matrix for a list of variates, and tests whether the correlations are zeroPRCORRELATIONcalculates measures of association for circular dataCCMPAREtests whether samples from circular dataCCMPAREtests whether samples from circular dataCCMPAREtests whether samples for or jactored indices or jaccard index to compare groupings defined by two factorsFRIEDMANperforms Friedman's nonparametric analysis of varianceGSTATISTICcalculates ke appa coefficient of agreement for ordinal data HCOMPAREGROUPINGSKADPAcalculates ke Rand index, adjusted Rand index or Jaccard index to compare groupings defined by two factorsKAPPAcalculates Kendall's Coefficient of Concordance (synonym CONCORD)KOLMOG2performs a Kolmogorov-Smirnoff two-sample te	DESCRIBE	calculates summary statistics for variates
of variates and factorsTTESTperforms a one- or two-sample t-testA2WAYperforms analysis of variance of a balanced or unbalanced design with up to two treatment factorsA2DISPLAYprovides further output following an analysis of variance by A2WAYA2KEEPcopies information from an A2WAY analysis into Genstat data structuresAONEWAYprovides one-way analysis of varianceELANDALIMANproduces Bland-Altman plots to assess the agreement between two variatesCHISQUAREcalculates chi-square statistics for one- and two-way tablesCHIPERMIESTperforms a random permutation test for a two-dimensional contingency tableENTESTcalculates one- or two-sample binomial testsPNTESTcalculates one- or two-sample binomial testsPNTESTcalculates one- or two-sample binomial testsPNTESTcalculates summary statistics and tests of circular dataCASSOCIATIONcalculates measures of association for circular dataCASSOCIATIONcalculates measures of association for circular dataCASSOCIATIONcalculates the gamma statistic of agreement for ordinal dataHCONREREcalculates the gamma statistic of agreement for ordinal dataHCONCORDANCEcalculates kendall's Coefficient of Concordance (synonym CONCORD)KAPPAcalculates Kendall's Coefficient of Concordance (synonym CONCORDANCEKAPPAcalculates Kendall's concordance coreliation coefficient t to concordanc	of variates and factorsTTESTperforms a one- or two-sample 1-testA2MAYperforms analysis of variance of a balanced or unbalanced designA2DISPLAYprovides further output following an analysis of variance by A2MAYA2DISPLAYprovides further output following an analysis of variance by A2MAYA2KEEPcopies information from an A2WAY analysis into Genstat data structuresAONEWAYprovides one-way analysis of varianceBLANDALTMANproduces Bland-Altman plots to assess the agreement between two variatesCHISQUAREcalculates chi-square statistics for one- and two-way tables contingency tableCHISTcalculates one- or two-sample binomial testsPNTESTcalculates one- or two-sample binomial testsPNTESTcalculates measures of association for circular data control wariates, and tests whether samples from circular dataCCORRELATIONcalculates measures of association for circular dataCCEDESCRIEEcalculates measures of association for circular dataCCOMPAREtests whether samples from circular distributions have a common mean direction or have identical distributionsFRIEDMANperforms a Kolmogorov-Smirnoff two-sample testKAPPAcalculates Kendall's Coefficient of Concordance (synonym CONCORDKONCORDANCEcalculates Kendall's Coefficient of agreement for ordinal data dataKCONCORDANCEcalculates Kendall's Coefficient of Concordance (synonym CONCORDANCECONCORDANCEcalculates Kendall's rank correlation coefficient f dataCOCOCDANCEcalculates Kendall's rank correlation coefficient	TALLY	forms a simple tally table of the distinct values in a vector
of variates and factorsTTESTperforms a one- or two-sample t-testA2WAYperforms analysis of variance of a balanced or unbalanced design with up to two treatment factorsA2DISPLAYprovides further output following an analysis of variance by A2WAYA2KEEPcopies information from an A2WAY analysis into Genstat data structuresAONEWAYprovides one-way analysis of varianceELANDALIMANproduces Bland-Altman plots to assess the agreement between two variatesCHISQUAREcalculates chi-square statistics for one- and two-way tablesCHIPERMIESTperforms a random permutation test for a two-dimensional contingency tableENTESTcalculates one- or two-sample binomial testsPNTESTcalculates one- or two-sample binomial testsPNTESTcalculates one- or two-sample binomial testsPNTESTcalculates summary statistics and tests of circular dataCASSOCIATIONcalculates measures of association for circular dataCASSOCIATIONcalculates measures of association for circular dataCASSOCIATIONcalculates the gamma statistic of agreement for ordinal dataHCONREREcalculates the gamma statistic of agreement for ordinal dataHCONCORDANCEcalculates kendall's Coefficient of Concordance (synonym CONCORD)KAPPAcalculates Kendall's Coefficient of Concordance (synonym CONCORDANCEKAPPAcalculates Kendall's concordance coreliation coefficient t to concordanc	of variates and factorsTTESTperforms a one- or two-sample 1-testA2MAYperforms analysis of variance of a balanced or unbalanced designA2DISPLAYprovides further output following an analysis of variance by A2MAYA2DISPLAYprovides further output following an analysis of variance by A2MAYA2KEEPcopies information from an A2WAY analysis into Genstat data structuresAONEWAYprovides one-way analysis of varianceBLANDALTMANproduces Bland-Altman plots to assess the agreement between two variatesCHISQUAREcalculates chi-square statistics for one- and two-way tables contingency tableCHISTcalculates one- or two-sample binomial testsPNTESTcalculates one- or two-sample binomial testsPNTESTcalculates measures of association for circular data control wariates, and tests whether samples from circular dataCCORRELATIONcalculates measures of association for circular dataCCEDESCRIEEcalculates measures of association for circular dataCCOMPAREtests whether samples from circular distributions have a common mean direction or have identical distributionsFRIEDMANperforms a Kolmogorov-Smirnoff two-sample testKAPPAcalculates Kendall's Coefficient of Concordance (synonym CONCORDKONCORDANCEcalculates Kendall's Coefficient of agreement for ordinal data dataKCONCORDANCEcalculates Kendall's Coefficient of Concordance (synonym CONCORDANCECONCORDANCEcalculates Kendall's rank correlation coefficient f dataCOCOCDANCEcalculates Kendall's rank correlation coefficient	VSUMMARY	· ·
TTESTperforms a one- or two-sample t-testA2WAYperforms analysis of variance of a balanced or unbalanced design with up to two treatment factorsA2DISPLAYprovides further output following an analysis of variance by A2WAYA2KEEPcopies information from an A2WAY analysis into Genstat data structuresAONEWAYprovides one-way analysis of varianceBLANDALTMANproduces Bland-Altman plots to assess the agreement between two variatesCHISQUAREcalculates chi-square statistics for one- and two-way tablesCHIPERMTESTperforms a random permutation test for a two-dimensional contingency tableBNTESTcalculates one- or two-sample binomial testsPNTESTcalculates one- or two-sample Poisson testsFCORRELATIONforms the product moment correlations are zeroPRCORRELATIONcalculates measures of association for circular dataCASSOCIATIONcalculates measures of association for circular dataCCOMPAREcalculates the samples from circular distributionsFRIEDMANperforms Friedman's nonparametric analysis of varianceGSTATISTICcalculates a kappa coefficient of agreement for nominally scaled dataKCONCORDANCEcalculates Kendall's Coefficient of Concordance (synonym CONCORD)KOLMOG2performs a Kolmogorov-Smirnoff two-sample testKRUSKALcalculates Lin's concordance correlation coefficient r LCONCORDANCECASUCORDANCEcalculates Lin's concordance correlation coefficient mANNWHITNEYPerforms a Mann-Whitney U test MCNEMARperforms a Mann-Whitney U test	TTEST performs a one- or two-sample t-test A2MAY performs analysis of variance of a balanced or unbalanced design With up to two treatment factors provides further output following an analysis of variance by A2MAY A2KEEP copies information from an A2WAY analysis into Genstat data structures AONEWAY provides one-way analysis of variance BLANDALTMAN produces Bland-Altman plots to assess the agreement between two variates CHISQUARE calculates chi-square statistics for one- and two-way tables CHIPERMTEST calculates one- or two-sample binomial tests PNTEST calculates one- or two-sample binomial tests FCORRELATION calculates probabilities for product moment correlation matrix for a list of variates, and tests whether the correlations are zero CCEDESCRIEE calculates measures of association for circular data CCCOMPARE tests whether samples from circular data CASSOCIATION calculates measures of association for circular data CCMPARE tests whether samples from circular distributions FFEEDMAN performs a Kolmogorov-Smirnoff two-sample test CCOCORDANCE calculates Kendall's conk correlation coefficient t CCONCORDD calculates Kordall's rank correlation coefficient t CCONCORDANCE<		
A2WAYperforms analysis of variance of a balanced or unbalanced design with up to two treatment factorsA2DISPLAYprovides further output following an analysis of variance by A2WAYA2KEEPcopies information from an A2WAY analysis into Genstat data structuresAONEWAYprovides one-way analysis of varianceBLANDALTMANproduces Bland-Altman plots to assess the agreement between two variatesCHISQUAREcalculates chi-square statistics for one- and two-way tablesCHIPERMTESTperforms a random permutation test for a two-dimensional contingency tableBNTESTcalculates one- or two-sample binomial testsPNTESTcalculates one- or two-sample binomial testsPNTESTcalculates probabilities for product moment correlation matrix for a list of variates, and tests whether the correlations are zeroPRCORRELATIONcalculates measures of association for circular dataCCMPAREtests whether samples from circular dataCCOMPAREcalculates the gamma statistic of agreement for ordinal dataHCOMPAREGROUPINGScalculates kengam astatistic of agreement for ordinal dataKCONCORDANCEcalculates Kendall's Coefficient of Concordance (synonym CONCORD)KOLMOG2performs a Kolmogorov-Smirnoff two-sample testKRUSKALcarics out a Kruskal-Wallis one-way analysis of varianceKTAUcalculates Lin's concordance correlation coefficient T LCONCORDANCELCONCORDANCEcalculates Lin's concordance correlation coefficient T LCONCORDANCEKAPPAperforms a Kolmogorov-Smirnoff two-sample test KRUSKALKOMPARISONperf	A2WAY performs analysis of variance of a balanced or unbalanced design with up to two treatment factors A2DISPLAY provides further output following an analysis of variance by A2WAY A2KEEP copies information from an A2WAY analysis into Genstat data structures AONEWAY provides further output following an analysis of variance BLANDALTMAN provides one-way analysis of variance BLANDALTMAN produces Bland-Altman plots to assess the agreement between two variates CHISQUARE calculates chi-square statistics for one- and two-way tables CHIPERMTEST calculates one- or two-sample Doisson tests FCORRELATION forms the product moment correlation matrix for a list of variates, and tests whether the correlations are zero CCMSPRE calculates subabilities for product moment correlations CCMSPRE calculates measures of association for circular data CCMOPARE calculates the gamma statistic of agreement for or	TTEST	
A2DISPLAYwith up to two treatment factorsA2DISPLAYprovides further output following an analysis of variance by A2WAYA2KEEPcopies information from an A2WAY analysis into Genstat data structuresAONEWAYprovides one-way analysis of varianceBLANDALTMANproduces Bland-Altman plots to assess the agreement between two variatesCHISQUAREcalculates chi-square statistics for one- and two-way tablesCHISQUAREcalculates chi-square statistics for a two-dimensional contingency tableBNTESTcalculates one- or two-sample binomial testsPNTESTcalculates one- or two-sample Poisson testsFCORRELATIONforms the product moment correlations are zeroPRCORRELATIONcalculates measures of association for circular dataCCCOMPAREtests whether samples from circular dataCCCOMPAREtests whether samples from circular dataCCOMPAREcalculates the gamma statistic of agreement for ordinal dataHCCMPAREGROUPINGScalculates kendall's Coefficient of agreement for ordinal dataKCONCORDANCEcalculates Kendall's Coefficient of Concordance (synonym CONCORD)KAPPAcalculates Lin's concordance correlation coefficient r LCONCORDANCEKAUGUAcalculates Lin's concordance correlation coefficient r LCONCORDANCEKAUUcalculates Lin's concordance correlation coefficient r LCONCORDANCEKOMPARISONperforms McNema's test for the significance of changes performs performs performs tests within a table of	A2DISPLAYwith up to two treatment factorsA2DISPLAYprovides further output following an analysis of variance by A2KREPA2KREPcopies information from an A2WAY analysis into Genstat data structuresAONEWAYprovides one-way analysis of varianceBLANDALIMANproduces Bland-Altman plots to assess the agreement between two variatesCHISQUAREcalculates chi-square statistics for one- and two-way tablesCHIPERMTESTcalculates one- or two-sample binomial testsPNTESTcalculates one- or two-sample binomial testsPORCRELATIONforms the product moment correlation matrix for a list of variates, and tests whether the correlations are zeroPRCORRELATIONcalculates summary statistics and tests of circular dataCCMSQREEcalculates probabilities for product moment correlationsCDESCRIBEcalculates the gamma statistic of agreement for ordinal dataCCMMPAREcalculates the gamma statistic of agreement for ordinal dataHCOMPAREGROUPINGScalculates kendall's Coefficient of Concordance (synonym CONCORD)KAPPAcalculates Kendall's Coefficient of Concordance (synonym CONCORD)KOLMOG2performs Akonmar's test for the significance of changesKTUDcalculates Kendall's concordance corflicient r LCONCORDANCECALUATEScalculates Kendall's concordance of changesKOLMOG2performs a Kolmogorov-Sminoff two-sample testKTUDcalculates Kendall's concordance of changesMONEMARperforms a Kolmogorov-Sminoff two-sample testKTUDcalculates Kendall's Coefficient of changes <tr< td=""><td>A2WAY</td><td></td></tr<>	A2WAY	
A2DISPLAYprovides further output following an analysis of variance by A2WAYA2KEEPcopies information from an A2WAY analysis into Genstat data structuresAONEWAYprovides one-way analysis of varianceBLANDALTMANproduces Bland-Altman plots to assess the agreement between two variatesCHISQUAREcalculates chi-square statistics for one- and two-way tablesCHIPERMTESTperforms a random permutation test for a two-dimensional contingency tableBNTESTcalculates one- or two-sample binomial testsFNTESTcalculates one- or two-sample binomial testsFCORRELATIONforms the product moment correlation matrix for a list of variates, and tests whether the correlations are zeroPRCORRELATIONcalculates summary statistics and tests of circular dataCCMPAREcalculates summary statistics and tests of varianceFRIEDMANperforms Friedmar's nonparametric analysis of varianceGSTATISTICcalculates the gamma statistic of agreement for ordinal dataHCOMPAREGROUPINGScalculates kendall's Coefficient of Concordance (synonym CONCORD)KAPPAcalculates Kendall's Coefficient of Concordance (synonym CONCORD)KOLMOG2performs a Kolmogorov-Smirnoff two-sample testKRUSKALcarries out a Kruskal-Wallis one-way analysis of variance calculates Kendall's rank correlation coefficient τ LCONCORDANCECASCOCRDANCEcalculates Kendall's rank correlation coefficient manwHiTINEYPerforms a Kolmogorov-Smirnoff two-sample testKRUSKALcarries out a Kruskal-Wallis one-way analysis of variance concordance correlation coefficient	A2DISPLAY provides further output following an analysis of variance by A2WAY A2KEEP copies information from an A2WAY analysis into Genstat data structures AONEWAY provides one-way analysis of variance BLANDALTMAN produces Bland-Altman plots to assess the agreement between two variates CHISQUARE calculates chi-square statistics for one- and two-way tables CHIPENTEST performs a random permutation test for a two-dimensional contingency table BNTEST calculates one- or two-sample binomial tests PNTEST calculates one- or two-sample Doison tests FCORRELATION forms the product moment correlations are zero PRCORRELATION calculates summary statistics and tests of circular data CCMPARE calculates summary statistics of a result and tata CCMPARE tests whether samples from circular data CCMPARE calculates the gamma statistic of agreement for ordinal data CCMPAREGROUPINGS calculates the Rand index, adjusted Rand index or Jaccard index to compare groupings defined by two factors KAPPA calculates Kendall's Coefficient of Concordance (synonym CONCORD) KOLMOG2 performs a Kolmogorov-Smirmoff two-sample test KTISKL carries out a Kruskal-Wallis one-way analysis of variance KTAU		
A2KEEPA2KEEPA2KEEPcopies information from an A2WAY analysis into Genstat data structuresAONEWAYprovides one-way analysis of varianceBLANDALTMANproduces Bland-Altman plots to assess the agreement between two variatesCHISQUAREcalculates chi-square statistics for one- and two-way tablesCHIPERMTESTperforms a random permutation test for a two-dimensional contingency tableBNTESTcalculates one- or two-sample binomial testsPNTESTcalculates one- or two-sample Poisson testsFCORRELATIONforms the product moment correlation matrix for a list of variates, and tests whether the correlations are zeroPRCORRELATIONcalculates unmary statistics and tests of circular dataCAMPAREcalculates summary statistics and tests of circular dataCCOMPAREtests whether samples from circular dataCCOMPAREcalculates the gamma statistic of agreement for ordinal dataHCOMPAREGROUPINGScalculates the gamma statistic of agreement for ordinal dataHCONPAREGROUPINGScalculates Kendall's Coefficient of Concordance (synonym CONCORD)KAPPAcalculates Kendall's Coefficient of Concordance (synonym CONCORD)KOLMOG2performs a Kolmogorov-Smirnoff two-sample testKRUSKALcarries out a Kruskal-Wallis one-way analysis of variance calculates Kendall's rank correlation coefficient τ LCONCORDANCECONCORDANCEcalculates Kendall's rank correlation coefficient performs a Mann-Whitney U testMCNEMARperforms MCNemar's test for the significance of changes performs pairwise multiple comparison tests within a table of </td <td>A2KEEP copies information from an A2WAY analysis into Genstat data structures ADDREMAY provides one-way analysis of variance BLANDALTMAN produces Bland-Altman plots to assess the agreement between two variates CHISQUARE calculates chi-square statistics for one- and two-way tables CHISQUARE calculates chi-square statistics for one- and two-way tables CHISQUARE calculates chi-square statistics for one- and two-way tables CHISQUARE calculates one- or two-sample binomial tests PNTEST calculates one- or two-sample Poisson tests FCORRELATION forms the product moment correlation matrix for a list of Variates, and tests whether the correlations are zero calculates probabilities for product moment correlations CDESCRIBE calculates measures of association for circular data CASSOCIATION calculates measures of association for orinal data CASSOCIATION calculates the gamma statistic of agreement for nominally scaled RESTIBE calculates kendall's coefficient of Concordance (synonym CONCORD) ROMPAREGROUPINGS calculates Kendall's rank correlation coefficient τ LCONCORDANCE calculates kendall's rank correlation coefficient τ LCONCORDANCE calculates kendall's rank correlation coefficient τ <t< td=""><td>A2DISPLAY</td><td></td></t<></td>	A2KEEP copies information from an A2WAY analysis into Genstat data structures ADDREMAY provides one-way analysis of variance BLANDALTMAN produces Bland-Altman plots to assess the agreement between two variates CHISQUARE calculates chi-square statistics for one- and two-way tables CHISQUARE calculates chi-square statistics for one- and two-way tables CHISQUARE calculates chi-square statistics for one- and two-way tables CHISQUARE calculates one- or two-sample binomial tests PNTEST calculates one- or two-sample Poisson tests FCORRELATION forms the product moment correlation matrix for a list of Variates, and tests whether the correlations are zero calculates probabilities for product moment correlations CDESCRIBE calculates measures of association for circular data CASSOCIATION calculates measures of association for orinal data CASSOCIATION calculates the gamma statistic of agreement for nominally scaled RESTIBE calculates kendall's coefficient of Concordance (synonym CONCORD) ROMPAREGROUPINGS calculates Kendall's rank correlation coefficient τ LCONCORDANCE calculates kendall's rank correlation coefficient τ LCONCORDANCE calculates kendall's rank correlation coefficient τ <t< td=""><td>A2DISPLAY</td><td></td></t<>	A2DISPLAY	
AONEWAYstructuresBLANDALTMANprovides one-way analysis of varianceBLANDALTMANproduces Bland-Altman plots to assess the agreement between two variatesCHISQUAREcalculates chi-square statistics for one- and two-way tablesCHIPERMTESTperforms a random permutation test for a two-dimensional contingency tableBNTESTcalculates one- or two-sample binomial testsPNTESTcalculates one- or two-sample Poisson testsFCORRELATIONforms the product moment correlation matrix for a list of variates, and tests whether the correlations are zeroPRCORRELATIONcalculates probabilities for product moment correlationsCDESCRIBEcalculates probabilities for product moment correlationsCCOMPAREtests whether samples from circular dataCCOMPAREtests whether samples from circular dataCCOMPAREtests whether samples from circular distributions have a common mean direction or have identical distributionsFRIEDMANperforms Friedman's nonparametric analysis of varianceGSTATISTICcalculates the gamma statistic of agreement for nominally scaled dataKCONCORDANCEcalculates Kendall's Coefficient of Concordance (synonym CONCORD)KOLMOG2performs a Kolmogorov-Smirnoff two-sample testKRUSKALcarries out a Kruskal-Wallis one-way analysis of variance calculates Lin's concordance correlation coefficient t LCONCORDANCEKTAUcalculates Lin's concordance correlation coefficient t ANNMHITNEYMONDERARperforms MAnn-Whitney U testMCOMPARISONperforms pairwise multiple comparison tests within a t	AONEWAYstructuresBLANDALTMANproducesBLANDALTMANproducesBLANDALTMANproducesCHISQUAREcalculates chi-square statistics for one- and two-way tablesCHISQUAREcalculates chi-square statistics for one- and two-dimensionalCHISQUAREcalculates chi-square statistics for one- and two-dimensionalCHISQUAREcalculates one- or two-sample binomial testsPMTESTcalculates one- or two-sample Poisson testsFCORRELATIONforms the product moment correlation matrix for a list ofVariates, and tests whether the correlations are zeroPRCORRELATIONcalculates probabilities for product moment correlationsCCESCRIBEcalculates summary statistics and tests of circular dataCCOMPAREtests whether samples from circular distributions have a commonmean direction or have identical distributionsFFIEDMANperforms Friedman's nonparametric analysis of varianceGSTATISTICcalculates the Rand index, adjusted Rand index or Jaccard indexto compare groupings defined by two factorsKAPPAcalculates Kendall's Coefficient of Concordance (synonym CONCORD)KOLMOG2performs a Kolmogorov-Smirnoff two-sample testKRUSKALcarries out a Kruskal-Wallis one-way analysis of varianceKTAUcalculates the Cochran-Kartion coefficient r talculates the Cochran-Sist for the significance of changesMONEMARperforms a Connors' Q test for differences between related- samplesCONCORDANCEcalculates the Cochran-Armitage chi-square test for trend performs a core or wandle sign test </td <td></td> <td></td>		
AONEWAYprovides one-way analysis of varianceBLANDALTMANproduces Bland-Altman plots to assess the agreement between two variatesCHISQUAREcalculates chi-square statistics for one- and two-way tablesCHIPERMTESTperforms a random permutation test for a two-dimensional contingency tableBNTESTcalculates one- or two-sample binomial testsPNTESTcalculates one- or two-sample Poisson testsFCORRELATIONforms the product moment correlation matrix for a list of variates, and tests whether the correlations are zeroPRCORRELATIONcalculates probabilities for product moment correlationsCDESCRIBEcalculates unmary statistics and tests of circular dataCCOMPAREtests whether samples from circular distributions have a common mean direction or have identical distributionsFRIEDMANperforms Friedman's nonparametric analysis of variance GSTATISTICCALUATEScalculates the gamma statistic of agreement for ordinal data HCOMPAREGROUPINGSKAPPAcalculates kendall's Coefficient of Concordance (synonym CONCORD)KOLMOG2performs a Kolmogorov-Smirnoff two-sample test KRUSKALKTAUcalculates Kendall's concordance correlation coefficient τ LCONCORDANCEKTAUcalculates Lin's concordance correlation coefficient mann-Whitney U test MCNEMARMCOMPARISONperforms a Mann-Whitney U test MCOMPARISON	AONEWAY provides one-way analysis of variance BLANDALTMAN produces Bland-Altman plots to assess the agreement between two variates calculates chi-square statistics for one- and two-way tables CHISQUARE calculates chi-square statistics for one- and two-way tables CHIPERMTEST performs a random permutation test for a two-dimensional contingency table ENTEST calculates one- or two-sample binomial tests FCORRELATION forms the product moment correlation matrix for a list of variates, and tests whether the correlations are zero PRCORRELATION calculates measures of association for circular data CCMPARE calculates summary statistics and tests of circular data CCMPARE calculates the gamma statistic of agreement for ordinal data CCOMPARE calculates the gamma statistic of agreement for nominally scaled data RCONCORDANCE calculates kendall's Coefficient of Concordance (synonym CONCORD) KOLMOG2 performs a Mann-Whitney U test MCOMPARISON performs pairwise multiple comparison tests within a table of means MANNHITNEY performs pairwise multiple comparison tests within a table of means MCONCORDANCE calculates the Cochran-Amnitage chi-square test for trend means MCONCORDANCE calculates the Cochran-Amnitage chi-squar	A2KEEP	copies information from an A2WAY analysis into Genstat data
BLANDALTMANproduces Bland-Altman plots to assess the agreement between two variatesCHISQUAREcalculates chi-square statistics for one- and two-way tables performs a random permutation test for a two-dimensional contingency tableBNTESTcalculates one- or two-sample binomial testsPNTESTcalculates one- or two-sample binomial testsFCORRELATIONforms the product moment correlation matrix for a list of variates, and tests whether the correlations are zeroPRCORRELATIONcalculates measures of association for circular dataCASSOCIATIONcalculates measures of association for circular dataCCOMPAREtests whether samples from circular distributionsFRIEDMANperforms Friedman's nonparametric analysis of variance GSTATISTICCALUATEScalculates a kappa coefficient of agreement for nominally scaled dataKAPPAcalculates Kendall's Coefficient of Concordance (synonym CONCORD)KOLMOG2performs a Kolmogorov-Smirnoff two-sample test KRUSKALKTAUcalculates Kendall's rank correlation coefficient t calculates Kendall's rank correlation coefficient t calculates Kendall's rank correlation coefficient t LCONCORDANCEKADAperforms a Kolmogorov-Smirnoff two-sample test KRUSKALKRUSKALcarries out a Kruskal-Wallis one-way analysis of variance calculates Kendall's rank correlation coefficient t calculates Kendall's rank correlation coefficient t calculates Kendall's rank correlation coefficient t performs a Mann-Whitney U test MCOMPARISONMOMPARISONperforms pairwise multiple comparison tests within a table of	BLANDALTMAN produces Bland-Altman plots to assess the agreement between two variates CHISQUARE calculates chi-square statistics for one- and two-way tables CHIPERNTEST calculates one- or two-sample binomial tests PNTEST calculates one- or two-sample binomial tests FCORRELATION forms the product moment correlation matrix for a list of variates, and tests whether the correlations are zero PRCORRELATION calculates one- or two-sample binomial tests CCMPREE calculates summary statistics and tests of circular data CCSMPARE calculates measures of association for circular data CCOMPARE tests whether samples from circular data CCOMPARE calculates the gamma statistic of agreement for ordinal data HCOMPAREGROUPINGS calculates the Rand index, adjusted Rand index or Jaccard index to compare groupings defined by two factors KAPPA calculates Kendall's Coefficient of Concordance (synonym CONCORD) KOLMOG2 performs a Kolmogorov-Smirnoff two-sample test RTUSKAL carries out a Kruskal-Wallis one-way analysis of variance CALLates Kendall'		structures
two variatesCHISQUAREcalculates chi-square statistics for one- and two-way tablesCHIPERMTESTperforms a random permutation test for a two-dimensional contingency tableBNTESTcalculates one- or two-sample binomial testsPNTESTcalculates one- or two-sample Poisson testsFCORRELATIONforms the product moment correlation matrix for a list of variates, and tests whether the correlations are zeroPRCORRELATIONcalculates probabilities for product moment correlationsCDESCCRIBEcalculates summary statistics and tests of circular dataCCOMPAREtests whether samples from circular dataCCOMPAREtests whether samples from circular distributionsFRIEDMANperforms Friedman's nonparametric analysis of varianceGSTATISTICcalculates the gamma statistic of agreement for ordinal dataHCOMPAREGROUPINGScalculates kendall's Coefficient of concordance (synonym CONCORDANCEKAPPAcalculates Kendall's Coefficient of Concordance (synonym CONCORD)KOLMOG2performs a Kolmogorov-Smirnoff two-sample testKTAUcalculates Kendall's correlation coefficient cordanceKTAUcalculates Kendall's correlation coefficient cordanceKTAUcalculates Kendall's correlation coefficient cordanceKTAUcalculates Kendall's correlation coefficient cordanceKTAUcalculates Kendall's correlation coefficient concordanceKTAUcalculates Kendall's correlation coefficient cordanceKTAUcalculates Kendall's concordance correlation coefficient cordanceKTAU <td< td=""><td>two variatesCHISQUARECHISQUARECHIPERMTESTcalculates chi-square statistics for one- and two-dimensional contingency tableBNTESTpromest and the product moment correlation matrix for a list of variates, and tests whether the correlations are zeroPRCORRELATIONcalculates one- or two-sample Poisson testsPRCORRELATIONcalculates one- or two-sample poisson testsPRCORRELATIONcalculates probabilities for product moment correlationsCDESCRIEEcalculates summary statistics and tests of circular dataCASSOCIATIONcalculates measures of association for circular dataCCOMPAREmean direction or have identical distributionsPRIEDMANperforms Friedman's nonparametric analysis of varianceGSTATISTICcalculates the Rand index, adjusted Rand index or Jaccard index to compare groupings defined by two factorsKAPPAcalculates kendall's Coefficient of Concordance (synonym CONCORD)KOLMOG2performs a Kolmogorov-Smirnoff two-sample test RRUSKALcalculates Kendall's rank correlation coefficient r LCONCORDANCECONCORDANCEcalculates Kendall's concordance correlation coefficient performs pairwise multiple comparison tests within a table of meansQCOCHRANperforms performs a cochran-Armitage chi-square test for trend performs pairwise multiple comparison tests within a table of meansQCOCHRANperforms performs a cochran-Armitage chi-square test for trend performs pairwise multiple comparison tests within a table of m</td><td>AONEWAY</td><td>provides one-way analysis of variance</td></td<>	two variatesCHISQUARECHISQUARECHIPERMTESTcalculates chi-square statistics for one- and two-dimensional contingency tableBNTESTpromest and the product moment correlation matrix for a list of variates, and tests whether the correlations are zeroPRCORRELATIONcalculates one- or two-sample Poisson testsPRCORRELATIONcalculates one- or two-sample poisson testsPRCORRELATIONcalculates probabilities for product moment correlationsCDESCRIEEcalculates summary statistics and tests of circular dataCASSOCIATIONcalculates measures of association for circular dataCCOMPAREmean direction or have identical distributionsPRIEDMANperforms Friedman's nonparametric analysis of varianceGSTATISTICcalculates the Rand index, adjusted Rand index or Jaccard index to compare groupings defined by two factorsKAPPAcalculates kendall's Coefficient of Concordance (synonym CONCORD)KOLMOG2performs a Kolmogorov-Smirnoff two-sample test RRUSKALcalculates Kendall's rank correlation coefficient r LCONCORDANCECONCORDANCEcalculates Kendall's concordance correlation coefficient performs pairwise multiple comparison tests within a table of meansQCOCHRANperforms performs a cochran-Armitage chi-square test for trend performs pairwise multiple comparison tests within a table of meansQCOCHRANperforms performs a cochran-Armitage chi-square test for trend performs pairwise multiple comparison tests within a table of m	AONEWAY	provides one-way analysis of variance
CHISQUAREcalculates chi-square statistics for one- and two-way tablesCHIPERMTESTperforms a random permutation test for a two-dimensional contingency tableENTESTcalculates one- or two-sample binomial testsPNTESTcalculates one- or two-sample Poisson testsFCORRELATIONforms the product moment correlation matrix for a list of variates, and tests whether the correlations are zeroPRCORRELATIONcalculates probabilities for product moment correlationsCDESCRIBEcalculates summary statistics and tests of circular dataCASSOCIATIONcalculates measures of association for circular dataCCOMPAREtests whether samples from circular distributionsFRIEDMANperforms Friedman's nonparametric analysis of varianceGSTATISTICcalculates the gamma statistic of agreement for ordinal dataHCOMPAREGROUPINGScalculates kendall's Coefficient of agreement for nominally scaled dataKAPPAcalculates Kendall's Coefficient of Concordance (synonym CONCORD)KOLMOG2performs a Kolmogorov-Smirnoff two-sample test calculates Kendall's ank correlation coefficient τ LCONCORDANCEKTAUcalculates Kendall's concordance correlation coefficient mANNWHITNEYMANNWHITNEYperforms a Mann-Whitney U test merforms a Kolmograve stest for the significance of changes performs a Mann-Whitney U testMCOMPARISONperforms pairwise multiple comparison tests within a table of	CHISQUAREcalculates chi-square statistics for one- and two-way tablesCHIPERMTESTperforms a random permutation test for a two-dimensional contingency tableDNTESTcalculates one- or two-sample binomial testsPNTESTcalculates one- or two-sample Doisson testsFCORRELATIONforms the product moment correlation matrix for a list of variates, and tests whether the correlations are zeroPRCORRELATIONcalculates probabilities for product moment correlationsCDESCRIBEcalculates measures of association for circular dataCCOMPAREtests whether samples from circular distributions have a common mean direction or have identical distributionsFRIEDMANperforms Friedman's nonparametric analysis of varianceGSTATISTICcalculates the gamma statistic of agreement for ordinal dataHCOMPAREGROUPINGScalculates kendall's Coefficient of agreement for nominally scaled dataKAPPAcalculates Kendall's Coefficient of Concordance (synonym CONCORD)KOLMOG2performs a Kolmogorov-Smirnoff two-sample testKTAUcalculates Lin's concordance correlation coefficient mann-Whitey U testMONCORDANCEcalculates Lin's concordance correlation coefficient mannsQCOCHRANperforms Cochran's Q test for differences between related- samplesQCOCHRANperforms a contan's and cortises of asceque test for trend performs a cochran-Armitage chi-square test for trend performs a one or two sample sign testSCATRENDTEST<	BLANDALTMAN	produces Bland-Altman plots to assess the agreement between
CHIPERMTESTperforms a random permutation test for a two-dimensional contingency tableBNTESTcalculates one- or two-sample binomial testsPNTESTcalculates one- or two-sample binomial testsFCORRELATIONforms the product moment correlation matrix for a list of variates, and tests whether the correlations are zeroPRCORRELATIONcalculates probabilities for product moment correlationsCDESCRIBEcalculates summary statistics and tests of circular dataCCOMPAREtests whether samples from circular dataCCOMPAREtests whether samples from circular distributionsFRIEDMANperforms Friedman's nonparametric analysis of varianceGSTATISTICcalculates the gamma statistic of agreement for nominal dataHCOMPAREGROUPINGScalculates kendall's Coefficient of agreement for nominally scaled dataKCONCORDANCEcalculates Kendall's Coefficient of Concordance (synonym CONCORD)KOLMOG2performs a Kolmogorov-Smirnoff two-sample test (KRUSKALKTAUcalculates Kendall's rank correlation coefficient of relation coefficient of controlection coefficient of concordance correlation coefficient of varianceKTAUcalculates Lin's concordance correlation coefficient of concordanceKANNHHITNEYperforms a Mann-Whitney U test MCNEMARMCOMPARISONperforms pairwise multiple comparison tests within a table of	CHIPERMTESTperforms a random permutation test for a two-dimensional contingency tableBNTESTcalculates one- or two-sample binomial testsFCORRELATIONforms the product moment correlation matrix for a list of variates, and tests whether the correlations are zeroPRCORRELATIONcalculates probabilities for product moment correlationsCDESCRIBEcalculates summary statistics and tests of circular dataCASSOCIATIONcalculates summary statistics and tests of circular dataCOMPAREtests whether samples from circular distributions have a common mean direction or have identical distributionsFRIEDMANperforms Friedman's nonparametric analysis of varianceGSTATISTICcalculates the gamma statistic of agreement for ordinal dataHCONCORDANCEcalculates kendall's Coefficient of acreat index to compare groupings defined by two factorsKAPPAcalculates Kendall's Coefficient of Concordance (synonym CONCORD)KOLMOG2performs a Kolmogorov-Smirnoff two-sample testKRUSKALcarries out a Kruskal-Wallis one-way analysis of variance calculates Kendall's coreflation coefficient rLCONCORDANCEcalculates Kendall's rank correlation coefficient meansQCOCHRANperforms pairwise multiple comparison tests within a table of meansQCOCHRANperforms forms ac or cordance correlation samplesQCOCHRANperforms act or cochran-Armitage chi-square test for trend performs pairwise multiple comparison tests within a table of meansQCOCHRANperforms forms a cet or two-sample sign testGRINESTperforms acet or cochran-Armitage chi-square test fo		two variates
contingency tableBNTESTcalculates one- or two-sample binomial testsPNTESTcalculates one- or two-sample Poisson testsFCORRELATIONforms the product moment correlation matrix for a list of variates, and tests whether the correlations are zeroPRCORRELATIONcalculates probabilities for product moment correlationsCDESCRIBEcalculates summary statistics and tests of circular dataCASSOCIATIONcalculates measures of association for circular dataCCOMPAREtests whether samples from circular distributions have a common mean direction or have identical distributionsFRIEDMANperforms Friedman's nonparametric analysis of varianceGSTATISTICcalculates the gamma statistic of agreement for ordinal dataHCOMPAREGROUPINGScalculates a kappa coefficient of agreement for nominally scaled dataKAPPAcalculates Kendall's Coefficient of Concordance (synonym CONCORDKOLMOG2performs a Kolmogorov-Smirnoff two-sample testKRUSKALcarries out a Kruskal-Wallis one-way analysis of varianceKTAUcalculates Lin's concordance correlation coefficientMANNWHITNEYperforms a Mann-Whitney U testMCOMPARISONperforms pairwise multiple comparison tests within a table of	contingency tableENTESTcalculates one- or two-sample binomial testsPNTESTcalculates one- or two-sample Poisson testsFCORRELATIONforms the product moment correlation matrix for a list ofVariates, and tests whether the correlations are zeroPRCORRELATIONcalculates probabilities for product moment correlationsCDESCRIBEcalculates summary statistics and tests of circular dataCCOMPAREtests whether samples from circular dataCCOMPAREtests whether samples from circular distributionsPRIEDMANperforms Friedman's nonparametric analysis of varianceGSTATISTICcalculates the gamma statistic of agreement for ordinal dataHCOMPAREGROUPINGScalculates the Rand index, adjusted Rand index or Jaccard indexto compare groupings defined by two factorstealculates a kappa coefficient of Concordance (synonym CONCORD)KAPPAcalculates Kendall's Coefficient of Concordance (synonym CONCORD)KOLMOG2performs a Kolmogorov-Smirnoff two-sample testKRUSKALcarries out a Kruskal-Wallis one-way analysis of varianceKTAUcalculates Kendall's rank correlation coefficient τLCONCORDANCEcalculates Kendall's rank correlation coefficient tMANNMHTINEYperforms a Mann-Whitney U testMCOMPARISONperforms pairwise multiple comparison tests within a table of meansQCOCHRANperforms forms Cochran'S Q test for differences between related-samplesCATRENDTESTcalculates the Cochran-Armitage chi-square test for trendPHTESTperforms a con rwo sample sign testSIGNTESTpe	CHISQUARE	calculates chi-square statistics for one- and two-way tables
BNTESTcalculates one- or two-sample binomial testsPNTESTcalculates one- or two-sample Poisson testsFCORRELATIONforms the product moment correlation matrix for a list of variates, and tests whether the correlations are zeroPRCORRELATIONcalculates probabilities for product moment correlationsCDESCRIBEcalculates summary statistics and tests of circular dataCASSOCIATIONcalculates measures of association for circular dataCCOMPAREtests whether samples from circular distributions have a common mean direction or have identical distributionsFRIEDMANperforms Friedman's nonparametric analysis of varianceGSTATISTICcalculates the gamma statistic of agreement for ordinal dataHCOMPAREGROUPINGScalculates kendal index, adjusted Rand index or Jaccard index to compare groupings defined by two factorsKAPPAcalculates Kendall's Coefficient of Concordance (synonym CONCORD)KOLMOG2performs a Kolmogorov-Smirnoff two-sample test KRUSKALKTAUcalculates Kendall's rank correlation coefficient τ LCONCORDANCEcalculates Kendall's rank correlation coefficient τ LCONCORDANCEcalculates Lin's concordance correlation coefficient mannwHITNEYMANNWHITNEYperforms a Mann-Whitney U testMCOMPARISONperforms pairwise multiple comparison tests within a table of	BNTESTcalculates one- or two-sample binomial testsPNTESTcalculates one- or two-sample Poisson testsFCORRELATIONforms the product moment correlation matrix for a list ofVariates, and tests whether the correlations are zerocalculates probabilities for product moment correlationsCDESCRIBEcalculates probabilities for product moment correlationsCCOMPAREcalculates measures of association for circular dataCCOMPAREtests whether samples from circular distributions have a commonPRIEDMANperforms Friedman's nonparametric analysis of varianceGSTATISTICcalculates the gamma statistic of agreement for ordinal dataHCOMPAREGROUPINGScalculates kappa coefficient of agreement for nominally scaledKAPPAcalculates kendall's Coefficient of Concordance (synonym CONCORD)KOLMOG2performs a Kolmogorov-Smimoff two-sample testKTAUcalculates Lin's concordance correlation coefficient t LCONCORDANCELCONCORDANCEcalculates Lin's concordance correlation coefficient meroms pairwise multiple comparison tests within a table of meansQCOCHRANperforms cochran's Q test for differences between related- samplesCATRENDTESTcalculates the Cochran-Armitage chi-square test for trend performs a test of randomness of a sequence of observationsSTGNTESTperforms a correl's one or two sample sign testSTGNTESTperforms a correl's many-one rank testTTperforms the cohran-Armitage chi-square test for trend performs a test of randomness of a sequence of observationsSTGNTESTperforms a one or two sample sign test <td>CHIPERMTEST</td> <td>performs a random permutation test for a two-dimensional</td>	CHIPERMTEST	performs a random permutation test for a two-dimensional
PNTESTcalculates one- or two-sample Poisson testsFCORRELATIONforms the product moment correlation matrix for a list of variates, and tests whether the correlations are zeroPRCORRELATIONcalculates probabilities for product moment correlationsCDESCRIBEcalculates probabilities for product moment correlationsCCOMPAREcalculates summary statistics and tests of circular dataCCOMPAREtests whether samples from circular distributions have a common mean direction or have identical distributionsFRIEDMANperforms Friedman's nonparametric analysis of varianceGSTATISTICcalculates the gamma statistic of agreement for ordinal dataHCOMPAREGROUPINGScalculates a kappa coefficient of agreement for nominally scaled dataKAPPAcalculates Kendall's Coefficient of Concordance (synonym CONCORD)KOLMOG2performs a Kolmogorov-Smirnoff two-sample testKRUSKALcarries out a Kruskal-Wallis one-way analysis of varianceKTAUcalculates Lin's concordance correlation coefficient τLCONCORDANCEcalculates Lin's concordance correlation coefficientMANNWHITNEYperforms a Mann-Whitney U testMCNEMARperforms pairwise multiple comparison tests within a table of	PNTESTcalculates one- or two-sample Poisson testsFCORRELATIONforms the product moment correlation matrix for a list of variates, and tests whether the correlations are zero calculates probabilities for product moment correlationsCDESCRIBEcalculates summary statistics and tests of circular data calculates measures of association for circular dataCCOMPAREtests whether samples from circular distributions have a common mean direction or have identical distributionsFRIEDMANperforms Friedman's nonparametric analysis of variance calculates the gamma statistic of agreement for ordinal data calculates a kappa coefficient of agreement for nominally scaled dataKAPPAcalculates Kendall's Coefficient of Concordance (synonym CONCORDANCEKAPPAcalculates Kendall's Coefficient of Concordance (synonym CONCORD)KOLMOG2performs a Kolmogorov-Smirnoff two-sample test REUSKAL cartices out a Kruskal-Wallis one-way analysis of variance calculates Kendall's rank correlation coefficient τ LCONCORDANCEMCNMPARISONperforms aconcordance correlation coefficient merms matrix for a last of neans performs pairwise multiple comparison tests within a table of meansQCOCHRANperforms a test of randomness of a sequence of observations stignersQCOCHRANperforms a test of randomness of a sequence of observations stignersSTEELperforms a test of randomness of a sequence of observations stignersSTEELLperforms a test of randomness of a sequence of observations		contingency table
FCORRELATIONforms the product moment correlation matrix for a list of variates, and tests whether the correlations are zeroPRCORRELATIONcalculates probabilities for product moment correlationsCDESCRIBEcalculates summary statistics and tests of circular dataCASSOCIATIONcalculates measures of association for circular dataCCOMPAREtests whether samples from circular distributions have a common mean direction or have identical distributionsFRIEDMANperforms Friedman's nonparametric analysis of varianceGSTATISTICcalculates the gamma statistic of agreement for ordinal dataHCOMPAREGROUPINGScalculates a kappa coefficient of agreement for nominally scaled dataKAPPAcalculates Kendall's Coefficient of Concordance (synonym CONCORD)KOLMOG2performs a Kolmogorov-Smirnoff two-sample test carries out a Kruskal-Wallis one-way analysis of varianceKTAUcalculates Kendall's rank correlation coefficient τ t calculates Kendall's rank correlation coefficient mANNWHITNEYMANNWHITNEYperforms a Mann-Whitney U test performs a Mann-Whitney U test merforms pairwise multiple comparison tests within a table of	FCORRELATIONforms the product moment correlation matrix for a list of variates, and tests whether the correlations are zero calculates probabilities for product moment correlations calculates probabilities for product moment correlations calculates summary statistics and tests of circular data cCASSOCIATION CCMPAREcalculates summary statistics and tests of circular data calculates measures of association for circular data compare identical distributions performs Friedman's nonparametric analysis of variance calculates the gamma statistic of agreement for ordinal data HCOMPAREGROUPINGSFRIEDMAN GSTATISTIC HCOMPAREGROUPINGSperforms Friedman's nonparametric analysis of variance calculates the Rand index, adjusted Rand index or Jaccard index to compare groupings defined by two factors calculates a kappa coefficient of agreement for nominally scaled dataKCONCORDANCEcalculates Kendall's Coefficient of Concordance (synonym CONCORD)KOLMOG2performs a Kolmogorov-Smirnoff two-sample test carties out a Kruskal-Wallis one-way analysis of variance calculates Kendall's rank correlation coefficient τ LCONCORDANCEMONOPARISONperforms a Mann-Whitney U test performs pairwise multiple comparison tests within a table of meansQCOCHRANperforms Cochran'S Q test for differences between related- samplesCATRENDTEST CATRENDTESTcalculates be Cochran-Armitage chi-square test for trend performs a neo or two sample sign test sequence of observations stiGNTESTSTEEL PEQUIVALENCEperforms Steel's many-one rank test	BNTEST	calculates one- or two-sample binomial tests
And tests whether the correlations are zeroPRCORRELATIONcalculates probabilities for product moment correlationsCDESCRIBEcalculates summary statistics and tests of circular dataCASSOCIATIONcalculates measures of association for circular dataCCOMPAREtests whether samples from circular distributions have a common mean direction or have identical distributionsFRIEDMANperforms Friedman's nonparametric analysis of varianceGSTATISTICcalculates the gamma statistic of agreement for ordinal dataHCOMPAREGROUPINGScalculates the Rand index, adjusted Rand index or Jaccard index to compare groupings defined by two factorsKAPPAcalculates Kendall's Coefficient of Concordance (synonym CONCORD)KOLMOG2performs a Kolmogorov-Smirnoff two-sample test kRUSKALKTAUcalculates Kendall's rank correlation coefficient τ t LCONCORDANCEKTAUcalculates Lin's concordance correlation coefficient performs a Mann-Whitney U test performs a Mann-Whitney U test MCNEMARMCOMPARISONperforms pairwise multiple comparison tests within a table of	variates, and tests whether the correlations are zeroPRCORRELATIONcalculates probabilities for product moment correlationsCDESCRIBEcalculates summary statistics and tests of circular dataCASSOCIATIONcalculates measures of association for circular dataCCOMPAREtests whether samples from circular distributions have a commonmean direction or have identical distributionsperforms Friedman's nonparametric analysis of varianceGSTATISTICcalculates the gamma statistic of agreement for ordinal dataHCOMPAREGROUPINGScalculates the Rand index, adjusted Rand index or Jaccard indexto compare groupings defined by two factorsto compare groupings defined by two factorsKAPPAcalculates Kendall's Coefficient of Concordance (synonym CONCORD)KOLMOG2performs a Kolmogorov-Smirnoff two-sample testKRUSKALcarries out a Kruskal-Wallis one-way analysis of varianceKTAUcalculates Kendall's rank correlation coefficient τ LCONCORDANCEcalculates Kendall's rank correlation coefficient τ MANNWHITNEYperforms a Mann-Whitney U testMCONCORDANCEcalculates the Cochran's Q test for differences between related- samplesCATRENDTESTcalculates the Cochran-Armitage chi-square test for trend performs a test of randomness of a sequence of observationsQCOCHRANperforms a test of randomness of a sequence of observationsSTEELperforms test's many-one rank testTEQUIVALENCEperforms crulates performs crulates for monines	PNTEST	calculates one- or two-sample Poisson tests
PRCORRELATIONcalculates probabilities for product moment correlationsCDESCRIBEcalculates summary statistics and tests of circular dataCASSOCIATIONcalculates measures of association for circular dataCCOMPAREtests whether samples from circular distributions have a common mean direction or have identical distributionsFRIEDMANperforms Friedman's nonparametric analysis of varianceGSTATISTICcalculates the gamma statistic of agreement for ordinal dataHCOMPAREGROUPINGScalculates the Rand index, adjusted Rand index or Jaccard index to compare groupings defined by two factorsKAPPAcalculates Kendall's Coefficient of Concordance (synonym CONCORD)KOLMOG2performs a Kolmogorov-Smirnoff two-sample test kRUSKALKTAUcalculates Kendall's rank correlation coefficient τ calculates Kendall's rank correlation coefficient τ LCONCORDANCEKTAUcalculates Lin's concordance correlation coefficient performs a Mann-Whitney U test performs a Mann-Whitney U test MCNEMARMCOMPARISONperforms pairwise multiple comparison tests within a table of	PRCORRELATIONcalculates probabilities for product moment correlationsCDESCRIBEcalculates summary statistics and tests of circular dataCASSOCIATIONcalculates measures of association for circular dataCCOMPAREtests whether samples from circular distributions have a common mean direction or have identical distributionsFRIEDMANperforms Friedman's nonparametric analysis of varianceGSTATISTICcalculates the gamma statistic of agreement for ordinal data columpare groupings defined by two factorsKAPPAcalculates the Rand index, adjusted Rand index or Jaccard index to compare groupings defined by two factorsKAPPAcalculates kendall's Coefficient of Concordance (synonym CONCORDANCEKOLMOG2performs a Kolmogorov-Smirnoff two-sample testKTAUcalculates Kendall's rank correlation coefficient τ t calculates Lin's concordance correlation coefficient τMCONCORDANCEcalculates Lin's concordance correlation coefficient τ meansMCONCORDANCEcalculates Lin's concordance correlation coefficient τ t calculates Lin's concordance correlation coefficient τMCONCORDANCEcalculates Lin's Cochran's Q test for differences between related- samplesQCOCHRANperforms a test of randomness of a sequence of observationsgCOCHRANperforms a test of randomness of a sequence of observationsgCOTHARperforms a test of randomness of a sequence of observationsgCOCHRANperforms a celculates Spearman's rank correlation coefficientgerorms the Cochran-Armitage chi-square test for trend performs a test of randomness of a sequence of observationsgcottRAN <td>FCORRELATION</td> <td>forms the product moment correlation matrix for a list of</td>	FCORRELATION	forms the product moment correlation matrix for a list of
CDESCRIBEcalculates summary statistics and tests of circular dataCASSOCIATIONcalculates measures of association for circular dataCCOMPAREtests whether samples from circular distributions have a common mean direction or have identical distributionsFRIEDMANperforms Friedman's nonparametric analysis of variance calculates the gamma statistic of agreement for ordinal data calculates the Rand index, adjusted Rand index or Jaccard index to compare groupings defined by two factorsKAPPAcalculates a kappa coefficient of agreement for nominally scaled dataKCONCORDANCEcalculates Kendall's Coefficient of Concordance (synonym CONCORD)KOLMOG2performs a Kolmogorov-Smirnoff two-sample test kruskALKTAUcalculates Kendall's rank correlation coefficient τ LCONCORDANCEcalculates Lin's concordance correlation coefficient performs a Mann-Whitney U test performs a Mann-Whitney U test MCNEMARMCOMPARISONperforms pairwise multiple comparison tests within a table of	CDESCRIBEcalculates summary statistics and tests of circular dataCASSOCIATIONcalculates measures of association for circular dataCCOMPAREtests whether samples from circular distributions have a common mean direction or have identical distributionsFRIEDMANperforms Friedman's nonparametric analysis of varianceGSTATISTICcalculates the gamma statistic of agreement for ordinal dataHCOMPAREGROUPINGScalculates the gamma statistic of agreement for nominally scaled dataKAPPAcalculates kendall's Coefficient of agreement for nominally scaled dataKCONCORDANCEcalculates Kendall's Coefficient of Concordance (synonym CONCORD)KOLMOG2performs a Kolmogorov-Smirnoff two-sample test calculates Kendall's rank correlation coefficient τ LCONCORDANCEcalculates Kendall's rank correlation coefficient τ MANNWHITNEYperforms a Mann-Whitney U testMCOMPARISONperforms pairwise multiple comparison tests within a table of meansQCOCHRANperforms a test of randomness of a sequence of observationsSIGNTESTperforms a test of randomness of a sequence of observationsSIGNTESTperforms a or or wo sample sign testSPEARMANcalculates Spearman's rank correlation coefficientSIGNTESTperforms a test of randomness of a sequence of observationsSIGNTESTperforms a or or wo sample sign testSPEARMANcalculates performs central vance coefficientPEQUIVALENCEperforms central vance coefficient		variates, and tests whether the correlations are zero
CASSOCIATIONcalculates measures of association for circular dataCCOMPAREtests whether samples from circular distributions have a common mean direction or have identical distributionsFRIEDMANperforms Friedman's nonparametric analysis of varianceGSTATISTICcalculates the gamma statistic of agreement for ordinal dataHCOMPAREGROUPINGScalculates the Rand index, adjusted Rand index or Jaccard index to compare groupings defined by two factorsKAPPAcalculates a kappa coefficient of agreement for nominally scaled dataKCONCORDANCEcalculates Kendall's Coefficient of Concordance (synonym CONCORD)KOLMOG2performs a Kolmogorov-Smirnoff two-sample testKTAUcalculates Kendall's rank correlation coefficient τ LCONCORDANCEcalculates Lin's concordance correlation coefficientMANNWHITNEYperforms a Mann-Whitney U testMCNEMARperforms gairwise multiple comparison tests within a table of	CASSOCIATIONcalculates measures of association for circular dataCCOMPAREtests whether samples from circular distributions have a common mean direction or have identical distributionsFRIEDMANperforms Friedman's nonparametric analysis of variance calculates the gamma statistic of agreement for ordinal data to compare groupings defined by two factorsKAPPAcalculates the Rand index, adjusted Rand index or Jaccard index to compare groupings defined by two factorsKAPPAcalculates kendall's Coefficient of agreement for nominally scaled dataKCONCORDANCEcalculates Kendall's Coefficient of Concordance (synonym CONCORD)KOLMOG2performs a Kolmogorov-Smirnoff two-sample test (KRUSKALKTAUcalculates Kendall's rank correlation coefficient τ calculates Lin's concordance correlation coefficient meansMONDEMARperforms a Mann-Whitney U testMCNEMARperforms forms Source of changesQCOCHRANperforms Cochran's Q test for differences between related- samplesCATRENDTESTcalculates the Cochran-Armitage chi-square test for trend performs a test of randomness of a sequence of observations SIGNTESTSIGNTESTperforms a corr or two sample sign testSIGNTESTperforms a correlation coefficient performs a calculates Spearman's rank correlation coefficient samplesCATRENDTESTcalculates the Cochran-Armitage chi-square test for trend performs a test of randomness of a sequence of observations SIGNTESTSIGNTESTperforms a cellates Spearman's rank correlation coefficient stel's many-one rank test TEQUIVALENCEPEOUVALENCEperforms cellaten, per	PRCORRELATION	calculates probabilities for product moment correlations
CCOMPAREtests whether samples from circular distributions have a common mean direction or have identical distributionsFRIEDMANperforms Friedman's nonparametric analysis of variance calculates the gamma statistic of agreement for ordinal data taleHCOMPAREGROUPINGScalculates the Rand index, adjusted Rand index or Jaccard index to compare groupings defined by two factorsKAPPAcalculates takappa coefficient of agreement for nominally scaled dataKCONCORDANCEcalculates Kendall's Coefficient of Concordance (synonym CONCORD)KOLMOG2performs a Kolmogorov-Smirnoff two-sample test carries out a Kruskal-Wallis one-way analysis of variance calculates Kendall's rank correlation coefficient τ LCONCORDANCEKTAUcalculates Lin's concordance correlation coefficient mANNWHITNEYMANNWHITNEYperforms a Mann-Whitney U test performs a Mann-Whitney U test performs McNemar's test for the significance of changes performs pairwise multiple comparison tests within a table of	CCOMPAREtests whether samples from circular distributions have a common mean direction or have identical distributions performs Friedman's nonparametric analysis of variance calculates the gamma statistic of agreement for ordinal data calculates the gamma statistic of agreement for ordinal data calculates the Rand index, adjusted Rand index or Jaccard index to compare groupings defined by two factorsKAPPAcalculates the Rand index, adjusted Rand index or Jaccard index to compare groupings defined by two factorsKAPPAcalculates a kappa coefficient of agreement for nominally scaled dataKCONCORDANCEcalculates Kendall's Coefficient of Concordance (synonym CONCORD)KOLMOG2performs a Kolmogorov-Smirnoff two-sample test (KTUJ)KTAUcalculates Kendall's rank correlation coefficient τ calculates Lin's concordance correlation coefficient τ LCONCORDANCEMANNWHITNEYperforms a Mann-Whitney U test performs maximise multiple comparison tests within a table of meansQCOCHRANperforms Cochran's Q test for differences between related- samplesCATRENDTESTcalculates the Cochran-Armitage chi-square test for trend performs a test of randomness of a sequence of observations SIGNTESTSIGNTESTperforms actes of randomness of a sequence of observations SIGNTESTSPEARMANcalculates Spearman's rank correlation coefficient steel spearman's rank correlation testSTEELperforms steel's many-one rank test performs a culates spearman's rank correlation test	CDESCRIBE	calculates summary statistics and tests of circular data
mean direction or have identical distributionsFRIEDMANperforms Friedman's nonparametric analysis of varianceGSTATISTICcalculates the gamma statistic of agreement for ordinal dataHCOMPAREGROUPINGScalculates the Rand index, adjusted Rand index or Jaccard indexto compare groupings defined by two factorsto compare groupings defined by two factorsKAPPAcalculates a kappa coefficient of agreement for nominally scaleddataconcordanceKCONCORDANCEcalculates Kendall's Coefficient of Concordance (synonym CONCORD)KOLMOG2performs a Kolmogorov-Smirnoff two-sample testKTAUcalculates Kendall's rank correlation coefficient τLCONCORDANCEcalculates Lin's concordance correlation coefficientMANNWHITNEYperforms a Mann-Whitney U testMCNEMARperforms McNemar's test for the significance of changesMCOMPARISONperforms pairwise multiple comparison tests within a table of	FRIEDMANmean direction or have identical distributionsFRIEDMANperforms Friedman's nonparametric analysis of varianceGSTATISTICcalculates the gamma statistic of agreement for ordinal dataHCOMPAREGROUPINGScalculates the Rand index, adjusted Rand index or Jaccard indexto compare groupings defined by two factorscalculates the Rand index, adjusted Rand index or Jaccard indexKAPPAcalculates a kappa coefficient of agreement for nominally scaleddatacalculates Kendall's Coefficient of Concordance (synonym CONCORD)KOLMOG2performs a Kolmogorov-Smirnoff two-sample testKRUSKALcarries out a Kruskal-Wallis one-way analysis of varianceKTAUcalculates Kendall's rank correlation coefficient rLCONCORDANCEcalculates Lin's concordance correlation coefficientMANNWHITNEYperforms a Mann-Whitney U testMCOMPARISONperforms Cochran's Q test for differences between related- samplesQCOCHRANperforms Cochran-Armitage chi-square test for trend performs the Cochran-Armitage chi-square test for trendCMTESTperforms a one or two sample sign testSIGNTESTperforms a cone or two sample sign testSTEELperforms setel's many-one rank testTEQUIVALENCEperforms equivalence, non-inferiority and non-superiority tests	CASSOCIATION	calculates measures of association for circular data
FRIEDMANperforms Friedman's nonparametric analysis of varianceGSTATISTICcalculates the gamma statistic of agreement for ordinal dataHCOMPAREGROUPINGScalculates the Rand index, adjusted Rand index or Jaccard index to compare groupings defined by two factorsKAPPAcalculates a kappa coefficient of agreement for nominally scaled dataKCONCORDANCEcalculates Kendall's Coefficient of Concordance (synonym CONCORD)KOLMOG2performs a Kolmogorov-Smirnoff two-sample test carries out a Kruskal-Wallis one-way analysis of varianceKTAUcalculates Kendall's rank correlation coefficient τ LCONCORDANCEcalculates Lin's concordance correlation coefficientMANNWHITNEYperforms a Mann-Whitney U testMCNEMARperforms McNemar's test for the significance of changesMCOMPARISONperforms pairwise multiple comparison tests within a table of	FRIEDMANperforms Friedman's nonparametric analysis of varianceGSTATISTICcalculates the gamma statistic of agreement for ordinal dataHCOMPAREGROUPINGScalculates the Rand index, adjusted Rand index or Jaccard indexKAPPAcalculates the Rand index, adjusted Rand index or Jaccard indexKCONCORDANCEcalculates a kappa coefficient of agreement for nominally scaleddatacompare groupings defined by two factorsKCONCORDANCEcalculates Kendall's Coefficient of Concordance (synonym CONCORD)KOLMOG2performs a Kolmogorov-Smirnoff two-sample testKRUSKALcarries out a Kruskal-Wallis one-way analysis of varianceKTAUcalculates Kendall's rank correlation coefficient τLCONCORDANCEcalculates Lin's concordance correlation coefficientMANNWHITNEYperforms a Mann-Whitney U testMCNEMARperforms pairwise multiple comparison tests within a table of meansQCOCHRANperforms Cochran's Q test for differences between related- samplesCATRENDTESTcalculates the Cochran-Armitage chi-square test for trend performs a test of randomness of a sequence of observationsSIGNTESTperforms a cone or two sample sign testSIGNTESTperforms a cone or two sample sign testSIGNTESTperforms steel's many-one rank testSPEARMANcalculates Spearman's rank correlation coefficientSTEELperforms steel's many-one rank testTEQUIVALENCEperforms sequivalence, non-inferiority and non-superiority tests	CCOMPARE	tests whether samples from circular distributions have a common
GSTATISTICcalculates the gamma statistic of agreement for ordinal data calculates the Rand index, adjusted Rand index or Jaccard index to compare groupings defined by two factorsKAPPAcalculates the Rand index, adjusted Rand index or Jaccard index to compare groupings defined by two factorsKAPPAcalculates a kappa coefficient of agreement for nominally scaled dataKCONCORDANCEcalculates Kendall's Coefficient of Concordance (synonym CONCORD)KOLMOG2performs a Kolmogorov-Smirnoff two-sample test calculates Kendall's rank correlation coefficient τKTAUcalculates Kendall's rank correlation coefficient performs a Mann-Whitney U testMANNWHITNEYperforms McNemar's test for the significance of changes performs pairwise multiple comparison tests within a table of	GSTATISTICcalculates the gamma statistic of agreement for ordinal data calculates the Rand index, adjusted Rand index or Jaccard index to compare groupings defined by two factorsKAPPAcalculates the Rand index, adjusted Rand index or Jaccard index to compare groupings defined by two factorsKAPPAcalculates the Rand index, adjusted Rand index or Jaccard index to compare groupings defined by two factorsKAPPAcalculates kendall's Coefficient of agreement for nominally scaled dataKCONCORDANCEcalculates Kendall's Coefficient of Concordance (synonym CONCORD)KOLMOG2performs a Kolmogorov-Smirnoff two-sample test (KTAU)KRUSKALcarries out a Kruskal-Wallis one-way analysis of variance calculates Kendall's rank correlation coefficient τ LCONCORDANCEMANNWHITNEYperforms a Mann-Whitney U testMCNEMARperforms pairwise multiple comparison tests within a table of meansQCOCHRANperforms Cochran's Q test for differences between related- samplesCATRENDTESTcalculates the Cochran-Armitage chi-square test for trend performs a test of randomness of a sequence of observations SIGNTESTSIGNTESTperforms a one or two sample sign test calculates Spearman's rank correlation coefficientSTEELperforms Steel's many-one rank test performs equivalence, non-inferiority and non-superiority tests		mean direction or have identical distributions
HCOMPAREGROUPINGScalculates the Rand index, adjusted Rand index or Jaccard index to compare groupings defined by two factorsKAPPAcalculates a kappa coefficient of agreement for nominally scaled dataKCONCORDANCEcalculates Kendall's Coefficient of Concordance (synonym CONCORD)KOLMOG2performs a Kolmogorov-Smirnoff two-sample test calculates Kendall's rank correlation coefficient τKTAUcalculates Kendall's rank correlation coefficient τLCONCORDANCEcalculates Lin's concordance correlation coefficient performs a Mann-Whitney U testMANNWHITNEYperforms McNemar's test for the significance of changes performs pairwise multiple comparison tests within a table of	HCOMPAREGROUPINGScalculates the Rand index, adjusted Rand index or Jaccard index to compare groupings defined by two factorsKAPPAcalculates a kappa coefficient of agreement for nominally scaled dataKCONCORDANCEcalculates Kendall's Coefficient of Concordance (synonym CONCORD)KOLMOG2performs a Kolmogorov-Smirnoff two-sample test calculates Kendall's rank correlation coefficient τ LCONCORDANCEKTAUcalculates Kendall's rank correlation coefficient performs a Mann-Whitney U testMCNEMARperforms of Mann-Whitney U testMCOMPARISONperforms pairwise multiple comparison tests within a table of meansQCOCHRANperforms Cochran's Q test for differences between related- samplesCATRENDTESTcalculates the Cochran-Armitage chi-square test for trend performs a test of randomness of a sequence of observations SIGNTESTSIGNTESTperforms a correlation coefficient performs a correlation coefficientSTEELperforms a cochran-S rank correlation coefficient performs the Cochran-Mantel-Haenszel test performs a test of randomness of a sequence of observations SIGNTESTSTEELperforms a cellates Spearman's rank correlation coefficient steel's many-one rank test performs sequivalence, non-inferiority and non-superiority tests	FRIEDMAN	performs Friedman's nonparametric analysis of variance
KAPPAto compare groupings defined by two factors calculates a kappa coefficient of agreement for nominally scaled dataKCONCORDANCEcalculates Kendall's Coefficient of Concordance (synonym CONCORD)KOLMOG2performs a Kolmogorov-Smirnoff two-sample test carries out a Kruskal-Wallis one-way analysis of varianceKTAUcalculates Kendall's rank correlation coefficient τLCONCORDANCEcalculates Lin's concordance correlation coefficientMANNWHITNEYperforms a Mann-Whitney U testMCNEMARperforms McNemar's test for the significance of changesMCOMPARISONperforms pairwise multiple comparison tests within a table of	KAPPAto compare groupings defined by two factorsKAPPAcalculates a kappa coefficient of agreement for nominally scaled dataKCONCORDANCEcalculates Kendall's Coefficient of Concordance (synonym CONCORD)KOLMOG2performs a Kolmogorov-Smirnoff two-sample test carries out a Kruskal-Wallis one-way analysis of varianceKTAUcalculates Kendall's rank correlation coefficient tLCONCORDANCEcalculates Kendall's rank correlation coefficientMANNWHITNEYperforms a Mann-Whitney U testMCNEMARperforms McNemar's test for the significance of changesMCOMPARISONperforms pairwise multiple comparison tests within a table of meansQCOCHRANperforms Cochran's Q test for differences between related- samplesCATRENDTESTcalculates the Cochran-Armitage chi-square test for trend performs a test of randomness of a sequence of observationsSIGNTESTperforms a one or two sample sign testSPEARMANcalculates Spearman's rank correlation coefficientSTEELperforms Steel's many-one rank testTEQUIVALENCEperforms equivalence, non-inferiority and non-superiority tests	GSTATISTIC	calculates the gamma statistic of agreement for ordinal data
KAPPAcalculates a kappa coefficient of agreement for nominally scaled dataKCONCORDANCEcalculates Kendall's Coefficient of Concordance (synonym CONCORD)KOLMOG2performs a Kolmogorov-Smirnoff two-sample test carries out a Kruskal-Wallis one-way analysis of varianceKTAUcalculates Kendall's rank correlation coefficient τ LCONCORDANCEcalculates Lin's concordance correlation coefficient performs a Mann-Whitney U testMANNWHITNEYperforms McNemar's test for the significance of changes performs pairwise multiple comparison tests within a table of	KAPPAcalculates a kappa coefficient of agreement for nominally scaled dataKCONCORDANCEcalculates Kendall's Coefficient of Concordance (synonym CONCORD)KOLMOG2performs a Kolmogorov-Smirnoff two-sample test carries out a Kruskal-Wallis one-way analysis of varianceKTAUcalculates Kendall's rank correlation coefficient τ LCONCORDANCEcalculates Kendall's rank correlation coefficientMANNWHITNEYperforms a Mann-Whitney U testMCNEMARperforms McNemar's test for the significance of changesMCOMPARISONperforms Cochran's Q test for differences between related- samplesCATRENDTESTcalculates the Cochran-Armitage chi-square test for trend performs a test of randomness of a sequence of observationsSIGNTESTperforms a one or two sample sign testSPEARMANcalculates Spearman's rank correlation coefficientSTEELperforms Steel's many-one rank testTEQUIVALENCEperforms equivalence, non-inferiority and non-superiority tests	HCOMPAREGROUPINGS	calculates the Rand index, adjusted Rand index or Jaccard index
dataKCONCORDANCEcalculates Kendall's Coefficient of Concordance (synonym CONCORD)KOLMOG2performs a Kolmogorov-Smirnoff two-sample test carries out a Kruskal-Wallis one-way analysis of varianceKTAUcalculates Kendall's rank correlation coefficient τLCONCORDANCEcalculates Lin's concordance correlation coefficientMANNWHITNEYperforms a Mann-Whitney U testMCNEMARperforms McNemar's test for the significance of changesMCOMPARISONperforms pairwise multiple comparison tests within a table of	dataKCONCORDANCEcalculates Kendall's Coefficient of Concordance (synonym CONCORD)KOLMOG2performs a Kolmogorov-Smirnoff two-sample test carries out a Kruskal-Wallis one-way analysis of variance calculates Kendall's rank correlation coefficient τ LCONCORDANCELCONCORDANCEcalculates Kendall's rank correlation coefficient performs a Mann-Whitney U testMANNWHITNEYperforms McNemar's test for the significance of changes mcOMPARISONQCOCHRANperforms Cochran's Q test for differences between related- samplesCATRENDTESTcalculates the Cochran-Armitage chi-square test for trend performs a test of randomness of a sequence of observations SIGNTESTSIGNTESTperforms a one or two sample sign test calculates Spearman's rank correlation coefficientSTEELperforms Steel's many-one rank test performs equivalence, non-inferiority and non-superiority tests		to compare groupings defined by two factors
KCONCORDANCEcalculates Kendall's Coefficient of Concordance (synonym CONCORD)KOLMOG2performs a Kolmogorov-Smirnoff two-sample testKRUSKALcarries out a Kruskal-Wallis one-way analysis of varianceKTAUcalculates Kendall's rank correlation coefficient τLCONCORDANCEcalculates Lin's concordance correlation coefficientMANNWHITNEYperforms a Mann-Whitney U testMCNEMARperforms McNemar's test for the significance of changesMCOMPARISONperforms pairwise multiple comparison tests within a table of	KCONCORDANCEcalculates Kendall's Coefficient of Concordance (synonym CONCORD)KOLMOG2performs a Kolmogorov-Smirnoff two-sample test carries out a Kruskal-Wallis one-way analysis of variance calculates Kendall's rank correlation coefficient τ LCONCORDANCEKTAUcalculates Kendall's rank correlation coefficient τ calculates Lin's concordance correlation coefficient MANNWHITNEYMANNWHITNEYperforms a Mann-Whitney U test performs pairwise multiple comparison tests within a table of meansQCOCHRANperforms Cochran's Q test for differences between related- samplesCATRENDTESTcalculates the Cochran-Armitage chi-square test for trend performs a test of randomness of a sequence of observations SIGNTESTSIGNTESTperforms a one or two sample sign test szpeARMANSTEELperforms Steel's many-one rank test performs equivalence, non-inferiority and non-superiority tests	KAPPA	calculates a kappa coefficient of agreement for nominally scaled
CONCORD)KOLMOG2performs a Kolmogorov-Smirnoff two-sample testKRUSKALcarries out a Kruskal-Wallis one-way analysis of varianceKTAUcalculates Kendall's rank correlation coefficient τLCONCORDANCEcalculates Lin's concordance correlation coefficientMANNWHITNEYperforms a Mann-Whitney U testMCNEMARperforms McNemar's test for the significance of changesMCOMPARISONperforms pairwise multiple comparison tests within a table of	KOLMOG2performs a Kolmogorov-Smirnoff two-sample testKRUSKALcarries out a Kruskal-Wallis one-way analysis of varianceKTAUcalculates Kendall's rank correlation coefficient τ LCONCORDANCEcalculates Lin's concordance correlation coefficientMANNWHITNEYperforms a Mann-Whitney U testMCNEMARperforms McNemar's test for the significance of changesMCOMPARISONperforms pairwise multiple comparison tests within a table of meansQCOCHRANperforms Cochran's Q test for differences between related- samplesCATRENDTESTcalculates the Cochran-Armitage chi-square test for trend performs a test of randomness of a sequence of observationsSIGNTESTperforms a one or two sample sign testSPEARMANcalculates Spearman's rank correlation coefficientSTEELperforms Steel's many-one rank testTEQUIVALENCEperforms equivalence, non-inferiority and non-superiority tests		
KOLMOG2performs a Kolmogorov-Smirnoff two-sample testKRUSKALcarries out a Kruskal-Wallis one-way analysis of varianceKTAUcalculates Kendall's rank correlation coefficient τLCONCORDANCEcalculates Lin's concordance correlation coefficientMANNWHITNEYperforms a Mann-Whitney U testMCNEMARperforms McNemar's test for the significance of changesMCOMPARISONperforms pairwise multiple comparison tests within a table of	KOLMOG2performs a Kolmogorov-Smirnoff two-sample testKRUSKALcarries out a Kruskal-Wallis one-way analysis of varianceKTAUcalculates Kendall's rank correlation coefficient τLCONCORDANCEcalculates Lin's concordance correlation coefficientMANNWHITNEYperforms a Mann-Whitney U testMCNEMARperforms McNemar's test for the significance of changesMCOMPARISONperforms pairwise multiple comparison tests within a table of meansQCOCHRANperforms Cochran's Q test for differences between related- samplesCATRENDTESTcalculates the Cochran-Armitage chi-square test for trend performs a test of randomness of a sequence of observationsSIGNTESTperforms a one or two sample sign testSPEARMANcalculates Spearman's rank correlation coefficient performs Steel's many-one rank test performs equivalence, non-inferiority and non-superiority tests	KCONCORDANCE	calculates Kendall's Coefficient of Concordance (synonym
KRUSKALcarries out a Kruskal-Wallis one-way analysis of varianceKTAUcalculates Kendall's rank correlation coefficient τLCONCORDANCEcalculates Lin's concordance correlation coefficientMANNWHITNEYperforms a Mann-Whitney U testMCNEMARperforms McNemar's test for the significance of changesMCOMPARISONperforms pairwise multiple comparison tests within a table of	KRUSKALcarries out a Kruskal-Wallis one-way analysis of varianceKTAUcalculates Kendall's rank correlation coefficient τ LCONCORDANCEcalculates Lin's concordance correlation coefficientMANNWHITNEYperforms a Mann-Whitney U testMCNEMARperforms McNemar's test for the significance of changesMCOMPARISONperforms pairwise multiple comparison tests within a table of meansQCOCHRANperforms Cochran's Q test for differences between related- samplesCATRENDTESTcalculates the Cochran-Armitage chi-square test for trend performs a test of randomness of a sequence of observationsSIGNTESTperforms a one or two sample sign testSPEARMANcalculates Spearman's rank correlation coefficient performs Steel's many-one rank test performs equivalence, non-inferiority and non-superiority tests		
KTAUcalculates Kendall's rank correlation coefficient τLCONCORDANCEcalculates Lin's concordance correlation coefficientMANNWHITNEYperforms a Mann-Whitney U testMCNEMARperforms McNemar's test for the significance of changesMCOMPARISONperforms pairwise multiple comparison tests within a table of	KTAUcalculates Kendall's rank correlation coefficient τLCONCORDANCEcalculates Lin's concordance correlation coefficientMANNWHITNEYperforms a Mann-Whitney U testMCNEMARperforms McNemar's test for the significance of changesMCOMPARISONperforms pairwise multiple comparison tests within a table of meansQCOCHRANperforms Cochran's Q test for differences between related- samplesCATRENDTESTcalculates the Cochran-Armitage chi-square test for trend performs a test of randomness of a sequence of observationsSIGNTESTperforms a one or two sample sign testSPEARMANcalculates Spearman's rank correlation coefficient performs Steel's many-one rank testTEQUIVALENCEperforms equivalence, non-inferiority and non-superiority tests	KOLMOG2	
LCONCORDANCEcalculates Lin's concordance correlation coefficientMANNWHITNEYperforms a Mann-Whitney U testMCNEMARperforms McNemar's test for the significance of changesMCOMPARISONperforms pairwise multiple comparison tests within a table of	LCONCORDANCEcalculates Lin's concordance correlation coefficientMANNWHITNEYperforms a Mann-Whitney U testMCNEMARperforms McNemar's test for the significance of changesMCOMPARISONperforms pairwise multiple comparison tests within a table of meansQCOCHRANperforms Cochran's Q test for differences between related- samplesCATRENDTESTcalculates the Cochran-Armitage chi-square test for trend performs the Cochran-Mantel-Haenszel testRUNTESTperforms a test of randomness of a sequence of observationsSIGNTESTperforms a one or two sample sign testSPEARMANcalculates Spearman's rank correlation coefficientSTEELperforms Steel's many-one rank testTEQUIVALENCEperforms equivalence, non-inferiority and non-superiority tests	KRUSKAL	
MANNWHITNEYperforms a Mann-Whitney U testMCNEMARperforms McNemar's test for the significance of changesMCOMPARISONperforms pairwise multiple comparison tests within a table of	MANNWHITNEYperforms a Mann-Whitney U testMCNEMARperforms McNemar's test for the significance of changesMCOMPARISONperforms pairwise multiple comparison tests within a table of meansQCOCHRANperforms Cochran's Q test for differences between related- samplesCATRENDTESTcalculates the Cochran-Armitage chi-square test for trendCMHTESTperforms the Cochran-Mantel-Haenszel testRUNTESTperforms a test of randomness of a sequence of observationsSIGNTESTperforms a one or two sample sign testSPEARMANcalculates Spearman's rank correlation coefficientSTEELperforms Steel's many-one rank testTEQUIVALENCEperforms equivalence, non-inferiority and non-superiority tests	KTAU	
MCNEMARperforms McNemar's test for the significance of changesMCOMPARISONperforms pairwise multiple comparison tests within a table of	MCNEMARperforms McNemar's test for the significance of changesMCOMPARISONperforms pairwise multiple comparison tests within a table of meansQCOCHRANperforms Cochran's Q test for differences between related- samplesCATRENDTESTcalculates the Cochran-Armitage chi-square test for trendCMHTESTperforms the Cochran-Mantel-Haenszel testRUNTESTperforms a test of randomness of a sequence of observationsSIGNTESTperforms a one or two sample sign testSPEARMANcalculates Spearman's rank correlation coefficientSTEELperforms Steel's many-one rank testTEQUIVALENCEperforms equivalence, non-inferiority and non-superiority tests	LCONCORDANCE	
MCOMPARISON performs pairwise multiple comparison tests within a table of	MCOMPARISONperforms pairwise multiple comparison tests within a table of meansQCOCHRANperforms Cochran's Q test for differences between related- samplesCATRENDTESTcalculates the Cochran-Armitage chi-square test for trendCMHTESTperforms the Cochran-Mantel-Haenszel testRUNTESTperforms a test of randomness of a sequence of observationsSIGNTESTperforms a one or two sample sign testSPEARMANcalculates Spearman's rank correlation coefficientSTEELperforms Steel's many-one rank testTEQUIVALENCEperforms equivalence, non-inferiority and non-superiority tests	MANNWHITNEY	
	QCOCHRANmeansQCOCHRANperforms Cochran's Q test for differences between related- samplesCATRENDTESTcalculates the Cochran-Armitage chi-square test for trendCMHTESTperforms the Cochran-Mantel-Haenszel testRUNTESTperforms a test of randomness of a sequence of observationsSIGNTESTperforms a one or two sample sign testSPEARMANcalculates Spearman's rank correlation coefficientSTEELperforms Steel's many-one rank testTEQUIVALENCEperforms equivalence, non-inferiority and non-superiority tests	MCNEMAR	
means	QCOCHRANperforms Cochran's Q test for differences between related- samplesCATRENDTESTcalculates the Cochran-Armitage chi-square test for trend performs the Cochran-Mantel-Haenszel testCMHTESTperforms the Cochran-Mantel-Haenszel testRUNTESTperforms a test of randomness of a sequence of observationsSIGNTESTperforms a one or two sample sign testSPEARMANcalculates Spearman's rank correlation coefficientSTEELperforms Steel's many-one rank testTEQUIVALENCEperforms equivalence, non-inferiority and non-superiority tests	MCOMPARISON	performs pairwise multiple comparison tests within a table of
	samplesCATRENDTESTcalculates the Cochran-Armitage chi-square test for trendCMHTESTperforms the Cochran-Mantel-Haenszel testRUNTESTperforms a test of randomness of a sequence of observationsSIGNTESTperforms a one or two sample sign testSPEARMANcalculates Spearman's rank correlation coefficientSTEELperforms Steel's many-one rank testTEQUIVALENCEperforms equivalence, non-inferiority and non-superiority tests		
1 2	CATRENDTESTcalculates the Cochran-Armitage chi-square test for trendCMHTESTperforms the Cochran-Mantel-Haenszel testRUNTESTperforms a test of randomness of a sequence of observationsSIGNTESTperforms a one or two sample sign testSPEARMANcalculates Spearman's rank correlation coefficientSTEELperforms Steel's many-one rank testTEQUIVALENCEperforms equivalence, non-inferiority and non-superiority tests	QCOCHRAN	· ~
1	CMHTESTperforms the Cochran-Mantel-Haenszel testRUNTESTperforms a test of randomness of a sequence of observationsSIGNTESTperforms a one or two sample sign testSPEARMANcalculates Spearman's rank correlation coefficientSTEELperforms Steel's many-one rank testTEQUIVALENCEperforms equivalence, non-inferiority and non-superiority tests		1
	RUNTESTperforms a test of randomness of a sequence of observationsSIGNTESTperforms a one or two sample sign testSPEARMANcalculates Spearman's rank correlation coefficientSTEELperforms Steel's many-one rank testTEQUIVALENCEperforms equivalence, non-inferiority and non-superiority tests	CATRENDTEST	
	SIGNTESTperforms a one or two sample sign testSPEARMANcalculates Spearman's rank correlation coefficientSTEELperforms Steel's many-one rank testTEQUIVALENCEperforms equivalence, non-inferiority and non-superiority tests	CMHTEST	1
CMHTEST performs the Cochran-Mantel-Haenszel test	SPEARMANcalculates Spearman's rank correlation coefficientSTEELperforms Steel's many-one rank testTEQUIVALENCEperforms equivalence, non-inferiority and non-superiority tests	RUNTEST	
CMHTESTperforms the Cochran-Mantel-Haenszel testRUNTESTperforms a test of randomness of a sequence of observations	STEELperforms Steel's many-one rank testTEQUIVALENCEperforms equivalence, non-inferiority and non-superiority tests	SIGNTEST	
CMHTESTperforms the Cochran-Mantel-Haenszel testRUNTESTperforms a test of randomness of a sequence of observationsSIGNTESTperforms a one or two sample sign test	TEQUIVALENCE performs equivalence, non-inferiority and non-superiority tests	SPEARMAN	
CMHTESTperforms the Cochran-Mantel-Haenszel testRUNTESTperforms a test of randomness of a sequence of observationsSIGNTESTperforms a one or two sample sign testSPEARMANcalculates Spearman's rank correlation coefficient		STEEL	
CMHTESTperforms the Cochran-Mantel-Haenszel testRUNTESTperforms a test of randomness of a sequence of observationsSIGNTESTperforms a one or two sample sign testSPEARMANcalculates Spearman's rank correlation coefficientSTEELperforms Steel's many-one rank test	WILCOXON performs a Wilcoxon Matched-Pairs (Signed-Rank) test	TEQUIVALENCE	
CMHTESTperforms the Cochran-Mantel-Haenszel testRUNTESTperforms a test of randomness of a sequence of observationsSIGNTESTperforms a one or two sample sign testSPEARMANcalculates Spearman's rank correlation coefficientSTEELperforms Steel's many-one rank testTEQUIVALENCEperforms equivalence, non-inferiority and non-superiority tests	-	WILCOXON	performs a Wilcoxon Matched-Pairs (Signed-Rank) test
samples	CATRENDTESTcalculates the Cochran-Armitage chi-square test for trendCMHTESTperforms the Cochran-Mantel-Haenszel testRUNTESTperforms a test of randomness of a sequence of observationsSIGNTESTperforms a one or two sample sign testSPEARMANcalculates Spearman's rank correlation coefficientSTEELperforms Steel's many-one rank testTEQUIVALENCEperforms equivalence, non-inferiority and non-superiority tests		samples
	CMHTESTperforms the Cochran-Mantel-Haenszel testRUNTESTperforms a test of randomness of a sequence of observationsSIGNTESTperforms a one or two sample sign testSPEARMANcalculates Spearman's rank correlation coefficientSTEELperforms Steel's many-one rank testTEQUIVALENCEperforms equivalence, non-inferiority and non-superiority tests	CATRENDTEST	calculates the Cochran-Armitage chi-square test for trend
CATERINGTEST calculates the Cochran Armitage chi square test for trend	RUNTESTperforms a test of randomness of a sequence of observationsSIGNTESTperforms a one or two sample sign testSPEARMANcalculates Spearman's rank correlation coefficientSTEELperforms Steel's many-one rank testTEQUIVALENCEperforms equivalence, non-inferiority and non-superiority tests		
	SIGNTESTperforms a one or two sample sign testSPEARMANcalculates Spearman's rank correlation coefficientSTEELperforms Steel's many-one rank testTEQUIVALENCEperforms equivalence, non-inferiority and non-superiority tests		1
CMHTEST performs the Cochran-Mantel-Haenszel test	SPEARMANcalculates Spearman's rank correlation coefficientSTEELperforms Steel's many-one rank testTEQUIVALENCEperforms equivalence, non-inferiority and non-superiority tests		
CMHTESTperforms the Cochran-Mantel-Haenszel testRUNTESTperforms a test of randomness of a sequence of observations	STEELperforms Steel's many-one rank testTEQUIVALENCEperforms equivalence, non-inferiority and non-superiority tests		
CMHTESTperforms the Cochran-Mantel-Haenszel testRUNTESTperforms a test of randomness of a sequence of observationsSIGNTESTperforms a one or two sample sign test	TEQUIVALENCE performs equivalence, non-inferiority and non-superiority tests	STEEL	
CMHTESTperforms the Cochran-Mantel-Haenszel testRUNTESTperforms a test of randomness of a sequence of observationsSIGNTESTperforms a one or two sample sign testSPEARMANcalculates Spearman's rank correlation coefficientSTEELperforms Steel's many-one rank test		TEQUIVALENCE	performs equivalence, non-inferiority and non-superiority tests
CMHTESTperforms the Cochran-Mantel-Haenszel testRUNTESTperforms a test of randomness of a sequence of observationsSIGNTESTperforms a one or two sample sign testSPEARMANcalculates Spearman's rank correlation coefficientSTEELperforms Steel's many-one rank test		WILCOXON	

3 Statistical analyses

STTEST	calculates the sample size for t-tests (including equivalence tests)
SBNTEST	calculates the sample size for binomial tests
SCORRELATION	calculates the sample size to detect specified correlations
SLCONCORDANCE	calculates the sample size for Lin's concordance coefficient
SMANNWHITNEY	calculates sample sizes for the Mann-Whitney test
SMCNEMAR	calculates sample sizes for McNemar's test
SPRECISION	calculates the sample size to obtain a specified precision
SSIGNTEST	calculates the sample size for a sign test

There are also facilities for calculating probabilities, and for fitting or assessing statistical distributions:

DISTRIBUTION	estimates the parameters of continuous and discrete distributions
BBINOMIAL	estimates the parameters of the beta binomial distribution
EDFTEST	performs empirical-distribution-function goodness-of-fit tests
FDRMIXTURE	estimates false discovery rates using mixture distributions
KERNELDENSITY	uses kernel density estimation to estimate a sample density
NORMTEST	performs tests of univariate and/or multivariate Normality
PRCORRELATION	calculates probabilities for product moment correlations
PRDOUBLEPOISSON	calculates the probability density for the double Poisson
	distribution
PRMANNWHITNEYU	calculates probabilities for the Mann-Whitney U statistic
PRSPEARMAN	calculates probabilities for Spearman's rank correlation statistic
PRWILCOXON	calculates probabilities for the Wilcoxon signed-rank statistic
RFFAMOUNT	fits harmonic models to mean rainfall amounts for a Markov
	model
RFFPROBABILITY	fits harmonic models to rainfall probabilities for a Markov model
RFSUMMARY	forms summaries for a Markov model from rainfall data
WSTATISTIC	calculates the Shapiro-Wilk test for Normality

3.2 Regression and generalized linear models

Genstat provides directives for carrying out linear and nonlinear regression, also generalized linear, generalized additive and generalized nonlinear models. They are designed to allow easy comparison between models, and comparison between groups of data (specified as factors). The directives for nonlinear regression can also be used for general optimization. There are three preliminary directives for defining the form of model to be fitted, of which the MODEL directive must always be given first:

MODEL	defines the response variate(s) and the type of model to be fitted
TERMS	specifies a maximal model, containing all terms to be used in
	subsequent regression models
RCYCLE	controls iterative fitting of generalized linear models, generalized
	additive models and nonlinear models, and specifies parameters
	and bounds for nonlinear models

Separate directives carry out the fitting of the various types of model:

FIT	fits a linear model, a generalized linear model, a generalized
	additive model, or a generalized nonlinear model
FITCURVE	fits a standard nonlinear regression model
FITNONLINEAR	fits a user-defined nonlinear regression model or optimizes a
	scalar function

Further directives are provided to allow sequential modification of the set of explanatory variables:

ADD	adds extra terms to any type of regression model
DROP	drops terms from any type of regression model

SWITCH	adds terms to, or drops them from, any type of regression model
TRY	displays results of single-term changes to a linear or generalized
	linear model
STEP	selects terms to include in or exclude from a linear or generalized
	linear model

The results of fitting the models can be displayed or stored in data structures:

RDISPLAY	displays the fit of any type of regression model
RKEEP	stores the results from any type of regression model
RKESTIMATES	saves estimates and other information about individual terms in
	a regression analysis
PREDICT	forms predictions from a linear or generalized linear model
RFUNCTION	estimates functions of parameters of a regression model
RSPREADSHEET	puts results from a regression, generalized linear or nonlinear
	model into Genstat spreadsheets

Procedure in the Library relevant to regression analysis include:

RCHECK	checks the fit of a regression model
RGRAPH	draws a graph to display the fit of a regression model
RDESTIMATES	plots one- or two-way tables of regression estimates
RPERMTEST	does random permutation and exact tests for regression or
	generalized-linear-model analyses
RPOWER	calculates the power (probability of detection) for regression
	models
RCOMPARISONS	calculates comparison contrasts amongst the levels of a factor
	classifying a table of regression means
RCURVECOMMONNONLINEAR	refits a standard curve with common nonlinear parameters across
	groups to provide s.e.'s for linear parameters
RRETRIEVE	retrieves a regression save structure from an external file
RSTORE	stores a regression save structure in an external file
RTCOMPARISONS	calculates comparison contrasts within a multi-way table of
	means
RWALD	calculates Wald and F tests for dropping terms from a regression
RYPARALLEL	fits the same regression model to several response variates, and
	collates the output
SED2ESE	calculates effective standard errors that give good approximate
	sed's
SEDLSI	calculates least significant intervals
LSIPLOT	plots least significant intervals
MCOMPARISON	performs pairwise multiple comparison tests within a table of
	predictions
BRDISPLAY	displays a regression tree
BREGRESSION	constructs a regression tree
BRPREDICT	makes predictions using a regression tree
BRVALUES	forms values for nodes of a regression tree
DILUTION	calculates Most Probable Numbers from dilution series data
DSEPARATIONPLOT	creates a separation plot for visualising the fit of a model with a
	dichotomous (i.e. binary) or polytomous (i.e. multi-categorical)
	outcome
EXTRABINOMIAL	fits models to overdispersed proportions
FIELLER	calculates effective doses or relative potencies
FITINDIVIDUALLY	fits regression models one term at a time (useful for obtaining an
	accumulated analysis of deviance table containing the
	contributions of individual terms in a generalized linear model)

26

fits generalized linear models with multinomial distribution FTTMULTINOMIAL fits models to longitudinal data by generalized estimating GEE equations analyses non-standard generalized linear models GLM GLMM fits a generalized linear mixed model displays further output from a GLMM analysis GLDISPLAY saves results from a GLMM analysis GLKEEP does random permutation tests for generalized linear mixed GLPERMTEST models plots residuals from a GLMM analysis GLPLOT forms predictions from a GLMM analysis GLPREDICT calculates likelihood tests to assess random terms in a GLRTEST generalized linear mixed model analyses data using a hierarchical generalized linear model HGANALYSE (HGLM) or a double hierarchical generalized linear model (DHGLM) displays results from an HGLM or DHGLM HGDISPLAY HGDRANDOMMODEL adds random terms into the dispersion models of an HGLM, so that the whole model becomes a DHGLM defines the fixed model for an HGLM or DHGLM HGEIXEDMODEL calculates likelihood tests for fixed terms in a hierarchical HGFTEST generalized linear model draws a graph to display the fit of an HGLM or DHGLM HGGRAPH analysis saves information from an HGLM or DHGLM analysis HGKEEP HGNONLINEAR defines nonlinear parameters for the fixed model of an HGLM produces model-checking plots for an HGLM or DHGLM HGPLOT forms predictions from an HGLM or DHGLM analysis HGPREDICT defines the random model for an HGLM HGRANDOMMODEL calculates likelihood tests for random terms in a hierarchical HGRTEST generalized linear model displays the current HGLM model definitions HGSTATUS prints or saves Wald tests for fixed terms in an HGLM HGWALD estimates implicit and/or explicit functions of parameters IFUNCTION does regressions for single-channel microarray data MAREGRESSION MINIMIZE finds the minimum of a function calculated by a procedure MIN1DIMENSION finds the minimum of a function in one dimension fits the Michaelis-Menten equation for substrate concentration MICHAELISMENTEN versus time data predicts the Michaelis-Menten curve for a particular set of MMPREDICT parameter values fits curves with an AR1 or a power-distance correlation model NLAR1 performs t-tests for pairwise differences PAIRTEST displays results of t-tests for pairwise differences in compact PPAIR diagrams fits probit models allowing for natural mortality and immunity PROBITANALYSIS fits zero-inflated regression models to count data with excess ROINFLATED zeros ROKEEP saves information from models fitted by ROINFLATED fits regressions with an AR1 or a power-distance correlation RAR1 model fits the Bradley-Terry model for paired-comparison preference RBRADLEYTERRY tests performs a Cate-Nelson graphical analysis of bivariate data RCATENELSON does circular regression of mean direction for an angular RCIRCULAR response

3 Statistical analyses

RFINLAYWILKINSON	performs Finlay and Wilkinson's joint regression analysis of
	genotype-by-environment data
RIDGE	produces ridge regression and principal component regression analyses
LRIDGE	does logistic ridge regression
RLASSO	performs lasso using iteratively reweighted least-squares
RQLINEAR	fits and plots quantile regressions for linear models
~ RQNONLINEAR	fits and plots quantile regressions for nonlinear models
ROSMOOTH	fits and plots quantile regressions for loess or spline models
RLFUNCTIONAL	fits a linear functional relationship model
RMGLM	fits a model where different units follow different generalized
	linear models
RNEGBINOMIAL	fits a negative binomial generalized linear model estimating the
	aggregation parameter
RNONNEGATIVE	fits a generalized linear model with nonnegativity constraints
	(synonym FITNONNEGATIVE)
RPAIR	gives t-tests for all pairwise differences of means from linear or
	generalized linear models
RPARALLEL	carries out analysis of parallelism for nonlinear functions
	(synonym FITPARALLEL)
RQUADRATIC	fits a quadratic surface and estimates its stationary point
RSCHNUTE	fits a general four-parameter growth model to a non-decreasing
	response variate (synonym FITSCHNUTE)
RSCREEN	performs screening tests for generalized or multivariate linear
	models
RSEARCH	searches through models for a regression or generalized linear
NOLAKCII	model (with methods including all-subsets, forward and
	backward stepwise regression)
R2LINES	fits two-straight-line (broken-stick) models to data
SIMPLEX	searches for the minimum of a function using the Nelder-Mead
SIMPLEA	algorithm
SVGLM	fits generalized linear models to survey data
WADLEY	fits models for Wadley's problem, allowing alternative links and
	errors
XOCATEGORIES	performs analyses of categorical data from crossover trials
YTRANSFORM	estimates the parameter lambda of a single parameter
	transformation

3.3 Analysis of variance

3.3 Analysis of variance

Genstat has a comprehensive set of commands to do an analysis of variance. These directives define the models to be fitted:

BLOCKSTRUCTURE	defines the blocking structure of the design, and hence the strata
	and error terms
COVARIATE	specifies covariates for analysis of covariance
TREATMENTSTRUCTURE	defines the treatment (or systematic) terms

For unstructured designs with a single error term, BLOCKSTRUCTURE need not be specified, and COVARIATE is needed only for analysis of covariance. Balanced designs can be analysed using the ANOVA directive.

ANOVA	performs analysis of variance

3 Statistical analyses

Directives and procedures are available to produce plots, checks and further output from an ANOVA analysis, or to save information in Genstat data structures:

ADISPLAY	displays further output from analyses produced by ANOVA
AGRAPH	plots tables of means from ANOVA
APLOT	plots residuals from an ANOVA analysis
AFIELDRESIDUALS	display residuals in field layout
ABLUPS	calculates BLUPs for block terms in an ANOVA analysis
ACHECK	checks assumptions for an ANOVA analysis
AMCOMPARISON	performs pairwise multiple comparison tests for ANOVA means
AKEEP	copies information from an ANOVA analysis into Genstat data
	structures
ARESULTSUMMARY	provides a summary of results from an ANOVA analysis
ASPREADSHEET	saves results from an analysis of variance in a spreadsheet

Unbalanced designs with a single error term can be be analysed using the AUNBALANCED procedure. (Unbalanced designs with several error terms should be analysed using the commands for REML analysis of linear mixed models.)

AUNBALANCED	performs analysis of variance for unbalanced designs
AUDISPLAY	produces further output for an unbalanced design (after
	AUNBALANCED)
AUGRAPH	plots tables of means from AUNBALANCED
AUPREDICT	forms predictions from an unbalanced design (after
	AUNBALANCED)
AUSPREADSHEET	Saves results from an analysis of an unbalanced design (by
	AUNBALANCED) in a spreadsheet
AUMCOMPARISON	performs pairwise multiple comparison tests for means from an
	unbalanced analysis of variance, performed previously by
	AUNBALANCED
AUKEEP	saves output from analysis of an unbalanced design (by
	AUNBALANCED)

There are also specialized procedures for designs (balanced or unbalanced) with a single error term and one or two treatment factors.

A2WAY	performs analysis of variance of a balanced or unbalanced design
A2DISPLAY	with up to two treatment factors provides further output following an analysis of variance by A2WAY
A2KEEP	copies information from an A2WAY analysis into Genstat data
A2RESULTSUMMARY	structures provides a summary of results from an analysis by A2WAY

If you are unsure what method to use, you can use the ${\tt AOVANYHOW}$ procedure to see which method is most appropriate.

AOVANYHOW	performs analysis of variance using ANOVA, AUNBALANCED,
	A2WAY or REML as appropriate
AOVDISPLAY	provides further output from an analysis by AOVANYHOW

Other procedures relevant to analysis of variance include:

ABOXCOX	estimates the power λ in a Box-Cox transformation, that
	maximizes the partial log-likelihood in ANOVA
AFCOVARIATES	defines covariates from a model formula for ANOVA
AFMEANS	forms tables of means classified by ANOVA treatment factors

3.3 Analysis of variance 29		
ASTATUS	provides information about the settings of ANOVA models variates	and
APERMTEST	does random permutation tests for analysis-of-variance tabl	es
ABIVARIATE	produces graphs and statistics for bivariate analysis of varia	
ACONFIDENCE	calculates simultaneous confidence intervals	
AMDUNNETT	forms Dunnett's simultaneous confidence interval aroun	d a
	control	
AMTIER	analyses a multitiered design by analysis of variance specifie	d bv
	up to 3 model formulae	
AMTDISPLAY	displays further output for multitiered designs analysed	by
AMTKEEP	saves information from the analysis of a multitiered design ${\tt AMTIER}$	-
ACANONICAL	determines the orthogonal decomposition of the sample space a design, using an analysis of the canonical relationships betw the projectors derived from two or more model formulae	
ACDISPLAY	provides further output from an analysis by ACANONICAL	
ACKEEP	saves information from an analysis by ACANONICAL	
VSPECTRALCHECK	forms the spectral components from the canonical componen a multitiered design, and constrains any negative spec components to zero	
AN1ADVICE	aims to give useful advice if a design that is thought to	he he
ANIADVICL	balanced fails to be analysed by ANOVA	
APAPADAKIS	analysis of variance with an added Papadakis covariate, for	med
	from neighbouring residuals	
APOLYNOMIAL	forms the equation for a polynomial contrast fitted by ANOV	'A
ADPOLYNOMIAL	plots single-factor polynomial contrasts fitted by ANOVA	
AREPMEASURES	produces an analysis of variance for repeated measurement	s
ARETRIEVE	retrieves an ANOVA save structure from an external file	
ASTORE	stores an ANOVA save structure in an external file	
ASCREEN	performs screening tests for designs with orthogonal bl	lock
	structure	
AYPARALLEL	does the same analysis of variance for several y-variates,	and
	collates the output	
A2RDA	saves results from an analysis of variance in R data frames	
AU2RDA	saves results from an unbalanced analysis of variance,	by
	AUNBALANCED, in R data frames	-
FALIASTERMS	forms information about aliased model terms in analysis	s of
	variance	
FWITHINTERMS	forms factors to define terms representing the effects of factor within another factor	one
MAANOVA	does analysis of variance for a single-channel microarray de (parallel anova)	sign
SED2ESE	calculates effective standard errors that give good approximits standard errors of differences	nate
SEDLSI	calculates least significant intervals	
LSIPLOT	plots least significant intervals, saved from SEDLSI	
RTCOMPARISONS	calculates comparison contrasts within a multi-way table	e of
	means	
A2PLOT	plots effects and robust s.e. estimates from designs with two-l	evel
	factors	
CENSOR	pre-processes censored data before analysis by ANOVA	
CINTERACTION	clusters rows and columns of a two-way interaction table	
DIALLEL	analyses full and half diallel tables with parents	
AMMI	allows exploratory analysis of genotype × environm	nent
	interactions	
FMEGAENVIRONMENTS	forms mega-environments based on winning genotypes from	n an

3 Statistical analyses

	AMMI-2 model
FRIEDMAN	performs Friedman's nonparametric analysis of variance
NLCONTRASTS	fits non-linear contrasts to quantitative factors in ANOVA
TEQUIVALENCE	performs equivalence, non-inferiority and non-superiority tests
VHOMOGENEITY	tests homogeneity of variances
WSTATISTIC	calculates the Shapiro-Wilk test for Normality

3.4 Design of experiments

Genstat has a comprehensive set of facilities for design of experiments. Collectively, these are known as the *Genstat Design System*. Many different design types are covered, each with a procedure that allows you to view and choose from the available possibilities. Other procedure allow designs and data forms to be displayed. There is also a general procedure DESIGN that can be used interactively to provide a single point of access to all the design types. DESIGN and the AG... procedures that it calls provide the Select Design facilities in Genstat *for Windows*, while the alternative Standard Design menu uses AGHIERARCHICAL, AGLATIN and AGSQLATTICE to generate completely randomized designs, randomized blocks, Latin and Graeco-Latin squares, split-plots, strip-plots (or criss-cross designs) and lattices.

DESIGN	provides a menu-driven interface for selecting and generating
	experimental designs
AGALPHA	forms alpha designs for up to 100 treatments
AGBIB	generates balanced-incomplete-block designs
AGBOXBEHNKEN	generates Box-Behnken designs
AGCENTRALCOMPOSITE	generates central composite designs
AGCROSSOVERLATIN	generates Latin squares balanced for carry-over effects
AGCYCLIC	generates cyclic designs from standard generators
AGDESIGN	generates generally balanced designs - factorial designs with
	blocking, fractional factorial designs, Lattice squares etc.
AGFACTORIAL	generates minimum aberration complete and fractional factorial
	designs
AGFRACTION	generates fractional factorial designs
AGHIERARCHICAL	generates orthogonal hierarchical designs
AGINDUSTRIAL	provides a menu-driven interface for selecting and generating
	designs for industrial experiments
AGLATIN	generates mutually orthogonal Latin squares
AGLOOP	generates loop designs e.g. for time-course microarray
	experiments
AGMAINEFFECT	generates designs to estimate main effects of two-level factors
AGNEIGHBOUR	generates neighbour-balanced designs
AGNONORTHOGONALDESIGN	generates non-orthogonal multi-stratum designs
AGSPACEFILLINGDESIGN	generates space filling designs
AGQLATIN	generates complete and quasi-complete Latin squares
AGREFERENCE	generates reference-level designs e.g. for microarray experiments
AGSEMILATIN	generates semi-Latin squares
AGSQLATTICE	generates square lattice and lattice square designs
PDESIGN	prints treatment combinations tabulated by the block factors
DDESIGN	plots the plan of a design
ADSPREADSHEET	puts the data and plan of an experimental design into Genstat
	spreadsheets

There are also procedures that you can use to determine the sample size (i.e. replication) required for experiments that are to be analysed by analysis of variance, t-test or various non-parametric tests. You can also calculate the power (or probability of detection) for terms in analysis of variance or regression analyses.

APOWER	calculates the power (probability of detection) for terms in an analysis of variance
RPOWER	calculates the power (probability of detection) for regression models
VPOWER	uses a parametric bootstrap to estimate the power (probability of
	detection) for terms in a REML analysis
ASAMPLESIZE	finds the replication (sample size) to detect a treatment effect or
	contrast
VSAMPLESIZE	estimates the replication to detect a fixed term or contrast in a
	REML analysis, using parametric bootstrap
ADETECTION	calculates the minimum size of effect or contrast detectable in an
	analysis of variance
SBNTEST	calculates the sample size for binomial tests
SCORRELATION	calculates the sample size to detect specified correlations
SLCONCORDANCE	calculates the sample size for Lin's concordance coefficient
SMANNWHITNEY	calculates the sample size for the Mann-Whitney test
SMCNEMAR	calculates the sample size for McNemar's test
SPNTEST	calculates the sample size for a Poisson test
SPRECISION	calculates the sample size to obtain a specified precision
SSIGNTEST	calculates the sample size for a sign test
STTEST	calculates the sample size for t-tests, including equivalence tests
	and tests for non-inferiority
DSTTEST	plots power and significance for t-tests, including equivalence
	tests and tests for non-inferiority

The Design System is based on a range of standard generators. Some of these, such as the Galois fields used to generate Latin squares, can be formed when required – and so there is no limitation on the available designs. Repertoires of others, such as design keys, are stored in backing-store files which are scanned by the design generation procedures to form menus listing the available possibilities. Algorithms are available to form generators for new designs, and these can then be added to the design files to become an integral part of the system. Other design utilities include procedures for combining simple designs into more complicated arrangements, for forming augmented designs, and for determining how many replicates are needed. There are also directives for constructing response-surface designs and doubly resolvable row-column designs. The relevant commands include the directives

AFMINABERRATION	forms minimum aberration factorial or fractional-factorial designs
AFRESPONSESURFACE	uses the BLKL algorithm to construct designs for estimating response surfaces
AGRCRESOLVABLE	forms doubly resolvable row-column designs
GENERATE	generates values of factors in systematic order or as defined by
	a design key, or forms values of pseudo-factors
RANDOMIZE	puts units of vectors into random order, or randomizes units of an
	experimental design
FKEY	forms design keys for multi-stratum experimental designs,
	allowing for confounding and aliasing of treatments
FPSEUDOFACTORS	determines patterns of confounding and aliasing from design
	keys, and extends the treatment formula to incorporate the
	necessary pseudo-factors
SET2FORMULA	forms a model formula using structures supplied in a pointer
and the procedures	

AEFFICIENCY	calculates efficiency factors for experimental designs
AFAUGMENTED	forms an augmented design
AFLABELS	forms a variate of unit labels for a design

3 Statistical analyses

AFRCRESOLVABLE	forms doubly resolvable row-column designs, with output
AFUNITS	forms a factor to index the units of the final stratum of a design
AKEY	generates values for treatment factors using the design key
	method
AMERGE	merges extra units into an experimental design
AFNONLINEAR	forms D-optimal designs to estimate the parameters of a
	nonlinear or generalized linear model
AFPREP	searches for an efficient partially-replicated design
APRODUCT	forms a new experimental design from the product of two designs
ARCSPLITPLOT	adds extra treatments onto the replicates of a resolvable row-
	column design, and generates factors giving the row and column
	locations of the plots within the design
ARANDOMIZE	randomizes and prints an experimental design
CDNAUGMENTEDDESIGN	constructs an augmented block design, using CycDesigN if the
	controls are in an incomplete-block design
CDNBLOCKDESIGN	constructs a block design using CycDesigN
CDNPREP	constructs a multi-location partially-replicated design using
	CycDesigN
CDNROWCOLUMNDESIGN	constructs a row-column design using CycDesigN
COVDESIGN	produces experimental designs efficient under analysis of
	covariance
FACCOMBINATIONS	forms a factor to indicate observations with identical
	combinations of values of a set of variates, texts or factors
FACDIVIDE	represents a factor by factorial combinations of a set of factors
FACPRODUCT	forms a factor with a level for every combination of other factors
FBASICCONTRASTS	forms the basic contrasts of a model term
FCOMPLEMENT	forms the complement of an incomplete block design
FDESIGNFILE	forms a backing-store file of information for AGDESIGN
FHADAMARDMATRIX	forms Hadamard matrices
FOCCURRENCES	forms a "concurrence" matrix recording how often each pair of
	treatments occurs in the same block of a design
FPLOTNUMBER	forms plot numbers for a row-by-column design
FPROJECTIONMATRIX	forms a projection matrix for a set of model terms
XOEFFICIENCY	calculates the efficiency for estimating effects in cross-over
	designs
XOPOWER	estimates the power of contrasts in cross-over designs
	-

3.5 **REML analysis of linear mixed models**

The REML algorithm allows you to analyse linear mixed models i.e. linear models that can contain both fixed and random effects. In some applications these are known as "multi-level" models. It can thus be used to analyse unbalanced designs with several error terms (which cannot be analysed by ANOVA). It can also fit random correlation models to describe the covariances between random effects as can arise, for example, in the analysis of repeated measurements or spatial data.

REML	fits a variance-component model by residual (or restricted) maximum likelihood
VCOMPONENTS	defines the model for REML
VCYCLE	controls advanced aspects of the REML algorithm
VDISPLAY	displays further output from a REML analysis
VKEEP	copies information from a REML analysis into Genstat data
	structures
VSTRUCTURE	defines a variance structure for random effects in a REML model
VPEDIGREE	generates an inverse relationship matrix for use when fitting animal or plant breeding models by ${\tt REML}$

3.5 REML analysis of linear mixed models

VPREDICT	forms predictions from a REML model
VRESIDUAL	defines the residual term for a REML model
VSTATUS	prints the current model settings for REML

There are several procedures that may be useful, for example, to define the model, to produce additional output or for other REML-based analyses.

FCONTRASTS	modifies a model formula to contain contrasts of factors
FDIALLEL	forms the components of a diallel model for REML or regression
F2DRESIDUALVARIOGRAM	calculates and plots a 2-dimensional variogram from a
	2-dimensional array of residuals
TOBIT	linear mixed model analysis of data with fixed-threshold
	censoring
VAIC	calculates the Akaike and Schwarz (Bayesian) information
	coefficients for REML
VALLSUBSETS	fits all subsets of the fixed terms in a REML analysis
VAYPARALLEL	does the same REML analysis for several y-variates, and collates
	the output
VBOOTSTRAP	performs a parametric bootstrap of the fixed effects in a REML
	analysis
VCRITICAL	uses a parametric bootstrap to estimate critical values for a fixed
	term in a REML analysis
VCHECK	checks standardized residuals from a REML analysis
VDEFFECTS	plots one- or two-way tables of effects estimated in a REML
	analysis
VDFIELDRESIDUALS	display residuals from a REML analysis in field layout
VFIXEDTESTS	saves fixed tests from a REML analysis
VFLC	performs an F-test of random effects in a linear mixed model
	based on linear combinations of the responses, i.e. an FLC test
VFPEDIGREE	checks and prepares pedigree information from several factors,
	for use by VPEDIGREE and REML
VFRESIDUALS	obtains residuals, fitted values and their standard errors from a
	REML analysis
VFUNCTION	calculates functions of variance components from a REML
	analysis
VGRAPH	plots tables of means from REML
VHERITABILITY	calculates generalized heritability for a random term in a REML
	analysis
VLSD	prints approximate least significant differences for REML means
VMCOMPARISON	performs pairwise comparisons between REML means
VMETA	performs a multi-treatment meta analysis using summary results
	from individual experiments
VPERMTEST	does random permutation tests for the fixed effects in a $\ensuremath{\mathtt{REML}}$
	analysis
VPLOT	plots residuals from a REML analysis
VPOWER	uses a parametric bootstrap to estimate the power (probability of
	detection) for terms in a REML analysis
VRACCUMULATE	forms a summary accumulating the results of a sequence of ${\tt REML}$
	random models
VRCHECK	checks effects of a random term in a REML analysis
VRMETAMODEL	forms the random model for a REML meta analysis
VRPERMTEST	performs permutation tests for random terms in REML analysis
VRFIT	fits terms from a REML fixed model in a Genstat regression
VRADD	adds terms from a REML fixed model into a Genstat regression
VRDISPLAY	displays output for a REML fixed model fitted in a Genstat
	regression

3 Statistical analyses

VRDROP VRKEEP	drops terms in a REML fixed model from a Genstat regression saves output for a REML fixed model fitted in a Genstat regression
VRSETUP	sets up Genstat regression to assess terms from a REML fixed model
VRSWITCH	adds or drops terms from a REML fixed model in a Genstat regression
VRTRY	tries the effect of adding and dropping individual terms from a REML fixed model in a Genstat regression
VSAMPLESIZE	estimates the replication to detect a fixed term or contrast in a REML analysis, using parametric bootstrap
VSCREEN	performs screening tests for fixed terms in a REML analysis
VSOM	analyses a simple REML variance components model for outliers using a variance shift outlier model
VSPREADSHEET	saves results from a REML analysis in a spreadsheet
VSURFACE	fits a 2-dimensional spline surface using REML, and estimates its extreme point
VTCOMPARISONS	calculates comparison contrasts within a multi-way table of predicted means from a REML analysis
VUVCOVARIANCE	forms the unit-by-unit variance-covariance matrix for specified variance components in a REML model

There is also a suite of procedures to provide automatic selection of ${\tt REML}$ random models for single trials, series of trials and meta analysis.

VABLOCKDESIGN	analyses an incomplete-block design by REML, allowing
	automatic selection of random and spatial covariance models
VAROWCOLUMNDESIGN	analyses a row-and-column design by REML, with automatic
	selection of the best random and spatial covariance model
VALINEBYTESTER	provides combinabilities and deviances for a line-by-tester trial
	analysed by VABLOCKDESIGN or VAROWCOLUMNDESIGN
VLINEBYTESTER	analyses a line-by-tester trial by REML
VASERIES	analyses a series of trials with incomplete-block or
	row-and-column designs by REML, automatically selecting the
	best random models
VASDISPLAY	displays further output from an analysis by VASERIES
VASKEEP	copies information from an analysis by VASERIES into Genstat
	data structures
VASMEANS	saves experiment × treatment means from analysis of a series of
	trials by VASERIES
VAMETA	performs a REML meta analysis of a series of trials
VFMODEL	forms a model-definition structure for a REML analysis
VFSTRUCTURE	adds a covariance-structure definition to a REML model-definition
	structure
VMODEL	specifies the model for a REML analysis using a model-definition
	structure defined by VFMODEL
VAOPTIONS	defines options for the fitting of models by VARANDOM and
	associated procedures
VARANDOM	finds the best REML random model from a set of models defined
	by VFMODEL
VARECOVER	recovers when REML, is unable to fit a model, by simplifying the
	random model

3.6 Multivariate and cluster analysis

Several standard multivariate methods are provided by Genstat directives. These include methods that analyse data in the form of units-by-variates, and methods that use a similarity or distance matrix.

The following directives carry out standard multivariate analyses:

CVA	canonical variates analysis
FCA	factor analysis
MDS	non-metric multidimensional scaling
PCP	principal components analysis
PCO	principal coordinates analysis
ROTATE	Procrustes rotation

Other directives and procedures are available to process results from multivariate analyses:

ADDPOINTS	adds points for new objects to a PCO
CVAPLOT	plots the mean and unit scores from a canonical variates analysis
CVASCORES	calculates scores for individual units in canonical variates
	analysis
DBIPLOT	plots a biplot from an analysis by PCP, CVA or PCO
DMST	gives a high resolution plot of an ordination with minimum
	spanning tree
FACROTATE	rotates factor loadings from a PCP, CVA or FCA
LRVSCREE	prints a scree diagram and/or a difference table of latent roots
PCORELATE	relates principal coordinates to original data variables

The following directives are used for hierarchical or non-hierarchical cluster analysis:

CLUSTER	non-hierarchical clustering from a data matrix
FSIMILARITY	forms a similarity matrix or a between-group similarity matrix
	from a units-by-variates data matrix
HREDUCE	forms a reduced similarity matrix (by groups)
HCLUSTER	hierarchical cluster analysis from a similarity matrix

Other directives and procedures that process the results from hierarchical cluster analyses are:

DDENDROGRAM	draws dendrograms with control over structure and style
DCLUSTERLABELS	labels clusters in a single-page dendrogram plotted by ${\tt DDENDROGRAM}$
HBOOTSTRAP	performs bootstrap analyses to assess the reliability of clusters
	from hierarchical cluster analysis
HCOMPAREGROUPINGS	compares groupings generated, for example, from cluster
	analyses
HDISPLAY	displays results associated with hierarchical clustering
HFAMALGAMATIONS	forms an amalgamations matrix from a minimum spanning tree
HFCLUSTERS	forms a set of clusters from an amalgamations matrix
HLIST	lists a data matrix in abbreviated form
HPCLUSTERS	prints a set of clusters
HSUMMARIZE	summarizes data variates by clusters

Other multivariate techniques are provided by procedures in the Library:

AMMI	allows	exploratory	analysis	of	genotype	×	environment
	interact	tions					
BCLASSIFICATION	constru	cts a classific	ation tree				
BCDISPLAY	display	s a classificati	ion tree				

36

BCIDENTIFY BCKEEP BCVALUES BCFOREST BCFDTSPLAY BCFIDENTIFY BIPLOT BKEY BKDISPLAY BKIDENTIFY BKKEEP CANCORRELATION CCA CRBIPLOT CRTRIPLOT CINTERACTION CLASSIFY CONVEXHULL CORANALYSIS MCORANALYSIS CABIPLOT DISCRIMINATE SDISCRIMINATE QDISCRIMINATE DPARALLEL. GESTABILITY GGEBIPLOT GENPROCRUSTES TDENTIFY KNEARESTNEIGHBOURS MANOVA MANTEL MULTMISSING MVAOD NORMTEST OPLS PCOPROCRUSTES PLS RDA RIDGE LRIDGE RLFUNCTIONAL RMULTIVARIATE ROBSSPM SAGRAPES SKEWSYMMETRY

3 Statistical analyses

identifies specimens using a classification tree saves information from a classification tree forms values for nodes of a classification tree constructs a random classification forest displays information about a random classification forest identifies specimens using a random classification forest produces a biplot from a set of variates constructs an identification key displays an identification key identifies specimens using a key saves information from an identification key does canonical correlation analysis performs canonical correspondence analysis plots correlation or distance biplots after CCA or RDA plots ordination biplots or triplots after CCA or RDA clusters rows and columns of a two-way interaction table obtains a starting classification for non-hierarchical clustering finds the points of a single or a full peel of convex-hulls does correspondence analysis, or reciprocal averaging does multiple correspondence analysis plots results from correspondence analysis or multiple correspondence analysis performs discriminant analysis selects the best set of variates to discriminate between groups performs quadratic discrimination between groups i.e. allowing for different variance-covariance matrices displays multivariate data using parallel coordinates calculates stability coefficients for genotype-by-environment data plots displays to assess genotype + genotype-by-environment variation performs a generalized Procrustes analysis identifies an unknown specimen from a defined set of objects classifies items or predicts their responses by examining their knearest neighbours performs multivariate analysis of variance and covariance assesses the association between similarity matrices estimates missing values for units in a multivariate data set does an analysis of distance of multivariate data performs tests of univariate and/or multivariate normality performs orthogonal partial least squares regression performs a multiple Procrustes analysis fits a partial least squares regression model performs redundancy analysis produces ridge regression and principal component regression analyses does logistic ridge regression fits a linear functional relationship model performs multivariate linear regression with accumulated testing of terms forms robust estimates of sum-of-squares-and-products matrices produces statistics and graphs for checking sensory panel performance provides an analysis of skew-symmetry for an asymmetric matrix

3.7 Time series

Genstat provides several methods for examining and analysing time series. Sample correlation functions are produced by the directive CORRELATE:

CORRELATE	forms correlations between variates, autocorrelations of variates,
	and lagged cross-correlations between variates

The analysis of Box-Jenkins models is specified by several directives:

FTSM	forms preliminary estimates of parameters in time-series models
TRANSFERFUNCTION	specifies input series and transfer-function models for subsequent
	estimation of a model for an output series
TFIT	estimates parameters in Box-Jenkins models for time series
	(renamed version of ESTIMATE, which is retained as a synonym)

Information can be saved in Genstat data structures, or further output can be produced:

TDISPLAY	displays further output after an analysis by TFIT
TKEEP	saves results after an analysis by TFIT
TFORECAST	forecasts future values of a time series (renamed version of
	FORECAST, which is retained as a synonym)
TSUMMARIZE	displays characteristics of a time series model

It is also possible to filter a time series, or perform spectral analysis via the Fourier transform of a time series using the directives:

TFILTER	filters time series by time-series models (renamed version of
	FILTER, which is retained as a synonym)
FOURIER	calculates cosine or Fourier transforms of a real or complex
	series

Relevant procedures in the Library include:

BJESTIMATE	fits an ARIMA model, with forecasts and residual checks
BJFORECAST	plots forecasts of a time series using a previously fitted ARIMA
BJIDENTIFY	displays time series statistics useful for ARIMA model selection
DFOURIER	performs a harmonic analysis of a univariate time series
KALMAN	calculates estimates from the Kalman filter
DKALMAN	plots results from an analysis by KALMAN
MCROSSPECTRUM	performs a spectral analysis of a multiple time series
MC1PSTATIONARY	gives the stationary probabilities for a 1st-order Markov chain
MOVINGAVERAGE	calculates and plots the moving average of a time series
PERIODTEST	gives periodogram-based tests for white noise in time series
PREWHITEN	filters a time series before spectral analysis
REPPERIODOGRAM	gives periodogram-based analyses for replicated time series
SMOOTHSPECTRUM	forms smoothed spectrum estimates for univariate time series
TVARMA	fits a vector autoregressive moving average (VARMA) model
TVFORECAST	forecasts future values from a vector autoregressive moving
	average (VARMA) model
TVGRAPH	plots a vector autoregressive moving average (VARMA) model

3.8 Repeated measurements

A repeated-measurements study is one in which subjects (animals, people, plots, etc) are observed on several occasions. Each subject usually receives some randomly allocated treatment, either at the outset or

3 Statistical analyses

repeatedly through the investigation, and is then observed at successive occasions to see how the treatment effects develop. One way to analyse data sets like this is to use Genstat's REML facilities to model the correlation structure over time.

REML	fits a variance-component model by residual (or restricted)
	maximum likelihood
VCOMPONENTS	defines the model for REML
VSTRUCTURE	defines a variance structure for random effects in a REML model

Alternatively, Genstat has procedures for customized plotting of the observations (or profiles) against time, repeated measures analysis of variance, analyses based on ante-dependence structure or generalized estimating equations, and regression or nonlinear modelling of data where the residuals follow an AR1 or power-distance correlation model.

ANTORDER ANTTEST	assesses order of ante-dependence for repeated measures data calculates overall tests based on a specified order of ante- dependence
AREPMEASURES	produces an analysis of variance for repeated measurements
CUMDISTRIBUTION	fits frequency distributions to accumulated counts
DREPMEASURES	plots profiles and differences of profiles for repeated
	measurements
GEE	fits models to longitudinal data by generalized estimating equations
NLAR1	fits curves with an AR1 or a power-distance correlation model
RAR1	fits regressions with an AR1 or a power-distance correlation model
VORTHPOLYNOMIAL	calculates orthogonal polynomial time-contrasts for repeated measurements

3.9 Survival analysis

In survival data the response variate is the survival time of an individual like a medical patient or an industrial component. The responses are often *censored*, i.e. some individuals survive beyond the end of the study, and so their survival times are unknown. Genstat provides various ways of estimating the *survivor function* (i.e. the probability that an individual is still surviving at each time). You can do nonparametric tests to compare different survival distributions. Finally, you can model the survival times, by assuming that they follow exponential, Weibull or extremevalue distributions, or by fitting a proportional hazards model.

KAPLANMEIER	calculates the Kaplan-Meier estimate of the survivor function
RLIFETABLE	calculates the life-table estimate of the survivor function
RPHFIT	fits the proportional hazards model to survival data as a generalized linear model
RPHCHANGE	modifies a proportional hazards model fitted by RPHFIT
RPHDISPLAY	prints output for a proportional hazards model fitted by RPHFIT
RPHKEEP	saves information from a proportional hazards model fitted by ${\tt RPHFIT}$
RPROPORTIONAL	fits a proportional hazards model by a direct maximization of the likelihood (this will be more efficient than RPHFIT for large data sets)
RSTEST	compares groups of right-censored survival data by nonparametric tests
RSURVIVAL	models survival times of exponential, Weibull or extreme-value distributions

3.10 Bayesian methods

Genstat provides convenient ways to define and run Bayesian analyses using WinBUGS or OpenBUGS. It also supports Bayesian computing using the Differential Evolution Markov Chain algorithm.

BGIMPORT	imports MCMC output in CODA format produced by WinBUGS
BGPLOT	or OpenBUGS. produces plots for output and diagnostics from MCMC simulations.
BGXGENSTAT	runs WinBUGS or OpenBUGS from Genstat in batch mode
DEMC	using scripts. performs Bayesian computing using the Differential Evolution Markov Chain algorithm

3.11 Spatial statistics

Commands are available form forming variograms and for producing kriged estimates.

FVARIOGRAM	forms experimental variograms
MVARIOGRAM	fits models to an experimental variogram
DVARIOGRAM	plots fitted models to an experimental variogram
KRIGE	calculates kriged estimates using a model fitted to a sample
	variogram
FCOVARIOGRAM	forms a covariogram structure containing auto-variograms of
	individual variates and cross-variograms for pairs from a list of
	variates
MCOVARIOGRAM	fits models to sets of variograms and cross-variograms
DCOVARIOGRAM	plots 2-dimensional auto- and cross-variograms
COKRIGE	calculates kriged estimates using a model fitted to the sample
	variograms and cross-variograms of a set of variates
KCROSSVALIDATION	computes cross validation statistics for punctual kriging
DHSCATTERGRAM	plots an h-scattergram

Relevant procedures in the Library include:

DKSTPLOT	produces diagnostic plots for space-time clustering
DPOLYGON	draws polygons using high-resolution graphics
DPTMAP	draws maps for spatial point patterns using high-resolution
	graphics
DPTREAD	adds points interactively to a spatial point pattern
DRPOLYGON	reads a polygon interactively from the current graphics device
DPSPECTRALPLOT	calculates an estimate of the spectrum of a spatial point pattern
FHAT	calculates an estimate of the F nearest-neighbour distribution
	function
FZERO	gives the F function expectation under complete spatial
	randomness
GHAT	calculates an estimate of the G nearest-neighbour distribution
	function
GRLABEL	randomly labels two or more spatial point patterns
GRTHIN	randomly thins a spatial point pattern
GRTORSHIFT	performs a random toroidal shift on a spatial point pattern
GRCSR	generates completely spatially random points in a polygon
KCSRENVELOPES	simulates K function bounds under complete spatial randomness
KHAT	calculates an estimate of the K function
KLABENVELOPES	gives bounds for K function differences under random labelling
KSED	calculates s.e. for K function differences under random labelling

3 Statistical analyses

KSTHAT	calculates an estimate of the K function in space, time and space- time
KSTMCTEST	performs a Monte-Carlo test for space-time interaction
KSTSE	calculates the standard error for the space-time K function
KTORENVELOPES	gives bounds for the bivariate K function under independence
K12HAT	calculates an estimate of the bivariate K function
MSEKERNEL2D	estimates the mean square error for a kernel smoothing
PTAREAPOLYGON	calculates the area of a polygon
PTBOX	generates a box bounding or surrounding a spatial point pattern
PTCLOSEPOLYGON	closes open polygons
PTDESCRIBE	gives summary and second order statistics for a point process
PTGRID	generates a grid of points in a polygon
PTINTENSITY	calculates the overall density for a spatial point pattern
PTKERNEL2D	performs kernel smoothing of a spatial point pattern
PTK3D	performs kernel smoothing of space-time data
PTREMOVE	removes points interactively from a spatial point pattern
PTROTATE	rotates a point pattern
PTSINPOLYGON	returns points inside or outside a polygon

3.12 Six sigma

Genstat has wide range of facilities to support the six-sigma approach to quality improvement. It can display many different types of control chart.

SPCCHART	plots c or u charts representing numbers of defective items
SPCUSUM	prints CUSUM tables for controlling a process mean
SPEWMA	plots exponentially weighted moving-average control charts
SPPCHART	plots p or np charts for binomial testing for defective items
SPSHEWHART	plots control charts for mean and standard deviation or range

It can test for Normality, display Pareto charts and calculate capability statistics.

NORMTEST	performs tests of univariate and/or multivariate normality
SPCAPABILITY	calculates capability statistics
TABSORT	sorts tables to put margins are in ascending or descending order
	for display as a Pareto chart

It also provides full statistical backup for wider-ranging investigations. The list below highlights some of the commands that may be useful.

AFRESPONSESURFACE AGBOXBEHNKEN AGCENTRALCOMPOSITE AGDESIGN	uses the BLKL algorithm to construct response-surface designs generates Box-Behnken designs generates central composite designs selects from a set of standard designs including factorials with interactions confounded with blocks
AGFRACTION	generates fractional factorial designs
AGMAINEFFECT	generates designs to estimate main effects of two-level factors
	(Plackett-Burman designs)
A2WAY	performs analysis of variance of a balanced or unbalanced design
	with up to two treatment factors
ANOVA	analyses y-variates by analysis of variance according to the
	model defined by earlier BLOCKSTRUCTURE, COVARIATE, and
	TREATMENTSTRUCTURE statements
AGRAPH	plots one- or two-way tables of means from ANOVA
APLOT	plots residuals from an ANOVA analysis

AMCOMPARISON	performs pairwise multiple comparison tests for ANOVA means
AUNBALANCED	performs analysis of variance for unbalanced designs
AUGRAPH	plots tables of means from AUNBALANCED
FIT	fits a linear, generalized linear, generalized additive, or generalized nonlinear model
FITCURVE	fits a standard nonlinear regression model
FITNONLINEAR	fits a nonlinear regression model or optimizes a function
FKEY	forms design keys for balanced designs with several error terms,
	allowing for confounded and aliased treatments
REML	fits an unbalanced linear mixed model and estimates variance
	components
RQUADRATIC	fits a quadratic surface and estimates its stationary point
YTRANSFORM	estimates the parameter lambda from various single-parameter
	transformations, includling power (Box-Cox), modulus, folded power, Guerrero-Johnson, Aranda-Ordaz and power logit
	porrei, Succise vermisen, i manda Ordaz and power tegit

3.13 Survey analysis

Genstat has several commands for the analysis of simple of complex surveys, including facilities for modelling, imputation, calculations and manipulation. (For further details, see the *Guide to Survey Analysis in Genstat*.)

TABULATE	forms tables of summaries of the values of variates classified by
	one or more factors
MTABULATE	forms tables of summaries of variates classified by multiple-
	response factors
SVBOOT	bootstraps data from random surveys
SVCALIBRATE	performs generalized calibration of survey data
SVGLM	fits generalized linear models to survey data
SVHOTDECK	performs hot-deck and model-based imputation for survey data
SVMERGE	merges strata prior to survey analysis
SVREWEIGHT	modifies survey weights adjusting to ensure that their overall sum
	weights remains unchanged
SVSTRATIFIED	analyses stratified random surveys by expansion or ratio raising
SVTABULATE	tabulates data from random surveys, including multistage surveys
	and surveys with unequal probabilities of selection
SVWEIGHT	forms survey weights
COMBINE	combines or omits "slices" of tables, matrices or variates
CSPRO	reads a data set from a CSPro survey data file and dictionary, and
	loads it into Genstat or puts it into a spreadsheet file
DTABLE	plots tables
MARGIN	calculates or deletes margins of tables
PERCENT	expresses the body of a table as percentages of one of its margins
TABMODE	forms summary tables of modes of values
TABSORT	sorts tables so their margins are in ascending or descending order
T%CONTROL	expresses tables as percentages of control cells
VSUMMARY	Summarizes a variate, with classifying factors, into a data matrix
	of variates and factors

3.14 Data mining

Genstat has many conventional statistical techniques such as generalized linear models (e.g. log-linear models and logistic regression) and multivariate analysis (e.g. canonical variates analysis and cluster analysis) that are very useful for data mining. It also provides various more specialized techniques such as association rules, classification and regression trees, random forests, *k*-nearest-neighbours classification,

3 Statistical analyses

self-organizing maps, neural networks and radial basis functions.

ASRULES	derives association rules from transaction data
BCLASSIFICATION	constructs a classification tree
BCDISPLAY	displays a classification tree
BCIDENTIFY	identifies specimens using a classification tree
BCKEEP	saves information from a classification tree
BCVALUES	forms values for nodes of a classification tree
BCFOREST	constructs a random classification forest
BCFDISPLAY	displays information about a random classification forest
BCFIDENTIFY	identifies specimens using a random classification forest
BREGRESSION	constructs a regression tree
BRDISPLAY	displays a regression tree
BRKEEP	saves information from a regression tree
BRPREDICT	makes predictions using a regression tree
BRVALUES	forms values for nodes of a regression tree
BRFOREST	constructs a random regression forest
BRFDISPLAY	displays information about a random regression forest
BRFPREDICT	makes predictions using a random regression forest
KNEARESTNEIGHBOURS	classifies items or predicts their responses by examining their k
	nearest neighbours
NNFIT	fits a multi-layer perceptron neural network
NNDISPLAY	displays output from a multi-layer perceptron neural network
	fitted by NNFIT
NNPREDICT	forms predictions from a multi-layer perceptron neural network
	fitted by NNFIT
RBFIT	fits a radial basis function model
RBDISPLAY	displays output from a radial basis function model fitted by ${\ensuremath{\tt RBFIT}}$
RBPREDICT	forms predictions from a radial basis function model fitted by $\ensuremath{\mathtt{RBFIT}}$
SOM	declares a self-organizing map
SOMADJUST	performs adjustments to the weights of a self-organizing map
SOMDESCRIBE	summarizes values of variables at nodes of a self-organizing map
SOMESTIMATE	estimates the weights for self-organizing maps
SOMIDENTIFY	allocates samples to nodes of a self-organizing map
SOMPREDICT	makes predictions using a self-organizing map
SVMFIT	fits a support vector machine
SVMPREDICT	forms the predictions using a support vector machine

3.15 Statistical genetics and QTL estimation

Genstat has a suite of procedures for statistical genetics. Several of these make use of Genstat's REML facilities to estimate QTLs from single environment, multi-environment and multi-trait trials.

DQMAP DQMKSCORES	displays a genetic map plots a grid of marker scores for genotypes and indicates missing
DQMQTLSCAN	data plots the results of a genome-wide scan for QTL effects in multi- environment trials
DQRECOMBINATIONS DQSQTLSCAN	plots a matrix of recombination frequencies between markers plots the results of a genome-wide scan for QTL effects in single- environment trials
GPREDICTION	produces genomic predictions (breeding values) using phenotypic and molecular marker information
QCANDIDATES	selects QTLs on the basis of a test statistic profile along the

	genome
QDESCRIBE	prints summary statistics of genotypes
QEIGENANALYSIS	uses principal components analysis and the Tracy-Widom
	statistic to find the number of significant principal components
	to represent a set of variables
QEXPORT	exports genotypic data for QTL analysis
OFLAPJACK	creates a Flapjack project file from genotypic and phenotypic
~	data
QGSELECT	obtains a representative selection of genotypes by means of
20011101	genetic distance sampling or genetic distance optimization
	reads molecular marker data and calculates IBD probabilities
QIBDPROBABILITIES	*
QIMPORT	imports genotypic and phenotypic data for QTL analysis
QKINSHIPMATRIX	forms a kinship matrix from molecular markers
QLDDECAY	estimates linkage disequilibrium (LD) decay along a
	chromosome
QLINKAGEGROUPS	forms linkage groups using marker data from experimental
	populations
QMAP	constructs genetic linkage maps using marker data from
	experimental populations
QMASSOCIATION	performs multi-environment marker-trait association analysis in
	a genetically diverse population using bi-allelic and multi-allelic
	markers
OMATCH	matches different data structures to be used in QTL estimation
QMBACKSELECT	performs a QTL backward selection for loci in multi-
QMDACKSELLECT	environment trials or multiple populations
QMESTIMATE	calculates QTL effects in multi-environment trials or multiple
	populations
QMKDIAGNOSTICS	generates descriptive statistics and diagnostic plots of molecular
	marker data
QMKRECODE	recodes marker scores into separate alleles
~	
QMKSELECT	obtains a representative selection of markers by means of genetic
	obtains a representative selection of markers by means of genetic
QMKSELECT	obtains a representative selection of markers by means of genetic distance sampling or genetic distance optimization performs a genome-wide scan for QTL effects (Simple and
QMKSELECT	obtains a representative selection of markers by means of genetic distance sampling or genetic distance optimization performs a genome-wide scan for QTL effects (Simple and Composite Mapping) in multi-environment trials or multiple
QMKSELECT QMQTLSCAN	obtains a representative selection of markers by means of genetic distance sampling or genetic distance optimization performs a genome-wide scan for QTL effects (Simple and Composite Mapping) in multi-environment trials or multiple populations
QMKSELECT QMQTLSCAN QMTBACKSELECT	obtains a representative selection of markers by means of genetic distance sampling or genetic distance optimization performs a genome-wide scan for QTL effects (Simple and Composite Mapping) in multi-environment trials or multiple populations performs a QTL backward selection for loci in multi-trait trials
QMKSELECT QMQTLSCAN QMTBACKSELECT QMTESTIMATE	obtains a representative selection of markers by means of genetic distance sampling or genetic distance optimization performs a genome-wide scan for QTL effects (Simple and Composite Mapping) in multi-environment trials or multiple populations performs a QTL backward selection for loci in multi-trait trials calculates QTL effects in multi-trait trials
QMKSELECT QMQTLSCAN QMTBACKSELECT	obtains a representative selection of markers by means of genetic distance sampling or genetic distance optimization performs a genome-wide scan for QTL effects (Simple and Composite Mapping) in multi-environment trials or multiple populations performs a QTL backward selection for loci in multi-trait trials calculates QTL effects in multi-trait trials performs a genome-wide scan for QTL effects (Simple and
QMKSELECT QMQTLSCAN QMTBACKSELECT QMTESTIMATE QMTQTLSCAN	obtains a representative selection of markers by means of genetic distance sampling or genetic distance optimization performs a genome-wide scan for QTL effects (Simple and Composite Mapping) in multi-environment trials or multiple populations performs a QTL backward selection for loci in multi-trait trials calculates QTL effects in multi-trait trials performs a genome-wide scan for QTL effects (Simple and Composite Interval Mapping) in multi-trait trials
QMKSELECT QMQTLSCAN QMTBACKSELECT QMTESTIMATE	obtains a representative selection of markers by means of genetic distance sampling or genetic distance optimization performs a genome-wide scan for QTL effects (Simple and Composite Mapping) in multi-environment trials or multiple populations performs a QTL backward selection for loci in multi-trait trials calculates QTL effects in multi-trait trials performs a genome-wide scan for QTL effects (Simple and Composite Interval Mapping) in multi-trait trials calculates percentage variance accounted for by QTL effects in
QMKSELECT QMQTLSCAN QMTBACKSELECT QMTESTIMATE QMTQTLSCAN QMVAF	obtains a representative selection of markers by means of genetic distance sampling or genetic distance optimization performs a genome-wide scan for QTL effects (Simple and Composite Mapping) in multi-environment trials or multiple populations performs a QTL backward selection for loci in multi-trait trials calculates QTL effects in multi-trait trials performs a genome-wide scan for QTL effects (Simple and Composite Interval Mapping) in multi-trait trials calculates percentage variance accounted for by QTL effects in a multi-environment analysis
QMKSELECT QMQTLSCAN QMTBACKSELECT QMTESTIMATE QMTQTLSCAN	obtains a representative selection of markers by means of genetic distance sampling or genetic distance optimization performs a genome-wide scan for QTL effects (Simple and Composite Mapping) in multi-environment trials or multiple populations performs a QTL backward selection for loci in multi-trait trials calculates QTL effects in multi-trait trials performs a genome-wide scan for QTL effects (Simple and Composite Interval Mapping) in multi-trait trials calculates percentage variance accounted for by QTL effects in a multi-environment analysis replaces missing molecular marker scores using conditional
QMKSELECT QMQTLSCAN QMTBACKSELECT QMTESTIMATE QMTQTLSCAN QMVAF	obtains a representative selection of markers by means of genetic distance sampling or genetic distance optimization performs a genome-wide scan for QTL effects (Simple and Composite Mapping) in multi-environment trials or multiple populations performs a QTL backward selection for loci in multi-trait trials calculates QTL effects in multi-trait trials performs a genome-wide scan for QTL effects (Simple and Composite Interval Mapping) in multi-trait trials calculates percentage variance accounted for by QTL effects in a multi-environment analysis replaces missing molecular marker scores using conditional genotypic probabilities
QMKSELECT QMQTLSCAN QMTBACKSELECT QMTESTIMATE QMTQTLSCAN QMVAF	obtains a representative selection of markers by means of genetic distance sampling or genetic distance optimization performs a genome-wide scan for QTL effects (Simple and Composite Mapping) in multi-environment trials or multiple populations performs a QTL backward selection for loci in multi-trait trials calculates QTL effects in multi-trait trials performs a genome-wide scan for QTL effects (Simple and Composite Interval Mapping) in multi-trait trials calculates percentage variance accounted for by QTL effects in a multi-environment analysis replaces missing molecular marker scores using conditional genotypic probabilities replaces missing marker scores with the mode scores of the most
QMKSELECT QMQTLSCAN QMTBACKSELECT QMTESTIMATE QMTQTLSCAN QMVAF QMVESTIMATE	obtains a representative selection of markers by means of genetic distance sampling or genetic distance optimization performs a genome-wide scan for QTL effects (Simple and Composite Mapping) in multi-environment trials or multiple populations performs a QTL backward selection for loci in multi-trait trials calculates QTL effects in multi-trait trials performs a genome-wide scan for QTL effects (Simple and Composite Interval Mapping) in multi-trait trials calculates percentage variance accounted for by QTL effects in a multi-environment analysis replaces missing molecular marker scores using conditional genotypic probabilities replaces missing marker scores with the mode scores of the most similar genotypes
QMKSELECT QMQTLSCAN QMTBACKSELECT QMTESTIMATE QMTQTLSCAN QMVAF QMVESTIMATE	obtains a representative selection of markers by means of genetic distance sampling or genetic distance optimization performs a genome-wide scan for QTL effects (Simple and Composite Mapping) in multi-environment trials or multiple populations performs a QTL backward selection for loci in multi-trait trials calculates QTL effects in multi-trait trials performs a genome-wide scan for QTL effects (Simple and Composite Interval Mapping) in multi-trait trials calculates percentage variance accounted for by QTL effects in a multi-environment analysis replaces missing molecular marker scores using conditional genotypic probabilities replaces missing marker scores with the mode scores of the most
QMKSELECT QMQTLSCAN QMTBACKSELECT QMTESTIMATE QMTQTLSCAN QMVAF QMVESTIMATE QMVREPLACE	obtains a representative selection of markers by means of genetic distance sampling or genetic distance optimization performs a genome-wide scan for QTL effects (Simple and Composite Mapping) in multi-environment trials or multiple populations performs a QTL backward selection for loci in multi-trait trials calculates QTL effects in multi-trait trials performs a genome-wide scan for QTL effects (Simple and Composite Interval Mapping) in multi-trait trials calculates percentage variance accounted for by QTL effects in a multi-environment analysis replaces missing molecular marker scores using conditional genotypic probabilities replaces missing marker scores with the mode scores of the most similar genotypes
QMKSELECT QMQTLSCAN QMTBACKSELECT QMTESTIMATE QMTQTLSCAN QMVAF QMVESTIMATE QMVREPLACE	obtains a representative selection of markers by means of genetic distance sampling or genetic distance optimization performs a genome-wide scan for QTL effects (Simple and Composite Mapping) in multi-environment trials or multiple populations performs a QTL backward selection for loci in multi-trait trials calculates QTL effects in multi-trait trials performs a genome-wide scan for QTL effects (Simple and Composite Interval Mapping) in multi-trait trials calculates percentage variance accounted for by QTL effects in a multi-environment analysis replaces missing molecular marker scores using conditional genotypic probabilities replaces missing marker scores with the mode scores of the most similar genotypes calculates the expected numbers of recombinations and the recombination frequencies between markers
QMKSELECT QMQTLSCAN QMTBACKSELECT QMTESTIMATE QMVAF QMVESTIMATE QMVREPLACE QRECOMBINATIONS	obtains a representative selection of markers by means of genetic distance sampling or genetic distance optimization performs a genome-wide scan for QTL effects (Simple and Composite Mapping) in multi-environment trials or multiple populations performs a QTL backward selection for loci in multi-trait trials calculates QTL effects in multi-trait trials performs a genome-wide scan for QTL effects (Simple and Composite Interval Mapping) in multi-trait trials calculates percentage variance accounted for by QTL effects in a multi-environment analysis replaces missing molecular marker scores using conditional genotypic probabilities replaces missing marker scores with the mode scores of the most similar genotypes calculates the expected numbers of recombinations and the recombination frequencies between markers creates an HTML report from QTL linkage or association
QMKSELECT QMQTLSCAN QMTBACKSELECT QMTESTIMATE QMVAF QMVESTIMATE QMVREPLACE QRECOMBINATIONS QREPORT	obtains a representative selection of markers by means of genetic distance sampling or genetic distance optimization performs a genome-wide scan for QTL effects (Simple and Composite Mapping) in multi-environment trials or multiple populations performs a QTL backward selection for loci in multi-trait trials calculates QTL effects in multi-trait trials performs a genome-wide scan for QTL effects (Simple and Composite Interval Mapping) in multi-trait trials calculates percentage variance accounted for by QTL effects in a multi-environment analysis replaces missing molecular marker scores using conditional genotypic probabilities replaces missing marker scores with the mode scores of the most similar genotypes calculates the expected numbers of recombinations and the recombination frequencies between markers creates an HTML report from QTL linkage or association analysis results
QMKSELECT QMQTLSCAN QMTBACKSELECT QMTESTIMATE QMVAF QMVESTIMATE QMVREPLACE QRECOMBINATIONS	obtains a representative selection of markers by means of genetic distance sampling or genetic distance optimization performs a genome-wide scan for QTL effects (Simple and Composite Mapping) in multi-environment trials or multiple populations performs a QTL backward selection for loci in multi-trait trials calculates QTL effects in multi-trait trials performs a genome-wide scan for QTL effects (Simple and Composite Interval Mapping) in multi-trait trials calculates percentage variance accounted for by QTL effects in a multi-environment analysis replaces missing molecular marker scores using conditional genotypic probabilities replaces missing marker scores with the mode scores of the most similar genotypes calculates the expected numbers of recombinations and the recombination frequencies between markers creates an HTML report from QTL linkage or association analysis results performs marker-trait association analysis in a genetically diverse
QMKSELECT QMQTLSCAN QMTBACKSELECT QMTESTIMATE QMVAF QMVESTIMATE QMVREPLACE QRECOMBINATIONS QREPORT QSASSOCIATION	obtains a representative selection of markers by means of genetic distance sampling or genetic distance optimization performs a genome-wide scan for QTL effects (Simple and Composite Mapping) in multi-environment trials or multiple populations performs a QTL backward selection for loci in multi-trait trials calculates QTL effects in multi-trait trials performs a genome-wide scan for QTL effects (Simple and Composite Interval Mapping) in multi-trait trials calculates percentage variance accounted for by QTL effects in a multi-environment analysis replaces missing molecular marker scores using conditional genotypic probabilities replaces missing marker scores with the mode scores of the most similar genotypes calculates the expected numbers of recombinations and the recombination frequencies between markers creates an HTML report from QTL linkage or association analysis results performs marker-trait association analysis in a genetically diverse population using bi-allelic and multi-allelic markers
QMKSELECT QMQTLSCAN QMTBACKSELECT QMTESTIMATE QMVAF QMVESTIMATE QMVREPLACE QRECOMBINATIONS QREPORT	obtains a representative selection of markers by means of genetic distance sampling or genetic distance optimization performs a genome-wide scan for QTL effects (Simple and Composite Mapping) in multi-environment trials or multiple populations performs a QTL backward selection for loci in multi-trait trials calculates QTL effects in multi-trait trials performs a genome-wide scan for QTL effects (Simple and Composite Interval Mapping) in multi-trait trials calculates percentage variance accounted for by QTL effects in a multi-environment analysis replaces missing molecular marker scores using conditional genotypic probabilities replaces missing marker scores with the mode scores of the most similar genotypes calculates the expected numbers of recombinations and the recombination frequencies between markers creates an HTML report from QTL linkage or association analysis results performs marker-trait association analysis in a genetically diverse population using bi-allelic and multi-allelic markers performs a backward selection for loci in single-environment
QMKSELECT QMQTLSCAN QMTBACKSELECT QMTESTIMATE QMVAF QMVESTIMATE QMVREPLACE QRECOMBINATIONS QREPORT QSASSOCIATION QSBACKSELECT	obtains a representative selection of markers by means of genetic distance sampling or genetic distance optimization performs a genome-wide scan for QTL effects (Simple and Composite Mapping) in multi-environment trials or multiple populations performs a QTL backward selection for loci in multi-trait trials calculates QTL effects in multi-trait trials performs a genome-wide scan for QTL effects (Simple and Composite Interval Mapping) in multi-trait trials calculates percentage variance accounted for by QTL effects in a multi-environment analysis replaces missing molecular marker scores using conditional genotypic probabilities replaces missing marker scores with the mode scores of the most similar genotypes calculates the expected numbers of recombinations and the recombination frequencies between markers creates an HTML report from QTL linkage or association analysis results performs marker-trait association analysis in a genetically diverse population using bi-allelic and multi-allelic markers performs a backward selection for loci in single-environment trials
QMKSELECT QMQTLSCAN QMTBACKSELECT QMTESTIMATE QMVAF QMVESTIMATE QMVREPLACE QRECOMBINATIONS QREPORT QSASSOCIATION QSBACKSELECT QSESTIMATE	obtains a representative selection of markers by means of genetic distance sampling or genetic distance optimization performs a genome-wide scan for QTL effects (Simple and Composite Mapping) in multi-environment trials or multiple populations performs a QTL backward selection for loci in multi-trait trials calculates QTL effects in multi-trait trials performs a genome-wide scan for QTL effects (Simple and Composite Interval Mapping) in multi-trait trials calculates percentage variance accounted for by QTL effects in a multi-environment analysis replaces missing molecular marker scores using conditional genotypic probabilities replaces missing marker scores with the mode scores of the most similar genotypes calculates the expected numbers of recombinations and the recombination frequencies between markers creates an HTML report from QTL linkage or association analysis results performs a backward selection for loci in single-environment trials calculates QTL effects in single-environment trials
QMKSELECT QMQTLSCAN QMTBACKSELECT QMTESTIMATE QMVAF QMVESTIMATE QMVREPLACE QRECOMBINATIONS QREPORT QSASSOCIATION QSBACKSELECT	obtains a representative selection of markers by means of genetic distance sampling or genetic distance optimization performs a genome-wide scan for QTL effects (Simple and Composite Mapping) in multi-environment trials or multiple populations performs a QTL backward selection for loci in multi-trait trials calculates QTL effects in multi-trait trials performs a genome-wide scan for QTL effects (Simple and Composite Interval Mapping) in multi-trait trials calculates percentage variance accounted for by QTL effects in a multi-environment analysis replaces missing molecular marker scores using conditional genotypic probabilities replaces missing marker scores with the mode scores of the most similar genotypes calculates the expected numbers of recombinations and the recombination frequencies between markers creates an HTML report from QTL linkage or association analysis results performs marker-trait association analysis in a genetically diverse population using bi-allelic and multi-allelic markers performs a backward selection for loci in single-environment trials

3 Statistical analyses
performs a genome-wide scan for QTL effects (Simple and Composite Mapping) in single-environment trials
calculates a threshold to identify a significant QTL
selects the best variance-covariance model for a set of environments

3.16 Microarray data

There is a suite of procedures for the design, analysis and visualization of two-colour and Affymetrix microarray data. These are used by the Microarray menus in Genstat *for Windows*.

AGBIB	generates balanced incomplete block designs
AGLOOP	generates loop designs e.g. for time-course microarray
	experiments
AGREFERENCE	generates reference-level designs e.g. for microarray experiments
BAFFYMETRIX	Estimates expression values from Affymetrix CED and CDF files
MADESIGN	assesses the efficiency of a two-colour microarray design
MACALCULATE	corrects and transforms two-colour microarray differential
	expressions
MNORMALIZE	normalizes two-colour microarray data
MAESTIMATE	estimates treatment effects from a two-colour microarray design
AFFYMETRIX	estimates expression values for Affymetrix slides.
MABGCORRECT	performs background correction of Affymetrix slides
MAROBUSTMEANS	does a robust means analysis for Affymetrix slides
MARMA	calculates Affymetrix expression values
MAVDIFFERENCE	applies the average difference algorithm to Affymetrix data
DMADENSITY	plots the empirical CDF or PDF (kernel smoothed) by groups
MAHISTOGRAM	plots histograms of microarray data
MAPLOT	produces two-dimensional plots of microarray data
MAANOVA	does analysis of variance of single-channel microarray data
MAREGRESSION	does regressions for single-channel microarray data
MASHADE	produces shade plots to display spatial variation of microarray
	data
MAVOLCANO	produces volcano plots of microarray data
MAPCLUSTER	clusters probes or genes with microarray data
MASCLUSTER	clusters microarray slides
MA2CLUSTER	performs a two-way clustering of microarray data by probes (or
	genes) and slides
FDRBONFERRONI	estimates false discovery rates by a Bonferroni-type procedure
FDRMIXTURE	estimates false discovery rates using mixture distributions
MAEBAYES	modifies t-values by an empirical Bayes method.
MPOLISH	performs a median polish of two-way data
QNORMALIZE	performs quantile normalization
THINPLATE	calculates the basis functions for thin-plate splines
TUKEYBIWEIGHT	estimates means using the Tukey biweight algorithm

3.17 Ecological data

The procedures listed below allow you to display, summarize and model ecological data.

ECABUNDANCEPLOT	produces rank/abundance, ABC and k-dominance plots
ECACCUMULATION	plots species accumulation curves for samples or individuals
ECANOSIM	performs an analysis of similarities (ANOSIM)
ECDIVERSITY	calculates measures of diversity with jackknife or bootstrap

3.17 Ecological data

estimates

fits models to species abundance data generates relative abundance of species for niche-based models calculates nonparametric estimates of species richness calculates individual or sample-based rarefaction plots the Lorenz curve and calculates the Gini and asymmetry coefficients

ECFIT ECNICHE ECNPESTIMATE ECRAREFACTION LORENZ

4.1 Commands

ABIVARIATE procedure

Produces graphs and statistics for bivariate analysis of variance (R.F.A. Poultney).

Options	
PRINT = string tokens	Controls printing of statistics from the bivariate analysis
	(error, treatment); default erro, trea
APRINT = string tokens	Controls output from the (univariate) ANOVAs of Y1 and Y2
	(usual ANOVA print options); default aovt
TREATMENTSTRUCTURE = formula	Treatment terms to be fitted in the analysis of variance; this
	option must be set
BLOCKSTRUCTURE = formula	Block model defining the error terms in the analysis of
	variance; if unset, the design is assumed to be unstratified (i.e.
	to have a single error term)
TERM = formula	Single model term identifying the treatment term whose means are to be plotted
STRATUM = formula	Stratum from which to extract treatment information; default is
	to take the bottom stratum
FACTORIAL = scalar	Limit on number of factors in a treatment term; default 3
PROBABILITY = scalar	Significance level to use in the calculation of the radius of the
	confidence region and the region of non-significance; default 0.95
GRAPHICS = <i>string token</i>	Type of graphical output (lineprinter, highresolution);
-	default high
STYLE = string token	controls the style of axes in a high-resolution graph (xy,
	none); default xy
LABELS = factor or text	Plotting symbols for the means; default is to take the letters A
	to Z, then a to z
Parameters	
Y1 = variates	First variate for the bivariate analysis
Y2 = variates	Second variate for the bivariate analysis
TITLE = texts	Title for the graph

ABLUPS procedure

Calculates BLUPs for block terms in an ANOVA analysis (R.W. Payne).OptionsControls printed output (blups); default blupPRINT = string tokenControls printed output (blups); default blupPTERMS = formulaSpecifies the block terms whose BLUPs are to be printed; default is to print them allPSE = string tokensTypes of standard errors to be printed with the BLUPs (differences, alldifferences, blups, allblups); default diff, blupSAVE = identifierSave structure for the ANOVA analysis; default is to take the most recent ANOVA analysis

TERMS = formula	Block terms whose BLUPs etc are to be saved
BLUPS = <i>table</i> or <i>pointer</i> to <i>tables</i> Saves	the BLUPs
SEBLUPS = <i>table</i> or <i>pointer</i> to <i>tables</i>	Standard errors for the BLUPs of each term
SEDMEANS = <i>symmetric matrix</i> or <i>pointe</i>	r to symmetric matrices
	Standard errors of differences between the BLUPs of each
	term

ABOXCOX procedure

Estimates the power λ in a Box-Cox transformation, that maximizes the partial log-likelihood in ANOVA (W. van den Berg).

Options

Options	
PRINT = string tokens	Controls printed output (aovtable, lambda, monitoring); default aovt, lamb
TREATMENTSTRUCTURE = formula	Defines the treatment model; if this is not set, the default is
·	taken from any existing setting defined by the
	TREATMENTSTRUCTURE directive
BLOCKSTRUCTURE = formula	Defines any block model; if this is not set, the default is taken
	from any existing setting defined by the BLOCKSTRUCTURE
	directive
COVARIATE = variates	Specifies any covariates; if this is not set, the default is taken
	from any existing setting defined by the COVARIATE directive
FACTORIAL = scalar	Limit in the number of factors in the terms generated from the
	TREATMENTSTRUCTURE formula; default 3
CONTRASTS = scalar	Limit on the order of a contrast of a treatment term; default 4
DEVIATIONS = scalar	Limit on the number of factors in a treatment term for the
	deviations from its fitted contrasts to be retained in the model;
	default 9
PLOT = string token	Whether to plot the partial log-likelihood
	(partialloglikelihood); default part
CIPROBABILITY = scalar	Probability level for the confidence interval for lambda;
	default 0.95, i.e. a 95% confidence interval
TRIALVALUES = variate	Values of λ for which the partial log-likelihood is to be
	calculated; default $!(-4, -3.75 \dots 4)$
TRANSFORM = <i>string token</i>	How to transform the y-variate (estimate, trialvalue);
	default tria
STEPLENGTH = scalar	Steplength for estimating λ ; default 0.01
MAXCYCLE = scalar	Maximum number of iterations; default 100
TOLERANCE = $scalar$	Tolerance for convergence; default 0.00001
ASAVE = <i>identifier</i>	Saves the ANOVA save structure from the analysis of variance
Parameters	
Y = variates	Response variate
NEWY = variates	Saves the transformed response variate
LAMBDA = scalars	Saves the estimated value of λ
LOWER = scalars	Saves the lower confidence limit for λ
UPPER = scalars	Saves the upper confidence limit for λ

ACANONICAL procedure

Determines the orthogonal decomposition of the sample space for a design, using an analysis of the canonical relationships between the projectors derived from two or more model formulae (C.J. Brien).

What to print (decomposition, df, ecriteria,
efficiencies); default deco
The efficiency criteria to be saved and/or printed
(aefficiency, mefficiency, sefficiency,
eefficiency, xefficiency, order, dforth); default
aeff, eeff, orde
Limit on the number of factors and variates in each model term
default * i.e. no limit
Tolerances for zero in various contexts; default 10 ⁻⁸ for all of
these
Each pointer contains two or more model formulae whose joint decomposition is required

4	Syntax	summary
---	--------	---------

ORTHOGONALMETHOD = string tokens	Specifies the method to use for each model formula when orthogonalizing a projection matrix to those for terms that occur earlier in the formula (differencing, eigenmethods, hybrid); default hybr
PROJECTIONSETS = <i>pointers</i>	Saves the projection pointers formed from the formulae
COMBINEDPROJECTIONSET = pointers	Saves the projector pointers that produce the orthogonal
	decomposition
EFFICIENCYFACTORS = <i>pointers</i>	Saves the canonical efficiency factors
ECRITERIA = <i>pointers</i>	Saves the unadjusted efficiency criteria
ADJECRITERIA = <i>pointers</i>	Saves the adjusted efficiency criteria
ADJDF = <i>pointers</i>	Saves the adjusted degrees of freedom
SAVE = pointers	Saves information about the analysis for use by ACDISPLAY
	and ACKEEP

ACDISPLAY procedure

Provides further output from an analysis by ACANONICAL (C.J. Brien).

Option	
PRINT = string tokens	What to print (decomposition, df, ecriteria,
	efficiencies); default deco
Parameter	
SAVE = $pointer$	Information saved from ACANONICAL; if this is not set, the
	information is saved from the most recent ACANONICAL
	analysis

ACHECK procedure

Checks assumptions for an ANOVA analysis (R.W. Payne).

Controls printed output (tests, confirmation); default conf
Which assumptions to test (homogeneity, normality, stability); default homo, norm, stab
Critical value for the test probabilities to decide whether to generate warning messages; default=0.025
Specifies the analysis to be checked; by default this will be the most recent ANOVA

No parameters

ACKEEP procedure

Saves information from an analysis by ACANONICAL (C.J. Brien).

Options

Options	
COMBINEDPROJECTIONSET = pointer	Saves the projector pointers that produce the orthogonal
	decomposition
EFFICIENCYFACTORS = $pointer$	Saves the canonical efficiency factors
ECRITERIA = <i>pointer</i>	Saves the unadjusted efficiency criteria
ADJECRITERIA = <i>pointer</i>	Saves the adjusted efficiency criteria
ADJDF = <i>pointer</i>	Saves the adjusted degrees of freedom
SAVE = $pointer$	Information saved from ACANONICAL; if this is not set,
	the information is saved from the most recent
	ACANONICAL analysis

No parameters

4.1 Commands

ACONFIDENCE procedure

Calculates simultaneous confidence intervals for ANOVA means (D.M. Smith).

Options

PRINT = string token	Controls printed output (intervals); default inte
METHOD = string token	Type of interval (individual, smm, product, Bonferroni,
	Scheffe); default smm
FACTORIAL = scalar	Limit on the number of factors in each term; default 3
PROBABILITY = scalar	The required significance level; default 0.05
SAVE = ANOVA save structure	Save structure to provide the tables of means and associated
	information; default uses the save structure from the most
	recent ANOVA
Parameters	
TERMS = formula	Treatment terms whose means are to be required

TERMS = <i>Jormula</i>	I reatment terms whose means are to be required
MEANS = <i>pointer</i> or <i>table</i>	Saves the means
LOWER = <i>pointer</i> or <i>table</i>	Saves the lower limits
UPPER = <i>pointer</i> or <i>table</i>	Saves the upper limits

ADD directive

Adds extra terms to a linear, generalized linear, generalized additive or nonlinear model.

Options	
PRINT = string tokens	What to print (model, deviance, summary, estimates,
	correlations, fittedvalues, accumulated,
	monitoring, confidence); default mode, summ, esti
NONLINEAR = <i>string token</i>	How to treat nonlinear parameters between groups (common,
	separate, unchanged); default unch
CONSTANT = <i>string token</i>	How to treat the constant (estimate, omit, unchanged,
	ignore); default unch
FACTORIAL = scalar	Limit for expansion of model terms; default * i.e. that in
	previous TERMS statement
POOL = string token	Whether to pool ss in accumulated summary between all terms
	fitted in a linear model (yes, no); default no
DENOMINATOR = <i>string token</i>	Whether to base ratios in accumulated summary on rms from
	model with smallest residual ss or smallest residual ms (ss,
	ms); default ss
NOMESSAGE = <i>string tokens</i>	Which warning messages to suppress (dispersion,
	leverage, residual, aliasing, marginality,df,
	inflation); default *
FPROBABILITY = <i>string token</i>	Printing of probabilities for variance and deviance ratios (yes,
	no); default no
TPROBABILITY = <i>string token</i>	Printing of probabilities for t-statistics (yes, no); default no
SELECTION = string tokens	Statistics to be displayed in the summary of analysis produced
	by PRINT=summary, seobservations is relevant only for a
	Normally distributed response, and %cv only for a gamma-
	distributed response (%variance, %ss, adjustedr2, r2,
	<pre>seobservations, dispersion, %cv, %meandeviance,</pre>
	%deviance, aic, bic, sic); default %var, seob if
	<code>DIST=normal</code> , %cv if <code>DIST=gamma</code> , and <code>disp</code> for other
	distributions
PROBABILITY = scalar	Probability level for confidence intervals for parameter
	estimates; default 0.95
AOVDESCRIPTION = text	Description for line in accumulated analysis of variance (or
	deviance) table when POOL=yes
Parameter	
formula	List of explanatory variates and factors, or model formula

ADDPOINTS directive

Adds points for new objects to a principal coordinates analysis.

PRINT = string tokens	Printed output required (coordinates, residuals); default * i.e. no printing
Parameters	
NEWDISTANCES = matrices	Squared distances of the new objects from the original points
LRV = LRVs	Latent roots and vectors from the PCO analysis
CENTROID = diagonal matrices	Centroid distances from the PCO analysis
COORDINATES = <i>matrices</i>	Saves the coordinates of the additional points in the space of
	the original points
RESIDUALS = <i>matrices</i> or <i>variates</i>	Saves the residuals of the new objects from that space

ADETECTION procedure

Calculates the minimum size of effect or contrast detectable in an analysis of variance (R.W. Payne). **Options**

PRINT = string token	Prints the minimum size of response that can be detected (detected); default dete
term = <i>formula</i>	Treatment term to be assessed in the analysis
TREATMENTSTRUCTURE = <i>formula</i>	Treatment structure of the design; determined automatically from an ANOVA save structure if TREATMENTSTRUCTURE is unset or if SAVE is set
BLOCKSTRUCTURE = <i>formula</i>	Block structure of the design; determined automatically from an ANOVA save structure if BLOCKSTRUCTURE is unset or if SAVE is set
FACTORIAL = scalar	Limit on the number of factors in treatment terms; default 3
PROBABILITY = scalar	Significance level at which the response is required to be detected (assuming a one-sided test); default 0.05
TMETHOD = string token	Type of test to be made (onesided, twosided, equivalence, noninferiority); default ones
XCONTRASTS = variate	X-variate defining a contrast to be detected
CONTRASTTYPE = <i>string token</i>	Type of contrast (regression, comparison); default rege
TOLERANCE = $scalar$	Tolerance for the iterations to calculate the detectable response
SAVE = ANOVA save structure	Save structure to provide the information about the design
Parameters	
POWER = <i>scalars</i> or <i>variates</i>	Specifies the power i.e. probability with which the response should be detected
RMS = scalars	Anticipated residual mean square corresponding to TERM; can be omitted if a SAVE structure is available
DETECTED = <i>scalars</i> or <i>variates</i>	Minimum size of difference or contrast between the effects of TERM that is to be detected

ADISPLAY directive

Displays further output from analyses produced by ANOVA.

Output from the analyses of the y-variates, adjusted for any
covariates (aovtable, information, covariates,
effects, residuals, contrasts, means, cbeffects,
cbmeans, stratumvariances, %cv, missingvalues); default
* i.e. no printing
Output from the unadjusted analyses of the y-variates
(aovtable, information, effects, residuals,
contrasts, means, cbeffects, cbmeans,
stratumvariances, %cv, missingvalues); default * i.e. no
printing
Output from the analyses of the covariates, if any (aovtable,

	information offects residuals contracts means
	<pre>information, effects, residuals, contrasts, means, %cv, missingvalues); default * i.e. no printing</pre>
CHANNEL = <i>identifier</i>	Channel number of file, or identifier of a text to store output;
CHANNEL <i>menujier</i>	default current output file
PFACTORIAL = scalar	Limit on number of factors in printed tables of means or
FFACIONIAL Scalar	effects; default 9
PCONTRASTS = scalar	Limit on order of printed contrasts; default 9
PDEVIATIONS = $scalar$	Limit on order of printed contrasts, default y
PDEVIATIONS - Scalar	deviations from the fitted contrasts are to be printed; default 9
EDDODADII ITV - string tokan	Printing of probabilities for variance ratios in the aov table
FPROBABILITY = <i>string token</i>	(yes, no); default no
DCE - string tokong	
$PSE = string \ tokens$	Standard errors to be printed with tables of means, PSE=*
	requests s.e.'s to be omitted (differences, lsd, means);
/ / / /	default diff
TWOLEVEL = string token	Representation of effects in 2 ⁿ experiments (responses,
	Yates, effects); default resp
NOMESSAGE = <i>string tokens</i>	Which warning messages to suppress (nonorthogonal,
	residual); default *
lsdlevel = scalar	Significance level (%) to use in the calculation of least
	significant differences; default 5
Parameter	
identifiers	Save structure (from ANOVA) to provide details of each
	analysis from which information is to be displayed; if omitted,
	output is from the most recent ANOVA

ADPOLYNOMIAL procedure

Plots single-factor polynomial contrasts fitted by ANOVA (R.W. Payne).

Option

option	
SAVE = ANOVA save structure	Save structure (from ANOVA) to provide details of the analysis from which the polynomials are to be plotted; default uses the
	save structure from the most recent ANOVA
Parameters	
XFACTOR = factors	Factor over which the polynomial contrasts have been formed
GROUPS = factors or pointers	Factor(s) for which different polynomial coefficients should be
	plotted in the same graph
TRELLISGROUPS = <i>factors</i> or <i>pointers</i>	Factor or factors for which different polynomial coefficients
	should be plotted in a trellis plot
TITLE = texts	Title for the graph; default defines a title automatically
YTITLE = texts	Title for the y-axis; default '
XTITLE = texts	Title for the x-axis; default is to use the identifier of the
	XFACTOR
PENS = variates	Defines the pen to use to plot the points and/or line for each
	group defined by the GROUPS factors

ADSPREADSHEET procedure

Puts the data and plan of an experimental design into a spreadsheet (R.W. Payne). **Options**

Options	
DATA = factors or variates	Data variables (e.g. design factors and covariates) to put into
	the data spreadsheet; default takes the factors defined by
	previous BLOCKSTRUCTURE and TREATMENTSTRUCTURE
	directives
NEWDATA = variates	New variates (e.g. measurements to be taken during the
	experiment) to create and put into the data spreadsheet;
	default * i.e. none
Y = variate or factor	Specifies the y-coordinates of the plots for the plan
-	spreadsheet

52	4 Syntax summary
X = variate or factor	Specifies the <i>x</i> -coordinates of the plots for the plan spreadsheet
CONSTANTFACTORS = <i>string tokens</i>	Whether to put factors whose levels are constant in the y or x direction in a separate row or column of the Plan spreadsheet
SEPARATOR = <i>text</i>	(y, x); default * i.e. neither Separator for factor values in the plan spreadsheet; default ';
OMITGAPS = string token	Whether to omit gaps when the plots in the plan are equally spaced (yes, no); default no
FOREGROUND = <i>scalar</i> , <i>variate</i> or <i>text</i>	Foreground colours to use for the plots in the experiment; default 'Black'
BACKGROUND = <i>scalar</i> , <i>variate</i> or <i>text</i>	Background colours to use for the plots in the experiment; default 'BlanchedAlmond'
CFACTORS = factors	Factors to determine the colour to use for each plot; default uses the first block factor or no colouring otherwise
GAPFOREGROUND = <i>text</i> or <i>scalar</i>	Foreground colour for gaps and surrounding plots; default 'Black'
GAPBACKGROUND = <i>text</i> or <i>scalar</i>	Background colour for gaps and surrounding plots; default 'LightGreen'
YFOREGROUND = <i>text</i> or <i>scalar</i>	Foreground colour for factors constant in y-direction; default 'Black'
YBACKGROUND = <i>text</i> or <i>scalar</i>	Background colour for factors constant in y-direction; default 'PaleTurquoise'
XFOREGROUND = <i>text</i> or <i>scalar</i>	Foreground colour for factors constant in x-direction; default 'Black'
XBACKGROUND = <i>text</i> or <i>scalar</i>	Background colour for factors constant in x-direction; default 'LightCyan'
SPREADSHEET = string tokens OUTFILENAME = texts	Which spreadsheets to form (data, plan); default data Name of Genstat workbook file (.gwb) or Excel (.xls or .xlsx) file to create
Parameters	
FACTOR = factors	Factors to include in the plan spreadsheet; if unset, includes the factors defined by a previous TREATMENTSTRUCTURE directive
LABELS = texts	Labels to be used for each factor if its own levels or labels are inappropriate

AEFFICIENCY procedure

Calculates efficiency factors for experimental designs (R.W. Payne).

Options	
FACTORIAL = scalar	Limit on the number of factors in each treatment term
	generated from TERMS; default 3
METHOD = string token	Whether to eliminate or ignore earlier model terms from the
	TERMS formula (eliminate, ignore); default elim
FORCED = <i>formula</i>	Terms to be eliminated before fitting TERMS; default * i.e.
	none
Parameters	
TERMS = formula	Model terms
DF = pointer or scalar	Saves the degrees of freedom of the terms
EFFICIENCY = <i>pointer</i> or <i>variate</i>	Saves the efficiency factors of the terms
DFALIASED = pointer or scalar	Saves the number of aliased degrees of freedom of the terms

AFALPHA procedure

Generates alpha designs (R.W. Payne). Option PRINT = *string token*

Whether to print the design (design); default * i.e. no printing

4.1 Commands

Parameters GENERATOR = *matrices* generating array (of size number-of-plots-per-block by number-of-reps) Defines the levels of each treatment factor; if this is omitted, LEVELS = *scalars* or *variates* the levels of the TREATMENT factor are used, if available, otherwise LEVELS is determined from the generating array on the assumption that the blocks are to be of equal size Seed to be used to randomize the design, if required SEED = scalar Specifies the treatment factor for each design TREATMENTS = *factors* REPLICATES = factors Specifies the replicate factor Specifies the block factor BLOCKS = factors Specifies the factor to index the units within each block UNITS = factors

AFAUGMENTED procedure

Forms an augmented design (R.W. Payne).

Options	
---------	--

- F	
PRINT = string tokens	Controls printed output (design); default * i.e. none
TREATMENTSTRUCTURE = formula	Treatment terms, other than GENOTYPES, to be included in the analysis
BLOCKSTRUCTURE = <i>formula</i>	Defines the block structure of the basic design
COVARIATE = variates	Specifies any covariates to be included in the analysis
LEVTEST = variate	Levels to represent the test genotypes in the augmented GENOTYPES factor
LEVCONTROL = <i>scalar</i> or <i>variate</i>	Levels to represent the control genotype(s) if these are not already in the GENOTYPES factor
GENOTYPES = factor	Genotype factor
CONTROLS = factor	Factor identifying the controls
TESTVSCONTROL = factor	Factor representing the comparison between test and control genotypes
SUBPLOTS = factor	Factor to represent the subplots to be created for the test genotypes in the basic design
NSUBPLOTS = $scalar$	Number of subplots to create within each plot of the basic design
SUBCONTROLS = scalar or variate	Subplots to be used for control genotypes, if not already pre- allocated in the GENOTYPES and SUBPLOTS factors; default selects subplots for the controls at random within each whole-
NREPTEST = scalar or variate SEED = scalar	plot Number of times to replicate the test genotypes; default 1 Seed for the random numbers used to randomize the allocation of the genotypes (a negative value implies no randomization); default 0

No parameters

AFCARRYOVER procedure

Forms factors to represent carry-over effects in cross-over trials (R.W. Payne).

Option	
NONELEVEL = scalar or text	Level or label to use for the units with no carry-over
Parameters	
TREATMENTS = $factors$	Factors identifying the (direct) effects of the treatments
SUBJECTS = factors	Factors identifying the subjects
PERIODS = factors	Factors identifying the periods
CARRYOVERFACTOR = <i>factors</i>	Factors to represent the carry-over effect of the treatments in the period immediately after the period in which they were applied
NOCARRYOVER = $factors$	Factors to represent the comparison between none and any carry-over effect of the treatments

AFCOVARIATES procedure

Defines covariates from a model formula for ANOVA (R.W. Payne).

Options	
COVARIATES = <i>pointer</i>	Saves the covariates
COVGROUPS = <i>pointer</i>	Saves the pointers defined to contain the covariates formed for
	each term in TERMS
FACTORIAL = scalar	Limit on number of factors in the model terms formed from
	TERMS; default 3
Parameters	
TERMS = <i>formula</i>	Model terms from which to define covariates
·	

AFCYCLIC procedure

Generates block and treatment factors for cyclic designs (R.W. Payne).

PRINT = string token	Whether to print the design (design); default * i.e. no
	printing

Parameters

Option

i urumeter s	
INITIALBLOCKS = <i>variates</i> or <i>pointers</i>	Defines one (variate) or more (pointer to variates) initial
	blocks for a treatment factor
INCREMENT = scalars or pointers	Defines the size of the successive increment (scalar) or
	increments (pointer to scalars) for each initial block
LEVELS = <i>scalars</i> or <i>variates</i>	Defines the levels of each treatment factor; this need not be
	specified if the factor has already been declared
SEED = scalar	Seed to be used to randomize each design, if required
TREATMENTS = $factors$	Specifies treatment factors
BLOCKS = $factors$	Specifies block factors
UNITS = factors	Specifies factors to index the units within each block

AFDISCREPANCY procedure

Calculates the discrepancy of a design (B.M. Parker).

Options PRINT = *string tokens* Controls whether to print the discrepancy (results); default resu Specifies the method to use to calculate the discrepancy (L2, METHOD = *string token* maximin, entropy); default L2 A variate of length two indicating which design points have SWAP = variate swapped when updating the discrepancy criterion for the maximin or entropy criteria; default none **Parameters** A matrix, or a pointer of variates, specifying the design points DESIGN = matrices or pointers Saves the discrepancy DISCREPANCY = scalars DISTANCES = *matrices* Stores the distances, to allow fast updates with the maximin or

entropy criteria

AFFYMETRIX procedure

Estimates expression values for Affymetrix slides (D.B. Baird).

Estimates expression values for Arrymetrix sides (D.B. Dand).	
Options	
PRINT = string tokens	What to print (estimates, background, monitoring);
C C	default para
METHOD = string token	Method for calculating probe expression values (mas4, mas5,
	rma, rma2); default rma
BMETHOD = string token	Method to use for background values (mean, quantile,
	none); default mean for METHOD settings mas4 and mas5, but
	none for settings rma and rma2
BWEIGHTING = string token	Method for weighting background grids (affymetrix,

54

Ontions

4.1 Commands

TRANSFORMATION = <i>string token</i>	distance); default affy How to transform the data (log2, none); default log2
NMETHOD = string token	Method for normalization i.e. whether to use a mean, median or geometric mean for the averaged normalized distribution
REPLACEDATA = <i>string token</i>	(means, medians, geometricmeans, none); default mean Whether to replace the DATA variates with background corrected intensities (yes, no); default no
SPREADSHEET = <i>string token</i>	What to save in a spreadsheet (results); default * i.e. nothing
MAXCYCLE = scalar	Maximum number of iterations; default 50
TOLERANCE = scalar	Tolerance for convergence; default 0.0001
Parameters	-
DATA = variates	Intensities to be analysed
SLIDES = factors	Identify the slides (or chips)
PROBES = factors	Identify the probes (or genes) within each slide
ATOMS = $factors$	Identify the PM/MM pairs within each probe
PMMM = factors	Distinguish between PM and MM values
TYPEPROBES = factors	Defines the probe-type corresponding to each intensity
ROWS = factors	Identifies rows within each slide (required only if background corrections are to be made)
COLUMNS = factors	Identifies columns within each slide (required only if
5	background corrections are to be made)
ESTIMATES = variates	Saves the estimated expression values for each slide and probe combination
SE = variates	Saves approximate standard errors for the estimates
IDSLIDES = factors	Saves factors to identify the slides in the ESTIMATES variates
IDPROBES = factors	Saves factors to identify the probes in the ESTIMATES variates

AFIELDRESIDUALS procedure Display residuals in field layout (R.W. Payne & A.D.Todd).

Display residuals in field layout (K. W	V. Payne & A.D. I odd).
Options	-
PRINT = string tokens	Controls output (contour, shade, table); default cont
GRAPHICS = string token	Type of graph (highresolution, lineprinter); default high
METHOD = string token	Type of residuals to take from the save structure when the RESIDUALS parameter is not specified (combined, finalstratum, standardizedfinal); default comb
MARGIN = <i>string token</i>	Whether to include margins in printed tables (yes, no); default no
YORIENTATION = <i>string token</i>	Y-axis orientation of the plot (reverse, normal); default norm
PENCONTOUR = scalar	Pen number to be used for the contours; default 1
PENFILL = scalar or variate	Pen number(s) defining how to fill the areas between contours; default 3
PENSHADE = scalar or variate	Pen(s) to use for the shade plot; default 3
Parameters	
Y = variates or factors	Specifies the y-coordinates of the plots
X = variates or factors	Specifies the x-coordinates of the plots
RESIDUALS = variates	Residuals to be plotted; default is to take the residuals from the save structure specified by the SAVE option, or from the most recent ANOVA if that is unspecified
SAVE = ANOVA, REML or regression save	e structures
	Save structure of the ANOVA, REML or regression analysis from which to take the residuals if the RESIDUALS parameter is not specified; default is to take the most recent ANOVA analysis
FIELDWIDTH = scalars	Field width for printing the residuals; default 12
DECIMALS = scalars	Number of decimal places to use when printing the residuals

56	4 Syntax summary
TITLE = texts	Titles for the plots
AFLABELS procedure	
Forms a variate of unit labels	s for a design (R.W. Payne).
Options	- , - ,
UNITLABELS = variate	Stores the labels
MAXDIGIT = scalar	Number of available digits; default 8
Parameters	
FACTOR = <i>factors</i>	Factors indexing the units of the design; if this is unset, the
v	factors from the most recent BLOCKSTRUCTURE command are used
NEWLEVELS = variates	Allows new levels to be specified for each FACTOR; if this is

unset, uses the levels already defined for the factor

AFMEANS procedure

Forms tables of means classified by ANOVA treatment factors (R.W. Payne).

i offits doles of means classified by	(it. it. i ujite).
Options	
PRINT = string tokens	What to print (means, sed, sedsummary, ese, 1sd,
	lsdsummary); default mean, sed
MEANS = table	Saves means; default *
SED = symmetric matrix	Saves matrices of standard errors of differences between means; default *
ESE = table	Saves effective standard errors; default *
LSD = symmetric matrix	Saves least significant differences between means; default *
LSDLEVEL = scalar	Significance level (%) for least significant differences; default 5
DFMEANS = <i>symmetric matrices</i>	Saves degrees of freedom for comparisons between every pair of entries in the table of means
EQFACTORS = $factors$	Factors whose levels are to be assumed to be equal within the comparisons between means, when calculating effective standard errors
SAVE = ANOVA save structure	Save structure to provide the table of means; default uses the save structure from the most recent ANOVA
Parameter	
CLASSIFY = vectors	Factors to classify table of means (from those in the TREATMENTSTRUCTURE in the ANOVA analysis)

AFMINABERRATION directive

Forms minimum aberration designs using the algorithm of Laycock & Rowley (1995).

Options	
PRINT = string tokens	Controls printed output (summary, keyblocks,
	keydefining,monitoring);
NTIMES = scalar	Number of designs to try in a random search; default 0 does
	the full search
SEED = scalar	Seed for the random number generator used to search the
	designs randomly; default 0
Parameters	
LEVELS = <i>scalars</i>	Number of levels of the treatment factors, must be a power of
	a prime number
NTREATMENTFACTORS = $scalars$	Number of treatment factors
NUNITS = scalars	Number of units in each block of a block design or in the
	principal block of a fractional factorial
NSUBUNITS = scalars	Number of units in each (sub-)block
KEYBLOCKS = matrices	Design key for the blocks and sub-blocks
KEYDEFINING = matrices	Design key specifying the defining contrasts
RESOLUTION = scalars	Saves the resolution of the design

4.1 Commands

ABERRATION = scalars	Saves the aberration of the design
SUBRESOLUTION = $scalars$	Saves the resolution of the sub-design
SUBABERRATION = $scalars$	Saves the aberration of the sub-design
NDESIGN = scalars	Saves or defines the design number
NSUBDESIGN = scalars	Saves or defines the sub-design number

AFNONLINEAR procedure

Forms D-optimal designs to estimate the parameters of a nonlinear or generalized linear model (W. van den Berg).

Options

PRINT = string token	Controls printed output (results, monitoring); default resu, moni
PLOT = string token	Controls whether to plot the design (design); default desi
YARGUMENT = <i>identifier</i>	Data structure that stores the results of the function when it is calculated by expressions supplied by the FUNCTION option; must be set
XARGUMENT = <i>identifier</i>	Data structure representing the x-variate in the expressions supplied by the FUNCTION option; must be set
FUNCTION = <i>expression structures</i>	Specifies the function whose parameters are to be estimated; must be set
FNDERIVATIVES = <i>expression structur</i>	es
	Specifies expressions to calculate derivative of the function with respect to each parameter; must be set
ITERATIVEWEIGHTS = <i>identifier</i>	Data structure that stores the iterative weights in the expressions supplied by the FNITERATIVEWEIGHTS option
FNITERATIVEWEIGHTS = expression s	tructures
	Specifies expressions to calculate the iterative weights when estimating the parameters of a generalized linear model
XSUPPORT = variate	Supplies the support points for the initial design, and saves those of the final design; if no initial values are supplied, an initial design is formed at random
XWEIGHTS = variate	Supplies the weights for the support points for the initial design, and saves those of the final design; if no initial values are supplied, equal weights are used initially
GRID = variate	Specifies the grid points where the design will be evaluated
A0 = scalar	Initial update weight; default 0.1
SEED = scalar	Seed for the random numbers used to select the initial design when not supplied by XSUPPORT and XWEIGHTS
NCYCLE = scalar	Number of iterations to make between at each value of $A0$, before halving it for the next batch of iterations; default 100
MAXCYCLE = scalar	Maximum number of iterations; default 2500
TOLERANCES = variate	Variate with two values specifying the convergence criterion and the tolerance for zero weights; default $! (1.E-6, 1.E-5)$
Parameters	
PARAMETER = scalars	Parameters of the nonlinear or generalized linear model (with values giving an indication of their likely estimated values)
DERIVATIVE = <i>identifiers</i>	Data structures that store the results of the calculation of the derivative for each parameter, in the expressions specified by the FNDERIVATIVES option

AFORMS procedure

Prints data forms for an experimental design (R.W. Payne).

Options

blockstructure = <i>formula</i>	Defines the block factors to be used to label the units of the
	design; default takes those specified in an earlier
	BLOCKSTRUCTURE directive

58	4 Syntax summary
TREATMENTSTRUCTURE = formula	Defines the treatment factors to be used, if any, to label the forms
NLINES = scalar	Number of lines to be allowed for each measurement; default 1
Parameters	
LABEL = texts	Labels for the measurements to be recorded on the forms
FIELDWIDTH = scalar	Fieldwidth to be allowed for each label

AFPREP procedure

Searches for an efficient partially-replicated design (R.W. Payne). ^

Options	
PRINT = strings	Controls printed output (design, efficiency, factors,
	monitoring); default * i.e. none
LEVELS = <i>scalar</i> or <i>variate</i>	Levels of the treatment factor; if unset, takes the levels
	declared for the factor specified by the TREATMENTS option
NREPEATS = variate	Number of times each treatment occurs in the design
NBLOCKS = $scalar$	Number of blocks
TREATMENTS = $factor$	Treatment factor
BLOCKS = factor	Block factor
UNITS = factor	Unit-within-block factor
EFFICIENCY = variate	Saves the efficiency factors of the treatment term within blocks
NSTARTS = scalar	Specifies the number of random starting configurations to take
	in the search for the best design
NTRIES = scalar	Number of designs to try from each starting configuration
SEED = scalar	Seed for the random numbers used to randomize the design;
	default 0
TRYSEED = scalar	Seed for the random numbers used to select the random
	starting configurations; default 0
SPREADSHEET = $string$	Whether to put the design factors into a spreadsheet (design);
	default *
No parameters	

AFRCRESOLVABLE procedure

Forms doubly resolvable row-column designs, with output (D.B. Baird). **Options**

Options	
PRINT = string tokens	Controls printed output (design, plotnumbers, factors,
	efficiency; default desi, effi
DESIGNPLOT = string token	What factors to display in the design plot (treatment,
	plotandtreatment); default * i.e. no plot
FIRSTPLOT = string token	Defines the starting location for allocating plots to the row-by-
	<pre>column grid (lowleft, lowright, upleft, upright);</pre>
	default uple
PLOTORDER = string token	Defines the order in which the blocks are filled
	(colserpentine, colbycol, rowserpentine, rowbyrow);
	default rowb
TIME = scalar	Time in seconds to spend searching for an optimal design;
	default 60
SEED = scalar	Seed for the randomization; default 0
MAXITERATIONS = $scalar$	The number of random designs to search for an optimal
	design; default 10000
SPREADSHEET = <i>string token</i>	What to save in a spreadsheet (data, plan); default *
Parameters	
NROWS = $scalars$	Number of rows in the layout of each design
NCOLUMNS = scalars	Number of columns in the layout of each design
LEVELS = <i>scalar</i> , <i>variate</i> or <i>text</i>	Defines the number of levels or labels of the TREATMENT
	factor for each design
TREATMENTS = $factors$	Saves the treatment allocation in each design

ROWREPLICATES = $factors$	Saves the row replicates in each design
COLREPLICATES = factors	Saves the column replicates in each design
ROWS = factors	Saves the row locations of the plots in each design
COLUMNS = factors	Saves the column locations of the plots in each design
PLOTNUMBER = factors	Saves the plot numbers
TITLE = texts	The title for the design plot; default an automatic description
	of the design
OUTFILE = texts	Gives a file name (with extension .gsh, .gwb, or .xlsx) to
	save the factors in each design
EXIT = scalars	Saves the exit code from the design search program (0 for
	success, greater than 0 for failure)

AFRESPONSESURFACE directive

Uses the BLKL algorithm to construct designs for estimating response surfaces. **Ontions**

Options	
PRINT = string token	Printed output required (monitoring); default * i.e. no printing
TERMS = formula	Model to be fitted when the design is used; no default i.e. this option must be specified
CONSTANT = <i>string token</i>	How to treat the constant in the model (estimate, omit); default esti
FACTORIAL = scalar	Limit for expansion of terms in the model; default 2
NUNITS = scalar	Number of units (or trials) in the design
NDELETION = scalar	Number of design points to consider for deletion; default takes NUNITS/4, or 4 is this is larger
NINCLUSION = scalar	Number of design points to consider for inclusion; default takes NUNITS/4, or 4 is this is larger
NRUNS = $scalar$	Number of times to run the algorithm; default 100
ADJUSTMENTSTEP = scalar	Maximum amount by which to perturb the design points in the adjustment algorithm; default * i.e. no adjustments are tried
NBLOCKS = $scalar$	Number of blocks; default 1 i.e. design not blocked
BLOCKFACTOR = factor	Saves the block factor (if any) for the design
BLOCKSIZE = <i>scalar</i> or <i>variate</i>	Number of units in each block of the design
PREVIOUSBLOCKS = factor	Supplies values of the blocking factor for any previous experiments that are to be included in the analysis of the results of the design
MIXTURE = variates	Lists any variates that are part of a mixture (their values must be greater than zero and sum to one)
SEED = scalar	Seed for random numbers used to construct the initial design; default 124195
DETERMINANT = scalar	Saves the determinant of the information matrix for the best design
MEANGRID = scalar	Saves the mean value of the standardized variance of predictions obtained from the design over a grid of x-values
MAXGRID = scalar	Saves the maximum value of the standardized variance of predictions obtained from the design over a grid of x-values
NGRIDPOINTS = scalar	Number of grid points in each x-direction to use for MEANGRID and MAXGRID; default 5
Parameters	
x = variates	Lists the variates to be investigated in the design; these need not be supplied if none of the other parameters are required
X2 = variates	Lists identifiers to be used to represent squares of the x- variates in the model
x3 = variates	Lists identifiers to be used to represent squares of the x- variates in the model
SUPPORTPOINTS = variates	Support points for each x-variate in the design; if these are not

AFUNITS procedure

Forms a factor to index the units of the final stratum of a design (R.W. Payne & W. van den Berg).

Option	
BLOCKSTRUCTURE = formula	Defines the block factors for the design; the default is to take those specified by the BLOCKSTRUCTURE directive
Parameter	
UNITS = factor	Factor to be formed

AGALPHA procedure

Forms alpha designs by standard generators for up to 100 treatments (M.F. Franklin & R.W. Payne). **Option**

PRINT = string token	Controls whether or not to print a plan or the generator of of
	the design (design, generator); if unset in an interactive
	run AGALPHA will ask whether the design and generator are to
	be printed, in a batch run the default is not to print anything
Parameters	
LEVELS = <i>scalars</i>	Number of treatments
NREPLICATES = scalars	Number of replicates
NBLOCKS = $scalars$	Number of blocks per replicate

NBLOCKS = scalars	Number of blocks per replicate
SEED = scalars	Seed for randomization; a negative value implies no
	randomization
TREATMENTS = $factors$	Identifier for the treatment factor
REPLICATES = $factors$	Identifier for the replicate factor
BLOCKS = $factors$	Identifier for the factor to index the blocks within replicates
UNITS = factors	Identifier for the factor to index the units (or plots) within each
	block
STATEMENT = texts	Saves a command to recreate each design (useful if the design
	information has been specified in response to questions from
	AGALPHA)

AGBIB procedure

Generates balanced incomplete block designs (R.W. Payne). **Options** PRINT = *string token* Controls whether or not to print a plan of the design and whether to print a catalogue of the designs in the subfile (design, catalogue); if unset in an interactive run AGBIB will ask whether the design is to be printed, in a batch run the default is not to print anything Controls whether or not to analyse the design, and produce a ANALYSE = *string token* skeleton analysis-of-variance table using ANOVA (no, yes); default is to ask if this is unset in an interactive run, and not to analyse if it is unset in a batch run **Parameters** Number of treatments LEVELS = *scalars* NBLOCKS = scalars Number of blocks NUNITS = scalars Number of units per block SEED = scalars Seed for randomization; a negative value implies no randomization TREATMENTS = *factors* Identifier for the treatment factor BLOCKS = factors Identifier for the factor to index the blocks UNITS = factors Identifier for the factor to index the units within each block

STATEMENT = texts	Saves a command to recreate each design (useful if the design information has been specified in response to questions from
	AGBIB)

AGBOXBEHNKEN procedure

Generates Box Behnken designs (R.W. Payne).

Options	
PRINT = string token	Controls printed output (design); if unset in an interactive run
	AGBOXBEHNKEN will ask whether the design is to be printed, in
	a batch run the default is not to print anything
NCENTRALPOINTS = $scalar$	Defines the number of central points to include; default 4
LEVELS = <i>variate</i>	Defines the outer levels to be used; default ! (-1,1)
NCOMBINATIONS = $scalar$	Number of factors to vary in combination at once; default 2
SEED = scalar	Seed to be used to randomize each design; a negative value
	implies no randomization
STATEMENT = text	Saves a command to recreate the design (useful if the design
	information has been specified in response to questions from
	AGBOXBEHNKEN)
Parameter	
TREATMENTFACTOR = $factors$	Treatment factors

AGCENTRALCOMPOSITE procedure

Generates central composite designs (R.W. Payne).

Options	
PRINT = string token	Controls printed output (design); if unset in an interactive run AGCENTRALCOMPOSITE will ask whether the design is to be printed, in a batch run the default is not to print anything
NCENTRALPOINTS = $scalar$	Defines the number of central points to include; default 4
NSTARPOINTS = scalar	Defines the number of star points to include; default 1
LFACTORIAL = variate	Defines the treatment levels in the factorial part of the design; default $!$ (-1, 1)
LSTAR = variate	Defines the treatment levels for the star points; default is to use the levels defined by LFACTORIAL
FRACTION = scalar	Denominator for fractional factorial; default 1 specifies a complete design
SEED = scalar	Seed to be used to randomize each design; a negative value implies no randomization
STATEMENT = text	Saves a command to recreate the design (useful if the design information has been specified in response to questions from AGCENTRALCOMPOSITE)
Parameter	
TREATMENTFACTOR = factors	Treatment factors

TREATMENTFACTOR = factors

AGCROSSOVERLATIN procedure

Generates Latin squares balanced for carry-over effects (R.W. Payne). ~

ve rur
e
ce a
) ;
not to
5
e

	implies no randomization
TREATMENTS = $factors$	Identifier for a factor to represent the direct effects of the treatments
<i>.</i>	
SUBJECTS = factors	Identifier for a factor to represent the subjects
PERIODS = factors	Identifier for a factor to represent the periods
CARRYOVERFACTOR = factors	Identifier for a factor to represent the carry-over (or
	"residual") effect of the treatments in the period immediately after the period in which they were applied
NOCARRYOVER = factors	Identifier for a factor to represent the comparison between none and any carry-over effect of the treatments
STATEMENT = texts	Saves a command to recreate each design (useful if the design information has been specified in response to questions from AGCROSSOVERLATIN)

AGCYCLIC procedure

62

Generates cyclic designs from standard generators (M.F. Franklin & R.W. Payne). Ontions

Options	
PRINT = string token	Controls whether or not to print a plan of the design (design); if unset in an interactive run AGCYCLIC will ask whether the design is to be printed, in a batch run the default is not to print the design
METHOD = string token	Type of design – ordinary cyclic, cyclic change-over or cyclic superimposed (cyclic, changeover, superimposed); if unset in an interactive run AGCYCLIC will ask about the type of design, in a batch the default is assumed to be cyclic
Parameters	
LEVELS = scalars	Number of treatments
NBLOCKS = scalars	Number of blocks
NUNITS = $scalars$	Number of units per block, or number of periods in a cyclic
	change-over design
SEED = scalars	Seed for randomization; a negative value implies no
	randomization
TREATMENTS = $factors$	Identifier for the treatment factor
SUPERIMPOSED = factors	Identifier for the second treatment factor in a cyclic superimposed design
BLOCKS = factors	Identifier for the factor to index the blocks
UNITS = factors	Identifier for the factor to index the units within each block, or
	the periods of a cyclic change-over design
INITIALBLOCKS = variates or pointers	To save one (variate) or more (pointer to variates) initial
	blocks
STATEMENT = <i>texts</i>	Saves a command to recreate the design (useful if the design
	information has been specified in response to questions from
	AGCYCLIC)

AGDESIGN procedure

Generates generally balanced designs (R.W. Payne).

Options	
PRINT = string token	Controls whether or not to print a plan of the design and
	whether to print a catalogue of the designs in the subfile
	(design, catalogue); if unset in an interactive run
	AGDESIGN will ask whether the design is to be printed, in a
	batch run the default is not to print anything
ANALYSE = <i>string token</i>	Controls whether or not to analyse the design, and produce a
	skeleton analysis-of-variance table using ANOVA (no, yes);
	default is to ask if this is unset in an interactive run, and not to
	analyse if it is unset in a batch run

FILENAME = text	Name of the backing store file containing the design information; default uses the standard design file
SUBFILE = <i>identifier</i>	Subfile of the backing store file to be used
Parameters	
DESIGN = variates	Contains codes to indicate the choice of design
TREATMENTFACTORS = <i>pointers</i>	Specifies identifiers for the treatment factors
BLOCKFACTORS = <i>pointers</i>	Specifies identifiers for the block factors
PSEUDOFACTORS = <i>pointers</i>	Specifies identifiers for any pseudo-factors
REPLICATEFACTOR = factors	Specifies the identifier of the factor to represent the replicates
	(if any) in each design
UNITLABELS = variates	Specifies the identifier of a variate to store a unique numerical
	label for each plot in the design
SEED = scalars	Seed to be used to randomize each design; a negative value
	implies no randomization
STATEMENT = texts	Saves a command to recreate each design (useful if the design
	information has been specified in response to questions from
	AGDESIGN)

AGFACTORIAL procedure

Generates minimum aberration block or fractional factorial designs (P.J. Laycock, P.J. Rowley & R.W. Payne). Options

PRINT = string token	Controls whether or not to print a plan of the design (design); if unset in an interactive run AGFACTORIAL will ask whether the design is to be printed, in a batch run the default is not to
ANALYSE = string token	print the design Controls whether or not to analyse the design, and produce a skeleton analysis-of-variance table using ANOVA (yes, no); default is to ask if this is unset in an interactive run, and not to analyse if it is unset in a batch run
FACTORIAL = scalar	Limit on number of factors in treatments terms in the analysis of variance; default 3
Parameters	
LEVELS = scalars	Number of levels of the treatment factors in each design
NTREATMENTFACTORS = $scalars$	Number of treatment factors
NUNITS = scalars	Number of units per block
NFRACTIONBLOCK = <i>scalars</i>	Defines the number of the block to use to define a fractional factorial, or can be set to zero to take a block at random; if unset in an interactive run AGFACTORIAL will ask whether to form a fractional factorial design, in a batch run the default is to form the full (block) design
NSUBUNITS = scalars	Number of units in each sub-block
SEED = scalars	Seed to be used to randomize each design; a negative value implies no randomization
TREATMENTFACTORS = <i>pointers</i>	Specifies identifiers for the treatment factors
BLOCKS = factors	Identifier for the block factor
SUBBLOCKS = factors	Identifier for the sub-block factor
PSEUDOFACTORS = <i>pointers</i>	Specifies identifiers for pseudo-factors
UNITLABELS = variates	Specifies the identifier of a variate to store a unique numerical label for each unit in the design
NDESIGN = scalars	Saves or defines the design number
NSUBDESIGN = scalars	Saves or defines the sub-design number
STATEMENT = texts	Saves a command to recreate each design (useful if the design information has been specified in response to questions from AGFACTORIAL)

AGFRACTION procedure

Generates fractional factorial designs (M.F. Franklin & R.W. Payne). Ontions

Options	
PRINT = string token	Controls whether or not to print a plan of the design (design); if unset in an interactive run AGFRACTION will ask whether the design is to be printed, in a batch run the default is not to to print the design
ANALYSE = string token	Controls whether or not to analyse the design, and produce a skeleton analysis-of-variance table using ANOVA (no, yes); default is to ask if this is unset in an interactive run, and not to analyse if it is unset in a batch run
FACTORIAL = scalar	Limit on number of factors in treatments terms in the analysis of variance; default 2
FILENAME = $text$	Name of the backing store file containing the design information; default uses the standard fractional design file
Parameters	
LEVELS = <i>scalars</i>	Number of levels of the treatment factors in each design
FRACTION = scalars	Denominator of required fraction
NTREATMENTFACTORS = $scalars$	Number of treatment factors
NUNITS = scalars	Number of units per block
SEED = scalars	Seed to be used to randomize each design; a negative value implies no randomization
TREATMENTFACTORS = <i>pointers</i>	Specifies identifiers for the treatment factors
BLOCKS = factors	Identifier for the block factor
UNITS = factors	Identifier for the factor to index the units (or plots) within each block
STATEMENT = texts	Saves a command to recreate each design (useful if the design information has been specified in response to questions from AGFRACTION)

AGHIERARCHICAL procedure

Generates orthogonal hierarchical designs (R.W. Payne).

Controls whether or not to print a plan of the design (design); if unset in an interactive run AGHIERARCHICAL will ask
whether the design is to be printed, in a batch run the default is not to print the design
Controls whether or not to analyse the design, and produce a
skeleton analysis-of-variance table using ANOVA (no, yes);
default is to ask if this is unset in an interactive run, and not to
analyse if it is unset in a batch run
Seed to be used to randomize the design; a negative value
implies no randomization
Saves a command to recreate the design (useful if the design
information has been specified in response to questions from
AGHIERARCHICAL)
Levels of the first block factor to exclude during
randomization
Specifies the identifier for the block factor used to index the
units of each stratum (or level of the hierarchy)
ters
Specifies the identifier of the treatment factor or factors
applied to the units of each stratum
Number of levels for the treatment factors in each stratum; if
required, a pointer can contain an extra scalar to specify

4.1 Commands

replication

AGINDUSTRIAL procedure

Helps to select and generate effective designs for use in industrial experiments (R.W. Payne).

Option		
STATEMENT = text	Saves a command to recreate the design	
No parameters	-	

AGLATIN procedure

Generates mutually orthogonal Latin squares (I. Wakeling & R.W. Payne).

U	p	tio	on	S		

PRINT = string token	Controls printed output (design, squares, list); if unset in
	an interactive run AGLATIN will ask whether the design is to
	be printed, in a batch run the default is not to print anything
ANALYSE = <i>string token</i>	Controls whether or not to analyse the design, and produce a skeleton analysis-of-variance table using ANOVA (no, yes); default is to ask if this is unset in an interactive run, and not to
	analyse if it is unset in a batch run
Parameters	
NROWS = scalars	Specifies the number of rows (and columns) in each square
NSQUARES = scalars	Number of squares to form (i.e. number of treatment factors to generate)
SEED = scalars	Seed to be used to randomize each design; a negative value implies no randomization
TREATMENTFACTORS = <i>pointers</i>	Pointer to identifiers for the treatment factors
ROWS = factors	Identifier for the row factor
COLUMNS = factors	Identifier for the column factor
MAXNSQUARES = scalars	Returns the maximum number of squares available with the specified number of rows and columns
STATEMENT = texts	Saves a command to recreate each design (useful if the design information has been specified in response to questions from AGLATIN)
	AGUALIN,

AGLOOP procedure

Generates loop designs e.g. for time-course microarray experiments (R.W. Payne).

Option	
PRINT = string token	Controls whether or not to print a plan of the design (design); if unset in an interactive run AGLOOP will ask whether the design is to be printed, in a batch run the default is not to print the design
Parameters	
LEVELS = scalars	Number of treatments
INCREMENTS = scalars, variates or point	nters
	Increment or increments to be used to form the loops
SEED = scalars	Seed for randomization; a negative value implies no randomization
TREATMENTS = $factors$	Identifier for the treatment factor
BLOCKS = factors	Identifier for the block (plate) factor
UNITS = factors	Identifier for the factor for the units within each block (or colours in a microarray experiment)
STATEMENT = texts	Saves a command to recreate the design (useful if the design information has been specified in response to questions from AGLOOP)

AGMAINEFFECT procedure

Generates designs to estimate main effects of two-level factors (R.W. Payne). **Options**

Options	
PRINT = string token	Controls printed output (design, catalogue); if unset in an interactive run AGMAINEFFECT will ask whether the design or catalogue are to be printed, in a batch run the default is not to print anything
ANALYSE = string token	Controls whether or not to analyse the design, and produce a skeleton analysis-of-variance table using ANOVA (no, yes); default is to ask if this is unset in an interactive run, and not to analyse if it is unset in a batch run
FOLDED = string token	Whether to include an extra "folded" replicate with the levels of each factor interchanged (no, yes); default no
SEED = scalar	Seed to be used to randomize each design; a negative value implies no randomization
STATEMENT = texts	Saves a command to recreate the design (useful if the design information has been specified in response to questions from AGMAINEFFECT)
Parameter TREATMENTFACTOR = <i>factors</i>	Treatment factors

AGNATURALBLOCK procedure

Forms 1- and 2-dimensional designs with blocks of natural size (P.D. Johnstone & D.B. Baird). **Ontions**

Options	
PRINT = string token	Controls printed output (design, search); default desi
DESIGNTYPE = string token	Type of design to create (block, rowcolumn); default rowc
NSIMULATIONS = scalar	Number of randomizations to search to find the best design;
	default 1000
SEED = scalar	Seed for the randomization; default 0
FIRSTPLOT = string token	Defines the starting location for allocating plots to the row-by-
C C	<pre>column grid (lowleft, lowright, upleft, upright);</pre>
	default uple
FILLMETHOD = string token	Defines the order in which the plots are filled
8	(colserpentine, colbycol, rowserpentine, rowbyrow);
	default rows
Parameters	
LEVELS = <i>scalars</i> or <i>variates</i>	Defines the levels of the treatment factor for each design
NROWS = $scalars$	Number of rows in the smallest rectangle containing the layout
	of each design; not required if the ROWS parameter is set to a
	factor with values
NCOLUMNS = scalars	Number of columns in the smallest rectangle containing the
	layout of each design; not required if the COLUMNS parameter
	is set to a factor with values
NUNITS = scalar	Number of plots that will be assigned a treatment in each
	design; not required if the either the ROWS or COLUMNS
	parameter is set to a factor with values
TREATMENTS = $factors$	Saves the treatment allocation for each design
ROWS = factors	Defines or saves the row locations of the plots to receive
<u>-</u>	treatments in each design
COLUMNS = factors	Defines or saves the column locations of the plots to receive
	treatments in each design
BLOCKS = factors	Defines or saves the allocation of the plots to blocks
PLAN = matrices	Saves the treatment layout in each design

AGNEIGHBOUR procedure

Generates neighbour-balanced designs (R.W. Payne).

Options

PRINT = string token	Controls printed output (catalogue, design); if unset in an
	interactive run AGNEIGHBOUR will ask whether the design is to
	be printed, in a batch run the default is not to print anything
METHOD = string token	Type of design, $n-1$ blocks of n plots, or n blocks of $n-1$ plots
	(N 1BLOCKS, NBLOCKS); if unset in an interactive run
	AGNEIGHBOUR will ask about the type of design, in a batch the
	default is assumed to be n blocks of $n-1$ plots
Parameters	
LEVELS = <i>scalars</i>	Number of treatments
SEED = scalars	Seed for randomization; in batch there is a default of 12345
TREATMENTS = $factors$	Identifier for the treatment factor
BLOCKS = $factors$	Identifier for the factor to index the blocks within replicates
UNITS = $factors$	Identifier for the factor to index the units within each block, or
	the periods of a cyclic change-over design
LEFTNEIGHBOUR = $factors$	To save the treatment on the left neighbouring unit
RIGHTNEIGHBOUR = factors	To save the treatment on the right neighbouring unit
STATEMENT = <i>texts</i>	Saves a command to recreate each design (useful if the design
	information has been specified in response to questions from
	AGNEIGHBOUR)

AGNONORTHOGONALDESIGN procedure

Generates non-orthogonal split-plot and other hierarchical designs (B. M. Parker).

Options	
PRINT = string token	Controls printed output (design, debug); default * i.e. nothing
METHOD = string token	Specifies the algorithm to use (jonesgoos, trincagilmour); default trin
CRITERION = string token	Optimality criterion (a, d); default a
MODELMATRIX = matrix	Defines the model to be estimated
NSTARTS = scalar	Number of random starts for the jg algorithm; default 10
NTRIES = scalar	Number of exchanges to try from each start; default 10000
MINIMUM = scalar	Minimum value for levels; default – 1
MAXIMUM = scalar	Maximum value for levels; default 1
SEED = scalar	Specifies the seed for the random numbers used by the algorithms; default 0
Parameters	
BLOCKFACTORS = <i>factors</i>	Specifies the identifier for the block factor used to index the units of the whole-plots, the sub-plots and, if required, the sub- sub-plots
TREATMENTFACTORS = $factors$ or μ	*
	Specifies the identifier of the treatment factor or factors applied to the whole, sub-plots and sub-sub-plots
BLEVELS = scalars	Numbers of levels for the block factors
LEVELS = <i>scalars</i> or <i>pointers</i>	Numbers of levels for the treatment factors
VARIANCES = scalars	Variances for the strata
AGOLATIN procedure	

AGQLATIN procedure

Generates complete and quasi-complete Latin squares (R.W. Payne).

Options

PRINT = string token	Controls printing of the design (design); if unset in an
	interactive run AGQLATIN will ask whether the design is to be
	printed, in a batch run the default is not to print anything
ANALYSE = string token	Controls whether or not to analyse the design, and produce a

68	4 Syntax summary
	skeleton analysis-of-variance table using ANOVA (no, yes); default is to ask if this is unset in an interactive run, and not to analyse if it is unset in a batch run
Parameters	~
NROWS = scalars	Specifies the number of rows (and columns) in the square
SEED = scalars	Seed to be used to randomize each design; a negative value
	implies no randomization
TREATMENTS = factors	Identifier for the treatment factor
ROWS = factors	Identifier for the row factor
COLUMNS = factors	Identifier for the column factor
STATEMENT = <i>texts</i>	Saves a command to recreate each design (useful if the design information has been specified in response to questions from AGQLATIN)
AGRAPH procedure	
Plots tables of means from ANOVA (R	.W. Payne).
Options	
GRAPHICS = <i>string token</i>	Type of graph (highresolution, lineprinter); default high
METHOD = string token	What to plot (means, lines, data, barchart, splines); default mean
XFREPRESENTATION = <i>string token</i>	How to label the x-axis (levels, labels); default labels uses the XFACTOR labels, if available
PSE = string token	What to plot to represent variation (differences, lsd, means, allmeans); default diff
LSDLEVEL = scalar	Significance level (%) to use for least significant differences; default 5
DFSPLINE = scalar	Number of degrees of freedom to use when METHOD=splines
YTRANSFORM = <i>string tokens</i>	Transformed scale for additional axis marks and labels to be
	plotted on the right-hand side of the y-axis (identity, log,
	log10, logit, probit, cloglog, square, exp, exp10,
PENYTRANSFORM = <i>scalar</i>	ilogit, iprobit, icloglog, root); default iden i.e. none Pen to use to plot the transformed axis marks and labels; default * selects a pen, and defines its properties,
<u>.</u>	automatically
^T KEYMETHOD = string token	What to use for the key descriptions when GROUPS specifies
	more than one factor (labels, namesandlabels); default name
[†] PLOTTITLEMETHOD = <i>string token</i>	What to use for the titles of the plots when TRELLISGROUPS specifies more than one factor (labels, namesandlabels); default name
[†] PAGETITLEMETHOD = <i>string token</i>	What to use for the titles of the pages when PAGEGROUPS
	specifies more than one factor (labels, namesandlabels); default name
[†] USEAXES = <i>string token</i>	Which aspects of the current axis definitions of window 1 to
USEALES – Sitting token	use (none, limits, marks, mpositions, nsubticks,); default none
SAVE = ANOVA or regression save struc	ture
C	Save structure to provide the table of means; default uses the save structure from the most recent ANOVA
Parameters	
XFACTOR = factors	Factor providing the x-values for each plot
GROUPS = factors or pointers	Factor or factors identifying groups of points in each plot; by
	default chosen automatically
TRELLISGROUPS = <i>factors</i> or <i>pointers</i>	Factor or factors specifying the different plots of a trellis plot

TRELLISGROUPS = factors or pointers Factor or factors specifying the different plots of a trellis plot of a multi-way table Factor or factors specifying plots to be displayed on different PAGEGROUPS = *factors* or *pointers*

to be used for XFACTOR instead of its existing levels
or the graph; default defines a title automatically
or the y-axis; default is to use the identifier of the y-
e, or to have no title if this is unnamed
or the x-axis; default is to use the identifier of the
OR
s the pen to use to plot the points and/or line for each
lefined by the GROUPS factors

AGRCRESOLVABLE directive

Forms doubly resolvable row-column designs.

Options

PLOTORDER = <i>string token</i>	Defines the order in which the pots are formed into replicates
	(colserpentine, colbycol, rowserpentine, rowbyrow);
	default rowb
TIME = scalar	Time in seconds to spend searching for an optimal design;
	default 60
SEED = scalar	Seed for the randomization; default 0
MAXITERATIONS = $scalar$	The number of random designs to search for an optimal
	design; default 10000
Parameters	
NROWS = scalars	Number of rows in the design
NCOLUMNS = scalars	Number of columns in the design
LEVELS = <i>scalar</i> , <i>variate</i> or <i>text</i>	Defines the number of levels or labels of the TREATMENT
	factor for each design
TREATMENTS = $factors$	Saves the treatment allocation in each design
ROWREPLICATES = factors	Saves the row replicates in each design
COLREPLICATES = factors	Saves the column replicates in each design
ROWS = factors	Saves the row locations of the plots in each design
COLUMNS = factors	Saves the column locations of the plots in each design
EXIT = scalars	Saves the exit code from the design search program (0 for
	success, greater than 0 for failure)

AGREFERENCE procedure

Generates reference-level designs e.g. for microarray experiments (R.W. Payne). Option PRINT = string token Controls whether or not to print a plan of the design (design); if unset in an interactive run AGREFERENCE will ask whether the design is to be printed, in a batch run the default is not to print the design **Parameters** Number of treatments LEVELS = *scalars* REFLEVEL = *scalars*, *variates* or *pointers* Reference level(s); if this is unset in an interactive run you will be asked which reference level or levels you want, in a batch run the default is level 1 REFUNIT = scalars, variates or pointers Unit(s) to which to allocate the reference level(s); if this is unset in an interactive run you will be asked which reference level or levels you want, in a batch run the default is to choose the unit at random within each block SEED = scalars Seed for randomization; a negative value implies no randomization Identifier for the treatment factor TREATMENTS = factors Identifier for the block (plate) factor BLOCKS = factors

70	4 Syntax summary
UNITS = factors	Identifier for the factor for the units within each block (or
	colours in a microarray experiment)
STATEMENT = texts	Saves a command to recreate the design (useful if the design
	information has been specified in response to questions from
	AGREFERENCE)

AGSEMILATIN procedure Generates semi-Latin squares (W. van den Berg). **Options PRINT** = string token Controls whether or not to print a plan of the design (design); if unset in an interactive run AGSEMILATIN will ask whether the design is to be printed, in a batch run the default is not to print anything METHOD = *string token* Method to use to construct the semi-Latin square (Trojan, interleaving, inflated); if unset in an interactive run AGSEMILATIN will ask what type is required, in a batch run the default is Trojan ANALYSE = string token Controls whether or not to analyse the design, and produce a skeleton analysis-of-variance table using ANOVA (no, yes); default is to ask if this is unset in an interactive run, and not to analyse if it is unset in a batch run **Parameters** NROWS = scalars Number of rows and columns of the semi-Latin square NUNITS = scalars Number of units (i.e. treatments) within each block SEED = scalars Seed for randomization; a negative value implies no randomization TREATMENTS = *factors* Identifier for the treatment factor ROWS = factors Identifier for the row factor COLUMNS = factors Identifier for the column factor Identifier for the unit factor UNITS = factors PSEUDOFACTOR = *factors* Identifier for the pseudo-factor STATEMENT = *texts* Saves a command to recreate the design (useful if the design information has been specified in response to questions from AGSEMILATIN)

AGSPACEFILLINGDESIGN procedure

Generates space filling designs (B.M. Parker).

METHOD = string token(design, properties, monitor); default * i.e. noneMETHOD = string tokenSpecifies the method to use (latinhypercube, random, quasirandom); default randAUGMENT = string tokenIndicates whether to augment an existing design (yes, no); default noCENTRED = string tokenFor the Latin hypercube method, determines whether the design should be centred (yes, no); default noCRITERION = string tokenFor the Latin hypercube method, determines which criterion should be used to assess space filling; (none, L2, maximin, entropy); default noneQRSEQUENCE = string tokenSpecifies which sequence to use with the quasi-random method; (sobol, niederreiter, faure); default sobol Specifies the number of design points	Options	
METHOD = string tokenSpecifies the method to use (latinhypercube, random, quasirandom); default randAUGMENT = string tokenIndicates whether to augment an existing design (yes, no); default noCENTRED = string tokenFor the Latin hypercube method, determines whether the design should be centred (yes, no); default noCRITERION = string tokenFor the Latin hypercube method, determines which criterion should be used to assess space filling; (none, L2, maximin, entropy); default noneQRSEQUENCE = string tokenSpecifies which sequence to use with the quasi-random method; (sobol, niederreiter, faure); default sobol Specifies the number of design points	PRINT = string tokens	Controls whether to print the design and its properties
AUGMENT = string tokenIndicates whether to augment an existing design (yes, no); default noCENTRED = string tokenFor the Latin hypercube method, determines whether the design should be centred (yes, no); default noCRITERION = string tokenFor the Latin hypercube method, determines which criterion should be used to assess space filling; (none, L2, maximin, entropy); default noneQRSEQUENCE = string tokenSpecifies which sequence to use with the quasi-random method; (sobol, niederreiter, faure); default sobolNUNITS = scalarsSpecifies the number of design points		(design, properties, monitor); default * i.e. none
default noCENTRED = string tokenFor the Latin hypercube method, determines whether the design should be centred (yes, no); default noCRITERION = string tokenFor the Latin hypercube method, determines which criterion should be used to assess space filling; (none, L2, maximin, entropy); default noneQRSEQUENCE = string tokenSpecifies which sequence to use with the quasi-random method; (sobol, niederreiter, faure); default sobolNUNITS = scalarsSpecifies the number of design points	METHOD = string token	
CRITERION = string tokendesign should be centred (yes, no); default noCRITERION = string tokenFor the Latin hypercube method, determines which criterion should be used to assess space filling; (none, L2, maximin, entropy); default noneQRSEQUENCE = string tokenSpecifies which sequence to use with the quasi-random method; (sobol, niederreiter, faure); default sobolNUNITS = scalarsSpecifies the number of design points	AUGMENT = string token	
CRITERION = string tokenFor the Latin hypercube method, determines which criterion should be used to assess space filling; (none, L2, maximin, entropy); default noneQRSEQUENCE = string tokenSpecifies which sequence to use with the quasi-random method; (sobol, niederreiter, faure); default sobolNUNITS = scalarsSpecifies the number of design points	CENTRED = string token	For the Latin hypercube method, determines whether the
should be used to assess space filling; (none, L2, maximin, entropy); default noneQRSEQUENCE = string tokenSpecifies which sequence to use with the quasi-random method; (sobol, niederreiter, faure); default sobolNUNITS = scalarsSpecifies the number of design points		design should be centred (yes, no); default no
QRSEQUENCE = string tokenentropy); default noneQRSEQUENCE = string tokenSpecifies which sequence to use with the quasi-random method; (sobol, niederreiter, faure); default sobolNUNITS = scalarsSpecifies the number of design points	CRITERION = string token	For the Latin hypercube method, determines which criterion
QRSEQUENCE = string tokenSpecifies which sequence to use with the quasi-random method; (sobol, niederreiter, faure); default sobolNUNITS = scalarsSpecifies the number of design points		should be used to assess space filling; (none, L2, maximin,
method; (sobol, niederreiter, faure); default sobolNUNITS = scalarsSpecifies the number of design points		entropy); default none
NUNITS = scalars Specifies the number of design points	QRSEQUENCE = <i>string token</i>	Specifies which sequence to use with the quasi-random
		method; (sobol, niederreiter, faure); default sobol
NDIMENSIONS = scalars Specifies the number of dimensions of each of the design	NUNITS = scalars	Specifies the number of design points
specifies the number of dimensions of each of the design	NDIMENSIONS = scalars	Specifies the number of dimensions of each of the design
points		points
NTIMES = <i>scalars</i> Specifies the number of times to run the ESE algorithm;	NTIMES = scalars	Specifies the number of times to run the ESE algorithm;
default 10		default 10

DISCREPANCY = scalars	Saves the discrepancy of the design
SEED = scalars	Seed to be used to randomize each design; default 0
Parameter	
X = pointer to variates	A pointer to a set of variates, each variate representing a
	column of the design matrix

AGSQLATTICE procedure

Generates square lattice or lattice square designs (R.W. Payne). **Options**

PRINT = string token	Controls whether or not to print a plan of the design (design); if unset in an interactive run AGSQLATTICE will ask whether
	the design is to be printed, in a batch run the default is not to
	print the design
ANALYSE = string token	Controls whether or not to analyse the design, and produce a
	skeleton analysis-of-variance table using ANOVA (no, yes);
	default is to ask if this is unset in an interactive run, and not to
	analyse if it is unset in a batch run
DESIGNTYPE = string token	What type of design to form (squarelattice,
	latticesquare); default squa
Parameters	
LEVELS = scalars	Number of treatments in each design
NREPLICATES = $scalars$	Number of replicates in each design, taken by default to be the
1	maximum number available in a batch run
SEED = scalars	Seed for randomization; a negative value implies no randomization
TREATMENTS = $factors$	Identifier for the treatment factor for each design
PSEUDOFACTORS = <i>pointers</i>	Identifier for the pseudofactors required if the design is not a balanced lattice
REPLICATES = factors	Identifier for the replicate factor for each design
BLOCKS = factors	Identifier for the factor to index the blocks within replicates of a square lattice
ROWS = factors	Identifier for the factor to index the rows within replicates of a
5	lattice square
COLUMNS = factors	Identifier for the factor to index the columns within replicates
	of a lattice square
UNITS = factors	Identifier for the factor to index the units (or plots) within the
	blocks of a square lattice
STATEMENT = <i>texts</i>	Saves a command to recreate the design (useful if the design
	information has been specified in response to questions from
	AGSQLATTICE)

EXCLUDEREPLICATES = *scalars* or *variates*

Replicates to exclude during randomization

AKAIKEHISTOGRAM procedure

Prints histograms with improved definition of groups (A. Keen).

Channel number of output file; default is the current output file
General title; default 'Histogram of', where is the
identifier of the structure specified by DATA
Lowest class limit
Interval width
Number of units represented by each symbol; default 1 (or
more if the page width is not sufficient)
Data for the histograms (variate, table, factor or matrix)
One-way table to save numbers in the groups

Annotation for key

Factor to save groups defined, with LEVELS the midpoints of

the intervals and LABELS as LEVELS, but as text-vector Characters to be used to represent the bars of each histogram

GROUPS = factors

SYMBOLS = *texts* DESCRIPTION = *texts*

AKEEP directive

Options

Copies information from an ANOVA analysis into Genstat data structures.

Limit on number of factors in a model term: default 3 FACTORIAL = scalar STRATUM = formula Model term of the lowest stratum to be searched for effects; default * implies the lowest stratum SUPPRESSHIGHER = *string token* Whether to suppress the searching of higher strata if a term is not found in STRATUM (ves, no); default no Representation of effects in 2ⁿ experiments (responses, TWOLEVEL = *string token* Yates, effects); default resp Saves residuals from the final stratum (as in the RESIDUALS RESIDUALS = variate parameter of ANOVA) FITTEDVALUES = *variate* Saves fitted values (data values or missing value estimates, minus the residuals from the final stratum - as in the FITTEDVALUES parameter of ANOVA) Saves the sum of the residuals from all the strata CBRESIDUALS = *variate* CBCREGRESSION = variate Saves the estimates of the covariate regression coefficients, combining information from all the strata CBCVCOVARIANCE = symmetric matrix Saves the variance-covariance matrix of the combined estimates of the covariate regression coefficients TREATMENTSTRUCTURE = *formula structure* Saves the treatment formula used for the analysis BLOCKSTRUCTURE = *formula structure* Saves the block formula used for the analysis Saves the setting of the FACTORIAL option used in the ANOVA AFACTORIAL = scalar command that performed the analysis WEIGHTS = variate Saves the weights used in the analysis Dummy to be set to the y-variate of the analysis YVARIATE = dummySignificance level (%) to use in the calculation of least LSDLEVEL = scalar significant differences; default 5 Saves the analysis-of-variance table as a pointer with a variate AOVTABLE = *pointer* or text for each column (source, d.f., s.s., m.s. etc) Factors whose levels are to be assumed to be equal within the EQFACTORS = factors comparisons between means calculated for SEMEANS Type of residuals to form if the RESIDUALS option or RMETHOD = *string token* parameter is set (simple, standardized); default simp EXIT = scalarSaves an exit code indicating the properties of the design SAVE = *identifier* Defines the Save structure (from ANOVA) that provides details of the analysis; default * gives that from the most recent ANOVA **Parameters** TERMS = *formula* Model terms for which information is required MEANS = *tables* Table to store means for each term (available for treatment terms only) SEMEANS = tables Table of effective standard errors for the means, usable for calculating standard errors for differences between means in the table, at equal levels of the factors specified by the EQFACTORS option Standard errors for comparisons between every pair of entries SEDMEANS = *symmetric matrices* in the table of means Variances and covariances of means VCMEANS = *symmetric matrices* Table or scalar (for terms with 1 d.f. when EFFECTS = *tables* or *scalars*

	TWOLEVEL=responses or Yates) to store effects (for
PARTIALEFFECTS = <i>tables</i>	treatment terms only) Table or scalar (for terms with 1 d.f. when
PARITALEFFECTS – lubles	TWOLEVEL=responses or Yates) to store partial effects (for
	treatment terms only)
REPLICATIONS = <i>tables</i> or <i>scalars</i>	Table to store replications or scalar if they are all equal
RESIDUALS = $tables$	Table to store residuals (for block terms only)
DF = scalars	Number of degrees of freedom for each term
LSDMEANS = symmetric matrices	Least significant differences of means
DFMEANS = $symmetric matrices$	Degrees of freedom for comparisons between every pair of
	entries in the table of means
SS = scalars	Sum of squares for each term
EFFICIENCY = scalars	Efficiency factor for each term
VARIANCE = $scalars$	Unit variance for the effects of each term
RTERM = formula structures	Residual terms: for a treatment term this saves the lowest
5	stratum where the term is estimated (down to the stratum
	specified by the STRATUM option); for a block term it saves all
	the strata to which it would be appropriate to compare the term
CEFFICIENCY = scalars	Covariance efficiency factor for each term
CREGRESSION = variates	Estimated regression coefficients for the covariates in the specified stratum
CSSP = symmetric matrices	Covariate sums of squares and products in the specified
cool symmetric matrices	stratum
CVCOVARIANCE = symmetric matrix	Variance-covariance matrix of the covariate regression
	coefficients in the specified stratum
CONTRASTS = <i>pointers</i>	Estimates for the fitted contrasts of each treatment term, stored
1	in a pointer to scalars or tables; units of the pointer are labelled
	by the contrast name (as used in the analysis-of-variance table)
XCONTRASTS = <i>pointers</i>	X-variates used to fit contrasts, as orthogonalized by ANOVA,
1	stored in a pointer to tables; units of the pointer are labelled as
	for CONTRASTS
SECONTRASTS = <i>pointers</i>	Standard errors for estimated contrasts, stored in a pointer to
-	scalars or tables; units of the pointer are labelled as for
	CONTRASTS
DFCONTRASTS = <i>pointers</i>	Degrees of freedom for estimated contrasts, stored in a pointer
	to scalars; units of the pointer are labelled as for CONTRASTS
CBMEANS = tables	Table to store estimates of the means, combining information
	from all the strata (for treatment terms only)
SECBMEANS = $tables$	Table of standard errors for the combined means, usable for
	calculating standard errors for differences between means in
	the table, at equal levels of the factors specified by the
	EQFACTORS option
SEDCBMEANS = <i>symmetric matrices</i>	Standard errors for comparisons between every pair of entries
	in the table of combined means
VCCBMEANS = <i>symmetric matrices</i>	Variances and covariances of combined means
LSDCBMEANS = symmetric matrices	Least significant differences of combined means Effective degrees of freedom for comparisons between every
DFCBMEANS = <i>symmetric matrices</i>	pair of entries in the table of combined means
CBEFFECTS = <i>tables</i> or <i>scalars</i>	Table or scalar (for terms with 1 d.f. when
CBEFFECTS – lubles of scalars	TWOLEVEL=responses or Yates) to store estimates of the
	effects, combining information from all the strata (for
	treatment terms only)
CBVARIANCE = $scalars$	Unit variance for the combined estimates of the effects of each
	term
DFCEFFECTS = <i>scalars</i>	Effective degrees of freedom for the combined estimates of the
	effects of each term
CBCEFFICIENCY = scalars	Covariance efficiency factor for the combined estimates of
	•

	each term
STRATUMVARIANCE = scalars	Estimates of the stratum variances (for block terms only)
COMPONENT = scalars	Stratum variance components (for block terms only)
STATUS = <i>scalars</i>	Status code describing how the term is estimated (together
	with its marginal terms, if the term is a treatment term)

AKEY procedure

Options	
PRINT = string token	Allows the generated TREATMENTFACTOR values to be printed, tabulated by the BLOCKFACTORS (design); default * i.e. no printing
BLOCKFACTORS = <i>factors</i>	Defines the block factors for the design; default is to take those in the formula already specified by the BLOCKSTRUCTURE directive, in the order in which they occur there
KEY = matrix	Matrix (number of treatment factors \times number of block factors) key for the design
BASEVECTOR = variate	Base vector (length = number of treatment factors) for the design; default is a variate of zeros
ROWPRIMES = variate	Prime numbers for the rows of the KEY matrix
COLPRIMES = variate	Prime numbers for the columns of the KEY matrix
ROWMAPPINGS = variate	Mappings from the rows of the KEY to the TREATMENTFACTORS
COLMAPPINGS = variate	Mappings from the columns of the KEY to the BLOCKFACTORS
Parameter	
TREATMENTFACTORS = <i>factors</i>	Defines the treatment factors for the design; default is to take those in the formula already specified by the TREATMENTSTRUCTURE directive, in the order in which they occur there

ALIAS procedure

Finds out information about aliased model terms in analysis of variance (R.W. Payne).

Options	
TREATMENTSTRUCTURE = formula	Treatment model for the design
BLOCKSTRUCTURE = formula	Block model for the design
FACTORIAL = scalar	Value used in the FACTORIAL option of ANOVA if not the
	default
DESIGN = pointer	Design structure for the analysis
Parameter	
TERM = factors	Factors defining the aliased model term

ALIGNCURVE procedure

Forms an optimal warping to align an observed series of observations with a standard series (D.B. Baird).

- I	
PRINT = string tokens	What to print (criterion, ss, warps); default * i.e. nothing
PLOT = string tokens	What to plot (series, warping); default * i.e. no plots
WARPPENALTY = $scalar$	The relative penalty to add to the criterion when jumping a
	unit in one series but not the other; default 1
MAXSTEP = scalar	The largest jump that can be made between the two series at a
	single point; default 1
MAXDIFFERENCE = $scalar$	Sets a limit on size of difference between the series to be
	squared and added to the criterion (differences greater than
	this are truncated to MAXDIFFERENCE, thus allowing the
	effects of outliers to be down-weighted); default * i.e. no limit
USEMEANS = <i>string token</i>	Whether to use the means of points covered in one step, rather

value, when calculating the sums of squares vo series (yes, no); default no rce the ends of the two series to align, so that ens only in the middle of the series (yes, no);
per for the plots; default 1
ne key (zero for no key); default 2
igned with the standard series
s for each Y
e contribution of each point to the criterion;
reighting
positions of the unit numbers, required to align Y
eries for Y, i.e. the optimally aligned y-values
value (as optimized during the alignment)
lots

ALLDIFFERENCES procedure

Shows all pairwise differences of values in a variate or table (A.R.G. McLachlan). **Options**

Options	
PRINT = string token	What to print (differences); default diff
CLPRINT = string token	How to print column labels (labels, integers); default labe
SORT = string token	How to sort the DATA values (ascending, descending); default * i.e. not sorted
MVREMOVE = <i>string token</i>	Whether to remove missing values (yes, no); default no
RCMETHOD = string token	Which differences to calculate i.e. column-row, row-column, or absolute values (column, row, absolute); default colu
DIAGONAL = <i>string token</i>	Whether to put the data values into the diagonal of the symmetric matrices of results (values); default * i.e. diagonal left as missing values
Parameters	-
DATA = variates or tables	Data values whose pairwise differences are required
DIFFERENCES = symmetric matrices	
	Saves the pairwise differences in a symmetric matrix if GROUPS is unset, otherwise in a pointer to several symmetric matrices
GROUPS = factors or pointers	Defines groupings of the data values
LABELS = texts	Labels for the rows (and columns) of the symmetric matrices of differences
NEWLABELS = <i>texts</i> or <i>pointers</i>	Saves the row labels of the symmetrix matrices of differences in a text if GROUPS is unset, otherwise in a pointer to several texts

ALLPAIRWISE procedure

Performs a range of all pairwise multiple comparison tests (D.M. Smith).

Options	
METHOD = string token	Test to be performed (Tukey, SNK, REGWMR, Duncan,
	Scheffe, FPLSD, FULSD, Bonferroni, Sidak);
DIRECTION = string token	How to sort means (ascending, descending); default asce
PROBABILITY = scalar	The required significance level; default=0.05
ALSD = string token	Whether to use the alternative LSD test where the Studentized
	Range statistic is used instead of Student's t (yes, no); default
	no

Parameters

 MEANS = variates or tables
 Mean values

 REPLICATIONS = scalars or tables or variates
 Number(s) of observations per mean

 VARIANCE = scalars
 Estimate of variance

 DF = scalars
 Degrees of freedom

DF = scalarsDegrees of freedomLABELS = textsIdentifiers of mean values

AMCOMPARISON procedure

Performs pairwise multiple comparison tests for ANOVA means (D.M. Smith).

Options	
PRINT = string tokens	Controls printed output (comparisons, critical,
	description, lines, letters, plot, mplot, pplot); default lett
METHOD = string token	Test to be performed (tukey, snk, regwmr, duncan,
	scheffe, fplsd, fulsd, bonferroni, sidak); default fplsd
FACTORIAL = scalar	Limit on the number of factors in each term; default 3
DIRECTION = string token	How to sort means (ascending, descending); default asce
PROBABILITY = scalar	The required significance level; default 0.05
STUDENTIZE = <i>string token</i>	Whether to use the alternative LSD test where the Studentized
C	Range statistic is used instead of Student's t (yes, no); default no
SAVE = ANOVA save structure	Save structure to provide the tables of means and associated information; default uses the save structure from the most recent ANOVA
Parameters	
TERMS = $formula$	Treatment terms whose means are to be compared
MEANS = <i>pointer</i> or <i>variate</i>	Saves the (sorted) means
LABELS = <i>pointer</i> or <i>text</i>	Saves labels for the (sorted) means
LETTERS = <i>pointer</i> or <i>text</i>	Saves letters indicating groups of means that do not differ significantly
SIGNIFICANCE = <i>pointer</i> or <i>symme</i>	etric matrix
	Indicators to show significant comparisons between (sorted)

AMDUNNETT procedure

Forms Dunnett's simultaneous confidence interval around a control (R.W. Payne).

means

	······································
Options	
PRINT = string token	Controls printed output (interval); default inte
METHOD = string token	Form of the alternative hypothesis (twosided,
	greaterthan, lessthan); default twos
CIPROBABILITY = scalar	Probability level for the confidence interval; default 0.95, i.e. a
	95% confidence interval
LOWER = scalar	Saves the lower confidence limit
UPPER = scalar	Saves the upper confidence limit
SAVE = ANOVA save structure	Save structure to provide the means; default uses the save
	structure from the most recent ANOVA
Parameters	
FACTOR = factors	Define the model term whose means are to be compared
CONTROL = <i>scalars</i> or <i>texts</i>	Scalar or single-valued text for each factor to identify which of
	the means of the term is the control; default uses the reference
	level of the FACTOR

AMERGE procedure	
Merges extra units into an experiment	al design (R.W. Payne).
Option	
SORT = string token	Whether to sort the factors afterwards (no, yes); default no
Parameters	
FACTOR = <i>factors</i>	Factors to which the new units are to be added
NEWUNITS = factors, variates or scalars	

Extra units to be added to each factor

AMMI procedure

Allows exploratory analysis of genotype \times environment interactions (M. Talbot, K. Brown & M.F. Smith).

Λ.	tiona	
U	otions	

PRINT = string tokens	Results to be output (aovtable, genotype, environment, estimates, envtable, cluster, stability); default *
	i.e. none
NROOTS = $scalar$	Number of IPCA scores required; default is to take as many roots as possible up to a maximum of 9
DIMENSIONS = scalars	Two numbers specifying the dimensions to display in the biplots; default 1,2
PLOT = string tokens	Types of biplot to display (mean, ipca); default * i.e. none
SCALING = string token	Scaling to use for the ipca (AMMI2) biplot (genotype,
C C	environment, symmetric); default envi
Parameters	
DATA = variates or tables	Provides the data to be analysed
GENOTYPES = factors	Specifies the genotypes
ENVIRONMENTS = factors	Specifies the environments
REPLICATES = factors	Replication factor; this should be omitted if the data comprises just the genotype by environment means
GSCORES = <i>pointers</i>	Pointer containing a set of variates (each of length equal to the number of genotypes) to save the genotype IPCA scores
ESCORES = <i>pointers</i>	Pointer to a set of variates to save the environment IPCA scores
RESIDUALS = variates	Saves the residuals from the AMMI model
FITTEDVALUES = variates	Saves the fitted values from the AMMI model
TITLEPREFIX = <i>texts</i>	Specifies a prefix to use for the titles of the plots
AOVTABLE = <i>pointers</i>	Saves the analysis-of-variance table
STABILITY = variates	Saves the AMMI stability values

AMTDISPLAY procedure

Displays further output for multitiered experiments analysed by AMTIER (C.J. Brien & R.W. Payne). **Option**

option	
PRINT = string tokens	Controls printed output from the analysis (aovtable,
	aovpseudotable, design, effects, fittedvalues);
	default * i.e. none
Parameter	
SAVE = pointers	Save structure for each analysis (saved from AMTIER); if this is not set the output is from the most recent AMTIER analysis

AMTKEEP procedure

Saves information from the analysis of a multitiered design by AMTIER (C.J. Brien & R.W. Payne). **Options**

Options	
RESIDUALS = variate	Saves the residuals
FITTEDVALUES = variate	Saves the fitted values
AOVTABLE = <i>pointer</i>	Saves the analysis-of-variance table

78	4 Syntax summary
SKELETON = string token	Whether to save only the skeleton analysis-of-variance table (yes, no); default no
<pre>PSEUDOLINES = string token</pre>	Whether to include lines for pseudo-terms in the analysis-of- variance table (yes, no); default no
OMITMISSINGLINES = <i>string token</i>	Whether to omit lines of the analysis-of-variance table that contain only missing values (yes, no); default no
SAVE = pointer	Save structure for the analysis; if this is not set, information is saved from the most recent AMTIER analysis
No parameters	

AMTIER procedure

Analyses a multitiered design by an analysis of variance specified by up to three model formulae (C.J. Brien & R.W. Payne).

Options

Options	
PRINT = string tokens	Controls printed output from the analysis (aovtable,
	aovpseudotable, design, effects, fittedvalues);
	default aovt
F1 = formula	First model formula
F2 = formula	Second model formula
F3 = formula	Third model formula
FACTORIAL = scalar	Limit on the number of factors in a model term
F2BALANCETYPE = <i>string token</i>	Type of balance required for F2 (orthogonal,
	firstorder); default orth
F3BALANCETYPE = string token	Type of balance required for F3 (orthogonal,
_	firstorder); default orth
PSEUDOTERMS = <i>formula structures</i>	Specifies pseudo-terms for terms in the F1, F2 or F3 formulae
DESIGN = tree	Saves or specifies details of the design and analysis
SEED = scalar	Seed for random numbers to generate dummy variate for
	determining the design; default 13579
TOLERANCE = variate	Tolerance for zero sweeps in dummy and y-variate analyses
DPRINT = string tokens	Controls debug output (setup, analysis, dummyanalysis);
-	default * i.e. none
Parameters	
Y = variates	Each of these contains the data values for an analysis
RESIDUALS = variates	Saves the residuals from each analysis
FITTEDVALUES = variates	Saves the fitted values from each analysis
SAVE = <i>pointers</i>	Save structure for each analysis (to use in AMTDISPLAY)
-	

ANOVA directive

Analyses y-variates by analysis of variance according to the model defined by earlier **BLOCKSTRUCTURE**, COVARIATE, and TREATMENTSTRUCTURE statements.

Options	
PRINT = string tokens	Output from the analyses of the y-variates, adjusted for any
	covariates (aovtable, information, covariates,
	effects, residuals, contrasts, means, cbeffects,
	<pre>cbmeans, stratumvariances, %cv, missingvalues);</pre>
	default aovt, info, cova, mean, miss
UPRINT = string tokens	Output from the unadjusted analyses of the y-variates
	(aovtable, information, effects, residuals,
	contrasts, means, cbeffects, cbmeans,
	stratumvariances,%cv,missingvalues);
	no printing
CPRINT = string tokens	Output from the analyses of the covariates, if any (aovtable,
	information, effects, residuals, contrasts, means,
	%cv,missingvalues); default * i.e. no printing
FACTORIAL = scalar	Limit on number of factors in a treatment term; default 3

CONTRASTS = scalar DEVIATIONS = scalar	Limit on the order of a contrast of a treatment term; default 4 Limit on the number of factors in a treatment term for the deviations from its fitted contrasts to be retained in the model; default 9
PFACTORIAL = scalar	Limit on number of factors in printed tables of means or effects; default 9
PCONTRASTS = scalar	Limit on order of printed contrasts; default 9
PDEVIATIONS = scalar	Limit on number of factors in a treatment term whose
	deviations from the fitted contrasts are to be printed; default 9
FPROBABILITY = string token	Printing of probabilities for variance ratios (yes, no); default no
PSE = string token	Standard errors to be printed with tables of means, PSE=*
	requests s.e.'s to be omitted (differences, lsd, means); default diff
TWOLEVEL = string token	Representation of effects in 2 ⁿ experiments (responses,
<u> </u>	Yates, effects); default resp
DESIGN = pointer	Stores details of the design for use in subsequent analyses;
	default *
WEIGHTS = variate	Weights for each unit; default * i.e. all units with weight one
ORTHOGONAL = <i>string token</i>	Whether or not design to be assumed orthogonal
	notassumed, assumed, compulsory); default nota
SEED = scalar	Seed for random numbers to generate dummy variate for
	determining the design; default 12345
MAXCYCLE = scalar	Maximum number of iterations for estimating missing values;
	default 20
TOLERANCES = variate	Allows you to redefine the tolerances for zero used by various
	parts of the algorithm
NOMESSAGE = <i>string tokens</i>	Which warning messages to suppress (nonorthogonal,
	residual); default *
LSDLEVEL = scalar	Significance level (%) to use in the calculation of least
	significant differences; default 5
EXIT = scalar	Saves an exit code indicating the properties of the design
Parameters	
Y = variates	Variates to be analysed
RESIDUALS = variates	Variate to save residuals for each y variate
FITTEDVALUES = variates	Variate to save fitted values
SAVE = <i>identifiers</i>	Save details of each analysis for use in subsequent ${\tt ADISPLAY}$
	or AKEEP statements

ANTMVESTIMATE procedure

Estimates missing values in repeated measurements (M.G. Kenward & R.W. Payne). **Options**

Options	
PRINT = string tokens	Controls output from the procedure (meanprofiles); default
	* i.e. none
GROUPS = factor	Factor indicating the plot on which each sequence of
	observations was made
order = scalar	Order of ante-dependence structure (i.e. number of past times
	for which to adjust)
Parameters	
DATA = variates	Observations at each time
NEWDATA = variates	Data variates with missing observations replaced by their
	estimates
MEANPROFILE = $tables$	Estimated mean profiles at each time

ANTORDER procedure

Assesses order of ante-dependence for repeated measures data (M.S. Ridout & R.W. Payne).

Options	
TREATMENTSTRUCTURE = formula	Treatment formula for the model at each time; if this is not set, the default is taken from the setting (which must already have
	been defined) of the TREATMENTSTRUCTURE directive
BLOCKSTRUCTURE = <i>formula</i>	Block formula for the model at each time; if this is not set, the default is taken from any existing setting specified by the BLOCKSTRUCTURE directive and if neither has been set the
	design is assumed to be unstratified (i.e. to have a single error term)
MAXORDER = $scalar$	Maximum order against which to test; default is maximum possible order
FACTORIAL = scalar	Limit on the number of factors in a treatment term
TIME = factor	Indicates the time of each observation when there is a single DATA variate
Parameter	
DATA = variates	Data observations either in a list of variates (one for each time), or a single variate (with TIME set to a factor indicating the time of each observation)

ANTTEST procedure

Calculates overall tests based on a specified order of ante-dependence (R.W. Payne & M.S. Ridout). Options

TREATMENTSTRUCTURE = formula	Treatment formula for the model at each time; if this is not set,
	the default is taken from the setting (which must already have
	been defined) of the TREATMENTSTRUCTURE directive
BLOCKSTRUCTURE = formula	Block formula for the model at each time; if this is not set, the
	default is taken from any existing setting specified by the
	BLOCKSTRUCTURE directive and if neither has been set the
	design is assumed to be unstratified (i.e. to have a single error
	term)
ORDER = scalar	Number of past times for which to adjust; default is maximum possible order
FACTORIAL = scalar	Limit on the number of factors in a treatment term
TIME = factor	Indicates the time of each observation when there is a single DATA variate
Parameter	
DATA = variates	Data observations either in a list of variates (one for each time), or a single variate (with TIME set to a factor indicating the time of each observation)

AN1ADVICE procedure

Aims to give useful advice if a design that is thought to be balanced fails to be analysed by ANOVA (R.W. Payne). Options

PRINT = string tokens	Controls printed output (advice, suspects); default advi
FACTORIAL = scalar	Limit on number of factors in a treatment term; default 3
METHOD = string tokens	Method to use to predict the correct pattern of replication
	(median, mode, proportional); default mode
WEIGHTS = variate	Weights for the analysis; default * i.e. all units have weight
	one
SUSPECTS = variate	Saves the numbers of the units whose factor values are
	suspected to be incorrect
Parameter	
Y = variates	Data values to be analysed (this is needed only if the analysis

is to take place on a restricted set of units)

AONEWAY procedure

Performs one-way analysis of variance (R.W. Payne).

Options	
PRINT = string tokens	Controls printed output from the analysis of variance
	(aovtable, information, covariates, effects,
	residuals, contrasts, means, cbeffects, cbmeans,
	stratumvariances,%cv,missingvalues,homogeneity
	permutationtest); default aovt, mean, miss
GROUPS = factor	Defines the treatments for the analysis
COVARIATES = <i>variates</i>	Covariates (if any) for analysis of covariance
PLOT = string tokens	Which residual plots to provide (fittedvalues, normal,
	halfnormal, histogram, absresidual); default fitt,
	norm, half, hist
GRAPHICS = string token	Type of graphs (lineprinter, highresolution); default high
FPROBABILITY = <i>string token</i>	Probabilities for variance ratio (yes, no); default no
PSE = string tokens	Types of standard errors to be printed with the means
	(differences, lsd, means); default diff
LSDLEVEL = scalar	Significance level (%) for least significant differences; default 5
NTIMES = scalar	Number of random allocations to make when PRINT=perm; default 999
SEED = scalar	Seed for the random number generator used to make the
	allocations; default 0 continues from the previous generation
	or (if none) initializes the seed automatically
Parameters	
Y = variates	Each of these contains the data values for an analysis
RESIDUALS = variates	Saves the residuals from each analysis
FITTEDVALUES = variates	Saves the fitted values from each analysis

AOVANYHOW procedure

Performs analysis of variance using ANOVA, regression or REML as appropriate (R.W. Payne). **Options**

options	
PRINT = string tokens	Controls printed output from the analysis (aovtable,
	information, means, residuals); default aovt, info,
	mean
METHOD = string token	Whether to complete the analysis or just form a
	recommendation (analyse, recommend); default anal
FACTORIAL = scalar	Limit on number of factors in a treatment term; default 3
FPROBABILITY = string token	Printing of probabilities for variance ratios in the analysis-of-
	variance table (yes, no); default no
PLOT = string tokens	Which residual plots to provide (fittedvalues, normal,
	halfnormal, histogram); default * i.e. none
COMBINATIONS = string token	Factor combinations for which to form predicted means
	(present, estimable); default esti
ADJUSTMENT = <i>string token</i>	Type of adjustment to be made when predicting means
	(marginal, equal, observed); default marg
WEIGHTS = variate	Weights for each unit; default * i.e. all units with weight one
PSE = string tokens	Types of standard errors to be printed with the predicted
	means (differences, alldifferences, lsd, alllsd,
	means; default diff
LSDLEVEL = scalar	Significance level (%) for least significant differences; default
	5

82	4 Syntax summary
EFLOSS = scalar	Maximum loss of efficiency occurring on any treatment contrast if the analysis is done by regression
EFLIMIT = scalar	Limit on the loss of efficiency for the analysis to be done by regression; default 0.1
EXIT = scalar	Exit code indicating the recommended method of analysis
Parameters	
Y = variates	Data values to be analysed
RESIDUALS = variates	Variate to save the residuals from each analysis
FITTEDVALUES = variates	Variate to save the fitted values from each analysis
SAVE = <i>identifiers</i>	To save details of each analysis to use subsequently with the AOVDISPLAY procedure

AOVDISPLAY procedure

Provides further output from an analysis by AOVANYHOW (R.W. Payne). **Options**

Options	
PRINT = string tokens	Controls printed output from the analysis (aovtable,
	information, means, residuals); default aovt, info, mean
FPROBABILITY = string token	Printing of probabilities for variance ratios in the analysis-of- variance table (yes, no); default no
PLOT = string tokens	Which residual plots to provide (fittedvalues, normal, halfnormal, histogram); default * i.e. none
COMBINATIONS = string token	Factor combinations for which to form predicted means (present, estimable); default esti
ADJUSTMENT = string token	Type of adjustment to be made when predicting means (marginal, equal, observed); default marg
PSE = string tokens	Types of standard errors to be printed with the predicted means (differences, alldifferences, lsd, alllsd, means; default diff
LSDLEVEL = scalar	Significance level (%) for least significant differences; default 5
EFLOSS = scalar	Maximum loss of efficiency occurring on any treatment contrast if the analysis is done by regression
EXIT = scalar	Code indicating the method of analysis
Parameters	
SAVE = <i>identifiers</i>	Save structure from AOVANYHOW; default uses the save structure from the most recent AOVANYHOW analysis

[†]APAPADAKIS directive

Analysis of variance with an added Baird).	Papadakis covariate, formed from neighbouring residuals (D.B.
Options	
PRINT = string tokens	Output from the analysis of the y-variates, adjusted for
	covariates (aovtable, information, covariates,
	effects, residuals, contrasts, means, cbeffects,
	cbmeans, stratumvariances, %cv, missingvalues);
	default aovt, info, cova, mean, miss
PLOT = string token	Whether to plot the residuals against the average of
	neighbouring residuals (residuals); default * i.e. no plot
NEIGHBOURS = <i>string token</i>	The neighbours whose residuals are averaged to form the
	residual covariate (adjacent, rows, columns, all); default
	adja
treatmentstructure = <i>formula</i>	Defines the treatment structure of the model; default given by
	the most recent TREATMENTSTRUCTURE directive
BLOCKSTRUCTURE = formula	Defines the blockings structure of the model; default given by the most recent BLOCKSTRUCTURE directive

COVARIATE = variates	Specifies any covariates in addition to the residual (Papadakis) covariate; default given by the most recent COVARIATE directive
FACTORIAL = scalar	Limit on number of factors in a treatment term; default 3
CONTRASTS = scalar	Limit on the order of a contrast of a treatment term; default 4
DEVIATIONS = scalar	Limit on the number of factors in a treatment term for the deviations from its fitted contrasts to be retained in the model; default 9
PSE = string token	Standard errors to be printed with tables of means, PSE=*
	requests s.e.'s to be omitted (differences, lsd, means); default diff
LSDLEVEL = scalar	Significance level (%) to use in the calculation of least
	significant differences; default 5
Parameters	-
Y = variates	Variates to be analysed
ROWS = factors or variates	Factor giving the row location of each plot
COLUMNS = factors or variates	Factor giving the column location of each plot
UNITS = factors or variates	Factor giving the plot location of each unit
RCOVARIATE = variates	Saves the covariate formed from the mean of the neighbouring residuals
TITLE = texts	Title for the graph; default i.e. title created from the Y variate name and the neighbouring plots that are used
WINDOW = scalars	Window number for the graph; default 3
PEN = scalars, variates or factors	Pen number for the graph; default 1
	• • •
SCREEN = <i>string token</i>	Whether to clear the screen before plotting or to continue plotting on the old screen (clear, keep); default clea

83

APERMTEST procedure

Does random permutation tests for analysis-of-variance tables (R.W. Payne). **Ontions**

Options	
PRINT = string tokens	Controls printed output (aovtable, critical); default aovt
PLOT = string	What to plot (histogram); default *
NTIMES = scalar	Number of permutations to make; default 999
EXCLUDE = $factors$	Factors in the block model of the design whose levels are not
	to be randomized
SEED = scalar	Seed for the random number generator used to make the
	permutations; default 0 continues from the previous generation
	or (if none) initializes the seed automatically
AOVTABLE = <i>pointer</i>	Saves the aov-table, with permutation probabilities
CRITICAL = <i>pointer</i>	Saves the aov-table, with critical values
SAVE = ANOVA save structure	Save structure from the analysis of variance; default uses the
	save structure from the most recent ANOVA

No parameters

APLOT procedure

Plots residuals from an ANOVA analysis (R.W. Payne & A.D. Todd). **Options**

Options	
RMETHOD = string token	Type of residuals to plot (simple, standardized); default simp
INDEX = variate or factor	X-variable for an index plot; default ! (1, 2)
STRATUM = formula	The stratum (or error term) whose residuals are to be plotted; the default is to plot the residuals from the final stratum
GRAPHICS = string token	What type of graphics to use (lineprinter, highresolution); default high
TITLE = text	Overall title for the plots; if unset, the identifier of the y- variate is used

84	4 Syntax summary
SAVE = ANOVA save structure	Specifies the analysis from which the residuals and fitted values are to be taken; by default they are taken from the most recent ANOVA
Parameters	
METHOD = string tokens	Type of residual plot (fittedvalues, normal,
	halfnormal, histogram, absresidual, index); default
	fitt, norm, half, hist
PEN = scalars, variates or factors	Pen(s) to use for each plot
APOLYNOMIAL procedure	
Forms the equation for a polynomia	al contrast fitted by ANOVA (R.W. Payne).
Options	

Options	
PRINT = string token	Whether to print the equation of the polynomial (equation);
	default equa
SAVE = ANOVA save structure	Save structure (from ANOVA) to provide details of the analysis
	from which the equations are to be formed; default uses the
	save structure from the most recent ANOVA
Parameters	
TERMS = formula	Model terms whose polynomial equations are required
COEFFICIENTS = pointers	Saves the coefficients of each polynomial

APOWER procedure

Calculates the power (probability of detection) for terms in an analysis of variance (R.W. Payne).

Options	
PRINT = string token	Prints the power (power); default powe
TERM = formula	Treatment term to be assessed in the analysis
TREATMENTSTRUCTURE = <i>formula</i>	Treatment structure of the design; determined automatically from an ANOVA save structure if TREATMENTSTRUCTURE is unset or if SAVE is set
BLOCKSTRUCTURE = <i>formula</i>	Block structure of the design; determined automatically from an ANOVA save structure if BLOCKSTRUCTURE is unset or if SAVE is set
FACTORIAL = scalar	Limit on the number of factors in treatment terms; default 3
PROBABILITY = scalar	Significance level at which the response is required to be detected (assuming a one-sided test); default 0.05
TMETHOD = string token	Type of test to be made (onesided, twosided, equivalence, noninferiority, fratio); default ones
XCONTRASTS = variate	X-variate defining a contrast to be detected
CONTRASTTYPE = <i>string token</i>	Type of contrast (regression, comparison) default rege
SAVE = $asave$	ANOVA save structure to provide the information about the design
Parameters	
RESPONSE = <i>scalars</i> , <i>variates</i> or <i>tables</i>	Size of the difference or contrast between the effects of TERM that is to be detected, or (for TMETHOD=fratio) pattern of effects or means to be detected
RMS = scalars	Anticipated residual mean square corresponding to TERM; can be omitted if a SAVE structure is available
POWER = scalars or variates	Saves the power (i.e. probability of detection) for RESPONSE

APPEND procedure

Appends a	list of vectors c	of compatible	types (R.V	V. Payne).	
0 11					

Options

NEWVECTOR = variate, factor or text	Vector to store the appended values; by default uses the first vector of the OLDVECTOR list
FREPRESENTATION = <i>string token</i>	How to match the values of old factors (levels, labels, ordinals, renumbered); default leve

GROUPS = factor

Factor to represent the $\ensuremath{\texttt{OLDVECTOR}}$ to which each unit originally belonged

Parameter

OLDVECTOR = variates, factors, texts or scalars

Values to be appended

APRODUCT procedure

Forms a new experimental design from the product of two designs (R.W. Payne).

Options

Controls printing of the design (design); default desi
Whether to analyse the design by ANOVA (yes, no); default no
How to combine the designs (cross, nest); default nest
Block formula for design 1
Treatment formula for design 1
Block formula for design 2
Treatment formula for design 2

ARANDOMIZE procedure

Randomizes and prints an experimental design (R.W. Payne).

Options	
PRINT = string token	Allows the (randomized) design to be printed; (design);
	default *
BLOCKSTRUCTURE = formula	Defines the block factors according to which the
	randomization is to be carried out; default takes the existing
	specification as defined by the BLOCKSTRUCTURE directive
EXCLUDE = $factors$	(Block) factors whose levels are not to be randomized
SEED = scalar	Seed to generate the random numbers used to define the
	randomization; default 0
LPERMUTE = <i>string token</i>	Whether to randomly permute treatment factor levels (no,
	yes); default no
Parameters	
OLDVECTOR = factors or variates	Vectors whose values are to be randomized; default is to use
-	the factors occurring in the formula (if any) specified by the
	most recent TREATMENTSTRUCTURE directive
NEWVECTOR = <i>factors</i> or <i>variates</i>	Vectors to store the randomized values; by default these
<i>y</i>	overwrite the values in the original vectors

[†]ARCSPLITPLOT procedure

Adds extra treatments onto the replicates of a resolvable row-column design, and generates factors giving the row and column locations of the plots within the design (R.W. Payne).

Options	
PRINT = strings	Controls printed output (design, factors, layout); default
	* i.e. none
LEVELS = <i>scalar</i> or <i>variate</i>	Numbers of levels of the extra treatment factors; if unset, takes
	the numbers of levels declared for the TREATMENTFACTORS
TREATMENTFACTORS = $factors$	Extra treatment factors to be imposed onto the replicates of the
	original row-column design
REPLICATES = $factor$	Replicates in the modified design (after adding the extra
	treatments)
WHOLEPLOTS = $factor$	Whole-plots in the modified design
ROWS = factor	Factor indexing the rows over the whole design
COLUMNS = factor	Factor indexing the columns over the whole design
RCREPLICATES = $factor$	Replicates in the row-column design
RCROWS = factor	Rows within replicates of the row-column design
RCCOLUMNS = factor	Columns within replicates of the row-column design

86	4 Syntax summary
REPLOCATIONS = variate or matrix METHOD = string	Locations of the replicates of the row-column design How to form the replicates of the modified design
	(rowserpentine, columnserpentine, given); default rows
SEED = scalar	Seed for randomizing the allocation of the extra treatments; default 0
SPREADSHEET = string	Whether to put the design factors into a spreadsheet (design); default *
No parameters	

AREPMEASURES procedure

Produces an analysis of variance for repeated measurements (R.W. Payne).

Options	
PRINT = string tokens	Controls output about the covariance structure
	(vcovariance, correlation, epsilon, test); default epsi, test
APRINT = string tokens	Printed output from the analysis of variance (as for the ANOVA PRINT option); default *
TREATMENTSTRUCTURE = formula	Defines the treatments given to the subjects; if this is not set, the default is taken from any existing setting defined by the TREATMENTSTRUCTURE directive
BLOCKSTRUCTURE = <i>formula</i>	Defines any block structure over the subjects if this is not set, the default is taken from any existing setting defined by the BLOCKSTRUCTURE directive
COVARIATE = variates	Specifies any covariates on the subjects if this is not set, the default is taken from any existing setting defined by the COVARIATE directive
FACTORIAL = scalar	Limit in the number of factors in the terms generated from the TREATMENTSTRUCTURE formula
TIMEPOINTS = variate, text or factor	When the DATA parameter supplies a separate variate of observations for each time this can specify numbers or labels for the time points, when there is a single DATA variate this must supply a factor to indicate the time of each observation
CONTRASTS = scalar	Limit on the order of a contrast of a treatment term; default 4
DEVIATIONS = scalar	Limit on the number of factors in a treatment term for the deviations from its fitted contrasts to be retained in the model; default 9
FPROBABILITY = <i>string token</i>	Printing of probabilities for variance ratios in the aov table (no, yes); default no
PSE = string tokens	Standard errors to be printed with tables of means (differences, lsd, means); default diff
MAXCYCLE = scalar	Maximum number of iterations for estimating missing values; default 20
LSDLEVEL = scalar	Significance level (%) to use in the calculation of least significant differences; default 5
EPSILON = scalar	Saves the correction factor epsilon
SAVEFACTORS = <i>pointer</i>	Saves the factors used in the analysis of variance
ASAVE = <i>identifier</i>	Saves the ANOVA save structure from the analysis of variance
Parameter	
DATA = variates	Data observations either in a list of variates (one for each time), or a single variate (with TIMEPOINTS set to a factor indicating the time of each observation)

ARESULTSUMMARY procedure

Provides a summary of results from an ANOVA analysis (R.W. Payne).

Options

PRINT = string tokens	What to print (description, means, significant); default
	desc, mean, sign
PSE = string tokens	Standard errors to be printed with the means (sed,
	sedsummary, 1sd, 1sdsummary, dfmeans); default sed,
	dfme
LSDLEVEL = scalar	Significance level (%) for least significant differences; default
	5
SAVE = ANOVA save structure	Save structure for the analysis; default uses the save structure
	from the most recent ANOVA

No parameters

ARETRIEVE procedure

Retrieves an ANOVA save structure from an external file (R.W. Payne).

No options Parameters FILENAME = *tex*

FILENAME = $texts$	Name of the file storing the save structure
EXIT = scalars	Scalar that contains the value one if the save structure was retrieved successfully, otherwise contains either zero or a
	missing value
SAVE = $asave$ structures	Save structure that has been retrieved

ASAMPLESIZE procedure

Finds the replication to detect a treatment effect or contrast (R.W. Payne & P. Brain). **Options**

Options	
PRINT = string tokens	Prints the replication or produces a printed summary of the
	power etc. for the various amounts of replication (power,
	replication); default powe, repl
TERM = formula	Treatment term to be assessed in the analysis
REPLICATES = factor	Factor identifying the replication in the design
MINREPLICATION = scalar	Minimum number of replicates to try; default 2
MAXREPLICATION = $scalar$	Maximum feasible number of replicates; default * i.e. no limit
TREATMENTSTRUCTURE = formula	Treatment structure of the design; determined automatically
	from an ANOVA save structure if TREATMENTSTRUCTURE is
	unset or if SAVE is set
BLOCKSTRUCTURE = formula	Block structure of the design; determined automatically from
	an ANOVA save structure if BLOCKSTRUCTURE is unset or if
	SAVE is set
COMPONENTS = variate or scalar	Variate of variance components of all the terms in the block
	structure or, if TERM is estimated in the final stratum of the
	design, scalar containing only the variance component of the
	final stratum itself; determined automatically (if possible) from
	an ANOVA save structure if unset
FACTORIAL = scalar	Limit on the number of factors in treatment terms; default 3
PROBABILITY = scalar	Significance level at which the response is required to be
	detected (assuming a one-sided test); default 0.05
POWER = scalar	The required power (i.e. probability of detection) of the test;
	default 0.9
TMETHOD = string token	Type of test to be made (onesided, twosided,
8	equivalence, noninferiority, fratio); default ones
XCONTRASTS = variate	X-variate defining a a contrast to be detected
CONTRASTTYPE = <i>string token</i>	Type of contrast (regression, comparison) default rege
SAVE = $asave$	ANOVA save structure to provide the information about the
	design

to be detected

Size of the difference or contrast between $\ensuremath{\mathtt{TERM}}$ effects that is

Number of replicates required to detect RESPONSE

Parameters

RESPONSE = scalars

NREPLICATES = scalars

ASCREEN procedure

Performs screening tests for designs with orthogonal block structure (R.W. Payne).

Options	-
PRINT = string tokens	Which tests to print (conditional, marginal,
	efficiency); default cond, marg
FACTORIAL = scalar	Limit on the number of factors in each treatment term; default
	3
EXCLUDEHIGHER = string token	Whether to exclude higher-order interactions in the initial
	model for the conditional test of each term (yes, no); default no
FORCED = formula	Terms that must be included (together with any covariates) in
	the initial models for every term; default * i.e. none
Parameter	
Y = variates	Variates to be analysed

ASPREADSHEET procedure

Saves results from an analysis of variance in a spreadsheet (R.W. Payne).

Options	
MEANS = pointer	Pointer to tables to contain the treatment means; default means
SEMEANS = pointer	Pointer to tables to contain the effective standard errors of treatment means; default ese
SEDMEANS = pointer	Pointer to matrices to contain standard errors of differences of treatment means; default sed
EFFECTS = <i>pointer</i>	Pointer to tables to contain the treatment effects; default effects
REPLICATIONS = pointer	Pointer to tables of treatment replications; default replication
RESIDUALS = variate	Variate to save the residuals in the fittedvalues page; default residuals
FITTEDVALUES = variate	Variate to save the fitted values in the fittedvalues page; default fittedvalues
AOVTABLE = <i>pointer</i>	Pointer to a text and variates containing the information in the analysis-of-variance table; default aovtable
COVINFORMATION = pointer	Pointer to a text and variates containing the information about the estimated covariate regression coefficients; default cov
MVINFORMATION = pointer	Pointer to a text and variates containing the information the about estimated missing values; default missing
EQFACTORS = <i>factors</i>	Factors whose levels are to be assumed to be equal within the comparisons between means, when calculating effective standard errors
RMETHOD = <i>string token</i>	Type of residuals to form (simple, standardized); default simp
[†] LSDMEANS = $pointer$	Pointer to matrices to contain least significant differences for means
[†] LSDLEVEL = scalar	Significance level (as a percentage) for the least significant differences; default 5
SPREADSHEET = <i>string tokens</i>	What to include in the spreadsheet (aovtable, covariates, effects, means, semeans, sedmeans, lsdmeans, replications, fittedvalues, missingvalues); default aovt, cova, mean, sedm, repl, fitt, miss
OUTFILENAME = <i>texts</i>	Name of Genstat workbook file (.gwb) or Excel (.xls or .xlsx) file to create

89

SAVE = ANOVA save structure

Specifies which analysis to save; default * i.e. most recent regression

No parameters

ASRULES directive

Derives association rules from transaction data.

Options	
PRINT = string tokens	Controls printed output (rules); default rule
METHOD = string tokens	What to use to calculate the support of a rule (allitems, antecedent); default ante
MINSUPPORT = scalar	Minimum amount of support for a rule to be included; default 0.1
MINCONFIDENCE = scalar	Minimum amount of confidence for a rule to be included; default 0.8
MAXITEMS = scalar	Maximum number of items that a rule may contain; default 10
MAXRULES = $scalar$	Maximum number of rules to generate; default 100
Parameters	
ITEMS = factors	Items in the transactions
TRANSACTIONS = factors	Specifies the transaction to which each each item belongs
NRULES = scalars	Saves the number of rules that have been derived
RULES = pointers	Pointer to factors, each of which saves the antecedent items and then the consequent item in one of the rules
SUPPORT = variates	Saves the support values for the rules
CONFIDENCE = variates	Saves the confidence values for the rules

ASSIGN directive

Sets elements of pointers and dummies.

Options

NSUBSTITUTE = scalar	Number of times n to substitute a dummy in order to determine which structure to assign (if n is negative, the assigned structure is the $-n$ th from the bottom of the chain of dummies, like the NTIMES option of EXIT); default 0 i.e. no substitution
METHOD = string token	Whether to replace or preserve the existing value in each
	dummy or pointer element (replace, preserve); default
	repl (note, pointer elements are never unset so
	METHOD=preserve with a pointer simply causes the
	assignment to be ignored)
RENAME = string token	Whether to reset the default name for the structure if it has
_	only a suffixed identifier (yes, no); default no
SCOPE = string token	This allows dummies or pointer elements within a procedure to
	be set to point to structures in the program that called the
	procedure (SCOPE=external) or in the main program itself
	(SCOPE=global) rather than to structures within the
	<pre>procedure (local, external, global); default loca</pre>
NSTRUCTURESUBSTITUTE = scalar	Number of times <i>n</i> to substitute a dummy setting of the
	STRUCTURE parameter in order to determine which structure to
	assign to the setting of the POINTER parameter (if <i>n</i> is
	negative, the assigned structure is the $-n$ th from the bottom of
	the chain of dummies, like the NTIMES option of EXIT);
	default 0 i.e. no substitution
Parameters	
STRUCTURE = <i>identifiers</i>	Values for the dummies or pointer elements
POINTER = <i>dummies</i> or <i>pointers</i>	Structure that is to point to each of those in the STRUCTURE list
ELEMENT = $scalars$ or $texts$	Unit or unit label indicating which pointer element is to be set;
	if omitted, the first element is assumed

ASTATUS procedure

Provides information about the settings of ANOVA models and variates (R.W. Payne).

Option	
PRINT = string tokens	Controls printed output (y, model, weights); default mode
Parameters	
Y = pointers	Pointer of length 1 to save the identifier of the y-variate of the most recent ANOVA or that used to form INSAVE
TREATMENTSTRUCTURE = formula structure	ctures
	Saves the current setting of TREATMENTSTRUCTURE or the setting used to form INSAVE
BLOCKSTRUCTURE = <i>formula structures</i>	s Saves the current setting of BLOCKSTRUCTURE or the setting used to form INSAVE
COVARIATE = <i>pointers</i>	Saves the current COVARIATE setting or the setting used to form INSAVE
DESIGN = pointers	Pointer of length 1 to save the design structure in the most recent ANOVA or the one used to form INSAVE
WEIGHTS = pointers	Pointer of length 1 to save the identifier of the variate of weights (if any) in the most recent ANOVA or that used to form INSAVE
SAVE = <i>asave</i> structures INSAVE = <i>asave</i> structures	Saves the save structure from the most recent ANOVA Provides a save structure from which to save Y,
	TREATMENTSTRUCTURE, BLOCKSTRUCTURE and COVARIATE; default * uses the current settings

ASTORE procedure

Stores an ANOVA save structure in an external file (R.W. Payne).

No options Parameters

Options

RSS = scalars

1 al ametel s	
FILENAME = $texts$	Name of the file to store the save structure
EXIT = scalars	Scalar that contains the value one if the save structure was stored successfully, otherwise contains either zero or a missing value
SAVE = <i>asave</i> structures	Save structure to be stored; default stores the save structure from the most recent ANOVA

ASWEEP procedure

Performs sweeps for model terms in an analysis of variance (R.W. Payne).

- I · · · · ·	
TERM = formula	Model term (or terms) involved in the sweep (this need not be specified if EMETHOD=calculated); default is to sweep for
	the grand mean
EFFICIENCY = scalar	Efficiency factor of the term(s)
EMETHOD = string token	Source of the effects (calculated, given); default calc
RMETHOD = string token	Method to be used to obtain the residual variate (subtract,
	replace); default subt
Parameters	
Y = variate	Working variates to be swept
EFFECTS = table	Estimated effects
RESIDUALS = variate	New working variates, following the sweep
SS = scalars	Sum of squares due to the term(s)

Sum of squares due to the term(s) Sum of squares of the working variate after the sweep

AUDISPLAY procedure

Produces further output for an unbalanced design after AUNBALANCED (R.W. Payne). Options

Options	
PRINT = string tokens	Controls printed output from the analysis (aovtable,
	effects,means,residuals,%cv);defaultaovt,mean
PFACTORIAL = scalar	Limit on number of factors in printed tables of predicted
	means; default 3
FPROBABILITY = <i>string token</i>	Printing of probabilities for variance ratios in the analysis-of- variance table (yes, no); default no
TPROBABILITY = <i>string token</i>	Printing of probabilities for t-tests of effects (yes, no); default
	no
PLOT = string tokens	Which residual plots to provide (fittedvalues, normal,
C	halfnormal, histogram); default * i.e. none
COMBINATIONS = <i>string token</i>	Factor combinations for which to form predicted means
0	(present, estimable); default esti
ADJUSTMENT = string token	Type of adjustment to be made when predicting means
0	(marginal, equal, observed); default marg
PSE = string tokens	Types of standard errors to be printed with the predicted
5	means (differences, alldifferences, lsd, alllsd,
	means, ese); default diff
LSDLEVEL = scalar	Significance level (%) for least significant differences; default
	5
RMETHOD = string token	Type of residuals to plot (simple, standardized); default simp
PMEANTERMS = formula	Treatment terms for which predicted means are to be printed;
U U	default * implies all the treatment terms
Parameter	*
SAVE = <i>identifiers</i>	Save structure (from AUNBALANCED) containing details of the
u u	analysis for which further output is required; if omitted, output
	is from the most recent use of AUNBALANCED

AUGRAPH procedure

Plots tables of means from AUNBALANCED (R.W. Payne).

n.	ationa	
U	ptions	

Options	
GRAPHICS = string token	Type of graph (highresolution, lineprinter); default high
METHOD = string token	What to plot (means, lines, data, barchart, splines); default mean
XFREPRESENTATION = <i>string token</i>	How to label the x-axis (levels, labels); default labels uses the XFACTOR labels, if available
PSE = string token	What to plot to represent variation (differences, lsd, means, allmeans); default diff
COMBINATIONS = string token	Factor combinations for which to form predicted means (present, estimable); default esti
ADJUSTMENT = <i>string token</i>	Type of adjustment to be made when predicting means
LSDLEVEL = scalar	(marginal, equal, observed); default marg Significance level (%) to use for least significant differences; default 5
DFSPLINE = scalar	Number of degrees of freedom to use when METHOD=splines
YTRANSFORM = <i>string tokens</i>	Transformed scale for additional axis marks and labels to be plotted on the right-hand side of the y-axis (identity, log,
penytransform = <i>scalar</i>	<pre>log10, logit, probit, cloglog, square, exp, exp10, ilogit, iprobit, icloglog, root); default iden i.e. none Pen to use to plot the transformed axis marks and labels; default * selects a pen, and defines its properties, automatically</pre>

92	4 Syntax summary
[†] KEYMETHOD = <i>string token</i>	What to use for the key descriptions when GROUPS specifies more than one factor (labels, namesandlabels); default name
[†] PLOTTITLEMETHOD = <i>string token</i>	What to use for the titles of the plots when TRELLISGROUPS specifies more than one factor (labels, namesandlabels); default name
[†] PAGETITLEMETHOD = <i>string token</i>	What to use for the titles of the pages when PAGEGROUPS specifies more than one factor (labels, namesandlabels); default name
[†] USEAXES = <i>string token</i>	Which aspects of the current axis definitions of window 1 to use (none, limits, marks, mpositions, nsubticks,); default none
SAVE = regression save structure	Save structure to provide the table of means; default uses the save structure from the most recent AUNBALANCED analysis (provided no other regression analysis has been done in the interim)
Parameters	
XFACTOR = <i>factors</i>	Factor providing the x-values for each plot
GROUPS = factors or pointers	Factor or factors identifying groups of points in each plot; by default chosen automatically
TRELLISGROUPS = factors or pointers	Factor or factors specifying the different plots of a trellis plot of a multi-way table
PAGEGROUPS = <i>factors</i> or <i>pointers</i>	Factor or factors specifying plots to be displayed on different pages
NEWXLEVELS = variates	Values to be used for XFACTOR instead of its existing levels
TITLE = texts	Title for the graph; default defines a title automatically
YTITLE = texts	Title for the y-axis; default is to use the identifier of the y- variate, or to have no title if this is unnamed
XTITLE = <i>texts</i>	Title for the x-axis; default is to use the identifier of the XFACTOR
PENS = variates	Defines the pen to use to plot the points and/or line for each group defined by the GROUPS factors

AUKEEP procedure

Saves output from analysis of an unbalanced design (by AUNBALANCED) (R.W. Payne).

Options	
FACTORIAL = scalar	Limit on number of factors in the model terms generated from
	the TERMS parameter; default 3
RESIDUALS = <i>variate</i>	To save residuals from the analysis
FITTEDVALUES = variate	To save fitted values
COMBINATIONS = <i>string token</i>	Factor combinations for which to form predicted means
	(present,estimable); default esti
ADJUSTMENT = <i>string token</i>	Type of adjustment to be made when predicting means
	(marginal, equal, observed); default marg
LSDLEVEL = scalar	Significance level (as a percentage) for the least significant
	differences
RMETHOD = string token	Type of residuals to form if the RESIDUALS option is set
	(simple, standardized); default simp
SAVE = <i>identifier</i>	Save structure (from AUNBALANCED) containing details of the
	analysis for which further output is required; if omitted, output
	is from the most recent use of AUNBALANCED
Parameters	
TERMS = formula	Model terms for which information is required
MEANS = <i>table</i> or <i>pointer</i> to <i>tables</i>	Predicted means for each term
SEMEANS = <i>table</i> or <i>pointer</i> to <i>tables</i>	Standard errors of the means for each term
SEDMEANS = <i>symmetric matrix</i> or <i>point</i>	ter to symmetric matrices
	Standard errors of differences between means

4.1 Communus	4.1	Commands
--------------	-----	----------

ESEMEANS = <i>table</i> or <i>pointer</i> to <i>tables</i>	Approximate effective standard errors of the means: these are formed by procedure SED2ESE with the aim of allowing good
	approximations to the standard errors for differences to be
	calculated by the usual formula $sed_{ij} = \sqrt{(ese_i^2 + ese_j^2)}$
LSD = <i>symmetric matrix</i> or <i>pointer</i> to <i>sy</i>	mmetric matrices
	Least significant differences

AUMCOMPARISON procedure

Performs pairwise multiple comparison tests for means from an unbalanced analysis of variance, performed previously by AUNBALANCED (D.M. Smith).

Options

PRINT = string tokens	Controls printed output (comparisons, critical,
	<pre>description, lines, letters, plot, mplot, pplot);</pre>
	default lett
METHOD = string token	Test to be performed (flsd, bonferroni, sidak); default flsd
FACTORIAL = scalar	Limit on the number of factors in each term; default 3
COMBINATIONS = string token	Factor combinations for which to form predicted means
	(present,estimable); default esti
ADJUSTMENT = <i>string token</i>	Type of adjustment to be made when predicting means
	(marginal, equal, observed); default marg
WEIGHTS = table	Weights classified by some or all of the factors in the model
DIRECTION = string token	How to sort means (ascending, descending); default asce
PROBABILITY = scalar	The required significance level; default 0.05
STUDENTIZE = <i>string token</i>	Whether to use the alternative LSD test where the Studentized
	Range statistic is used instead of Student's t (yes, no); default
	no
SAVE = <i>identifier</i>	Save structure to provide the table of means; default uses the
	save structure from the most recent AUNBALANCED analysis
Parameters	
TERMS = $formula$	Treatment terms whose means are to be compared
MEANS = <i>pointer</i> or <i>variate</i>	Saves the (sorted) means
LABELS = <i>pointer</i> or <i>text</i>	Saves labels for the (sorted) means
LETTERS = <i>pointer</i> or <i>text</i>	Saves letters indicating groups of means that do not differ
	significantly
SIGNIFICANCE = <i>pointer</i> or <i>symme</i>	tric matrix
	Indicators to show significant comparisons between (sorted)

AUNBALANCED procedure

Performs analysis of variance for unbalanced designs (R.W. Payne).

means

Options	
PRINT = string tokens	Controls printed output from the analysis (aovtable,
	effects, means, residuals, screen, %cv); default aovt, mean
FACTORIAL = scalar	Limit on number of factors in a treatment term; default 3
PFACTORIAL = scalar	Limit on number of factors in printed tables of predicted
	means; default 3
NOMESSAGE = <i>string tokens</i>	Which warning messages to suppress (dispersion,
	leverage, residual, aliasing, marginality,
	vertical, df, inflation); default * i.e. none
FPROBABILITY = <i>string token</i>	Printing of probabilities for variance ratios in the analysis-of-
	variance table (yes, no); default no
TPROBABILITY = <i>string token</i>	Printing of probabilities for t-tests of effects (yes, no); default
	no
PLOT = string tokens	Which residual plots to provide (fittedvalues, normal,
	halfnormal, histogram); default * i.e. none

94	4 Syntax summary
COMBINATIONS = string token	Factor combinations for which to form predicted means
	(present, estimable); default esti
ADJUSTMENT = <i>string token</i>	Type of adjustment to be made when predicting means
	(marginal, equal, observed); default marg
PSE = string tokens	Types of standard errors to be printed with the predicted
	means (differences, alldifferences, lsd, alllsd,
	means, ese); default diff
LSDLEVEL = scalar	Significance level (%) for least significant differences; default
	5
RMETHOD = string token	Type of residuals to plot (simple, standardized); default
D	simp
Parameters	
Y = variates	Data values to be analysed
RESIDUALS = variates	Variate to save the residuals from each analysis
FITTEDVALUES = variates	Variate to save the fitted values from each analysis
SAVE = <i>identifiers</i>	To save details of each analysis to use subsequently with the
	AUDISPLAY procedure

AUPREDICT procedure

Forms predictions from an unbalanced design (after AUNBALANCED) (R.W. Payne).

Options	
PRINT = string tokens	What to print (description, predictions, se, sed, sedsummary, ese, lsd, lsdsummary, vcovariance);
	default pred, sed
MODEL = formula	Model to use to calculate the predictions; default * i.e. full model fitted by AUNBALANCED
FACTORIAL = scalar	Limit on number of factors or variates in each term specified by MODEL; default 3
COMBINATIONS = <i>string token</i>	Factor combinations for which to form predicted means (present, estimable); default esti
ADJUSTMENT = <i>string token</i>	Type of adjustment to be made when predicting means (marginal, equal, observed); default marg
PREDICTIONS = <i>tables</i> or <i>scalars</i>	Saves predictions; default *
SE = tables or scalars	Saves standard errors of predictions; default *
SED = symmetric matrices	Saves matrices of standard errors of differences between predictions; default *
ESE = table	Saves effective standard errors
LSD = symmetric matrix	Saves least significant differences between predictions
LSDLEVEL = scalar	Significance level (%) for least significant differences; default 5
VCOVARIANCE = <i>symmetric matrices</i>	Saves variance-covariance matrices of predictions; default *
SAVE = <i>identifier</i>	Save structure (from AUNBALANCED) containing details of the
·	analysis for which predictions are required; if omitted, output is from the most recent use of AUNBALANCED
Parameters	
CLASSIFY = vectors	Variates and/or factors to classify table of predictions
LEVELS = <i>variates</i> or <i>scalars</i>	To specify values of variates, levels of factors

AUSPREADSHEET procedure

Saves results from an analysis of an unbalanced design (by AUNBALANCED) in a spreadsheet (R.W. Payne).

Options

Pointer to tables to contain the treatment means; default means
Pointer to tables to contain the standard errors of treatment
means; default sem
Pointer to matrices to contain standard errors of differences of

0/

4 Synto

	treatment means; default sed Pointer to matrices to contain effective standard errors of
ESEMEANS = pointer	treatment means; default ese
EFFECTS = <i>pointer</i>	Pointer to contain the estimated effects, their standard errors, t-
	statistics and probabilities; default effects
REPLICATIONS = <i>pointer</i>	Pointer to tables of treatment replications; default replication
RESIDUALS = variate	Variate to save the residuals in the fittedvalues page;
	default residuals
FITTEDVALUES = variate	Variate to save the fitted values in the fittedvalues page;
	default fittedvalues
COMBINATIONS = string token	Factor combinations for which to form predicted means
0	(present, estimable); default esti
ADJUSTMENT = string token	Type of adjustment to be made when predicting means
in the second second	(marginal, equal, observed); default marg
AOVTABLE = <i>pointer</i>	Pointer to a text and variates containing the information in the
Advirbbil pointer	analysis-of-variance table; default aovtable
RMETHOD = string token	Type of residuals to form (simple, standardized); default
METHOD string token	simp
[†] LSDMEANS = $pointer$	Pointer to matrices to contain least significant differences for
I I I I I I I I I I I I I I I I I I I	means
[†] LSDLEVEL = scalar	Significance level (as a percentage) for the least significant
	differences; default 5
SPREADSHEET = <i>string tokens</i>	What to include in the spreadsheet (aovtable, effects,
8	means, semeans, sedmeans, esemeans, 1sdmeans,
	replications, fittedvalues); default aovt, mean, sedm,
	repl, fitt
OUTFILENAME = texts	Name of Genstat workbook file (.gwb) or Excel (.xls or .xlsx)
OUTFILENAME - lexis	file to create
SAVE = <i>identifier</i>	Save structure (from AUNBALANCED) containing details of the
SAVE – Menugier	
	analysis for which further output is required; if omitted, output is from the most recent use of AUUDAL MOUD
N	is from the most recent use of AUNBALANCED
No narameters	

No parameters

AU2RDA procedure

Saves results from an unbalanced analysis of variance, by AUNBALANCED, in R data frames (R.W. Payne & Z. Zhang).

Options	
TERM = formula	Treatment term whose means, effects etc. are to be saved; must be set if any of these are to be saved, unless there is only one
	treatment term
COMBINATIONS = <i>string token</i>	Factor combinations for which to form predicted means
	(present, estimable); default esti
ADJUSTMENT = <i>string token</i>	Type of adjustment to be made when predicting means
	(marginal, equal, observed); default marg
LSDLEVEL = scalar	Significance level (%) for least significant differences and
	multiple comparisons; default 5
RMETHOD = string token	Type of residuals to form (simple, standardized); default simp
MCOMPARISON = <i>string token</i>	Method to use to make multiple comparisons between the
C C	means (flsd, fstudentizedlsd, bonferroni, sidak);
	default * i.e. none
SAVE = <i>identifier</i>	Save structure (from AUNBALANCED) containing details of the analysis for which further output is required; if omitted, output is from the most recent use of AUNBALANCED
Parameters	
INFORMATION = <i>string tokens</i>	What to save (aovtable, effects, means, semeans,

96	4 Syntax summary
	esemeans, sedmeans, lsdmeans, replications,
	fittedvalues); must be set
OUTFILENAME = texts	Name of the $R(.rda)$ file to create for each set of
	information; must be set
COLUMNNAMES = $texts$	Specifies names for the columns in the file; if this is not set,
	suitable names are chosen automatically
EXIT = scalars	Records the exit status, 0 if the information was saved successfully, 1 otherwise
	-

AXES directive

Defines the axes in each window for high-resolution graphics.

Options	S of S F
EQUAL = string tokens	Whether/how to make axes equal (no, scale, lower, upper); default no
RESET = string token	Whether to reset the axes definitions to the default values (no, yes); default no
Parameters	
WINDOW = scalars	Numbers of the windows
YTITLE = texts	Title for the y-axis in each window
XTITLE = texts	Title for the x-axis in each window
YLOWER = scalars	Lower bound for y-axis
YUPPER = scalars	Upper bound for y-axis
XLOWER = scalars	Lower bound for x-axis
XUPPER = scalars	Upper bound for x-axis
YMARKS = <i>scalars</i> or <i>variates</i>	Distance between each tick mark on y-axis (scalar) or
	positions of the marks (variate)
XMARKS = <i>scalars</i> or <i>variates</i>	Distance between each tick mark on x-axis (scalar) or
	positions of the marks (variate)
YMPOSITION = <i>string tokens</i>	Position of the tick marks across the y-axis (left, right,
XMPOSITION = string tokens	centre) Position of the tick marks across the x-axis (above, below, centre)
YLABELS = texts	Labels at each mark on y-axis
XLABELS = texts	Labels at each mark on x-axis
YLPOSITION = string tokens	Position of the labels for the y-axis (left, right)
XLPOSITION = string tokens	Position of the labels for the x-axis (above, below)
YORIGIN = scalars	Position on y-axis at which x-axis is drawn
XORIGIN = scalars	Position on x-axis at which y-axis is drawn
STYLE = string tokens	Style of axes (none, x, y, xy, box, grid)
PENTITLE = scalar	Pen to use for the title
PENAXES = scalar	Pen to use for the axes and their labelling
PENGRID = scalar	Pen to use for the grid
SAVE = pointers	Saves details of the current settings for the axes concerned

AXIS directive

Defines an oblique axis for high-resolution graphics.

Option	
RESET = string token	Whether to reset the axis definition to the default values (yes, no); default no
Parameters	
IDENTIFIER = <i>identifiers</i>	Name to be used inside Genstat to identify each axis
TITLE = texts	Title for each axis
TPOSITION = string tokens	Position of title (middle, end)
TDIRECTION = string tokens	Direction of title (parallel, perpendicular)
LOWER = scalars	Lower bound for each axis
UPPER = scalars	Upper bound for each axis

MARKS = scalars or variates	Distance between each tick mark (scalar) or positions of the marks along each axis (variate)
MPOSITION = string tokens	Positioning of the tick marks on each axis (inside, outside,
LABELS = <i>texts</i> or <i>variates</i>	across) Labels at each major tick mark
LPOSITION = string tokens	Position of the axis labels (inside, outside)
LDIRECTION = string tokens	Direction of the axis labels (parallel, perpendicular)
LROTATION = scalars or variates	Rotation of the axis labels (paraffer, perpendicular)
SUBTICKS = scalars	Number of subticks per interval (ignored if MARKS is a variate)
XZERO = scalars	Position of the axis origin in the x-dimension
YZERO = scalars	Position of the axis origin in the y-dimension
ZZERO = scalars	Position of the axis origin in the z-dimension
XSTEP = scalars	Step in the x-direction corresponding to a step of length one
ASTEP - scalars	along the axis
YSTEP = scalars	Step in the y-direction corresponding to a step of length one
	along the axis
ZSTEP = scalars	Step in the z-direction corresponding to a step of length one
	along the axis
PENTITLE = scalars	Pen to use to write the axis title
PENAXIS = scalars	Pen to use to draw the axis
PENLABELS = $scalar$	Pen to use to write the axis labels
ARROWHEAD = <i>string tokens</i>	Whether the axis should have an arrowhead (include, omit)
ACTION = string tokens	Whether to display or hide the axis (display, hide)
TRANSFORM = <i>string tokens</i>	Transformed scale for the axis marks and labels (identity,
	log, log10, logit, probit, cloglog, square, exp,
	exp10, ilogit, iprobit, icloglog, root);
DECIMALS = scalars or variates	Number of decimal places to use for numbers printed at the
	marks
DREPRESENTATION = scalars or variat	tes
	Format to use for dates and times printed at the marks
VREPRESENTATION = <i>string tokens</i>	Format to use for numbers printed at the marks (decimal,
C C	engineering, scientific); default deci
ZEROOFFSET = scalars	Point on the axis corresponding to XZERO, YXERO and ZZERO
SAVE = pointers	Saves details of the current settings for the axis concerned
1	6

AYPARALLEL procedure

Does the same analysis of variance for several y-variates, and collates the output (R.W. Payne & D.B. Baird).

Options

Options	
PRINT = string tokens	Controls printed output (summary, monitoring); default *
	i.e. none
TREATMENTSTRUCTURE = formula	Treatment formula for the analysis; if this is not set, the default
	is taken from the setting (which must already have been
	defined) of the TREATMENTSTRUCTURE directive
BLOCKSTRUCTURE = formula	Block formula for the analysis; if this is not set, the default is
	taken from any existing setting specified by the
	BLOCKSTRUCTURE directive and if neither has been set the
	design is assumed to be unstratified (i.e. to have a single error
	term)
COVARIATE = variates	Defines any covariates
FACTORIAL = scalar	Limit on the number of factors in a treatment term
SAVETERMS = formula	Treatment terms for which to save information; if this is not
	set, information is saved for all the treatment terms
REPLICATION = pointer	Pointer to tables saving the replication of the SAVETERMS
SPREADSHEET = <i>string tokens</i>	What results to save in spreadsheets (aov, means, vcmeans,
	effects, vareffects, seeffects, contrasts,

secontrasts, tcontrasts, prcontrasts); default * i.e. none Limit on the order of a contrast of a treatment term; default 4 CONTRASTSLIMIT = scalar Limit on the number of factors in a treatment term for the DEVIATIONSLIMIT = scalar deviations from its fitted contrasts to be retained in the model; default 9 **Parameters** Y = variates or pointers Y-variates for each analysis Identifies the individual y-variates when they are supplied in a VFACTOR = factors single Y variate Saves the residuals **RESIDUALS** = *variates* or *matrices* Saves the fitted values FITTEDVALUES = *variates* or *matrices* Pointer to a matrix for each of the SAVETERMS, saving the MEANS = *pointers* means from each analysis Pointer to matrices saving variances and covariances for the VCMEANS = *pointers* means Pointer to matrices saving effects EFFECTS = *pointers* VAREFFECTS = *pointers* Pointer to variates saving unit variances for effects SEEFFECTS = *pointers* Pointer to variates saving standard errors of effects Pointer to variates saving degrees of freedom DF = *pointers* SS = pointers Pointer to variates saving sums of squares MS = pointers Pointer to variates saving mean squares Pointer to variates saving degrees of freedom for the residual RDF = *pointers* corresponding to each of the SAVETERMS RSS = pointers Pointer to variates saving residual sums of squares Pointer to variates saving residual mean squares Pointer to variates saving variance ratios Pointer to variates saving probabilities for the variance ratios Pointer to matrices saving estimates of contrasts SECONTRASTS = *pointers* Pointer to matrices saving standard errors of contrasts Pointer to matrices saving t-statistics for contrasts PRCONTRASTS = *pointers* Pointer to matrices saving probabilities for t-statistics of contrasts Name of Genstat workbook file (.gwb) or Excel (.xls or .xlsx) OUTFILENAME = *texts* file to create

A2DISPLAY procedure

Provides further output following an analysis of variance by A2WAY (R.W. Payne).

Options	
PRINT = string tokens	Controls printed output from the analysis (aovtable,
	information, covariates, effects, residuals, means,
	%cv,missingvalues);
FPROBABILITY = <i>string token</i>	Probabilities for variance ratio (yes, no); default no
PLOT = string tokens	Which residual plots to provide (fittedvalues, normal,
	halfnormal, histogram, absresidual); default *
GRAPHICS = string token	Type of graphs (lineprinter, highresolution); default high
COMBINATIONS = <i>string token</i>	Factor combinations for which to form predicted means
	(present, estimable); default esti
ADJUSTMENT = <i>string token</i>	Type of adjustment to be made when predicting means
	(marginal, equal, observed); default marg
PSE = string tokens	Types of standard errors to be printed with the means
	(differences, lsd, means); default diff
LSDLEVEL = scalar	Significance level (%) for least significant differences; default
	5
RMETHOD = string token	Type of residuals to display (simple, standardized);

RMS = pointers VR = pointers PRVR = *pointers* CONTRASTS = *pointers* TCONTRASTS = *pointers*

default simp

Parameter SAVE = *pointers*

Save structure (from A2WAY) for the analysis; if omitted, output is from the most recent A2WAY analysis

A2KEEP procedure

Copies information from an A2WAY analysis into Genstat data structures (R.W. Payne). Ontions

Options	
FACTORIAL = scalar	Sets a limit on the number of factors in the terms formed from
	the TERMS formula; default 2
RESIDUALS = variate	Saves the residuals
FITTEDVALUES = variate	Saves the fitted values
COMBINATIONS = string token	Factor combinations for which to form predicted means
	(present, estimable); default esti
ADJUSTMENT = <i>string token</i>	Type of adjustment to be made when predicting means
	(marginal, equal, observed); default marg
lsdlevel = <i>scalar</i>	Significance level (%) for least significant differences; default
	5
AOVTABLE = <i>pointer</i>	To save the analysis-of-variance table as a pointer with a
	variate or text for each column (source, d.f., s.s., m.s. etc)
RMETHOD = string token	Type of residuals to form if the RESIDUALS option is set
	(simple, standardized); default simp
EXIT = scalar	Saves an exit code indicating the properties of the design
SAVE = pointer	Save structure (from A2WAY) for the analysis; if omitted,
	output is from the most recent A2WAY analysis
Parameters	

Specifies the treatment terms whose means &c are to be saved Saves tables of means for the terms or pointer to tables MEANS = *table* or *pointer* to *tables* SEMEANS = *table* or *pointer* to *tables* Saves approximate effective standard errors of means SEDMEANS = *table* or *pointer* to *tables* Saves standard errors of differences between means LSD = *table* or *pointer* to *tables* Saves least significant differences

A2PLOT procedure

TERMS = formula

Plots effects from two-level designs with robust s.e. estimates (Eric D. Schoen & Enrico A.A. Kaul). Options

options	
PRINT = string tokens	Which ANOVA output to print, as in ADISPLAY; default aovt, effe
CHANNEL = scalar	What channel to use for anova and line-printer output; default
	* i.e. the current output channel
FACTORIAL = scalar	Limit for factorial expansion of TREATMENT formula; default 3
STRATUM = <i>formula</i>	Error strata from which Yates effects are to be plotted; if
·	unset, plots are made for all the strata
GRAPHICS = string token	What type of graphics (highresolution, lineprinter);
	default high
TITLE = string tokens	Separate titles for each of the plots
METHOD = string token	Whether to make half-Normal or Normal plots (halfnormal,
	normal); default half
ROBUSTNESS = <i>string token</i>	Robustness of scale estimators against contamination with
_	active effects (low, medium, high); default medi
ALPHALEVEL = scalar	Type I error (0.20, 0.15, 0.10, 0.05, 0.01); default 0.05
EXCLUDE = scalars	How many of the largest effects to withhold from each of the
	half-Normal plots; default 0
Parameters	-
Y = variates	Data to be analysed
EFFECTS = <i>pointers</i>	To save a variate for each error stratum containing the (sorted)

Yates effects estimated there

SE = <i>pointers</i>	To save a scalar with the standard error of the Yates effects for
SIGNIFICANT = <i>pointers</i>	each error stratum To save formulae containing the significant Yates effects in each stratum

A2RDA procedure

Saves results from an analysis of variance in R data frames (R.W. Payne & Z.Zhang).

Options	
TERM = formula	Treatment term whose means, effects etc. are to be saved; must be set if any of these are to be saved, unless there is only one
STRATUM = formula	treatment term Model term of the lowest stratum to be searched for effects and contrasts; default * implies the lowest stratum
SUPPRESSHIGHER = <i>string token</i>	Whether to suppress the searching of higher strata if a term is not found in STRATUM (yes, no); default no
LSDLEVEL = scalar	Significance level (%) for least significant differences and multiple comparisons; default 5
EQFACTORS = <i>factors</i>	Factors whose levels are to be assumed to be equal within the comparisons between means calculated for effective standard errors of treatment means
RMETHOD = string token	Type of residuals to form (simple, standardized, combined); default simp
MCOMPARISON = string token	Method to use to make multiple comparisons between the means (tukey, regwmr, duncan, scheffe, fplsd, fulsd, fpstudentizedlsd, fustudentizedlsd, bonferroni, sidak); default * i.e. none
SAVE = ANOVA save structure	Specifies the analysis from which to save the results; default * i.e. most recent one
Parameters	
INFORMATION = <i>string tokens</i>	<pre>What to save (aovtable, covariates, effects,</pre>
OUTFILENAME = <i>texts</i>	Name of the R (.rda) file to create for each set of information; must be set
COLUMNNAMES = texts	Specifies names for the columns in the file; if this is not set, suitable names are chosen automatically
EXIT = scalars	Records the exit status, 0 if the information was saved successfully, 1 otherwise

A2RESULTSUMMARY procedure

Provides a summary of results from an analysis by A2WAY (R.W. Payne).

Options	
PRINT = string tokens	What to print (description, means, significant); default
	desc, mean, sign
PSE = string tokens	Standard errors to be printed with the means (sed,
	sedsummary, 1sd, 1sdsummary, dfmeans); default sed,
	dfme
LSDLEVEL = scalar	Significance level (%) for least significant differences; default
	5
SAVE = pointer	Save structure from A2WAY; default uses the save structure
-	from the most recent A2WAY analysis
No parameters	

A2WAY procedure

Performs analysis of variance of a balanced or unbalanced design with up to two treatment factors (R.W. Payne).

Options

PRINT = string tokens	Controls printed output from the analysis (aovtable, information, covariates, effects, residuals, means,
	%cv, missingvalues); default aovt, mean
TREATMENTS = $factors$	Defines either one or two treatment factors
BLOCKS = factor	Can specify a blocking factor e.g. for a randomized block
	design
COVARIATES = variates	Specifies any covariates
FACTORIAL = scalar	Can be set to 1 to fit only the main effects of the treatments
	factors; default 2 also fits their interaction
FPROBABILITY = <i>string token</i>	Probabilities for variance ratio (yes, no); default no
PLOT = string tokens	Which residual plots to provide (fittedvalues, normal,
	halfnormal, histogram, absresidual); default fitt,
	norm, half, hist
GRAPHICS = string token	Type of graphs (lineprinter, highresolution); default high
COMBINATIONS = <i>string token</i>	Factor combinations for which to form predicted means (
	present, estimable); default esti
ADJUSTMENT = <i>string token</i>	Type of adjustment to be made when predicting means
	(marginal, equal, observed); default marg
PSE = string tokens	Types of standard errors to be printed with the means
	(differences, lsd, means); default diff
LSDLEVEL = scalar	Significance level (%) for least significant differences; default 5
RMETHOD = string token	Type of residuals to save or display (simple,
	standardized); default simp
MVINCLUDE = string token	Whether to include units with missing y-values when using
	ANOVA (yvariate); default * i.e. not included
EXIT = scalar	Saves an exit code indicating the properties of the design
Parameters	
Y = variates	Each of these contains the data values for an analysis
RESIDUALS = variates	Saves the residuals from each analysis
FITTEDVALUES = variates	Saves the fitted values from each analysis
SAVE = pointers	Save structure for each analysis (to use in A2DISPLAY or A2KEEP)

BACKTRANSFORM procedure

Calculates back-transformed means with approximate standard errors and confidence intervals (V.M. Cave). Ontions

Options	
PRINT = string tokens	Controls printed output (description, means, backmeans);
	default desc, back
PLOT = string tokens	The confidence intervals of the back-transformed means to
	<pre>plot (backtransformed, approximate, both); default *</pre>
	i.e. none
TRANSFORMATION = <i>string tokens</i>	Transformation (identity, logarithm, log10, logit,
	squareroot, reciprocal, power, probit,
	complementaryloglog,logratio, angular,
	arcsinesquareoot, calculated); default iden (i.e. no
	transformation)
CLOG = scalar	Constant c for the logarithm and log10 transformations, in
	form $\log(\text{mean}+c)$; default 0
EXPONENT = scalar	Exponent for power transformation; default -2

102	4 Syntax summary
KLOGRATIO = scalar	Parameter k for logratio transformation, in form
BACKTRANSFORMATION = <i>expression</i>	log(mean/(mean+k)); default 1 Expression, formed using argument Y, that defines the inverse of the transformation; must be specified when
DERIVATIVE = expression	TRANSFORMATION = calculated Expression, formed using argument Y, that defines the first derivative of the transformation; must be specified when TRANSFORMATION = calculated
CIPROBABILITY = scalar	Probability for the confidence intervals; default 0.95
DIRECTION = string tokens	Order in which the back-transformed means are plotted
	(ordinal, ascending, descending); default ordi
USEPENS = <i>string tokens</i>	Whether to use the current pen definitions for plotting; (yes, no); default no
WINDOW = $scalar$	Window to use for plot; default 3
Parameters	
MEANS = tables, variates or scalars	Supplies the transformed mean(s)
SEMEANS = <i>tables</i> , <i>variates</i> or <i>scalars</i>	Supplies the standard error(s) of the transformed mean(s)
DF = scalars	Degrees of freedom to construct the confidence intervals;
	default *
DECIMALS = scalars	Number of decimal places for printing; default *
BACKTRANSFORMEDMEANS = tables, variates or scalars	
	Saves the back-transformed means
SEBACKTRANSFORMEDMEANS = tables, variates or scalars	
	Saves the approximate standard errors for the back-
	transformed means
CIAPPROXIMATE = pointers	Saves the approximate confidence intervals for the back-
	transformed means
CIBACKTRANSFORMED = <i>pointers</i>	Saves the back-transformed confidence intervals for the back-
	transformed means
TITLE = texts	Title for plot; default * i.e. none
YTITLE = texts	Title for y-axis; default * i.e. none
XTITLE = texts	Title for x-axis; default * i.e. formed automatically

BAFFYMETRIX procedure

Estimates expression values from an Affymetrix CED and CDF file (D.B. Baird). **Options**

Options	
METHOD = string token	Method for calculating probe expression values (mas4, mas5,
	rma, rma2); default rma
TRANSFORMATION = <i>string</i>	How to transform the data (log2, none); default none when
	METHOD=mas4, otherwise log2
Parameters	
CELFILES = <i>texts</i>	Affymetrix CEL files
CDFFILE = texts	Associated CDF file
GSHFILE = texts	Genstat spreadsheet file containing the estimated expression
	values, together with the associated slide and probe
	information

BANK procedure

Calculates the optimum aspect ratio for a graph (J. Ollerton & S.A. Harding).	
Option	
WINDOW = scalar	Window number; default 1
Parameters	
Y = variates	Vertical coordinates
X = variates	Horizontal coordinates
ASPECTRATIO = scalars	Store the calculated aspect ratios

BARCHART directive

Plots bar charts in high-resolution graphics.

Options	1
TITLE = text	General title; default *
WINDOW = scalar	Window number for the bar charts; default 1
KEYWINDOW = scalar	Window number for the key (zero for no key); default 2
BARWIDTH = scalar, variate or table	Width(s) of the bars; default * sets equal widths to fill the x-axis
BARCOVERING = scalar	What proportion of the space allocated along the x-axis each bar should occupy; default * gives proportion 1 for a DATA variate, and 0.8 for a factor or table (thus giving a gap between each bar)
LABELS = text	Labels for the bars or groups of bars; default *
APPEND = string token	Whether or not the bars of the bar charts are appended together (yes, no); default no
YSCALING = string token	What scale to use to label the y-axis (absolute, proportion, percentage); default abso
ORIENTATION = string token	Direction of the plot (horizontal, vertical); default vert
OUTLINE = string token	Where to draw outlines (bars, perimeter); default bars
PENOUTLINE = $scalar$	Pen to use for the outlines; default -9
SCREEN = string token	Whether to clear the screen before plotting or to continue
	plotting on the old screen (clear, keep); default clea
KEYDESCRIPTION = text	Overall description for the key; default *
ENDACTION = string token	Action to be taken after completing the plot (continue, pause); default * uses the setting from the last DEVICE statement
Parameters	
DATA = tables or variates	Heights of the bars in each bar chart
ERRORBARS = <i>scalars</i> , <i>tables</i> or <i>variates</i>	
	Heights of error bars plotted above the bars of each bar chart; default 0 i.e. none
LOWERERRORBARS = scalars, tables or variates	
	Heights of error bars plotted below the bars of each bar chart; if any of these is omitted, the corresponding setting of ERRORBARS is used as the default so that the error bars will have equal heights above and below the bars of the bar chart
GROUPS = factors	Which factor of a 2-way table to use as the groups factor; default uses the second classifying factor
PEN = <i>scalars</i> , <i>tables</i> or <i>variates</i>	Pen number(s) for each bar chart; default * uses pens 2, 3, and so on for the successive structures specified by DATA
PENERRORBARS = <i>scalars</i> , <i>tables</i> or <i>var</i>	
,	Pen number(s) for the error bars; default -11
DESCRIPTION = texts	Annotation for key

BASELINE procedure

Estimates a baseline for a series of numbers whose minimum value is drifting. (D.B. Baird).

,
Whether to plot the series and the fitted baseline (baseline);
default * i.e. no plot
Bandwidth for the moving minimum; default 50
Window number for the plot; default 1
Window for the key (zero for no key); default 2
Series whose baseline is to be estimated
Saves the y-values corrected to a zero baseline
Saves the estimated baseline

104	4 Syntax summary
TITLE = text	Title for the plot
BASSESS directive	
Assesses potential splits for regressi	on and classification trees.
Options	
Y = variate or factor	Response variate for a regression tree, or factor specifying the groupings for a classification tree
SELECTED = <i>dummy</i>	Returns the identifier of x variate or factor used in the best split
TESTSPLIT = <i>expression structure</i>	Logical expression representing the best split
MAXSPLITPOINT = scalar or variate	When SELECTED is a variate or a factor with ordered levels this returns a scalar containing the boundary between the two splits, when the SELECTED is a factor with unordered levels it returns a variate containing the levels allocated to the first split
MAXCRITERION = scalar	Maximum value obtained for the selection criterion
NOSELECTION = scalar	Returns the value 1 if no split has been selected, otherwise 0
FMETHOD = string token	Selection method to use when Y is a factor (Gini, MPI); default Gini
ANTIENDCUTFACTOR = <i>string token</i>	Anti-end-cut factor to use when Y is a factor (classnumber, reciprocalentropy); default * i.e. none
WEIGHTS = variate	Weights; default * i.e. all weights 1
TOLERANCE = $scalar$	Tolerance multiplier used e.g. to check for equality of x-values; default * i.e. set automatically for the implementation concerned
Parameters	
X = variates or factors	Variables available to make the split
ORDERED = string tokens	Whether factor levels are ordered (yes, no); default no
SPLITPOINT = scalars or variates	Saves details of the best split found for each x variable; when x is a variate or a factor with ordered levels this returns a scalar containing the boundary between the two splits, when the x is a factor with unordered levels it returns a variate containing the levels allocated to the first split
CRITERIONVALUE = scalars	Saves the value of the selection criterion for the best split

BBINOMIAL procedure

Estimates the parameters of the beta binomial distribution (D.M. Smith).

Options	
PRINT = string tokens	Controls printed output (estimates, loglikelihood);
	default esti
MAXCYCLE = scalar	Maximum number of iterations; default 50
TOLERANCE = $scalar$	Convergence criterion; default 10^{-5}
Parameters	
RBINOMIAL = variates	Numerator of binomial data
NBINOMIAL = variates	Denominator of binomial data or scalars
MU = scalars	Mean, expectation of underlying beta distribution
THETA = scalars	Shape-determining parameter of underlying beta distribution
SEMU = scalars	Standard error of mu
SETHETA = scalars	Standard error of theta
LOGLIKELIHOOD = scalars	Log likelihood
NCYCLES = scalars	Number of iterations
EXIT = scalars	Indicator of faults

found for each x variable

Option	
PRINT = string tokens	Controls printed output (summary, details, indented, bracketed, labelleddiagram, numbereddiagram, graph); default * i.e. none
Parameter	
TREE = $tree$	Tree to be displayed
BCFDISPLAY procedure Displays information about a random classification forest (R.W. Payne). Option	
PRINT = string tokens	Controls printed output (outofbagerror, confusion, importance, orderedimportance); default * i.e. none
Parameter	- / - //
SAVE = pointers	Save structure from BCFOREST providing information about the random forest

BCFIDENTIFY procedure

Identifies specimens using a random classification forest (R.W. Payne). Options

Options	
PRINT = string tokens	Controls printed output (identification); default * i.e.
	none
IDENTIFICATION = <i>scalar</i> or <i>variate</i>	Saves the identification of each specimen
VOTES = matrix	Saves numbers of the terminal nodes reached by the specimens
SAVE = <i>pointers</i>	Save structure from BCFOREST providing information about
	the random forest
Parameters	
X = variates or factors	Explanatory variables
VALUES = <i>scalars</i> , <i>variates</i> or <i>texts</i>	Values to use for the explanatory variables; if these are unset
	for any variable, its existing values are used

BCFOREST procedure

Constructs a random classification forest (R.W. Payne).

Options	
PRINT = string tokens	Controls printed output (outofbagerror, confusion, importance, orderedimportance, monitoring); default outo, conf, impo
NTREES = scalar	Number of trees in the forest; no default - must be specified
NXTRY = scalar	Number of x variables to select at random at each node from which to choose the x variable to use there; default is the square root of number of x variables
NUNITSTRY = scalar	Number of units of the X variables to select at random to use in the construction of each tree; default is two thirds of the number of units
METHOD = string token	Selection criterion to use when constructing the trees (Gini, MPI); default Gini
GROUPS = factor	Groupings of the individuals to identify in the trees
NSTOP = scalar	Number of individuals in a group at which to stop selecting tests; default 5
ANTIENDCUTFACTOR = <i>string token</i>	Adaptive anti-end-cut factor to use (classnumber, reciprocalentropy); default * i.e. none
SEED = scalar	Seed for random numbers to select the NXTRY X-variables and NUMITSTRY units; default 0
OWNBSELECT = string token	Indicates whether or not your own version of the $\ensuremath{\mathtt{BSELECT}}$

106	4 Syntax summary
OUTOFBAGERROR = <i>scalar</i>	procedure is to be used, as explained in the Method section (yes, no); default no Saves the "out-of-bag" error rate
CONFUSION = matrix	Saves the confusion matrix
SAVE = pointer	Saves details of the forest that has been constructed
Parameters	
X = factors or variates	X-variables available for constructing the tree
ORDERED = string tokens	Whether factor levels are ordered (yes, no); default no
IMPORTANCE = scalars	Saves the importance of each x-variable

BCIDENTIFY procedure

Identifies specimens using a classification tree (R.W. Payne).

Options

PRINT = string tokens	Controls printed output (identification, transcript); if PRINT is unset in an interactive run BCIDENTIFY will ask
	what you want to print, in a batch run the default is iden
TREE = tree	Specifies the tree
IDENTIFICATION = text	Saves the identification of each specimen
TERMINALNODES = <i>pointer</i>	Saves the numbers of the terminal nodes reached by each specimen
PROBABILITIES = matrix	Specimen \times group matrix giving the probability that the specimens belong to each group
MVINCLUDE = string token	Whether to provide identifications for specimens with missing or unavailable values of the x-variables (explanatory); default expl
Parameters	

X = variates or factors	Explanatory variables
VALUES = <i>scalars</i> , <i>variates</i> or <i>texts</i>	Values to use for the explanatory variables; if these are unset
	for any variable, its existing values are used

BCKEEP procedure

Saves information from a classification tree (R.W. Payne).No optionsParametersTREE = treesTree from which the information is to be savedSUMMARY = variatesSaves summary information about each treeXVARIABLES = pointersSaves the identifiers of the x-variables in each tree

BCLASSIFICATION procedure

Constructs a classification tree (R.W. Payne).

Options	
PRINT = string tokens	Controls printed output (summary, details, indented,
	bracketed, labelleddiagram, numbereddiagram,
	graph, monitoring); default * i.e. none
METHOD = string token	Selection criterion to use when constructing the tree (Gini,
	MPI); default Gini
GROUPS = factor	Groupings of the individuals in the tree
TREE = $tree$	Saves the tree that has been constructed
NSTOP = scalar	Number of individuals in a group at which to stop selecting
	tests; default 5
ANTIENDCUTFACTOR = string token	Adaptive anti-end-cut factor to use (classnumber,
	reciprocalentropy); default * i.e. none
OWNBSELECT = string token	Indicates whether or not your own version of the BSELECT
	procedure is to be used, as explained in the Method section
	(yes, no); default no

4.1 Commands

Parameter

X = factors or variates	X-variables available for constructing the tree
ORDERED = string tokens	Whether factor levels are ordered (yes, no); default no
BCONSTRUCT procedure	
Constructs a tree (R.W. Payne).	
Option	

PRINT = string token	Whether to print monitoring information (monitoring); default * i.e. none
Parameters	
TREE = $trees$	Saves the trees that have been constructed

Data available for constructing the trees

TREE = *trees* DATA = *identifiers*

BCUT directive

Cuts a tree at a defined node, discarding the nodes and information below it.

Option

RENUMBER = <i>string token</i>	Whether or not to renumber the nodes of the tree (yes, no); default no
Parameters	
TREE = trees	Trees to be cut
NODE = scalars	Node at which to cut each tree
NEWTREE = trees	New trees with the information cut; if unspecified, the new tree replaces the original tree
CUTTREE = <i>trees</i>	Tree formed from the branches cut from the original tree
OLDNODES = variates	Mapping from old nodes to node numbers in a renumbered new tree (as positive numbers) or to nodes in the CUTTREE (as negative numbers)
NEWNODES = variates	Mapping from new node numbers in a renumbered tree to the original nodes
CUTNODES = variates	Mapping from node numbers in the CUTTREE tree to the original nodes

BCVALUES procedure

Forms values for nodes of a classification tree (R.W. Payne).

cation tree (iv. w . i ayne).
Groupings of the observations in the data set
Tree for which predictions and accuracy values are to be
formed
Whether to replace the values stored in the tree (yes, no);
default no
New predictions for the nodes of the tree
New accuracy values for the nodes of the tree
New replication tables for the nodes of the tree
Values of the factors or variates used in the tree for the new data set

BGIMPORT procedure

Imports MCMC output in CODA format produced by WinBUGS or OpenBUGS (D.A. Murray). **Options**

- F	
INDEXFILE = text	Name of file containing index for output files
OUTPREFIX = text	Prefix name for the output files
WORKDIRECTORY = text	Working directory to use; default current Genstat working
	directory
PNAMES = $text$	Saves the names of the simulated nodes

108	4 Syntax summary
NOUTFILES = scalar	Number of output files or chains to read; default 1
Parameter SIMULATIONS = <i>pointers</i>	Saves the simulations in a list of pointers, one for each Markov chain

BGPLOT procedure

Produces plots for output and diagnostics from MCMC simulations (D.A. Murray).

Options	
PRINT = string tokens	Controls printed output (summary); default *
PLOT = string tokens	Controls the type of plot (trace, density,
	autocorrelation,gelmanrubin); default trac
ARRANGEMENT = <i>string tokens</i>	Specifies whether to draw the plots individually or 4 to a page
_	(single, multiple); default sing
START = scalar	Start iteration number for plots
END = scalar	End iteration number for plots
MAXLAG = scalar	Maximum lag for autocorrelation plots; default 50
BANDWIDTH = $scalar$	The bandwidth value to be used for the density plots.
GRMETHOD = scalar	Controls the method of the Gelman-Rubin diagnostic plot (gr,
	bgr); default bgr
BINWIDTH = scalar	Number of values in each bin in the Gelman-Rubin plot;
	default 50
USEALLSAMPLES = $text$	Whether to use all the samples for Gelman-Rubin plot, or to
	discard the first half of the observations (yes, no); default no
Parameter	
SIMULATIONS = <i>pointers</i>	List of pointers containing simulations, one for each Markov
-	chain

BGRAPH procedure

Provides a multiplier by which to scale the node labels
Trees to be plotted
X-spacing (scalar) or x-values (variate) for the terminal nodes of each tree; default 2

BGROW directive

Adds new branches to a node of a tree.

No options Parameters

TREE = <i>trees</i>	Trees to be extended
NODE = $scalars$	Node at which to extend each tree
NBRANCHES = scalars	Number of branches to add to each node; default 2
POSITION = scalars	Position at which to add the branches to each node; default *
	i.e. after all the current braches from the node
NEWNODES = variates	Returns the number(s) allocated to the new nodes

BGXGENSTAT procedure

 Runs WinBUGS or OpenBUGS from Genstat in batch mode using scripts (D.A. Murray).

 Options

 PRINT = string tokens
 Controls printed output (bugslog, nodestatistics, dic); default node

 WPATH = text
 Path specifying the location of the WinBUGS executable

 WEXE = text
 Name of the WinBUGS or OpenBUGS executable to run; default 'WinBUGS14.exe'

MODELFILE = text	Name of a file containing the model in WinBUGS code; the file should have an extension of .txt
DATA = pointer	A pointer to the data used by the WinBUGS model
IDATANAMES = $text$	A text containing the names for the data
MONITOR = $text$	The names of the variables that are to monitored
NCHAINS = scalar	Number of Markov chains; default 3
NBURNIN = $scalar$	Length of burn-in per chain; default 1000
NSAMPLES = scalar	Number of samples to run after burn-in; default 5000
THIN = scalar	Thinning rate where the samples from every kth iteration are stored; default 1
INAMES = $text$	The names for the initial parameters
$DIC = string \ token$	Whether to calculate the deviance information criterion (yes,
	no); default no
SEED = scalar	Specifies a seed to use for the random number generator in
	BUGS; default uses a pseudo-random number generated from
	the uniform distribution
WORKDIRECTORY = texts	Working directory to use; default current Genstat working
	directory
BUGS = string token	Whether to use WinBUGS or OpenBUGS (winbugs,
	openbugs); default winb
VIEWBUGS = <i>string token</i>	Whether to leave WinBUGS open after the run (yes, no);
	default no
CONTINUE = string token	Whether to continue Genstat server without waiting for
	WinBUGS to complete; (yes, no); default no
CODA = string token	Whether to save CODA files (yes, no); default no
WLOG = text	Name of file to save log from WinBUGS or OpenBUGS
Parameters	
INITIAL = pointers	List of pointers, one for each set of initial values for each
	Markov chain
SIMULATIONS = pointers	List of pointers to save simulations, one for each Markov chain

BIDENTIFY directive

Identifies specimens using a tree (R.W. Payne). 0 11

Specifies the tree
Specifies which element of the pointer of information stored at each node of the tree contains the test to be done there to determine which subsequent branch to take
pinter
Scalar or variate saving the number or numbers of the terminal nodes reached by a single specimen, or pointer of scalars or variates saving the numbers of the terminal nodes reached by several specimens
Variables involved in the tests performed in the tree Values of the variables for the specimens to be identified

BIPLOT procedure

Produces a biplot from a set of variates (S.A. Harding).

Options PRINT = *string tokens* Printed output from the analysis (singular, scores); default * i.e. no output What sort of graphics to use (lineprinter, GRAPHICS = *string token* highresolution); default high WINDOW = scalar Window number for the graph; default 3 Whether to clear the screen before plotting or to continue SCREEN = *string token*

110	4 Syntax summary
	plotting on the old screen (clear, keep); default clea
METHOD = string token	Type of analysis required (principalcomponent, variate,
	diagnostic); default prin
STANDARDIZE = <i>string tokens</i>	Whether to centre the configurations (at the origin), and/or to
	normalize them (to unit sum of squares) prior to analysis
	(centre, normalize); default cent, norm
LABELS = $factor$ or $text$	Labels to identify the points for the individuals
VLABELS = $factor$ or $text$	Labels to identify the points for the variates
NDIMENSIONS = scalar	Number of dimensions to save with COORDINATES and
	VCOORDINATES; default 2
Parameters	
DATA = <i>pointers</i>	Each pointer contains a set of variates to be analysed
COORDINATES = matrices	Used to store the scores for the individuals
VCOORDINATES = matrices	Used to store the scores for the variates

BJESTIMATE procedure

Fits an ARIMA model, with forecast and residual checks (G. Tunnicliffe Wilson & S.J. Welham). **Options**

PRINT = string tokens	Controls printed output (description, monitoring,
	model); default desc, moni, mode
GRAPHICS = string token	What type of graphics to use (lineprinter,
	highresolution); default high
WINDOWS = scalar or variate	Windows to be used for residual plots: a scalar N indicates that
	plots are to be produced on separate pages in window N (as
	currently defined), whereas a variate specifies four separate
	windows to be redefined (within the procedure) for plotting
	four graphs on one page; default 1
PENS = variate	The three pens to be used (after being defined appropriately)
	for drawing the plots; default ! (1, 2, 3)
Parameters	
SERIES = variates	Holds the time series to which the model is to be fitted
LENGTH = scalars or variates	Specifies the units to be used from each series: a scalar N
	indicates that the first N units of the series are to be used, a
	variate of length 2 gives the index of the first and last units of
	the subseries to be used; by default the whole series is used
ORDERS = variates	Variate holding the orders for the ARIMA model to be fitted
	to each series
PARAMETERS = variates	Variate specifying the initial values for the parameters (to be
	used by the TFIT directive)
TSM = TSMs	TSM to store each fitted model, also to supply values for
	orders and parameters if ORDERS and PARAMETERS are unset
RESIDUALS = variates	Variate to save the residuals from fitting the model to each
	series

BJFORECAST procedure

Plots forecasts of a time series using a previously fitted ARIMA (G. Tunnicliffe Wilson & S.J. Welham).

Options	
PROBABILITY = scalar	Probability value used for forecast limits; default 0.9
GRAPHICS = string token	What type of graphics to use (lineprinter,
	highresolution); default high
WINDOW = scalar	Window to be used for plotting; default 1
PENS = variate	The three pens to be used (after being defined appropriately)
	for drawing the plots; default ! (1, 2, 3)
Parameters	
SERIES = variates	Variates holding the time series to be used for producing
	forecasts

LENGTH = <i>scalars</i> or <i>variates</i>	Specifies the units to be used from each series: a scalar N specifies that the first N units of the series are to be used, a variate of length 2 gives the time index of the first and last units of the subseries to be used; by default the whole series is used
TSM = TSMs	ARIMA model to be used for forecasting
TIMERANGE = variates	The first and second elements of each variate specify respectively the first and last time index, relative to the whole series, of the range to be forecast
ORIGIN = <i>scalars</i>	The time of the latest observation to be used to construct forecasts with increasing leadtimes for each series; if ORIGIN is unset, the default is to take the latest time point in the series prior to the range given by TIMERANGE, unless parameter LEADTIME is set, in which case fixed leadtime forecasts are constructed
LEADTIME = scalars	The fixed leadtime to be used to construct forecasts if ORIGIN is unset
FORECAST = variates	Save the values of the constructed forecasts
LOWER = variates	Save the lower limits of the forecasts
UPPER = variates	Save the upper limits of the forecasts
SFE = variates	Save the standardized forecast errors, available only for LEADTIME=1

BJIDENTIFY procedure

Displays time series statistics useful for ARIMA model selection (G. Tunnicliffe Wilson & S.J. Welham).

Options

options	
PRINT = string token	Controls printed output (description); default desc
GRAPHICS = <i>string token</i>	What type of graphics to use (lineprinter,
	highresolution); default high
WINDOWS = scalar or variate	Windows to be used for the plots: a scalar N indicates that
	plots are to be produced on separate pages in window N (as
	currently defined), whereas a variate specifies four separate
	windows to be redefined (within the procedure) for plotting
	four graphs on one page; default 1
PENS = variate	The three pens to be used (after being defined appropriately)
	for drawing the plots; default ! (1, 2, 3)
Parameters	
SERIES = variates	Variates holding the time series for which the statistics are to
	be produced
LENGTH = <i>scalars</i> or <i>variates</i>	Specifies the units to be used from each series: a scalar N
LENGTH Scalars of variates	1
	indicates that the first N units of the series are to be used, a
	variate of length 2 gives the index of the first and last units of
	the subseries to be used; by default the whole series is used
	-

BJOIN directive

Extends a tree by joining another tree to a terminal node.

No options Parameters

1 al allietel S	
TREE = $trees$	Trees to be extended
NODE = $scalars$	Node at which to join the tree
JOINTREE = trees	Trees to be joined onto the tree
NEWNODES = variates	New node numbers allocated to each node in JOINTREE in the
	new tree

Displays an identification key (R.W.	Payne).
Option	
PRINT = string tokens	Controls printed output (indented, bracketed, diagram, graph); default * i.e. none
Parameter	
KEY = tree	Key to be displayed

BKEY procedure

Constructs an identification key (R.W. Payne).

Options

PRINT = string tokens	Controls printed output (indented, bracketed, diagram,
	graph); default * i.e. none
TAXONNAMES = $text$	Names of the taxa in the key; default * uses textual versions of
	the numbers 1, 2 onwards
GROUPS = factor	Groupings of the taxa, if the key is to identify the group of a
	specimen rather than its taxon
CRITERION = string token	Criterion to use to select the character to use at each node of
	the key (CME, CMV, GME); default GME when GROUPS is set,
	otherwise CME
PARTIAL = <i>string token</i>	Controls whether or not to use partial separation; (yes, no)
	default no
KEY = tree	Saves the key
Parameters	
CHARACTER = $factors$	Characters available to construct the key
COST = scalars	Cost of each character; default 1

BKIDENTIFY procedure

Identifies specimens using a key (R.W. Payne).

Options

PRINT = string tokens	Controls printed output (identification, transcript); if PRINT is unset in an interactive BKIDENTIFY will ask what
	you want to print, in a batch run the default is iden
KEY = tree	Specifies the key
IDENTIFICATION = variate	Saves the identification of each specimen
TERMINALNODE = variate	Saves numbers of the terminal nodes reached by the specimens
Parameter	
CHARACTER = $factors$	Character values of the specimens

BKKEEP procedure

Saves information from an identification key (R.W. Payne).

No	options
Par	ameters

KEY = trees	Identification key from which the information is to be saved
SUMMARY = variates	Saves summary information about each key
CHARACTERS = <i>pointers</i>	Saves the identifiers of the characters in each key

BLANDALTMAN procedure

Produces Bland-Altman plots to assess the agreement between two variates (A.R.G. McLachlan). **Options**

options	
PRINT = string tokens	Controls printed output (summary, estimates); default * i.e.
	none
PLOT = string tokens	What to plot (blandaltman, normal); default blan
DMETHOD = string token	Method for calculating differences (differences, ratios,
-	%differences, percentages); default diff

LMETHOD = string token	Method for calculating limits of agreement when regression is not used (normaldistribution, percentile); default norm
REGMETHOD = string tokens	Whether to use regression to calculate bias (i.e. mean) or limits (bias, mean, limits, auto); default * i.e. none
CIPROBABILITY = scalar	Probability level for limits of agreement, confidence intervals and percentiles; default 0.95
LOWERLIMIT = scalar	Lower limit of agreement to use instead of a calculated limit
UPPERLIMIT = scalar	Upper limit of agreement to use instead of a calculated limit
ALPHALEVEL = scalar	Critical probability level used for regression when REGMETHOD=auto; default 0.05
XBLANDALTMAN = string token	X-values to use for the Bland-Altman plot (mean, Y1, Y2); default mean
REFERENCELINECHOICE = string token	S
0	Reference lines to plot on a Bland-Altman plot (bias, mean,
	limits, zero); default bias
GRAPHICS = <i>string token</i>	Type of graph (highresolution, lineprinter); default high
WINDOW = scalar	Window for the plot; default 3
SCREEN = string token	Whether to clear or keep the screen before displaying the plot
	(keep, clear); default clea
PENZEROLINE = scalar	Pen to use for the zero reference line
PENMEANLINE = $scalar$	Pen to use for the mean reference line
PENLIMITLINES = scalar	Pen to use for the reference lines showing limits of agreement
Parameters	
Y1 = variates	First variate
Y2 = variates	Second variate
LABELS = texts	Labels for individual points on the Bland-Altman plot
MEANS = variates	Saves the means
DIFFERENCES = variates	Saves the differences, ratios or % differences (according to the DMETHOD option)
TITLE = texts	Title for the Bland-Altman plot
YTITLE = texts	Title for y-axis of the Bland-Altman plot
XTITLE = texts	Title for x-axis of the Bland-Altman plot
PEN = scalars, variates or factors	Pen for plotting points on the Bland-Altman plot; default 1

BLOCKSTRUCTURE directive

Defines the blocking structure of the design and hence the strata and the error terms.

No options

Parameter	
formula	Block model (defines the strata or error terms for subsequent
	ANOVA statements)

BNTEST procedure

Calculates one- and two-sample binomial tests (D.A. Murray).

Options	
PRINT = string tokens	Controls printed output (test, summary, confidence);
	default test, summ, conf
METHOD = string token	Type of test required (twosided, greaterthan, lessthan);
	default twos
TEST = string token	Form of the test for one-sample test (exact,
	normalapproximation) or for two-sample
	(normalapproximation, oddsratio); default norm
CIPROBABILITY = scalar	The probability level for the confidence interval; default 0.95
NULL = scalar	The value of the probability of success under the null
	hypothesis for the one-sample test; default 0.5

Parameters	
R1 = scalars	Number of successes in the first sample
N1 = scalars	Sample size of the first sample
R2 = scalars	Number of successes in the second sample
N2 = scalars	Sample size of the second sample
STATISTIC = scalars	Saves the Normal approximation from the one-sample or two-
	sample tests, or the odds ratio
PROBABILITY = scalars	Saves the probability value from the one-sample or two-
	sample tests
LOWER = scalars	Saves the lower limit of the confidence interval
UPPER = scalars	Saves the upper limit of the confidence interval

BOOTSTRAP procedure

Produces bootstrapped estimates, standard errors and distributions (P.W. Lane).

Options	
PRINT = string token	Controls printed output (estimates, graphs,
	vcovariance); default esti
DATA = variates, factors or texts	Data vectors from which the statistics are to be calculated; no
	default
AUXILIARY = <i>pointers</i>	Further sets of data vectors, each set to be resampled
	independently
ANCILLARY = any type	Other relevant information needed to calculate the statistics
NTIMES = $scalar$	Number of times to resample; default 100
seed = scalar	Seed for random number generator; default continue from
	previous generation or use system clock
GRAPHICS = string token	Type of graphics (lineprinter, highresolution); default high
PROBABILITY = scalar	Probability level for confidence interval; default 0.95
METHOD = string token	What type of bootstrapping to use (random, balance, permute); default rand
BLOCKSTRUCTURE = formula	Block structure to use for random permutations
CIMETHOD = string token	What type of confidence intervals to provide (bca,
	percentile); default perc
VCOVARIANCE = <i>symmetric matrix</i>	Saves the variance-covariance matrix of the statistics
Parameters	
LABEL = texts	Texts, each containing a single line, to label the statistics;
	default 'Statistic'
ESTIMATE = scalars	Saves the bootstrap mean for each statistic
SE = scalars	Saves the bootstrap standard error for each statistic
LOWER = scalars	Saves the bootstrap lower confidence limit for each statistic
UPPER = scalars	Saves the bootstrap upper confidence limit for each statistic
STATISTIC = variates	Saves the series of bootstrap estimates of each statistic
WINDOW = scalars	Graphical window to use for displaying bootstrap distribution
	for each statistic; default 4
SCREEN = <i>string tokens</i>	Whether to clear graphical frame or draw on top (clear, keep); default clea

BOXPLOT procedure

Draws box-and-whisker diagrams or schematic plots (P.W. Lane & S.D. Langton).

Options	
GRAPHICS = string token	What type of graphics to use (highresolution,
	lineprinter); default high
TITLE = text	Title for diagram; default *
AXISTITLE = <i>text</i>	Title for axis representing data values; default *
WINDOW = scalar	Window in which to draw a high-resolution plot; default 4
ORIENTATION = string token	Orientation of plots (horizontal, vertical, across,

4.1 Commands

	down); default vert
YORIENTATION = string token	Direction of the y-axis for horizontal plots (reverse,
	normal); default reve
SCREEN = string token	Whether to clear screen before a high-resolution plot (clear,
	keep); default clea
METHOD = string token	Type of representation of data in a high-resolution plot
	(boxandwhisker, schematic); default boxa
BOXTITLE = text	Title for axis representing different variates or groups; default *
BOXWIDTH = string token	Whether to relate box width to size of sample in high-
	resolution plot (fixed, variable); default fixe
WHISKER = number	Linestyle for whiskers (010); default 1
BAR% = scalar	Size of bar at the end of the whiskers, as a percentage of the
	box-width; default 0 (i.e. no bar)
WIDTH% = scalar	Width of the boxes, expressed as a percentage of the default
	width; default 100
Parameters	
DATA = variates	Data to be summarized; no default
GROUPS = factor	Factor to divide values of a single variate into groups; default
	*
BOXLABELS = texts	Labels for individual boxes; default *, i.e. identifiers of
	variates or labels or levels of factor
UNITLABELS = $texts$	Labels for extreme points in schematic plot; default is to use
	unit labels
BOXPOSITIONS = variates	Positions of the boxes on the appropriate axis; default defines
Estil Colliger College	positions in an equal spacing
	positions in an equal spacing

[†]BPCONVERT procedure

Converts bit patterns between integers, pointers of set bits and textual descriptions (R.W. Payne).

Options

PRINT = string token BITS = text, variate or pointer SEPARATOR = string **Parameters** DATA = scalars, texts or pointers BP = scalars CONTENTS = pointers DESCRIPTION = texts

Bit patterns to convert Bit patterns as integers Bits that are set in each bit pattern Textual description of each bit pattern

Controls printed output (description); default desc Labels for the individual bits; default ! (1...31)

Separator between the bit labels in the description; default '.'

BPRINT procedure

Displays a tree (R.W. Payne). **Option** PRINT = *string tokens*

Controls printed output (indented, bracketed, labelleddiagram, numbereddiagram); default inde

Parameter

TREE = trees

Trees to be displayed

BPRUNE procedure

Prunes a tree using minimal cost complexity (R.W. Payne).

Option

PRINT = string tokens

Parameters

Controls printed output (graph, table, monitoring);
default tabl

TREE = $trees$	Trees to be pruned
ACCURACY = <i>pointers</i>	Accuracy values for the nodes of each tree; default is to use
	those stored with the tree

NEWTREES = pointers RTPRUNED = variates NTERMINAL = variates	Saves the trees generated during the pruning of each tree Accuracy of the pruned trees of each tree Number of terminal nodes in the pruned trees of each tree
BRDISPLAY procedure	
Displays a regression tree (R.W. Payn	1e).
Option	
PRINT = string tokens	Controls printed output (summary, details, indented, bracketed, labelleddiagram, numbereddiagram, graph); default * i.e. none
Parameter	
TREE = <i>tree</i>	Tree to be displayed
BREAK directive	

Suspends execution of the statements in the current channel or control structure and takes subsequent statements from the channel specified.

Option	
CHANNEL = scalar	Channel number; default 1
Parameter	
expression	Logical expression controlling whether or not the break takes place

BREGRESSION procedure

Constructs a regression tree (R.W. Payne).

Options

116

PRINT = string tokens	Controls printed output (summary, details, indented, bracketed, labelleddiagram, numbereddiagram,	
	graph, monitoring); default * i.e. none	
Y = variate	Response variate for the regression	
TREE = tree	Saves the tree that has been constructed	
MSLIMIT = scalar	Limit on the mean square of the observations at a node at	
	which to stop making splits; default 0	
NSTOP = scalar	Specifies the number of observations at a node at which to stop	
	making splits; default 1	
OWNBSELECT = string token	Indicates whether or not your own version of the BSELECT	
	procedure is to be used, as explained in the Method section	
	(yes, no); default no	
Parameter		
X = variates or factors	Independent variables available for constructing the tree	
ORDERED = <i>string tokens</i>	Whether factor levels are ordered (yes, no); default no	

BRFDISPLAY procedure

Displays information about a random regression forest (R.W. Payne).

Controls printed output (outofbagerror,
youtofbagestimates, importance
orderedimportance); default * i.e. none
Save structure from BRFOREST providing information about the random forest

BRFOREST procedure

Constructs a random regression forest (R.W. Payne).
Options
PRINT = string tokens
Controls printed output (outofbagerror,

	youtofbagestimates, importance,
	orderedimportance, monitoring); default outo, impo
Y = variate	Response variate for the regression
NTREES = scalar	Number of trees in the forest; no default - must be specified
NXTRY = scalar	Number of x variables to select at random at each node from which to choose the x variable to use there; default is the
	square root of number of X variables
NUNITSTRY = scalar	Number of units of the X variables to select at random to use
	in the construction of each tree; default is two thirds of the number of units
MSLIMIT = scalar	Limit on the mean square of the observations at a node at
	which to stop making splits; default 0
NSTOP = scalar	Specifies the number of observations at a node at which to stop making splits; default 1
SEED = scalar	Seed for random numbers to select the NXTRY X-variables and NUMITSTRY units; default 0
OWNBSELECT = string token	Indicates whether or not your own version of the BSELECT procedure is to be used, as explained in the Method section
	(yes, no); default no
OUTOFBAGERROR = <i>string token</i>	Saves the "out-of-bag" error rate
YOUTOFBAGESTIMATES = variate	Saves the "out-of-bag" estimates of Y
SAVE = pointer	Saves details of the forest that has been constructed
Parameters	
X = factors or variates	X-variables available for constructing the tree
ORDERED = string tokens	Whether factor levels are ordered (yes, no); default no
IMPORTANCE = scalars	Saves the importance of each x-variable

BRFPREDICT procedure

Makes predictions using a random regression forest (R.W. Payne).

Options	-
PRINT = string token	Controls printed output (prediction); default pred
PREDICTION = variate	Saves the prediction for the observations
SAVE = pointer	Save structure from BRFOREST providing information about
	the random forest
Parameters	

X = variates or factors	
VALUES = <i>scalars</i> , <i>variates</i> or <i>texts</i>	

Explanatory variables Values to use for the explanatory variables; if these are unset for any variable, its existing values are used

BRKEEP procedure

Saves information from a regression tree (R.W. Payne).

No options Parameters

TREE = <i>trees</i>	Tree from which the information is to be saved
SUMMARY = variates	Saves summary information about each tree
XVARIABLES = <i>pointers</i>	Saves the identifiers of the x-variables in each tree

BRPREDICT procedure

Makes predictions using a regression tree (R.W. Payne).

Options

TREE = *tree*

PRINT = string tokens

PREDICTIONS = variate TERMINALNODES = pointer

Controls printed output (prediction, transcript); if
PRINT is unset in an interactive run BRPREDICT will ask what
you want to print, in a batch run the default is pred
Specifies the tree
Saves the prediction for the observations
Saves the numbers of the terminal nodes from which each

MVINCLUDE = string token	prediction was obtained Whether to provide predictions for units with missing or unavailable values of the x-variables (explanatory); default expl
Parameters	Explanatory variables
X = variates or factors	Values to use for the explanatory variables; if these are unset
VALUES = scalars, variates or texts	for any variable, its existing values are used

BRVALUES procedure

Forms values for nodes of a regression tree (R.W. Payne).

Options	
Y = variate	Values of the response variate for the new data set
TREE = tree	Tree for which predictions and accuracy values are to be formed
REPLACE = <i>string token</i>	Whether to replace the values stored in the tree (yes, no); default no
PREDICTION = pointer	New predictions for the nodes of the tree
ACCURACY = <i>pointer</i>	New accuracy values for the nodes of the tree
NOBSERVATIONS = pointer	New numbers of observarions for the nodes of the tree
Parameter	
X = variates	Values of the x-variates for the new data set

CABIPLOT procedure

Plots results from correspondence analysis or multiple correspondence analysis (A.I. Glaser).

Options	
DIMENSIONS = scalars	Two numbers specifying which axes of the ordinations to plot; default 1,2
PLOT = string tokens	Which scores to plot (rowscores, rowactive,
-	rowpassive, colscores, colactive, colpassive);
	default rows, cols for correspondence analysis and cols for
	multiple correspondence analysis
ROWSCALING = <i>string token</i>	Scaling to use for row coordinates (principal, standard,
	mass, sqrtmass); default prin
COLSCALING = <i>string token</i>	Scaling to use for column coordinates (principal,
	standard, mass, sqrtmass); default prin
COLOURMETHOD = string tokens	Whether colour of symbol should show level of inertia of rows
	<pre>or columns (rowinertia, colinertia); default *</pre>
SIZEMETHOD = string tokens	Whether size of symbol should show row or column masses
	(rowmass, colmass); default *
FACCOLOURS = <i>text</i> , <i>variate</i> or <i>scalar</i>	Specifies a colour or colours for the factors in a multiple
	correspondence analysis; if this is unset, a different colour is
	selected automatically for every factor
WINDOW = $scalar$	Which graphical window to use; default 1
KEYWINDOW = scalar	Graphical window for the key
SAVE = pointer	Supplies results from a analysis by CORANALYSIS or
	MCORANALYSIS; default uses the most recent analysis
Parameters	
TITLE = texts	Titles for the plot
LMROWVARIABLES = <i>string tokens</i>	How to label the row scores (identifiers, labels, none,
	numbers); default labe if LROWVARIABLES is set, otherwise
	iden
LMCOLVARIABLES = <i>string tokens</i>	How to label the column scores (identifiers, labels,
	none, numbers); default labe if LCOLVARIABLES is set, otherwise iden
1 DOWN AD TADLES = torts	Labels for row variables
LROWVARIABLES = texts	Labels for fow variables

LCOLVARIABLES = texts	Labels for column variables
LSPECIES = texts	Labels for species scores
LSITES = texts	Labels for site scores

CALCULATE directive

Calculates numerical values for data structures.

Options	
PRINT = string token	Printed output required (summary); default * i.e. no printing
zDz = string token	Value to be given to zero divided by zero (missing, zero);
	default miss
TOLERANCE = $scalar$	If the scalar is non missing, this defines the smallest non-zero
	number; otherwise it accesses the default value, which is
	defined automatically for the computer concerned
SEED = scalar	Seed to use for any random number generation during the
	calculation; default 0
INDEX = scalar	If the calculation has a list of structures before the assignment
	operator (=), the scalar indicates the position within the list of
	the structure currently being evaluated
RESTRICTEDUNITS = variate	Defines a "restriction" on the vectors in the expression; if this
	is set the calculations on those vectors will take place only on
	the units listed in the variate (and any restrictions of their own
	will be ignored)
Parameter	
expression	Expression defining the calculations to be performed

CALLS directive

Lists library procedures called by a procedure.

No options

 Parameter
 Names of the called procedures

CANCORRELATION procedure

Does canonical correlation analysis (P.G.N. Digby).

Option

PRINT = *string tokens* Printed output from the analysis (correlations, pcoeff, qcoeff, pscores, qscores); default * i.e. no output **Parameters** Pointer to P-set of variates to be analysed **PVARIATES** = *pointers* Pointer to Q-set of variates to be analysed QVARIATES = *pointers* Stores the canonical correlations from each analysis CORRELATIONS = *diagonal matrices* PCOEFF = *matrices* Stores the coefficients for the P-set of variates Stores the coefficients for the Q-set of variates QCOEFF = *matrices* PSCORES = *matrices* Stores the unit scores from the P-set of variates Stores the unit scores from the Q-set of variates QSCORES = matrices

CAPTION directive

Prints captions in standardized formats.

Option	
PFIRST = string tokens	What to print first (dots, page, outprint); default * i.e.
	none
Parameters	
TEXT = texts	Contents of the captions
STYLE = <i>string tokens</i>	Style for each caption (plaintext, stress, minor, major,
	meta, note, status); default plai

CASE directive

Introduces a "multiple-selection" control structure.

No options

Parameter

expression	Expression which is evaluated to an integer, indicating which
	set of statements to execute

CASSOCIATION procedure

Calculates measures of association for circular data (S.J. Clark).

Options

PRINT = string token	What to print (tests); default test
NRANDOMIZATIONS = $scalar$	Number of randomizations to use in the randomization tests;
	default 999
ASCALE = string token	Units of the circular variables (degrees, radians); default
	degr
Parameters	
Y = variates	Response variable
X = variates	Circular explanatory variable
YTYPE = string tokens	Type of response variable (circular, linear); default circ
SEED = variates	Vraiete of length two, firstly to supply a seed for the
	randomization tests and secondly to supply a seed to use for
	randomly-selecting sets of data points; default ! (0, 0)
STATISTICS = variates	Saves the test statistics

CATALOGUE directive

Displays the contents of a backing-store file.

Options	
PRINT = string tokens	What to print (subfiles, structures); default subf, stru
CHANNEL = scalar	Channel number of the backing-store file; default 0, i.e. the workfile
LIST = string token	How to interpret the list of subfiles (inclusive, exclusive, all); default incl
SAVESUBFILE = text	To save the subfile identifiers; default *
UNNAMED = string token	Whether to list unnamed structures (yes, no); default no
Parameters	
SUBFILE = <i>identifiers</i>	Identifiers of subfiles in the file to be catalogued
SAVESTRUCTURE = <i>texts</i>	To save the identifiers of the structures in each subfile

CATRENDTEST procedure

Calculates the Cochran-Armitage chi-square test for trend (A.I. Glaser).

8	· · · · · · · · · · · · · · · · · · ·
Option	
PRINT = string token	Output required (test); default test
Parameters	
DATA = tables	Table containing observed data
TREND = factors	Dimension of the table representing the trend; can default if
	only one dimension of size greater than 2
CHISQUARE = scalars	Saves the chi-square for trend
PROBABILITY = scalars	Saves the probability value for trend
DEVCHISQUARE = scalars	Saves the chi-square for deviations from a linear trend
DEVDF = scalars	Saves the degrees of freedom for the chi-square for deviations
DEVPROBABILITY = scalars	Saves the probability value for the chi-square for deviations

CCA procedure

Performs canonical correspondence analysis (A.I. Glaser).

Options

PRINT = string tokens	Controls printed output (variance, loadings, roots,
	evalues, evectors, speciesscores, sitescores,
	fitsitescores, correlations, fitcorrelations);
	default vari, root
NROOTS = $scalar$	Number of eigenvalues and eigenvectors to include in output;
NIXOOIS Scatal	default * takes all the non-zero eigenvalues
NORMALIZE = <i>string tokens</i>	Whether to normalize the Y, X and/or Z variates to have unit
	sums-of-squares before the analysis (x, y, z); default x, z
SCALING = string tokens	Whether to scale for species or site score (species, site);
	default spec
TOLERANCE = scalar	Tolerance for detecting non-zero eigenvalues; default 10 ⁻⁵
Parameters	
Y = pointers	Each pointer defines a set of response variates to be modelled
X = pointers	Explanatory variates or factors to use for for each pointer of y- variates
Z = pointers	Conditioning variates to remove ("partial out") before the
IDU = IDU	analysis
LRV = LRVs	LRV structure from each analysis, storing the eigenvectors, eigenvalues and total variance
SPECIESSCORES = <i>matrices</i>	Save the "species scores" from each analysis
SITESCORES = <i>matrices</i>	Save the "site scores" from each analysis
FITSITESCORES = <i>matrices</i>	Save the fitted "site scores" from each analysis
CORRELATIONS = <i>matrices</i>	Saves the correlations between the site scores and the x-
	variates
FITCORRELATIONS = <i>matrices</i>	Saves the correlations between the fitted site scores and the x-variates
SAVE = pointers	Save structure which provides information for use in CRBIPLOT and CRTRIPLOT

CCOMPARE procedure

Tests whether samples from circular distributions have a common mean direction or have identical distributions (S.J. Clark).

Options	
PRINT = string token	What to print (tests); default test
TEST = string token	Which tests to perform (compare, identical); default comp, iden
ASCALE = <i>string token</i>	Units of the circular variables (degrees, radians); default degr
STATISTICS = <i>variate</i>	Saves the test statistics
COMMON = scalar	Saves the common mean direction
LOWER = scalar	Saves the lower 95% confidence limit for common mean
UPPER = scalar	Saves the upper 95% confidence limit for common mean
Parameter	
DATA = variates	Circular response variables to be compared

CDESCRIBE procedure

Calculates summary statistics and tests of circular data (P.W. Goedhart & R.W. Payne).

Options

PRINT = string tokens SEGMENT = scalar What to print (summary, fittedvalues); default summ Width of sectors (in degrees) into which to group an ANGLES variate for calculation of the test of randomness and the chisquare goodness of fit statistic for the von Mises distribution; default 20

122	4 Syntax summary
MSEGMENT = scalar	Defines the centre (in degrees) of the sectors; default 0
DIRECTION = scalar	Direction (in degrees) of the unimodal alternative distribution
	for the Rayleigh test; default * i.e. not known
Parameters	
ANGLES = factors or variates	Directional observations (in degrees)
RESULTS = variates	Saves the summary statistics
VONMISESCOUNTS = <i>pointers</i>	Saves structures relevant for calculation of the chi-square goodness of fit statistic for the von Mises distribution

CDNAUGMENTEDDESIGN procedure

Constructs an augmented block design, using CycDesigN if the controls are in an incomplete-block design (R.W. Payne).

Options

PRINT = strings	Controls printed output (design, controldesign, factors,
	<pre>monitor); default * i.e. none</pre>
LEVELS = <i>scalar</i> or <i>variate</i>	Levels for the unreplicated treatments
LEVCONTROLS = <i>scalar</i> or <i>variate</i>	Levels for the control treatments
NROWS = $scalar$	Number of rows
NCOLUMNS = scalar	Number of columns
NRBLOCKS = scalar	Number of rows in each block
NCBLOCKS = scalar	Number of columns in each block
NCONTROLSPERBLOCK = $scalar$	Number of control treatments in each block
TREATMENTS = $factor$	Treatment factor
ROWS = factor	Row factor
COLUMNS = factor	Column factor
BLOCKS = factor	Block factor
ROWBLOCKS = $factor$	Row block factor
COLBLOCKS = factor	Column block factor
NTIMES = scalar	Number of times to try allocations of controls within blocks
SEED = scalar or variate	Scalar or variate with three values specifying seeds for the
	random numbers used by CycDesigN to search for the control
	design, for the allocation of controls within blocks, and for the
	allocation of the unreplicated treatments - if a scalar is
	specified the same seed is used for all purposes; default 0 i.e.
	set automatically
SPREADSHEET = $string$	Whether to put the design factors into a spreadsheet (design);
	default *
TIMELIMIT = scalar	Time in minutes for CycDesigN to search; default 1
No parameters	

CDNBLOCKDESIGN procedure

Constructs a block design using CycDesigN (R.W. Payne).

Options	

PRINT = strings	Controls printed output (design, report, factors); default
	* i.e. none
LEVELS = <i>scalar</i> or <i>variate</i>	Numbers of levels of the treatment factors; if unset, takes the numbers of levels declared for the factors in the
	TREATMENTSTRUCTURE model
NREPLICATES = $scalar$	Number of replicates
NBLOCKS = $scalar$	Number of blocks
NUNITS = scalar	Number of units per block
NGROUPS = variate	Group sizes for a two-factor nested treatment structure
TREATMENTFACTORS = factors	Up to four factors to use in the treatment model: one factor for a one-way treatment model, two factors for a nested structure when NGROUPS is set, or two to four factors for a factorial
	treatment structure when NGROUPS is not set

REPLICATES = factor	Replicate factor
BLOCKS = factor	Block factor
UNITS = factor	Unit-within-block factor
RESOLVABLE = <i>string</i>	Whether the design is resolvable (yes, no); default no
ALPHADESIGN = string	Whether an alpha design is constructed for a resolvable design
	(yes, no); default no
CYCLIC = <i>string</i>	Whether a cyclic design is constructed for a non-resolvable design (yes, no); default no
NBLATIN = $scalar$	Number of contiguous blocks to latinize; default 0 i.e. not
NDLATIN – Scalar	latinized
REPLATINGROUPS = variate	Sizes of groups defining the positions of the replicates when constructing latinized designs; default * i.e. no groupings
SPATIALMODEL = <i>string</i>	Spatial model to use with a single-treatment-factor resolvable
-	<pre>design (integer, linearvariance, seconddifference, ev); default * i.e. none</pre>
EVDECAY = scalar	Decay parameter to use when SPATIALMODEL=ev; default 0.5
WEIGHTS = variate	Variate with two values specifying weightings for the main
	effects and for the interactions in factorial treatment structures;
	default ! (1, 0.25)
SEED = <i>scalar</i> or <i>variate</i>	Scalar or variate with two values specifying seeds for the
	random numbers used by CycDesigN to search for the best
	design and to randomize it - if a scalar is specified the same
	seed is used for both purposes; default 0 i.e. set automatically
SPREADSHEET = $string$	Whether to put the design factors into a spreadsheet (design);
	default *
TIMELIMITS = <i>scalar</i> or <i>variate</i>	A scalar or a variate containing up to three numbers defining
	the time in minutes to spend on the first phase, the second
	phase and the spatial phase of the search (if the 2nd or 3rd
	numbers are omitted they default to the maximum of those
	specified); default 1
NRANDOMIZATIONS = $scalar$	Number of randomizations to generate from the best design;
	default 1
TRIALS = factor	Trials factor
No parameters	

CDNPREP procedure Constructs a multi-location partially-replicated design using CycDesigN (R.W. Payne).

Controls printed output (design, report, factors,
blocknumbers); default * i.e. none
Numbers of levels of the treatment factor; if unset, takes the
numbers of levels declared for the factor specified by the
TREATMENTS option
Number of locations
Number of blocks at each location
Number of units at each location
Number of treatments in each block that are replicated at the
location containing the block
Treatment factor
Locations factor
Block factor
Unit-within-block factor
Scalar or variate with two values specifying seeds for the
random numbers used by CycDesigN to search for the best
design and to randomize it - if a scalar is specified the same
seed is used for both purposes; default 0 i.e. set automatically

124	4 Syntax summary
SPREADSHEET = string	Whether to put the design factors into a spreadsheet (design); default *
TIMELIMIT = scalar No parameters	Time in minutes to search; default 1

CDNROWCOLUMNDESIGN procedure Constructs a row-column design using CycDesigN (R.W. Payne).

Options	
PRINT = strings	Controls printed output (design, report, factors); default * i.e. none
LEVELS = <i>scalar</i> or <i>variate</i>	Numbers of levels of the treatment factors; if unset, takes the numbers of levels declared for the factors in the TREATMENTSTRUCTURE model
NREPLICATES = $scalar$	Number of replicates
NROWS = $scalar$	Number of rows
NCOLUMNS = scalar	Number of columns
NGROUPS = variate	Group sizes for a two-factor nested treatment structure
TREATMENTFACTORS = factors	Up to four factors to use in the treatment model: one factor for a one-way treatment model, two factors for a nested structure when NGROUPS is set, or two to four factors for a factorial treatment structure when NGROUPS is not set
REPLICATES = factor	Replicate factor
ROWS = factor	Row factor
COLUMNS = factor	Column factor
RESOLVABLE = string	Whether the design is resolvable (yes, no); default no
METHOD = string	How to construct the design (onestage, twostage, unrestrictedtwostage); default ones
NRLATIN = scalar	Number of contiguous rows to latinize; default 0 i.e. not latinized
NCLATIN = scalar	Number of contiguous columns to latinize; default 0 i.e. not latinized
REPLATINGROUPS = variate	Specifies the number of replicates in each column when constructing latinized designs; default * i.e. all in one column
SPATIALMODEL = <i>string</i>	Spatial model to use with a single-treatment-factor resolvable design (integer, linearvariance, seconddifference, ev); default * i.e. none
EVDECAY = scalar	Decay parameter to use when SPATIALMODEL=ev; default 0.5
WEIGHTS = variate	Variate with two values specifying weightings for the main effects and for the interactions in factorial treatment structures; default ! (1, 0.25)
RCWEIGHTS = variate	Variate with three values specifying weightings for the within-row-and-column, between-row and between-column information; default has weight one for the within-row-and-column information, and the reciprocal of their
SEED = <i>scalar</i> or <i>variate</i>	numbers of levels for the rows and columns Scalar or variate with two values specifying seeds for the random numbers used by CycDesigN to search for the best design and to randomize it – if a scalar is specified the same seed is used for both purposes; default 0 i.e. set automatically
SPREADSHEET = <i>string</i>	Whether to put the design factors into a spreadsheet (design); default *
TIMELIMITS = <i>scalar</i> or <i>variate</i>	A scalar or a variate containing up to three numbers defining the time in minutes to spend on the first phase, the second phase and the spatial phase of the search (if the 2nd or 3rd numbers are omitted they default to the maximum of those specified); default 1

TRIALS = factor No parameters	Trials factor
NRANDOMIZATIONS = scalar	Number of randomizations to generate from the best design; default 1

Pre-processes censored data before analysis by ANOVA (P.W. Lane).

Options	
PRINT = string token	Whether to monitor convergence (monitor); default * implies no monitoring
TERM = formula	Formula for lowest stratum residual term; no default – this option must be set
DESIGN = pointer	Identifier specifying design information for ANOVA, or to save design information; default *
MAXCYCLE = scalar	Maximum number of iterations; default 20
Parameters	
y = variates	Observed variate with censored values represented by values greater than or equal to the bound; no default – this parameter must be set
BOUND = <i>scalars</i> or <i>variates</i>	Upper bound for censoring for each unit; no default – this parameter must be set
DF = scalars	Estimated residual d.f. for lowest stratum, adjusting for censoring; default *
NEWY = variates	Saves a variate with the censored values replaced by their estimates; if unset, the censored values are replaced in the original Y variate
SAVE = <i>identifiers</i>	Save details of each analysis for use in subsequent ADISPLAY or AKEEP statements

CHECKARGUMENT procedure

Checks the arguments of a procedure (R.W. Payne).

Option

ERROR = scalar	This scalar is given the value 1 if any errors are detected; it
	should have the value 0 on entry
Parameters	
STRUCTURE = <i>identifiers</i>	Lists the structures (arguments) to be checked
VALUES = <i>variates</i> or <i>texts</i>	Defines the allowed values for a structure of type variate or text
DEFAULT = <i>identifiers</i>	Default to be used if STRUCTURE is set to an unset dummy
SET = texts	Indicates whether or not each structure must be set (no, yes); default no
DECLARED = texts	Indicates whether or not each structure must have been declared (no, yes); default no
TYPE = texts	Text for each structure whose values indicate the types
	allowed (scalar, factor, text, variate, matrix,
	diagonalmatrix, symmetricmatrix, table,
	expression, formula, dummy, pointer, LRV, SSPM, TSM,
	tree, asave, rsave, tsave, vsave);
PRESENT = texts	Indicates whether or not each structure must have values (no, yes); default no
	4 / / ······························

CHIPERMTEST procedure

Performs a random permutation test for a two-dimensional contingency table (L.H. Schmitt, M.C. Hannah & S.J. Welham).

Options

PRINT = string tokens	Output required (s	summary, observed, expected); default
-----------------------	--------------------	---------------------------------------

	summ
PLOT = string token	What to plot (histogram); default hist
METHOD = string token	Method for calculating chi-square (pearson,
	maximumlikelihood); default pear
NTIMES = scalar	Number of permutations to make; default 999
SEED = scalar	Seed for the random number generator used to make the
	permutations; default 0 continues from the previous generation
	or (if none) initializes the seed automatically
Parameters	
DATA = tables	Table containing observed data
CHISQUARE = scalars	Saves the observed chi-square value
CHIPERMUTED = variates	Saves the chi-square values from the permuted data sets
PROBABILITY = scalars	Saves the probability value from the test

CHISQUARE procedure

Calculates chi-square statistics for one- and two-way tables (A.D. Todd & P.K. Leech).

Options	
PRINT = string tokens	Output required (test, probability, fittedvalues,
	tchisquare); default test, prob
METHOD = string token	Method for calculating chi-square (pearson,
	maximumlikelihood); default pear
GOODNESSOFFIT = string token	Whether to carry out a goodness-of-fit test for the DATA values
	against a supplied set of FITTEDVALUES (yes, no); default no
Parameters	
DATA = tables	Table containing observed data
CHISQUARE = scalars	Scalar to save the chi-square value
DF = scalars	Scalar to supply or save the degrees of freedom
PROBABILITY = scalars	Scalar to save the probability value
FITTEDVALUES = tables	Table of expected values
RESIDUALS = tables	Table of standardized residuals
TCHISQUARE = tables	Table whose cells show the individual contributions to the chi-
	square value

CINTERACTION procedure

Clusters rows and columns of a two-way interaction table (J.T.N.M. Thissen & J. de Bree).

Options	
PRINT = string tokens	What information to print (sortedtable, aovtable,
	summary, monitoring, variance, amalgamations,
	dendrogram); default sort, aov, summ, moni, vari, amal, dend
PRMONITOR = scalar	If option VARIANCE is set this provides a P-value to indicate
	when to start monitoring, if VARIANCE is unset PRMONITOR is
	ignored; default 0.95
VARIANCE = scalar	Variance of a mean in TABLE; default *
DF = scalar	Degrees of freedom of VARIANCE; default *
SSTHRESHOLD = scalar	Specifies a value of cumSS at which to partition the
	dendrograms and to define factors ROWGROUPS and
	COLGROUPS; default 0 i.e. no partitioning
TITLE = text	General title for the high-resolution graph; default *
PENSIZE = scalar	Pen size for y-labels of dendrograms; default 1
Parameters	
TABLE = $tables$	Two-way table whose interaction structure is to be clarified
ROWAMALGAMATIONS = matrices	To either save or specify amalgamations for rows
COLAMALGAMATIONS = matrices	To either save or specify amalgamations for columns
ROWPERMUTATIONS = variates	To specify order of labels in the row dendrogram
COLPERMUTATIONS = variates	To specify order of labels in the column dendrogram

ROWGROUPS = factors	To save the grouping of the rows specified by the
	SSTHRESHOLD option
COLGROUPS = factors	To save the grouping of the columns specified by the
	SSTHRESHOLD option
SORTEDTABLE = tables	To save the sorted TABLE with increasing row and column
	means

CLASSIFY procedure

Obtains a starting classification for non-hierarchical clustering (S.A. Harding).

No options Parameters

DATA = <i>pointers</i>	Each pointer contains a set of variates giving the properties of
	the units to be grouped
NGROUPS = <i>scalars</i>	Indicates the number of groups required
GROUPS = <i>factors</i>	Stores the classifications formed

CLOSE directive

Closes files. No options Parameters	
CHANNEL = <i>scalars</i> or <i>texts</i>	Numbers of the channels to which the files are attached, or
	identifiers of texts used for input (which, after "closing", can
	then be re-read)
FILETYPE = string tokens	Type of each file (input, output, unformatted,
	backingstore, procedurelibrary, graphics); default inpu
DELETE = string tokens	Whether to delete the file on closure (yes, no); default no

CLUSTER directive

Forms a non-hierarchical classification.

Options

PRINT = string tokens	Printed output required (criterion, optimum, units,
	typical, initial, random); default * i.e. no printing
DATA = matrix or pointer	Data from which the classification is formed, supplied as a
-	units-by-variates matrix or as a pointer containing the variates
	of the data matrix
CRITERION = <i>string token</i>	Criterion for clustering (sums, predictive, within,
-	Mahalanobis); default sums
INTERCHANGE = <i>string token</i>	Permitted moves between groups (transfer, swop); default
_	tran (implies swop also)
START = factor	Initial classification; default * i.e. splits the units, in order, into
-	NGROUPS classes of nearly equal size
NSTARTS = scalar	Number of starting configurations to be used; default 0
SEED = scalar	Seed for the random numbers used to form random starting
	configurations; default 0
Parameters	
NGROUPS = scalars	Numbers of classes into which the units are to be classified:
	note, the values of the scalars must be in descending order
GROUPS = factors	Saves the classification formed for each number of classes
CRITERIONVALUE = scalars	Saves the criterion values (representing within-class
	homogeneity)
BCRITERIONVALUE = scalars	Saves the subsidiary criterion values (representing between-
	class heterogeneity for maximal predictive classification)
MEANS = matrices	Saves the variate means for the groups of each classification
PREDICTORS = <i>matrices</i>	Saves the group predictors from maximal predictive
	classification

CMHTEST procedure

Performs the Cochran-Mantel-Haenszel test (D.A. Murray).

Options

PRINT = string token	Controls printed output (test); default test
CLASSIFICATION = factors	Classifying factors for a DATA variate or classifying factors for
	the $R \times C$ tables in a DATA table
CONTINUITY = string token	Continuity correction for $2 \times 2 \times K$ Mantel-Haenszel test
_	(correct, none); default corr
CIPROBABILITY = scalar	Size of confidence interval for common odds ratio in $2 \times 2 \times K$
	tables; default 0.95
Parameters	
DATA = $tables$ or $variates$	Data values
STATISTIC = scalars	Save the test statistic
PROBABILITY = scalars	Save the probability for the test
ODDSRATIO = scalars	Save the common odds ratio for the $2 \times 2 \times K$ table case
LOWER = scalars	Save lower limit of the confidence interval of odds ratio

COKRIGE directive

UPPER = *scalars*

Calculates kriged estimates using a model fitted to the sample variograms and cross-variograms of a set of variates.

Save upper limit of the confidence interval of odds ratio

Options

Options	
PRINT = string token	Controls printed output (description, search, weights, conditionalprobabilities, quantiles, crossvalidations); default desc
Y = variate	Variate to predict in the coKriging
METHOD = string token	Type of kriging (Normal, LogNormal); default Norm
X10UTER = variate	Variate containing 2 values to define the bounds of the region to be examined in the first direction; by default the whole region is used
X2OUTER = <i>variate</i>	Variate containing 2 values to define the bounds of the region to be examined in the second direction; by default the whole region is used
X3OUTER = <i>variate</i>	Variate containing 2 values to define the bounds of the region to be examined in the third direction; by default the whole region is used
X1INNER = variate	Variate containing 2 values to define the bounds of the interpolated region in the first direction; no default
X2INNER = variate	Variate containing 2 values to define the bounds of the interpolated region in the second direction; no default
X3INNER = variate	Variate containing 2 values to define the bounds of the interpolated region in the third direction; no default
X1INTERVAL = scalar	Distance between successive interpolations in the first direction; default 1.0
X2INTERVAL = scalar	Distance between successive interpolations in the second direction; default 1.0
X3INTERVAL = scalar	Distance between successive interpolations in the third direction; default 1.0
POINTS = matrix	Allows the point where predictions are required to be specified explicitly if the X1-3INNER and X1-3INTERVAL options are unset, otherwise if these are set, saves the locations of the prediction points
BLOCKDIMENSIONS = variate or matrix	Dimensions of the block(s) in the 3 directions, a variate defines identical blocks for each prediction point, a matrix can be used to define different block sizes for each point when the

	points are defined by the POINTS option; default ! (0,0,0) i.e. punctual kriging at every point	
POOLRADIUS = scalar	Specifies the minimum distance for which points are pooled; default * i.e. no pooling	
SEARCHNEIGHBOURHOOD = string toke	· ·	
	Search neighbourhood to be used (global, local); default glob	
MINPOINTS = scalars	Minimum number of data points from which to compute elements	
MAXPOINTS = scalars	Maximum number of data points in each direction from which to compute elements	
RADII = scalars or variates	Scalar defining the maximum distance between target point in block and usable data for each variable in 1 dimension, or radii of the ellipse or ellipsoid enclosing the usable points in 2 or 3 dimensions	
ELLIPSEAXIS = <i>scalar</i> or <i>variate</i>	Angle or angles defining the direction of the axis of the ellipse or ellipsoid, scalar for 2 dimensions and variate containing 3 values for 3 dimensions	
DRIFT = string token	Mean function for universal cokriging (constant, linear, quadratic, polygon); default cons	
X1EXV = <i>variate</i>	Variate containing locations of the explanatory model in the first dimension	
X2EXV = <i>variate</i>	Variate containing locations of the explanatory model in the second dimension (if recorded in 2 or 3 dimensions)	
X3EXV = <i>variate</i>	Variate containing locations of the explanatory model in the third dimension (if recorded in 3 dimensions)	
TERMS = variates	List of variates for explanatory model; default * i.e. none	
POLYGONCOORDINATES = pointer	Pointer containing the coordinates of polygons in 2 variates and the map unit numbers within a factor	
COORDSYSTEM = <i>string token</i>	Coordinate system used for the geometry for discretizing the lag (mathematical, geographical); default math	
CPTHRESHOLD = scalar or variate	Threshold(s) for calculating the conditional probabilities	
PERCENTQUANTILES = scalar or variate		
	Percentage points for which quantiles are required; default 5 and 95	
LOGBASE = <i>string token</i>	Base of antilog transformation to be applied to the predictions and variances for lognormal (co)kriging (ten, e); default * i.e. none	
Parameters		
DATA = variates	Measurements as one or more variates	
X1 = variates	Locations of the measurements in the first dimension	
X2 = variates	Locations of the measurements in the second dimension (if recorded in 2 or 3 dimensions)	
$x_3 = variates$	Locations of the measurements in the third dimension (if recorded in 3 dimensions)	
PREDICTIONS = variate	Kriged estimates	
VARIANCES = variate	Estimation variances	
MEASUREMENTERROR = $scalars$	Variance of measurement error for punctual (co)kriging	
ESTIMATES = <i>pointers</i>	Estimates for the model structure	
CONDITIONALPROBABILITIES = pointers		
	Structure to save conditional probabilities	
QUANTILES = pointers	Structure to save estimated quantiles	
SAMPLESUPPORT = <i>scalars</i>	Sampling size (length, area or volume according to the dimensionality of the data) of the data points	

COLOUR directive

Defines the red, green and blue intensities to be used for the Genstat colours for certain graphics devices. **Option**

Option	
RESET = string token	Whether to reset values to their defaults (no, yes); default no
Parameters	
NUMBER = scalars	Numbers of the colours to be set
RED = scalars	Red intensity of each colour (between 0 and 255)
GREEN = scalars	Green intensity of each colour (between 0 and 255)
BLUE = scalars	Blue intensity of each colour (between 0 and 255)
MATCH = scalars	Number of a Genstat colour to define any unset values of RED,
	GREEN or BLUE; default is to restore the original values of the
	colour
SAVE = pointers	Pointers each containing three scalars to save the red, green and blue intensities of the colours

COMBINE directive

Combines or omits "slices" of a multi-way data structure (table, matrix or variate).

Options	
OLDSTRUCTURE = <i>identifier</i>	Structure whose values are to be combined; no default i.e. this option must be set
NEWSTRUCTURE = <i>identifier</i>	Structure to contain the combined values; no default i.e. this option must be set
Parameters	
OLDDIMENSION = factors or scalars	Dimension number or factor indicating a dimension of the OLDSTRUCTURE
NEWDIMENSION = <i>factors</i> or <i>scalars</i>	Dimension number or factor indicating the corresponding dimension of the NEWSTRUCTURE; this can be omitted if the dimensions are in numerical order, while zero settings (each in conjunction with a single OLDPOSITION) allows a slice of an old table to be mapped into a new table with fewer dimensions
OLDPOSITIONS = pointers, texts, varia	tes or scalars
	These define positions in each OLDDIMENSION: pointers are appropriate for matrices whose rows or columns are indexed by a pointer; texts are for matrices indexed by a text, variates with a textual labels vector, or tables whose OLDDIMENSION factor has labels; and variates either refer to levels of table factors or numerical labels of matrices or variates, if these are present, otherwise they give the (ordinal) number of the position. If omitted, the positions are assumed to be in (ordinal) numerical order. Margins of tables are indicated by missing values
NEWPOSITIONS = pointers, texts, varia	tes or scalars
	These define positions in each NEWDIMENSION, specified similarly to OLDPOSITIONS; these indicate where the values from the corresponding OLDDIMENSION positions are to be entered (or added to any already entered there)
WEIGHTS = variates	Define weights by which the values from each OLDDIMENSION coordinate are to be multiplied

COMMANDINFORMATION directive

Provides information about whether (and how) a command has been implemented.

No options Parameters

Parameters	
NAME = $texts$	Single-line texts supplying the names of the commands
IMPLEMENTATION = $texts$	Single-line texts set to 'directive', 'procedure' or a null
	string ('') according to the type of command

CHANNEL = scalars	Saves the channel for a procedure from a procedure library
PRESENTNOW = scalars	Logical set to one if the command is now present, or zero
	otherwise

CONCATENATE directive

Concatenates and truncates lines (units) of text structures; allows the case of letters to be changed. **Ontions**

options	
NEWTEXT = $text$	Text to hold the concatenated/truncated lines; default is the
	first OLDTEXT vector
CASE = string token	Case to use for letters (given, lower, upper, changed); default give leaves the case of each letter as given in the original string
Parameters	
OLDTEXT = texts	Texts to be concatenated
WIDTH = <i>scalars</i> or <i>variates</i>	Number of characters to take from the lines of each text, a negative value takes all the (unskipped) characters other than trailing spaces; if * or omitted, all the (unskipped) characters are taken
SKIP = <i>scalars</i> or <i>variates</i>	Number of characters to skip at the left-hand side of the lines of each text, a negative value skips all initial spaces; if * or omitted, no characters are skipped

CONFIDENCE procedure

Calculates simultaneous confidence intervals (D.M. Smith).

Options	
PRINT = string token	Controls printed output (intervals); default inte
METHOD = string token	Type of interval (individual, smm, product, Bonferroni,
	Scheffe); default smm
MU = scalar	Value for population mean checked as to whether in the
	confidence interval; default * i.e. no checking
PROBABILITY = scalar	The required significance level; default 0.05
Parameters	

MEANS = *tables* or *variates* Mean values REPLICATIONS = *scalars* or *tables* or *variates*

	Number(s) of observations per mean
VARIANCE = scalars	Estimate of variance
DF = scalars	Degrees of freedom
XCONTRASTS = matrices	Matrix of coefficients of orthogonal contrasts
LABELS = $texts$	Identifiers of mean values
LOWER = <i>tables</i> or <i>variates</i>	Lower values of confidence intervals
UPPER = <i>tables</i> or <i>variates</i>	Upper values of confidence intervals

CONTOUR directive

Produces contour maps of two-way arrays of numbers (on the terminal/printer). This directive was replaced in Release 10 by the directive LPCONTOUR (with exactly the same options and parameters). It is currently retained as a synonym of LPCONTOUR, but may be removed in a future release.

CONVEXHULL procedure

Finds the points of a single or a full peel of convex hulls (P.G.N. Digby).OptionsSpecifies whether the procedure is to form the full set of peels, or just the convex hull (no, yes); default noSCALE = scalarScaling factor for hulls; default 1.0ParametersY = variateY = variateY-coordinates of the points

132	4 Syntax summary
X = variate	X-coordinates of the points
YHULL = variate or pointer	Variate storing the y-coordinates of the points defining the convex hull (for PEELING=no) or pointer to a set of variates storing the y-coordinates of the convex hulls forming the complete set of peels
XHULL = variate or pointer	Variate storing the x-coordinates of the points defining the convex hull (for PEELING=no) or pointer to a set of variates storing the x-coordinates of the convex hulls forming the complete set of peels
PEEL = variate	Stores the number of the peel to which each point belongs

COPY directive

COPY directive	
Forms a transcript of a job.	
Option	
PRINT = string tokens	What to transcribe (statements, output); default stat
Parameter	
scalar	Channel number of output file

CORANALYSIS procedure

Does correspondence analysis, or reciprocal averaging; synonym CORRESP (P.G.N. Digby).

Options	
PRINT = string tokens	Printed output from the analysis (roots, rowscores,
	rowinertias, rowchisquare, rowmass, rowquality,
	colscores, colinertias, colchisquare, colmass,
	colquality); default * i.e. no output
METHOD = string token	Type of analysis required (correspondence,
	digbycorrespondence, biplot, reciprocal); default corr
NROOTS = $scalar$	Number of latent roots for printed output; default * requests
	them all to be printed
%METHOD = string token	How to represent proportions or %s in quality statistics
	(permills, percentages, proportions); default prop
NDIMENSIONS = scalar	Number of dimensions for which quality statistics are required;
	default 2
ROWSUBSET = scalars	Indexes of subset rows
COLSUBSET = scalars	Indexes of subset columns
ROWPASSIVE = scalars	Indexes of passive rows
COLPASSIVE = scalars	Indexes of passive columns
Parameters	
DATA = <i>matrices</i> or <i>data matrices</i>	Data to be analysed
ROOTS = <i>diagonal matrices</i>	Saves the squared singular values from each analysis
ROWSCORES = <i>matrices</i>	Saves the scores for the rows of the data matrix
COLSCORES = <i>matrices</i>	Saves the scores for the columns of the data matrix
ROWINERTIAS = matrices	Saves the inertias for the rows of the data matrix
COLINERTIAS = matrices	Saves the inertias for the columns of the data matrix
ROWQUALITY = matrices	Saves the quality statistics for rows of the data
COLQUALITY = matrices	Saves the quality statistics for columns of the data
SAVE = <i>pointers</i>	Saves details of the analysis for use by CAPLOT

CORRELATE directive

Forms correlations between variates, autocorrelations of variates, and lagged cross-correlations between variates.

Options

PRINT = string tokens	What to print (correlations, autocorrelations,
	partialcorrelations, crosscorrelations); default *
GRAPH = string tokens	What to display with graphs (autocorrelations,

4.1 Commands

MAXLAG = <i>scalar</i> CORRELATIONS = <i>symmetric matrix</i>	partialcorrelations, crosscorrelations); default * Maximum lag for results; default * i.e. value inferred from variates to save results Stores the correlations between the variates specified by the
	SERIES parameter
Parameters	
SERIES = variates	Variates from which to form correlations
LAGGEDSERIES = variates	Series to be lagged to form crosscorrelations with first series
AUTOCORRELATIONS = variates	To save autocorrelations, or to provide them to form partial autocorrelations if SERIES=*
PARTIALCORRELATIONS = variates	To save partial autocorrelations
CROSSCORRELATIONS = variates	To save crosscorrelations
TESTSTATISTIC = scalars	To save test statistics
VARIANCES = variates	To save prediction error variances
COEFFICIENTS = variates or matrices	To save prediction coefficients: in a variate to keep only those
	for the maximum lag, or in a matrix to keep the coefficients for
	all lags up to the maximum

COUNTER directive

Increments a multi-digit counter using non base-10 arithmetic.

Options	
NREQUIRED = $scalar$	Specifies the number of values required for the counter; default 2
NFOUND = scalar	Saves the number of counter values that could be formed
DIRECTION = <i>string token</i>	Specifies the direction of the sequence of increments to the counter (ascending, descending); default asce
Parameters	
START = scalars	Provides the starting values for the digits in the counter
END = scalars	Can provide values to define the end of the sequence of counter values
STEP = scalars	Specifies the amount by which to increment each digit of the counter
BASE = scalars	Specifies the base of the numbers used for each digit
DIGITSEQUENCE = variates	Saves the sequence of values generated for each digit

COVARIATE directive

Specifies covariates for use in subsequent ANOVA statements.

No options Parameter

variates or pointers

Covariates

COVDESIGN procedure

Produces experimental designs efficient under analysis of covariance (D.B. Baird).

Options	
PRINT = string tokens	Controls printed output (design, cefficiency, means,
	histogram, cutoff); default desi, ceff, cuto
TREATMENTSTRUCTURE = formula	Treatment terms to be fitted
BLOCKSTRUCTURE = formula	Block model for the design
COVARIATES = variates	Covariates for the design
FACTORIAL = scalar	Limit on number of factors in a treatment term; default 3
GRBLOCKSTRUCTURE = formula	Formula use for randomization; default uses BLOCKSTRUCTURE
EXCLUDE = factors	(Block) factors whose levels are not to be randomized
UNITS = <i>text</i> , <i>variate</i> or <i>factor</i>	Labels for the units of the design
Parameters	
PROPORTION = scalars	Upper proportion of the combined cov. ef. distribution from

134	4 Syntax summary
	which the design is to be chosen (or zero to take the best design found); default 0.5
NSIMULATIONS = scalars	Number of designs to simulate for the empirical distribution of combined cov. ef.'s; default 100
WEIGHTS = variates	Weighting for the treatment terms to use when calculating the combined cov. ef.; default 1 (i.e. all equal)
CEFLIMIT = scalars	Minimum value of the cov. ef. for each or variates treatment term for a design to be included in the set of acceptable designs; default 0 (i.e. all designs acceptable).
ORDER = scalars	Order of polynomial to fit for each covariate; or variates default 1 (i.e. only linear covariates)
SEED = scalars	Seed for random number generator for randomizing the simulated designs; default 0
SAVE = pointers	Saves the treatment factor allocations for the selected design; if unset, these overwrite the values of the treatment factors themselves
CUTOFF = scalars	Critical value of the combined cov. ef. from the simulated distribution
CEFFICIENCY = variates	Covariate efficiencies for the treatment terms from the selected design
SIMULATIONS = variates	Simulated combined cov. ef.'s

CRBIPLOT procedure

Plots correlation or distance biplots after RDA, or ranking biplots after CCA (A.I. Glaser).

Options	
DIMENSIONS = scalars	Two numbers specifying which axes of the ordinations to plot; default 1,2
PLOT = <i>string token</i>	Whether to plot site or species scores (sitescores, speciesscores); default spec
WINDOW = scalar	Which graphical window to use; default 1
KEYWINDOW = scalar	Which graphical window to use for the key (zero for none); default 2
SAVE = pointer	Supplies results from an ordination analysis by CCA or RDA; default uses the most recent analysis
Parameters	
X1 = scalars, variates or texts	First explanatory variable to plot; default 1
$x_2 = scalars, variates or texts$	Second explanatory variable to plot; default * i.e. none
LMXVARIABLES = <i>string tokens</i>	How to label the x-variables (identifiers, labels, none, numbers); default labe if LXVARIABLES is set, otherwise iden
LMSPECIES = <i>string tokens</i>	How to label the species scores (identifiers, labels,
-	none, numbers); default labe if LSPECIES is set, otherwise numb
LMSITES = string tokens	How to label the site scores (labels, none, numbers); default labe if LSITES is set, otherwise numb
LXVARIABLES = texts	Labels for variables
LSPECIES = <i>texts</i>	Labels for species scores
LSITES = texts	Labels for site scores

CRTRIPLOT procedure

Plots ordination biplots or triplots after CCA or RDA (A.I. Glaser).

Options

DIMENSIONS = scalars	Which dimensions of the ordinations to display; default 1,2
PLOT = string token	What to plot (sitescores, speciesscores, xvariables);
	default spec, site, xvar
DGROUPS = string token	Features to plot for the XGROUPS variate (ellipse, hull,

DBINARY = string token	<pre>lines, spider); default * i.e. none What to plot for binary variables (biplot, centroid); default bipl</pre>
MULTIPLIER = scalar	Value to multiply species and environmental variables scores by when plotting RDA; default *, i.e. none chosen
WINDOW = $scalar$	Which graphical window to use; default 1
KEYWINDOW = scalar	Which graphical window to use for the key (zero for none); default 2
SAVE = pointer	Supplies results from an ordination analysis by CCA or RDA; default uses the most recent analysis
Parameters	·
LMXVARIABLES = <i>string tokens</i>	How to label the x-variables (identifiers, labels, none, numbers); default labe if LXVARIABLES is set, otherwise iden
LMSPECIES = <i>string tokens</i>	How to label the species scores (identifiers, labels, none, numbers); default labe if LSPECIES is set, otherwise numb
LMSITES = <i>string tokens</i>	How to label the site scores (labels, none, numbers); default labe if LSITES is set, otherwise numb
LXVARIABLES = <i>texts</i>	Labels for variables
LSPECIES = texts	Labels for species scores
LSITES = texts	Labels for site scores
XGROUPS = <i>variates</i> , <i>factors</i> or <i>scalars</i>	X-variate to generate grouping information to appear on the plot (see the DGROUPS option)

CSPRO procedure

Reads a data set from a CSPro survey data file and dictionary, and loads it into Genstat or puts it into a spreadsheet file (D.B. Baird). **Options**

options	
PRINT = string token	What to print (catalogue); default cata
FACMETHOD = <i>string token</i>	Which factors to create (convertall,
	keepandconvertall, none, noranges); default keep
MISSINGCODES = <i>string tokens</i>	Which special values to convert to Genstat missing values
C C	(missing, na); default miss
FVALUESETS = <i>string token</i>	Whether form to a set of columns containing all the valueset
0	information (yes, no); default no
SUBITEMS = <i>string token</i>	Whether to create a set of columns for the sub-items (yes,
	no); default no
MERGE = <i>string token</i>	Whether to merge the records into a single set of columns all
8	of the same length (yes, no); default no
FUNKNOWNGROUP = <i>string token</i>	Whether to create a specific level for values not in the value
	set, rather than setting them to missing values (yes, no);
	default no
INCLUDEEXTRA = string token	Whether to include a row of column descriptions in the Excel
8	output file after the column heading row (yes, no); default no
WARNONEMPTYGROUPS = <i>string token</i>	Whether to warn that groups in a factor are empty and offer to
	remove them when loading the data from a saved GWB file
	(yes, no); default no
DUPLICATELABELS = string token	What to do with factor groups that have identical labels
	(combine, ignore, rename); default comb
SCOPE = <i>string token</i>	Whether to read the data into global data structures or into
sociel shing to her	data structures local to a procedure calling CSPRO (local,
	global); default loca
INOPTIONS = <i>text</i>	Optional extra input options to be passed to the
	Dataload.dll
OUTOPTIONS = text	Optional extra output options to be passed to the
	Dataload.dll

136	4 Syntax summary
Parameters	
FILENAME = $text$	Survey data file to be read
DICTIONARY = text	Survey dictionary for interpreting the data file
OUTFILENAME = text	Name of the output file to be created, if required
SURVEYLEVEL = scalar	Level of the survey $(1, 2 \text{ or } 3)$ to read; default 1
RECORDS = <i>scalar</i> or <i>variate</i>	Defines the records to be read within the SURVEYLEVEL; by
	default they are all read
ITEMS = $text$	Names of the survey items to be read
ISAVE = <i>text</i> or <i>pointer</i>	Saves the identifiers of the columns that are created

CUMDISTRIBUTION procedure

 Fits frequency distributions to accumulated counts (R.C. Butler, M.E. O'Neill, P. Brain & H. Turner).

 Options

 PRINT = string tokens

 Controls printed output (model, summary, estimates,

ERINI – su ung iokens	controls printed output (model, summary, estimates,
	correlations, fittedvalues, monitoring); default
	mode, summ, esti
DISTRIBUTION = <i>string token</i>	Which distribution to use (normal, logistic,
8	complementaryloglog, acomplementaryloglog,
	inversenormal, weibull, exponential); default norm
TRANSFORMATION = <i>string token</i>	Whether to use log(TIME) if DISTRIBUTION = normal,
TRANSFORMATION – string loken	
	logistic, complementarylog or acomplementarylog
	(log, none); default * uses log except when DISTRIBUTION
	= inversenormal, weibull or exponential
LAG = <i>string token</i>	Type of lag to add to TIME (none, positive,
	unconstrained); default none
ALLRESPOND = string token	If TOTUNITS is set, whether all units are constrained to
	respond (yes, no); default no
FORM = string token	Whether DATA are cumulated or differences (cumulated,
	differences); default cumu
LOSTUNITS = string token	Whether data are left-censored (yes, no); default no
SEPARATE = <i>string token</i>	Which parameters to estimate separately for each group (lag,
	b, m, propn, gamma); default *
POPSEPARATE = <i>string token</i>	Which parameters to estimate separately for populations in
ioroninatin sung lowen	each group (b, m, lag); default *
PLOT = string token	Which graphs to draw (cumulative, density,
PLOI – siring loken	
1	trcumulative, trdensity); default cumu
MAXCYCLE = scalar	Number of iterations for fitting, as in RCYCLE; default 30
Parameters	
DATA = variates or pointers	Specifies the accumulated counts
TIME = variates or pointers	Defines the time at which each count was recorded
GROUPS = factors	Factor indicating groups
INITIAL = variates	Initial values for all parameters
IB = scalars or variates	Initial values for b
IM = scalars or variates	Initial values for <i>m</i>
ILAG = scalars or variates	Initial values for <i>lag</i>
IGAMMA = scalars or variates	Initial values for gamma
IPROPN = scalars or variates	Initial values for proportions
STEPLENGTHS = variates	Steplengths for all parameters
SB = scalars or variates	Steplengths for b
SM = scalars or variates	Steplengths for <i>m</i>
SLAG = scalars or variates	Steplengths for <i>lag</i>
SGAMMA = scalars of variates	Steplengths for <i>gamma</i>
SGAMMA - Scalars of variates SPROPN = scalars or variates	Steplengths for proportions
TOTUNITS = $scalars$ or $variates$	Total number
NPOPULATION = scalars	Number of populations (1, 2 or 3); default 1
SAVE = pointers	Saves the results

CVA directive

Performs canonical variates analysis.

Options

Options	
PRINT = string tokens	Printed output required (roots, loadings, means, residuals, distances, tests); default * i.e. no printing
NROOTS = $scalar$	Number of latent roots for printed output; default * requests them all to be printed
SMALLEST = <i>string token</i>	Whether to print the smallest roots instead of the largest (yes, no); default no
Parameters	
WSSPM = SSPMs	Within-group sums of squares and products, means etc (input for the analyses)
LRV = LRVs	Saves loadings, roots, and trace from each analysis
SCORES = <i>matrices</i>	Saves canonical variate means
RESIDUALS = matrices	Saves distances of the means from the dimensions fitted in each analysis
DISTANCES = symmetric matrices	Saves inter-group-mean Mahalanobis distances
ADJUSTMENTS = matrices	Saves the adjustment terms
SAVE = pointers	Saves details of the analysis; if unset, an unnamed save structure is saved automatically (and this can be accessed using the GET directive)

CVAPLOT procedure

Plots the mean and unit scores from a canonical variates analysis (D.A. Murray).

Options	
PLOT = string tokens	Type of plot to be drawn (meanscores, unitscores,
	confidenceregion); default mean, conf
GROUPS = factor	Group allocations in the CVA
MSCORES = matrix	Mean scores from the CVA; if unset these are calculated using
	the CVA directive
USCORES = matrix	Unit scores from the CVA; if unset these are calculated using
	the CVASCORES procedure
WSSPM = SSPM	Within-group sums of squares and products, means etc. for the
	CVA; must be supplied if the scores and groupings are not
	provided
CREGION = string tokens	Type of confidence region to be drawn (mean, population);
	default mean
CIPROBABILITY = scalar	The probability level for the confidence region; default 0.95
TAREA = $scalar$	Defines the transparency to use to shade the confidence
	regions; default 255 i.e. no shading
Parameters	
YDIMENSION = scalars	Dimensions to be plotted in the y direction of each graph
XDIMENSION = scalars	Dimension to be plotted in the x direction
TITLE = texts	Title for each plot
WINDOW = scalars	Window for each graph; default 1
SCREEN = string tokens	Whether to clear the screen before plotting (clear, keep);
	default clea

CVASCORES procedure

Calculates scores for individual units in canonical variates analysis (S.A. Harding).

Option PRINT = string tokens	What output to print (scores, adjustments); default scor
Parameters WSSPM = SSPMs	Within-group sums of squares and products structure
LRV = LRVs	Loadings, roots and trace saved from CVA of the WSSPM

SCORES = <i>matrices</i>	Unit scores
ADJUSTMENTS = matrices	Mean Adjustments

DARROW procedure

Adds arrows to an existing plot (D. B. Baird).

Options	
WINDOW = scalar	Window number for the graphs; default 3
COORDINATETYPE = string token	Type of coordinate to use for the locations of the arrows
	(frame, graph); default grap
YUPPER = scalar	Maximum vertical coordinate in the frame; default 1
XUPPER = scalar	Maximum horizontal coordinate in the frame; default 1
ISTYLE = <i>string token</i>	The type of symbol at the start of the arrow (none, open,
	closed, circle); default none
ESTYLE = string token	The type of symbol at the end of the arrow (none, open,
	closed, circle); default open
ISIZE = scalar	The size of the symbol at the start of the arrow; default 1
ESIZE = scalar	The size of the symbol at the end of the arrow; default 1
IANGLE = scalar	The angle in degrees of the starting arrowhead when ISTYLE
	is open or closed; default 45
EANGLE = scalar	The angle in degrees of the ending arrowhead when ESTYLE is
	open or closed; default 45
LAYER = scalar	The plot layer for the arrows; default is a new layer above the
	previous plot items
Parameters	

IY = variates, scalars or factors	The starting y-positions of the arrows
IX = variates, scalars or factors	The starting x-positions of the arrows
EY = variates, scalars or factors	The ending y-position of the arrows
EX = variates, scalars or factors	The ending x-position of the arrows
COLOUR = variates, scalars, texts or fac	ctors

Colour of the arrows; default 'black'

LINESTYLE = *variates, scalars* or *factors*

Linestyle of the line in the arrows; default 1

THICKNESS = variates, scalars or factors

Thickness of the line in the arrows; default 1

TRANSPARENCY = *variates, scalars* or *factors*

Transparency of the arrows; default 0

DAYLENGTH procedure

Calculates daylengths at a given period of the year (R.J. Reader & K. Phelps).

Option

LATITUDE = scalar

Latitude at which the daylength is to be calculated, positive for northern hemisphere and negative for southern hemisphere; default 52.205 N (Wellesbourne)

ParametersDAYNUMBER = variateDAYLENGTH = variateDays of year for which daylengths are required
Calculated daylengths in hours

DBARCHART procedure

Produces bar charts for one or two-way tables (A.R.G. McLachlan & R.C. Butler).

Options	
TITLE = $text$	Title for the chart; no default
WINDOW = scalar	Window for the chart; default 1
KEYWINDOW = scalar	Window for the key, no key is produced for one-way tables;
	default 2
LABELS = $text$	Labels for clusters of bars; by default the labels or levels of the
	first classifying factor of TABLE are used

138

Options

APPEND = string token SCREEN = string token	Whether to append bars (no, yes); default no Whether to clear screen before displaying chart (keep,
KEYDESCRIPTION = text	clear); default clea Title for key; default is the name of the second factor of TABLE
YSCALE = <i>expression structure</i>	Defines a transformation of the data, the expression must be a function of either Y or X, for example $!e(log(X))$, and should be valid for the range of the data in TABLE; default no transformation
BELOWORIGIN = string token	Whether to include or values in TABLE less than ORIGIN (omit, include); default omit
ORIENTATION = <i>string token</i>	Direction of the plot (horizontal, vertical); default vert
BARCOVERING = scalar	What proportion of the space allocated along the x-axis each bar should occupy; default * gives proportion 0.8 (thus giving a gap between each bar or each group of bars)
XPOSITION = string token	Position of the x-axis on the y-axis (lower, origin); default lowe
OMITEMPTYLEVELS = <i>string token</i>	Whether to omit levels where there are only missing values (yes, no); default no
Parameters	
TABLE = $tables$	One or two-way table of data
ORIGIN = scalars	Origin for y-axis; default 0
PEN = variates or scalars	Pen (or pens) to use; default is ! (1 nlevel (last_classifying_factor))
DESCRIPTION = texts	Annotation for Key for two-way tables; default uses the labels or levels of the factor that is not being used as the XFACTOR
YMARKS = variates	Position of the tick-marks on the y-axis
XFACTOR = factors	X-axis factor for a 2-way TABLE; default first factor of TABLE
LOWERERRORBARS = <i>tables</i> , <i>variates</i> or	scalars
	Lower bounds of the error bars on the y-axis
UPPERERRORBARS = <i>tables</i> , <i>variates</i> or	scalars
	Upper bounds of the error bars on the y-axis
YERRORBARS = <i>tables</i> , <i>variates</i> or <i>scala</i>	
	Y-axis position of any error bar symbols; by default no symbols are plotted
XERRORBARS = <i>tables</i> , <i>variates</i> or <i>scala</i>	rs
	X-axis position of the error bars; default midpoints of bar-chart bars
PENERRORBARS = <i>tables</i> , <i>variates</i> or <i>sca</i>	alars
	Pen (or pens) to use for plotting error bars; default 1
DBCOMMAND procedure	
-	database, PC Windows only (D.B. Baird).
Options	
WARNINGDIALOGS = <i>string token</i>	Whether dialogs giving ODBC error and warning messages are presented (display, omit); default disp

of Genstat; default 64

each command

Driver version (either 32 or 64) to use with the 64-bit version

Name of GDB file to be used in specifying the database for

The exit code (0=success, 1=failure) from each command

Specifies SQL commands to run on the database

Database connection string for each command

DRIVER	= scal	ar
	beau	cu,

Parameters

COMMAND = texts DB = texts GDBFILE = texts

DBEXPORT procedure

Update data in an ODBC database table using Genstat data, PC Windows only (D.B. Baird).

Options	
METHOD = string token	Type of update on table (create, insert, merge); default crea
ROWMERGEMETHOD = <i>string token</i>	For METHOD=merge, what action to take when rows do not match any in the existing table (none, matched, all); default all
COLMERGEMETHOD = <i>string token</i> OMIT = <i>string token</i>	What to do with unmatched columns (add, omit); default add Which rows to omit from the data for METHOD settings other than merge (none, restricted); default rest
ERRORACTION = string token	What to do when any non-fatal errors occur, (continue, stop); default stop
WARNINGDIALOGS = <i>string token</i>	If any errors occur, pop up warning dialogs (display, omit); default disp
GLKFILE = text	Name of existing Genstat ODBC Update link file (*.GLK) to use
DRIVER = scalar	Driver version (either 32 or 64) to use for the 64-bit version of Genstat; default 64
ODBCPATH = text	Path for the folder containing the executable program (Odbcload.exe) used by the 64-bit version of Genstat to export the data when DRIVER=32; default is the folder containing the Genstat executable program
Parameters	
DATA = $pointer$ or $text$	Pointer to a compatible set of data structures to add to the table or text with a name of an existing Genstat spreadsheet file containing data to be added
DB = text	Database connection string specifying the ODBC database to connect to
TABLENAME = $text$	Name of the table in the ODBC database (if METHOD is set to insert or merge, then this must already exist in the database)
COLUMNNAMES = text	Names of the columns in the table to be updated; if this is not provided, it will be assumed that the columns in the table have the same names as the Genstat data structures
SUBSET = <i>variate</i> or <i>text</i>	Column numbers or names of the subset of data columns (only if a pointer is used for the DATA parameter) to be added to the table; if SUBSET is not set, all columns are added to the table
MATCH = variate	Numbers of the columns in the table to be matched with the column in the table (the names are provided by WITH)
WITH = text	Names of the columns in the table to be matched with the Column; if this not provided, it is assumed that these columns have the same names as those of the Genstat data structures

DBIMPORT procedure		
Loads data from an ODBC database, PC Windows only (D.B. Baird).		
Options		
PRINT = string token	What information to print (catalogue); default cata	
OUTTYPE = string token	Whether to form a Genstat command file or spreadsheet file as output (GEN, GSH, GWB); default GWB	
METHOD = string token	Whether to load data into the Genstat server after creating the	
	file, or merely to create the file, or to run a command with no output (create, load, command); default load	
IMETHOD = string token	Whether to read the column names from the first row of data,	
	or to use default column names (read, supply, none,	
	default); default read	
ENDSTATEMENT = string token	Ending statement to use in a GEN output file (RETURN,	

	ENDBREAK); default RETURN
WARNINGDIALOGS = string token	Whether dialogs giving ODBC error and warning messages are
	presented (display, omit); default disp
DRIVER = scalar	Driver version (either 32 or 64) to use for the 64-bit version of
	Genstat; default 64
ODBCPATH = text	Path for the folder containing the executable program
	(Odbcload.exe) used by the 64-bit version of Genstat to load
	the data when DRIVER=32; default is the folder containing the
	Genstat executable program
NROWSFETCH = scalar	Number of rows to fetch per driver transaction; default 40
Parameters	
DB = text	Database connection string
SQL = text	SQL Query string to run against the ODBC database
GDBFILE = text	Name of GDB file to be used in reading from ODBC database
OUTFILE = text	Output file to be created; if this is not provided a temporary
	file will be created, and then deleted if the data is loaded
COLUMNS = text	Names and/or type codes for the columns read (the type of
	column can be forced by ending the column name, if supplied,
	with the code $!$ for a factor, $\#$ for a variate, and $\$$ for a text)
ISAVE = pointer	Name of a pointer to save the column identifiers
NROWSALLOCATE = $scalars$	Specifies how many rows to allow space for, in the initial
	allocation of memory, before the data are read; default 1000

DBINFORMATION procedure

Loads information on the tables and columns in an ODBC database, PC Windows only (D.B. Baird).

Options	
PRINT = string token	What to print (information); default info
INFORMATION = <i>string token</i>	What information to read from the database (tables,
	columns); default tabl
DRIVER = scalar	Driver version (either 32 or 64) to use with the 64-bit version
	of Genstat; default 64
Parameters	
DB = texts	Database connection string
GDBFILE = texts	GDB file specifying an ODBC query
ISAVE = pointers	Specifies pointers to save the information

DBIPLOT procedure

Plots a biplot from an analysis by PCP, CVA or PCO (A.I. Glaser).

Options	
PLOT = string tokens	Additional features for the plot (convexhull, means); default
	* i.e. none
METHOD = string token	Type of axes to plot (predictive, interpolative); default pred
HORIZONTAL = <i>identifer</i>	Which axis to make horizontal; default * i.e. none
PREDICTIONS = matrix	Saves predicted values
GROUPS = factor	Factor defining groupings of individuals for a PCP biplot;
	default * i.e. none
LMINDIVIDUALS = <i>string tokens</i>	How to label the individuals (labels, none, numbers,
	unitlabels); default labe if LINDIVIDUALS is set,
	otherwise unit
LMVARIABLES = <i>string tokens</i>	How to label the variables (identifiers, labels, none,
	numbers); default labe if LVARIABLES is set, otherwise iden
LINDIVIDUALS = texts	Labels for individuals (i.e. scores)
LVARIABLES = texts	Labels for variables (i.e. biplot axes)
MULTIPLIER = scalar	Value to multiply vector loadings; default * i.e. determined

	automatically
WINDOW = scalar	Which graphical window to use; default 1 when there are
	groups, otherwise 3
KEYWINDOW = scalar	Which graphical window to use for the key when there are
	groupings of individuals (0 for none); default 2
SCREEN = string token	Whether to clear the screen before plotting or to continue
	plotting on the old screen (clear, keep); default clea
SIZEMULTIPLIER = scalar	Multiplier used in the calculation of the size in which to draw
	symbols and labels; default 1
SAVE = pointer	Supplies results from an ordination analysis by PCP, CVA or
Description	PCO; default uses the most recent analysis
Parameters	
VARIABLE = <i>identifiers</i>	Axis variables
DISPLAY = string tokens	Whether to show, hide or omit each axis (show, hide, omit);
	default disp
COLOUR = <i>texts</i> or <i>scalars</i>	Colour to use to plot each axis
DDIMNAD dimension	
DBITMAP directive	
Plots a bit map of RGB colours.	
Options	
TITLE = text	General title; default *
WINDOW = $scalar$	Window number for the graph; default 1
YORIENTATION = <i>string token</i>	Y-axis orientation of the plot (reverse, normal); default reve
GRIDMETHOD = string token	How to draw a grid around the elements of the matrix
	(present, complete); default * i.e. none
PENGRID = scalar	Pen to use for the grid; default -7
SCREEN = string token	Whether to clear the screen before plotting or to continue
	plotting on the old screen (clear, keep); default clea

Action to be taken after completing the plot (continue, pause); default * uses the setting from the last DEVICE

ENDACTION = string token

Parameters

BITMAP = symmetric matrix, matrix, table, pointer to variates or variate

	Data to be plotted
ROWS = variate	Row indexes for a BITMAP variate
COLUMNS = variate	Column indexes for a BITMAP variate

statement

DCLEAR directive Clears a graphics screen.

Options	
DEVICE = scalar	Device whose screen is to be cleared; default is to clear the
	screen of the current graphics device
ENDACTION = string token	Action to be taken after clearing the screen (continue,
	pause); default * uses the setting from the last DEVICE
	statement
NY (

No parameters

DCLUSTERLABELS procedure

Labels clusters in a single-page dendrogram plotted by DDENDROGRAM (R.W. Payne).

Options	
WINDOW = scalar	Window containing the dendrogram; default 1
UNITS = variate or text	Names used for the units in the clusters supplied by CLUSTER
PEN = scalar	Pen to use to plot the labels; default 1
Parameters	
CLUSTER = <i>variates</i> or <i>texts</i>	Specifies clusters to be labelled

LABEL = texts	Specifies the label to be plotted where each cluster is formed
YSAVE = scalars	Saves the y-coordinate where each label is plotted
XSAVE = scalars	Saves the x-coordinate where each label is plotted

DCOLOURS procedure

Forms a band of graduated colours for graphics (P.W. Goedhart).

i offits a build of graduated colours is	or gruphics (1.11. Goodinary).
Options	
METHOD = string token	Type of colour band required (spectral, blackbody,
	linear); default line
PLOT = string token	What to plot (testgraph); default *
Parameters	
START = <i>scalar</i> or <i>text</i>	Start value for the colour band; default * gives an appropriate
	default for the METHOD concerned
END = scalar, text or variate	End value(s) for the colour band; default * gives an
	appropriate default for the METHOD concerned
GAMMA = $scalar$ or $variate$	The gamma-correction exponent(s) for the colour band;
	default 1
NCOLOURS = scalar or variate	Number(s) of colours in the colour band; default 20
RGB = variates	Saves the RGB colour values of each colour band
RED = variates	Saves the red component of the RGB colour values
GREEN = variates	Saves the green component of the RGB colour values
BLUE = variates	Saves the blue component of the RGB colour values
TITLE = text	General title for each test graph; default forms an informative
	title automatically
WINDOW = scalar	Window number for each test graph; default 0 does not display
	a test graph
SCREEN = string token	Whether to clear the screen before plotting each test graph or
	to continue plotting on the old screen (clear, keep); default clea

DCOMPOSITIONAL procedure

Plots 3-part compositional data within a barycentric triangle (S.J. Clark).

Options	
PRINT = text	What to print (proportions); default *
VERTEXLABELS = <i>text</i>	Labels for the vertices of the triangle; default * uses the names of the corresponding variates given in the DATA pointer
TITLE = text	Title for the barycentric triangle; default * (i.e. no title)
PERPENDICULARS = <i>text</i>	Whether to draw perpendiculars from each vertex to its opposite side (yes, no); default no
WINDOW = number	Which high-resolution graphics window to use; default 3
SCREEN = <i>string token</i>	Whether to clear the graphics screen before plotting (clear, keep); default clea
Parameters	
DATA = pointers	Contains variates which form the three-part compositions
SCALE = scalars	Scale factor for adjusting size of triangle to represent a fourth category; default 1
SAVECOORDINATES = <i>pointers</i>	Saves the two-dimensional x- and y-coordinates into the first and second elements of the pointer, respectively
PEN = <i>scalars</i> or <i>variates</i> or <i>factors</i>	Pen number to draw points within the barycentric triangle; default 1

DCONTOUR directive

Draws contour plots on a plotter or graphics monitor.

Options	
TITLE = text	General title; default *
WINDOW = scalar	Window number for the plots; default 1

KEYWINDOW = scalar	Window number for the key (zero for no key); default 2
YORIENTATION = <i>string token</i>	Y-axis orientation of the plot (reverse, normal); default reve
ANNOTATION = string token	How to annotate the contours (levels, ordinals); default ordi if there is a key, and leve if there is no key
SCREEN = <i>string token</i>	Whether to clear the screen before plotting or to continue plotting on the old screen (clear, keep); default clea
KEYDESCRIPTION = text	Overall description for the key
ENDACTION = string token	Action to be taken after completing the plot (continue,
0	pause); default * uses the setting from the last DEVICE statement
Parameters	
GRID = identifier	Pointer (of variates representing the columns of a data matrix), matrix or two-way table specifying values on a regular grid
GRID = <i>identifier</i> PENCONTOUR = <i>scalar</i>	Pointer (of variates representing the columns of a data matrix), matrix or two-way table specifying values on a regular grid Pen number to be used for the contours; default 1
·	matrix or two-way table specifying values on a regular grid
PENCONTOUR = scalar	matrix or two-way table specifying values on a regular grid Pen number to be used for the contours; default 1 Pen number(s) defining how to fill the areas between contours,
PENCONTOUR = <i>scalar</i> PENFILL = <i>scalar</i> or <i>variate</i>	matrix or two-way table specifying values on a regular grid Pen number to be used for the contours; default 1 Pen number(s) defining how to fill the areas between contours, or 0 to leave the areas in the background colour; default 3 Pen number to use for highlighted contours; default 0 i.e. no
PENCONTOUR = scalar PENFILL = scalar or variate PENHIGHLIGHT = scalar	matrix or two-way table specifying values on a regular grid Pen number to be used for the contours; default 1 Pen number(s) defining how to fill the areas between contours, or 0 to leave the areas in the background colour; default 3 Pen number to use for highlighted contours; default 0 i.e. no highlighting
PENCONTOUR = scalar PENFILL = scalar or variate PENHIGHLIGHT = scalar HIGHLIGHTFREQUENCY = scalar	 matrix or two-way table specifying values on a regular grid Pen number to be used for the contours; default 1 Pen number(s) defining how to fill the areas between contours, or 0 to leave the areas in the background colour; default 3 Pen number to use for highlighted contours; default 0 i.e. no highlighting Frequency at which contours are to be highlighted; default 10
PENCONTOUR = scalar PENFILL = scalar or variate PENHIGHLIGHT = scalar HIGHLIGHTFREQUENCY = scalar NCONTOURS = scalar	 matrix or two-way table specifying values on a regular grid Pen number to be used for the contours; default 1 Pen number(s) defining how to fill the areas between contours, or 0 to leave the areas in the background colour; default 3 Pen number to use for highlighted contours; default 0 i.e. no highlighting Frequency at which contours are to be highlighted; default 10 Number of contours; default 10 Positions of contours
PENCONTOUR = scalar PENFILL = scalar or variate PENHIGHLIGHT = scalar HIGHLIGHTFREQUENCY = scalar NCONTOURS = scalar CONTOURS = variate	 matrix or two-way table specifying values on a regular grid Pen number to be used for the contours; default 1 Pen number(s) defining how to fill the areas between contours, or 0 to leave the areas in the background colour; default 3 Pen number to use for highlighted contours; default 0 i.e. no highlighting Frequency at which contours are to be highlighted; default 10 Number of contours; default 10

DCORRELATION procedure

Plots a correlation matrix (A.I. Glaser). Options PLOT = *string tokens*

PLOT = string tokens	Type of plot (together, separate); default sepa
SHOW = <i>string tokens</i>	What features to include on the plots (axes, diagonal); default axes
NCOLOURS = $scalar$	Number of distinct colour to use from 0 to -1 or 1; default 20
COLOURS = <i>text</i> or <i>variate</i>	Text or variate with three values, defining the colours to use for correlations of -1 , 0 and 1; default * chooses the colours automatically
WEIGHTS = variate	Provides weights for the units of the variates; default * assumes that they all have weight one

Parameters

PVARIATES = *pointers* or *symmetric matrices*

	Pointer to either the first (P-) set or the only set of variates to
	be correlated, or symmetric matrix containing the correlations
	themselves
QVARIATES = <i>pointers</i>	Pointer to the second (Q-) set of variates to be correlated
PROWS = scalars	Specifies the number of rows corresponding the first (P-) set of
	variates in a correlation matrix supplied by PVARIATES, when
	this contains two sets
TITLE = text	Title for the plot

DCOVARIOGRAM procedure

Plots 2-dimensional auto- and cross-variograms (D.A. Murray).

Options	
PLOT = string token	Controls how to display the plotted variograms (separate,
C	scattermatrix); default scat
ESTIMATES = <i>pointer</i>	Pointer containing model estimates saved from
	MCOVARIOGRAM

Parameter

COVARIOGRAM = pointer

Pointer to supply the semi-variances, distances and associated information as saved from FCOVARIOGRAM

DDENDROGRAM procedure

Draws dendrograms with control over structure and style (P.G.N. Digby).

Options	
STYLE = string token	Style to use for the links of the dendrogram (average,
	centroid, lower, full); default aver
ORDERING = string tokens	How to define the order of the units for the dendrogram
	(given, ziggurat, size, first); default zigg, size, firs
REVERSE = <i>string token</i>	Whether to reverse the order of the units in the dendrogram
C	(no, yes); default no
ORIENTATION = <i>string token</i>	Specifies the orientation of a dendrogram produced by high-
8	resolution graphics (north, south, east, west); default west
METHOD = string token	Method used to represent the scale on which the
	amalgamations have been made: settings other than the default
	are relevant only for data not generated by HCLUSTER or
	HDISPLAY (similarities, percentages, distances);
	default simi
SCREEN = <i>string token</i>	Setting to use for the SCREEN option of DGRAPH (clear,
	keep); default clea
CHANGE = <i>string token</i>	If a dendrogram-save structure from a previous DDENDROGRAM
ommed on my tenen	is used as the DATA parameter then this option specifies the
	area of the process where the first changes occur: see the
	description of the SAVE parameter (order, dendrogram,
	display); default orde
GRAPHICS = string token	Form of graphics to be used (lineprinter,
Statistics string token	highresolution); default high
DSIMILARITY = string token	Whether to display an axis for the similarities in
boundary sungrowen	high-resolution graphics (no, yes); default no
LOWSIMILARITY = scalar	Lower value to be used for the axis showing the similarities;
lowornin search	default * i.e. determined from the data
ENDACTION = string token	Action to be taken after completing the plot (continue,
ENDACIION String token	pause); default * uses the current setting
Parameters	pause), default - uses the current setting
DATA = matrices or pointers	Data defining each dendrogram in the form of either a matrix
DATA munices of pointers	saved using the AMALGAMATIONS parameter of HCLUSTER
	(methods other than single linkage), or a matrix from the TREE
	parameter of HDISPLAY, or a SAVE structure from a previous
	use of DDENDROGRAM
PERMUTATION = variates	Specify or save permutations of the units for drawing each
PERMOTATION - variates	dendrogram, according to ORDERING option
I A D E I C = uguigtos or torto	
LABELS = variates or texts	Supply labels to use for the units of each dendrogram; these
	should be in the natural order of the units, not in a permuted order
TITLE = texts	Titles for the dendrograms
WINDOW = scalars	Window to use for each dendrogram (window 1 if unset); if
	this is set to zero the dendrogram is not drawn, but results can
	still be saved using the PERMUTATION, ZIGGURAT and SAVE
DENC = acalana manistra stringer en tert	parameters
PENS = <i>scalars</i> , <i>variates</i> , <i>strings</i> or <i>text</i>	8

Scalar or string specifying the graphics pen or symbol in which to draw each (high-resolution or line-printer) dendrogram; alternatively use of a variate or text allows the structure of

146	4 Syntax summary
ZIGGURAT = <i>variates</i> SAVE = <i>pointers</i>	each dendrogram to be highlighted by drawing different links with different graphics pens or symbols Save the "ziggurat-degree" of the links in each dendrogram Save the information required to plot a dendrogram, for use as input for the DATA parameter in a subsequent call to DDENDROGRAM
DDESIGN procedure	
	tal design (K.E. Bicknell & R.W. Payne).
Options Y = variate	Specifies the <i>y</i> position of the plots in standard coordinates 1 number of rows of plots in the experiment (taking 1 as the top row of the window)
x = variate	Specifies the <i>x</i> -coordinate of the plots in standard coordinates 1 number of columns of experimental plots
TITLE = text	Title for the plan
WINDOW = scalar	Window number for the plan; default 3
KEYWINDOW = scalar	Window number for the key; default 0
SCREEN = string token	Whether to clear the screen before plotting (clear, keep); default clea
KEYDESCRIPTION = text	Overall description for the key; default *
ENDACTION = <i>string token</i>	Action to be taken after completing the plot (continue, pause); default * uses the setting from the last DEVICE statement
CHARACTERS = scalar	Sets a limit on the length of each factor label; default * i.e. none
SIZE = scalar	Provides a multiplier by which to scale the sizes of the factor labels on the plan
Parameters	1
FACTOR = <i>factors</i>	Factors to be listed on the plan and to define the layout (the procedure determines the style of line to divide each pair of plots in the design from the grid pen of the first factor in the list with which they have different levels); default * forms the list from first the factors specified by a preceding BLOCKSTRUCTURE statement, and then those specified by a preceding TREATMENTSTRUCTURE statement
PEN = scalars	Pen to be used to write the levels of each factor on the plan (if PEN=0 the levels of that factor are not included); default 1 if the FACTOR parameter is specified, otherwise 0 for block factors and 1 for treatment factors
PENGRID = scalars	Pens to be used to draw the boundaries between the plots in the design (according to the first FACTOR with which they have different levels but ignoring factors with PENGRID=0); default 1,2
LABELS = texts	Labels to be used for each factor if its own levels or labels are inappropriate
DDISPLAY directive Redraws the current graphical	display.
Options	
$DEVITOR = \mathfrak{as}\mathfrak{a}^{l}\mathfrak{a}\mathfrak{a}$	Device on which to redress the display (on corrections it

DEVICE = scalar	Device on which to redraw the display (on some systems it
	may only be possible to redisplay the picture on an interactive
	graphics device); default uses the current graphics device
ENDACTION = string token	Action to be taken after completing the plot (continue,
	pause); default * uses the setting from the last DEVICE
	statement

4.1 (Commands
-------	----------

No parameters

DEBUG directive

Puts an implicit BREAK statement after the current statement and after every NSTATEMENTS subsequent statements, until an ENDDEBUG is reached.

Options

CHANNEL = scalar	Channel number; default 1
NSTATEMENTS = scalar	Number of statements between breaks; default 1
FAULT = string token	Whether to invoke DEBUG only at the next fault (yes, no); default no

No parameters

DECIMALS procedure

Sets the number of decimals for a structure, using its round-off (A. Keen).

Attributes to be redefined for STRUCTURE (decimals); default deci
Required number of significant figures; default takes the system default, which can be modified by SET
Numerical structure for which the number of decimals is to be set
To save the number of decimals
To save the round-off
To save numbers of decimals for every value of each structure
To save the round-off for every value of each structure

DECLARE directive

declares one or more customized data structures.

Options

EXTRA = text

TYPE = textSingle-valued text defining the type of structure to declareMODIFY = string tokenWhether to modify (instead of redefining) existing structures
(yes, no); default noParameters

1 ul ullicter 5	
IDENTIFIER = <i>identifiers</i>	
VALUES = <i>pointers</i>	

Identifiers of the structures Values for each structure Extra text associated with each identifier

DELETE directive

Deletes the attributes and values of structures. **Options** Whether or not to delete the attributes of the structures so that REDEFINE = *string token* the type etc can be redefined (yes, no); default no LIST = *string token* How to interpret the list of structures (inclusive, exclusive, all); default incl PROCEDURE = *string token* Whether the list of identifiers is of procedures instead of data structures (yes, no); default no NSUBSTITUTE = scalar Number of times n to substitute a dummy in order to determine which structure to delete; default * i.e. full substitution REMOVE = *string token* Whether or not to remove the structures from Genstat completely i.e. to delete their identifiers as well as their attributes and values (yes, no); default no **Parameter** identifiers Structures whose values (and attributes, if requested) are to be deleted

[†]**DELLIPSE** procedure

Draws a 2-dimensional scatter plot with confidence, prediction and/or equal-frequency ellipses superimposed (V.M. Cave).

Options	
PLOT = string tokens	What type of ellipse to plot (confidence, prediction, equalfrequency); default conf
PROBABILITY = scalar or variate	Probability level(s) for the ellipse(s); default 0.95
NPOINTS = scalar	Number of points used to draw the ellipses; default 1000
DISPLAY = string token	Whether to include the data points on the graph (show, hide); default show
PAXES = string token	Whether to plot the principal axes on the graph (no, yes); default no
TFILL = scalar	Transparency used to fill the area inside the ellipses, on a scale of 0 (opaque) to 255 (completely transparent); default 255
USEPENS = <i>string token</i>	Whether to use the current pen definitions for drawing the ellipses, drawing the principal axes and plotting the data (no, yes); default no
CMATCH = string token	When USEPENS=yes and groups are to be plotted, indicates whether the colours for the ellipses and principal axes are matched to the corresponding group, or to the colours defined by the pens for the different ellipse types and principal axes (group, pen); default group
WINDOW = scalar	Window to use for the graph(s); default 1
KEYWINDOW = scalar	Window to use for the key; by default the key is drawn on the right, in window 255
KEYDESCRIPTION = text	Overall title for the key; default * i.e. none
SCREEN = <i>string token</i>	Whether to clear the screen before plotting or to continue plotting on the old screen (clear, keep); default clear
Parameters	
Y = variates or pointers	Vertical coordinates (i.e. variable to plot on the y-axis)
X = variates or pointers	Horizontal coordinates (i.e. variable to plot on the x-axis)
GROUPS = factors	Defines groupings of the data points
DESCRIPTION = texts	Labels for the groups; default generates the labels automatically
TITLE = text	Title for the plot; default * i.e. none
YTITLE = text	Title for the y-axis; by default a title is generated automatically
XTITLE = text	Title for the x-axis; by default a title is generated automatically

DEMC procedure

Performs Bayesian computing using the Differential Evolution Markov Chain algorithm (W. van den Berg & R.W. Payne).

- F	
PRINT = string token	What to print (results, monitoring, scatterplot,
	histogram); default resu, moni, scat, hist
CALCULATION = <i>expression structures</i>	Calculation(s) of logposterior, involving explanatory or
	pointer variate; if unset, this is calculated by the procedure
	specified by the PROCEDURE option
LOGPOSTERIOR = scalar	Identifier of scalar holding log-posterior within CALCULATION
	(must be set if CALCULATION is set)
MULTIPLE = scalar	Number of populations is number of parameters times
	MULTIPLE; default 3
UNIFORMLIMIT = scalar	Uniform random numbers are drawn from (-UNIFORMLIMIT,
	UNIFORMLIMIT) and added to candidate parameter sets;
	default 0.00001
DATA = <i>identifiers</i>	Data structures used in CALCULATION or by PROCEDURE

NGENERATIONS = $scalar$	Maximum number of iterations; default 1000
STEP1 = scalar or variate	Generations for which gamma is set to 1; default 0
FRACTIONBURNIN = scalar	Fraction of iterations used for burn-in; default 0.5
GRVARIANCE = <i>scalar</i> or <i>variate</i>	Variance to generate populations from initial values of the parameters; default 0.1
PERCENTAGES = variate	Percentages for which quantiles has to be calculated; default !(2.5, 25, 50, 75, 97.5)
PROCEDURE = <i>identifier</i>	Identifier of procedure to calculate LOGPOSTERIOR if
	CALCULATION is unset; defaultDEMCLOGPOSTERIOR
SEED = scalar	Seed for the random numbers; default 0
NWINDOWS = $scalar$	Number of histograms and scatterplots per screen when
	plotting estimates and logposterior from all iterations
SDLOGPOSTERIOR = <i>scalar</i>	Saves the s.d. for LOGPOSTERIOR
QUANTILESLOGPOSTERIOR = variate	Saves quantiles for LOGPOSTERIOR
RHATLOGPOSTERIOR = <i>scalar</i>	Saves the convergence criterion for LOGPOSTERIOR
ALLLOGPOSTERIOR = variate	Saves the parameter estimates for LOGPOSTERIOR from all the iterations
IPOPULATIONS = <i>pointers</i>	Pointer to supply initial populations of the parameters and the corresponding log-posteriors
FPOPULATIONS = <i>pointers</i>	Pointer to save final populations of the parameters and the corresponding log-posteriors
Parameters	
PARAMETER = scalars	Parameters to estimate
INITIAL = scalars	Initial values of the parameters; must be set unless
	IPOPULATIONS is set
SD = scalars	Standard errors of the estimates
QUANTILES = variates	Saves the quantiles for each parameter
RHAT = scalars	Convergence criteria
ALLESTIMATES = variates	Saves the parameter estimates from all the iterations
DERRORBAR procedure	
Adds error bars to a graph (R.W. Pay	/ne).
Options	
• • • • • 1	

ORIENTATION = string token BARCAPWIDTH = scalars WINDOW = scalar KEYWINDOW = scalar

Parameters

BARLENGTH = scalars Y = identifiers X = identifiers PEN = scalars LABEL = texts YLPOSITION = string tokens

XLPOSITION = *string tokens*

PENLABEL = scalars
DESCRIPTION = texts

Width of the cap drawn at the ends of the error bar; default 1 Window in which to draw the bar; default 1 Window number for the key (zero for no key); default 2 Lengths of the bars Vertical coordinates for the midpoints of the bars Horizontal coordinates for the midpoints of the bars

Direction of the line (horizontal, vertical); default vert

Horizontal coordinates for the midpoints of the bars Pen to use for each bar Text to plot alongside each bar Position of each label in the y-direction (above, below, centre, center); default belo Position of each label in the x-direction (centre, center, left, right); default righ Pen to use for each label Annotation for the key

DESCRIBE procedure

Saves and/or prints summary statistics for variates (R.C. Butler & D.A. Murray).

Options	
PRINT = string token	Controls whether or not the summaries are printed
	(summaries); default summ
SELECTION = string tokens	Selects the statistics to be produced (nval, nobs, nmv, mean,

GROUPS = factor	<pre>median, min, max, range, q1, q3, sd, sem, var, sevar, %cv, sum, ss, uss, skew, seskew, kurtosis, sekurtosis, all); default mean, min, max, nobs, nmv, medi, q1, q3 Allows groups to be defined, so that summaries are produced for each group in turn</pre>
Parameters	
DATA = variates	Data to summarize
SUMMARIES = variates or pointers	To save summaries for each DATA variate, in a variate if GROUPS is unset, or in a pointer to a set of variates (one for each group) if groups have been specified; will be redefined if necessary
DESIGN procedure	
-	experimental designs (R.W. Payne, M.F. Franklin & A.E. Ainsley).
Option	
STATEMENT = $text$	Saves a command to recreate the design
No parameters	

DEVICE directive

Switches between (high-resolution) graphics devices.

No options	
Parameters	
NUMBER = scalar	Device number
ENDACTION = string token	Action to be taken after completing each plot (continue, pause)
ORIENTATION = <i>string token</i>	Orientation of the pictures, if relevant (landscape, portrait); default * retains the current setting for this device
PALETTE = string token	How to represent colour (monotone, greyscale, grayscale, colour); default * retains the current setting for this device
RESOLUTION = scalar	Specifies the height of the image for hard-copy output, in pixels
ACTION = string token	How to create graphs for file types such as .emf, .jpg, .tif or .png (asynchronous, synchronous); default asyn

DFINISH directive

Ends a sequence of related high-resolution plots. **No options or parameters**

DFONT directive

Defines the default font for high-resolution graphics.

No options

Parameter text

specifies or saves the default graphics font

DFOURIER procedure

Performs a harmonic analysis of a univariate time series (G. Tunnicliffe Wilson & R.P. Littlejohn).

Options		
	•	

PRINT = string tokens	Controls printed output (accumulated, means, tsm); default *
PLOT = string tokens	What to plot (periodogram, harmonics, means, residuals, cumulative, range); default peri, harm,
MODELTYPE = string token	<pre>mean, resid What harmonic regression model to fit (none, best, full); default none</pre>

GROUPS = factor ORDER = variate COLOURS = text or variate FACSHORTCYCLE = factor NCOMPONENTS = scalar SHORTCYCLE = scalar LONGCYCLE = scalar LABSHORTCYCLE = text NHSHORTCYCLE = scalar NHLONGCYCLE = scalar RANGE = variate

Parameters

DATA = variates PERIODOGRAM = variates FREQUENCY = variates MEANS = tables

RESIDUALS = variates FITTEDVALUES = variates

DFRTEXT procedure

Adds text to a graphics frame (W. van den Berg).

No options Parameters

Y = variates or scalars X = variates or scalars TEXT = texts PEN = scalars, variates or factors YUPPER = scalars XUPPER = scalars

DFUNCTION procedure

Plots a function (R.W. Payne). **Options** FUNCTION = *expression*

TITLE = text COLOUR = text or scalar WINDOW = scalar ELEVATION = scalar

AZIMUTH = scalar

DISTANCE = scalar

ZSCALE = scalar

SCREEN = *string token*

Parameters

ARGUMENT = scalars LOWER = scalars UPPER = scalars STEP = scalars Groups for plot of means Order for time series model; default ! (1,0,0) Colour for each level of GROUPS Factor giving levels of the short cycle Number of nested cycles, must be 0, 1, or 2; default 0 Length of the short cycle; default 24 Length of the long cycle; default 365.225 Label for the short cycle; default 'daily' Label for the long cycle; default 'annual' Number of harmonics for the short cycle; default 5 Number of harmonics for the long cycle; default 3 Variate with two values, defining the frequency range within [0,0.5] to draw a portion of the periodogram

Time series

Saves the periodogram of DATA Saves the frequencies at which the periodogram is calculated Saves the table of means of the fitted model for each value of FACSHORTCYCLE by each level of GROUPS Saves the residuals from the fitted model Saves the fitted values from the model

Vertical coordinates in the frame Horizontal coordinates in the frame Text to plot Pens to use; default 1 Maximum vertical coordinate in the frame; default 1 Maximum horizontal coordinate in the frame; default 1

Function to plot Title for the plot; default shows the function Colour of the function curve; default 'green' Which graphics window to use; default 3 Elevation of the viewpoint for the surface that is plotted when there are two arguments; default 25 (degrees) Rotation about the horizontal plane for the viewpoint of a surface plot; default 225 (degrees) Distance of the viewpoint of a surface plot from the centre of the grid on the base plane; default * gives a distance of 100 times the maximum of the x-range and the y-range defines the scaling of the z-axis relative to the horizontal (x-y) axes in a surface plot; default 1 Whether to clear the screen before plotting (clear, keep, resize); default clea

Arguments of the function Lower values of the arguments for the plot Upper values of the arguments for the plot Steps at which to evaluate the function

DGRAPH directive

Draws graphs on a plotter or graphics monitor. **Options**

General title; default *
Window number for the graphs; default 1
Window number for the key (zero for no key); default 2
Whether to clear the screen before plotting or to continue
plotting on the old screen (clear, keep, resize); default clea
Overall description for the key; default *
Action to be taken after completing the plot (continue, pause); default * uses the setting from the last DEVICE statement
Defines sets of "hot" components for the user to select as shown or hidden by a menu in the Graphics Viewer
Whether one or several "hot" components can be displayed at a time (one, several); default seve
Vertical coordinates
Horizontal coordinates
Pen number for each graph (use of a variate or factor allows different pens to be defined for different sets of units); default * uses pens 1, 2, and so on for the successive graphs
Annotation for key
Lower values for vertical bars
Upper values for vertical bars
Lower values for horizontal bars
Upper values for horizontal bars
Pens to use to draw the vertical bars; default -11
Pens to use to draw the horizontal bars; default -11
"Layer" of the plot
Specifies unit numbers to be used when points are selected in the graphics viewer; default * uses the actual unit numbers of the values in the x and Y structures
Whether to display each component initially in the graph (show, hide); default show
Allows components of the graph (specified by pairs of Y and X settings) to be defined as "hot" components that can be shown or hidden through their association with "hot" points or using a menu in the Graphics Viewer
Define how to use points defined by the Y and X parameters as "hot" points in the Graphics Viewer to allow the user to decide whether other components of the graph are shown or hidden

DHELP procedure

Provides information about Genstat graphics (S.A. Harding).

No options Parameter

TOPIC = *string tokens*

Lists the required graphics topics (current, possible); default poss

DHISTOGRAM directive

Draws histograms on a plotter or graphics monitor.

Options	
TITLE = text	General title; default *
WINDOW = scalar	Window number for the histograms; default 1
KEYWINDOW = scalar	Window number for the key (zero for no key); default 2
LIMITS = variate	Variate of group limits for classifying DATA variates into groups; default *
LOWER = scalar	For a DATA variate, this specifies the lower limit of the first bar; default * takes the minimum value of the variates
UPPER = scalar	For a DATA variate, this specifies the upper limit of the last bar; default * takes the maximum value of the variates
NGROUPS = scalar	When LIMITS and BINWIDTH are not specified, this defines the number of groups into which a DATA variate is to be classified; default is then 10 or the integer value nearest to the square root of the number of values in the variate if that is smaller
BINWIDTH = scalar	When LIMITS is unset the range of a DATA variate is split into equal intervals known as "bins" to form the groups, this option can set the bin widths (alternative is to set the number of groups using NGROUPS)
FIXEDBARWIDTH = string token	Whether to plot the histogram with bars of equal width (no, yes); default no
BARCOVERING = scalar	What proportion of the space allocated along the x-axis each bar should occupy; default * gives proportion 1 for a DATA variate, and 0.8 for a factor or table (thus giving a gap between each bar)
LABELS = text	Group labels; default *
APPEND = string token	Whether or not the bars of the histograms are appended together (yes, no); default no
ORIENTATION = <i>string token</i>	Direction of the plot (horizontal, vertical); default vert
OUTLINE = string token	Where to draw outlines (bars, perimeter); default bars
PENOUTLINE = scalar	Pen to use for the outlines; default -8
SCREEN = <i>string token</i>	Whether to clear the screen before plotting or to continue plotting on the old screen (clear, keep); default clea
KEYDESCRIPTION = text	Overall description for the key; default *
ENDACTION = string token	Action to be taken after completing the plot (continue, pause); default * uses the setting from the last DEVICE statement
Parameters	
DATA = <i>identifiers</i>	Data for the histograms; these can be either a factor indicating the group to which each unit belongs, a variate whose values are to be grouped, or a one-way table giving the height of each bar
NOBSERVATIONS = tables	One-way table to save numbers in the groups
GROUPS = factors	Factor to save groups defined from a variate
PEN = scalars or variates	Pen number(s) for each histogram; default * uses pens 2, 3, and so on for the successive structures specified by DATA
DESCRIPTION = texts	Annotation for key
DHSCATTERGRAM procedure	

Plots an h-scattergram (D.A. Murra	ay).
Options	
LAGCLASS = <i>scalar</i> or <i>variate</i>	The lag classes to be displayed in the plots; default all lag classes
ARRANGEMENT = $text$	Specifies whether to display the plots individually or with

multiple plots on the same page (single, multiple); default
mult

Parameters

DATA = variates	Observations as a variate
LAGPOINTS = pointers	Lag classes, indexes to observations and directions for plotting

DIAGONALMATRIX directive

Declares one or more diagonal matrix data structures.

Options

ROWS = scalar, vector, pointer or text

	Number of rows, or labels for rows (and columns); default *
VALUES = <i>numbers</i>	Values for all the diagonal matrices; default *
MODIFY = string token	Whether to modify (instead of redefining) existing structures
	(yes, no); default no
IPRINT = string tokens	Information to be used by default to identify the diagonal
	matrices in output (identifier, extra); if this is not set,
	they will be identified in the standard way for each type of
	output
Parameters	
IDENTIFIER = <i>identifiers</i>	Identifiers of the diagonal matrices
VALUES = <i>identifiers</i>	Values for each diagonal matrix
DECIMALS = scalars	Number of decimal places for printing
EXTRA = texts	Extra text associated with each identifier
MINIMUM = scalars	Minimum value for the contents of each structure
MAXIMUM = scalars	Maximum value for the contents of each structure
DREPRESENTATION = <i>scalars</i> or <i>texts</i>	Default format to use when the contents represent dates and

times

DIALLEL procedure

I ⁻	
Analyses full and half diallel	tables with parents (J.F. Potter).
Options	
PRINT = string tokens	Controls printed output (data, vrwr, regression, aov,
	means, griffingaov); default data, vrwr, regr, aov, mean
LABELS = $text$	Labels for rowcols, one text value for each, column <i>j</i> has the
	same label as row <i>j</i> , so each value of LABELS is the label for a
	pair of parents, applying to a rowcol; default 1N, where N is
	the dimension of each diallel table
METHOD = string token	Whether to perform full or half diallel analysis (half, full);
5	default full
Parameter	
DATA = <i>matrices</i>	Each matrix contains the data for one block in the analysis, half diallel tables are presented as square matrices with the upper triangles and leading diagonals containing the values of interest, the matrices must be of the same size
	interest, the matrices must be of the same size

DILUTION procedure

Calculates Most Probable Numbers from dilution series data (M.S. Ridout & S.J. Welham).

Options

- I	
PRINT = string tokens	Output required (estimates, fitted); default esti, fitt
%LIMITS = scalar	Percentage points for confidence limits; default 95
RMETHOD = string token	Which type of residuals to form (deviance, Pearson); default
	devi
MAXCYCLE = scalar	Maximum number of iterations allowed for the Newton-
	Raphson algorithm to converge; default 10
TOLERANCE = scalar	Defines the convergence criterion; default 0.0005

Parameters

POSITIVE = variates	Number of positive subsamples at each dilution
NSAMPLE = variates	Total number of subsamples tested at each dilution
VOLUME = variates	Volume of original sample present in each dilution
FITTED = variates	To store the fitted values
RESIDUAL = variates	To store the residuals, as specified by option RMETHOD
MPN = scalars	To store the maximum likelihood estimate of Most Probable
	Number
UPPER = scalars	To store the upper confidence limit for MPN
LOWER = scalars	To store the lower confidence limit for MPN
DEVIANCE = scalars	To store the residual deviance
PEARSONCHISQUARE = <i>scalars</i>	To store Pearson's chi-square statistic
DF = scalars	To store the degrees of freedom for goodness-of-fit tests (zero
	if no test is available)

DIRECTORY procedure

Prints or saves a list of files and/or subdirectories with names matching a specified mask (D.B. Baird). **Options**

PRINT = string tokens	What to print (filenames, subdirectories); default file
SAVEPATH = string token	Whether to include the path in FILENAMES (yes, no); default
	no
MASKTYPE = <i>string token</i>	The type of mask specified by MASK (file, directory);
	default file
Parameters	
MASK = texts	Mask identifying the files that are to be included in the each
	listing, if no directory path is included, the current working
	directory is searched; default '*.*'
FILENAMES = $texts$	Saves the list of files that match each mask
SUBDIRECTORIES = texts	Saves the list of subdirectories that match each mask

DISCRIMINATE procedure

Performs discriminant analysis (L.H. Schmitt & P.G.N. Digby).

Options	
PRINT = string tokens	Printed output from the analysis (counts, lrv, tests, ccorrelations, icorrelations, correlations,
	adjustments, means, gdistances, scores, distances,
	newgroups, table, validation); default coun
NROOTS = $scalar$	The number of dimensions to be used for printed and saved
	output, and used in calculating the distances and the allocation
	of units; default is to use the full dimensionality
REALLOCATE = <i>string token</i>	Whether units from the training set are to be reallocated to
	groups (no, yes); default no
PLOT = string tokens	Features for the plots (means, mlabels, scores, polygons,
	confidencecircle);
	suppresses plotting)
VALIDATIONMETHOD = string token	Validation method to use to calculate error rates (bootstrap,
	crossvalidation,jackknife);default cros
NSIMULATIONS = variate	Number of bootstraps or cross-validation sets to use for
	selection and for validation; default ! (10, 50)
NCROSSVALIDATIONGROUPS = scalar	Number of groups for cross-validation, default 10
SEED = scalar	Seed for random number generation; default 0
YROOT = scalars	Specifies roots for plotting on y-axes
XROOT = scalars	Specifies roots for plotting on x-axes
TITLE = strings	Titles for plots
WINDOW = scalars	Windows for plots
SCREEN = <i>string tokens</i>	Action before each plot (keep, clear); default clea

Parameters DATA = *pointers* Each pointer contains a set of variates to be analysed GROUPS = factors NEWGROUPS = factors ALLOCATION = factors MEANS = *matrices* or *pointers*

SCORES = *matrices* or *pointers* DISTANCES = *matrices* LRV = LRVsADJUSTMENTS = *matrices* **GDISTANCES** = *symmetric matrices* CCORRELATIONS = *matrices* CORRELATIONS = matrices

Define groupings for the units in each training set, or missing values for the units to be allocated Saves allocations (and reallocations) Saves allocations to groups including those not present in the training set Saves scores for group means Saves scores for units Saves unit to group-mean squared distances Saves the LRVs from the canonical variates analyses Saves adjustments to the canonical variates analyses Saves the distances between groups Saves canonical correlation coefficients ICORRELATIONS = *symmetric matrices* Saves within-group correlation matrices of the input variates Saves within-group correlations between the input and canonical variates

DISPLAY directive

Prints, or reprints, diagnostic messages. Onti

Options	
PRINT = string token	What information to print (diagnostic); default diag
CHANNEL = <i>identifier</i>	Channel number of file, or identifier of a text to store output;
	default current output file
FAULT = $text$	Specifies the fault message to print (for example,
	FAULT='VA 4' prints the message "Values not set"); default
	is to print the last diagnostic message

No parameters

DISTRIBUTION directive

Estimates the parameters of continuous and discrete distributions.

Options	
PRINT = string tokens	Printed output required from each individual fit (parameters,
	samplestatistics, fittedvalues, proportions,
	monitoring); default para, samp, fitt
CBPRINT = string tokens	Printed output required from a fit combining all the input data
	(parameters, samplestatistics, fittedvalues,
	proportions, monitoring); default *
DISTRIBUTION = string token	Distribution to be fitted (Poisson, geometric, logseries,
	negativebinomial, NeymanA, PolyaAeppli,
	PlogNormal, PPascal, Normal, dNvequal, dNvunequal,
	logNormal, exponential, gamma, Weibull, b1, b2,
	Pareto); default * i.e. fit nothing
CONSTANT = <i>string token</i>	Whether to estimate a location parameter for the gamma,
	logNormal, Pareto or Weibull distributions (estimate,
	omit); default omit
LIMITS = variate	Variate to specify or save upper limits for classifying the data
	into groups; default *
NGROUPS = scalar	When LIMITS is not specified, this defines the number of
	groups (of approximately equal size) into which the data are to
	be classified; default is the integer value nearest to the square
	root of the number of data values
XDEVIATES = variate	Variate to specify points up to which the CUMPROPORTIONS
	are to be estimated
JOINT = string token	Requests joint estimates from the combined fit to be used for a
	re-fit to the separate data sets (dispersion,

	variancemeanratio, Poissonindex); default *
PARAMETERS = variate	Estimated parameters from the combined fit
SE = variate	Standard errors for the estimated parameters of the combined
	fit
VCOVARIANCE = <i>symmetric matrix</i>	Variance-covariance matrix for the estimated parameters of the
	combined fit
CUMPROPORTIONS = variate	Estimated cumulative proportions of the combined distribution
	up to the values specified by the XDEVIATES option
MAXCYCLE = scalar	Maximum number of iterations; default 30
TOLERANCE = $scalar$	Convergence criterion; default 0.0001
Parameters	
DATA = variates or tables	Data values either classified (table) or unclassified (variate)
NOBSERVATIONS = $tables$	One-way table to save the data classified into groups
RESIDUALS = tables	Residuals from each (individual) fit
FITTEDVALUES = tables	Fitted values from each fit
PARAMETERS = variates	Estimated parameters from each fit
SE = variates	Standard errors of the estimates
VCOVARIANCE = <i>symmetric matrices</i>	Variance-covariance matrix for each set of estimated
	parameters
CUMPROPORTIONS = variates	Estimated cumulative proportions of each distribution up to
	the values specified by the XDEVIATES option
CBRESIDUALS = tables	Residuals from the combined fit
CBFITTEDVALUES = tables	Fitted values from the combined fit
STEPLENGTH = variates	Initial step lengths for each fit
INITIAL = variates	Initial values for each set fit

DKALMAN procedure

Plots vector time series (A.I. Glaser). **Options**

- F	
TIMEPOINTS = variate	X-coordinates for the graphs; default uses the integers 1, 2
TITLE = texts	Overall title for the graphs
YTITLE = texts	Titles for the y-axes; default * forms titles automatically from
	the identifiers or labels of the y-variables
XTITLE = texts	Title for the x-axis in each set of graphs; default * uses the
	identifier of TIMEPOINTS (if set)
NROWS = $scalar$	Specifies the number of rows of graphs to appear on the
	graphics screen; default * takes the number of y-variables
NCOLUMNS = scalar	Specifies the number of columns of graphs to appear on the
	graphics screen; default 1
Parameter	
SAVE = <i>pointers</i>	Save structure from KALMAN with information about the
	analysis; default plots information from the most recent
	KALMAN analysis
	Infilian analysis

DKEEP directive

Saves information from the last plot on a particular device.

No options	
Parameters	
DEVICE = scalars	The devices for which information is required, if the scalar is undefined or contains a missing value, this returns the current device number
WINDOW = scalars	Window about which the information is required; default * gives information about the last window
XLOWER = scalars	Lower bound for the x-axis in last graph in the specified device and window
XUPPER = scalars	Upper bound for the x-axis in last graph in the specified device

	and window
YLOWER = scalars	Lower bound for the y-axis in last graph in the specified
	device and window
YUPPER = scalars	Upper bound for the y-axis in last graph in the specified device and window
ZLOWER = <i>scalars</i>	Lower bound for the z-axis in last graph in the specified device and window
ZUPPER = scalars	Upper bound for the z-axis in last graph in the specified device and window
FILE = scalars	Returns the value 1 or 0 to indicate whether a file is required for this device
DESCRIPTION = texts	Description of the device
DREAD = scalars	Returns the value 1 or 0 to indicate whether graphical input is possible from this device
ENDACTION = <i>texts</i>	Returns the current ENDACTION setting ('continue' or 'pause')

DKEY procedure

Adds a key to a graph (D.B. Baird & V.M. Cave).

Options	
WINDOW = scalar	Window in which to draw the key; default 2
NCOLUMNS = scalar	Number of columns forming the grid in which the key is
	displayed; default * (i.e. set automatically)
NROWS = $scalar$	Number of rows forming the grid in which the key is
	displayed; default * (i.e. set automatically)
TITLE = text	Title for the key
PENTITLE = scalar	Pen used to write the title of the key; default is that set for the
	window in which the key is plotted
PENLABELS = variate	Pens to use to plot the labels; default is to plot the labels using
	the settings of LFONT, LSIZE and LCOLOUR
TPOSITION = string	Position of the title (inside, outside, left, centre,
	center, right); default cent, outs
ORDER = <i>string</i>	Order in which to fill the key's row by column grid (rows,
	columns); default rows
LSIZE = scalar	Relative size of the labels; default 1
LFONT = $scalar$ or $text$	Font to use for the labels; default 1
LCOLOUR = scalar or text	Colour used to write the labels; default 'black'
XLOFFSET = scalar or variate	Offset in the x-direction between the items (i.e. symbols/lines)
	and labels in the key; default 0
COLSPACING = string	Column spacing (equal, unequal); default equa
ROWGAP = scalar	Multiplier for gaps between rows; default 1
COLGAP = scalar	Multiplier for gaps between columns; default 1
BORDER = <i>string</i>	Border around the key (fit, given, none); default fit
CBORDER = <i>string</i>	Colour for the border around the key; default 'black'
Parameters	
DESCRIPTIONS = texts	Labels for the key
PEN = variates	Pens to use for the items in the key; default uses the integers 1,
	2
METHOD = texts	Method for plotting the items in the key (fill, point, line,
	both, none); default is to use the method defined for the
	corresponding PEN
SYMBOL = variates, scalars, factors or te	exts
	Symbols to be drawn in the key; default is to use those
	specified by PEN
COLOUR = variates, scalars, factors or te	
	Colours of lines, or of filled areas when METHOD='fill';

	default is to use those specified by PEN	
CSYMBOL = variates, scalars, factors or	texts	
	Colours of symbols; default is to use those specified by PEN	
CFILL = variates, scalars, factors or tex	xts	
	Colours used to fill hollow symbols; default is to use those specified by PEN	
SIZEMULTIPLIER = variates, scalars or factors		
	Relative sizes of symbols and filled area; default is to use those specified by PEN	
LINESTYLE = variates, scalars, factors or texts		
	Numbers or names of the linestyles to use; default is to use those specified by PEN	
THICKNESS = variates, scalars or factors		
	Thicknesses of the lines; default is to use those specified by PEN	
TRANSPARENCY = variates, scalars or factors		
	Transparencies of the filled areas when METHOD='fill'; default is to use those specified by PEN	
	default is to use those specified by I have	

DKSTPLOT procedure

Produces diagnostic plots for space-time clustering (D.A. Murray).

Options	
PLOT = string token	Whether to produce plots separately or in composite
	(separate, combined); default comb
DZERO = string token	Whether to produce a DZERO plot (yes, no); default no
Parameters	
Y = variates	Vertical coordinates of the spatial point patterns
X = variates	Horizontal coordinates of the spatial point patterns
KS = <i>variates</i>	Estimates of spatial K function
KT = variates	Estimates of temporal K function
KST = <i>matrices</i>	Estimates of space-time K function
KSE = <i>matrices</i>	Estimates of standard errors of space-time K function

DLOAD directive

Loads the graphics environment settings from an external file. **No options**

Parameter

text

File from which to lead the environment settings

DMADENSITY procedure

Plots the empirical CDF or PDF (kernel smoothed) by groups (D.B. Baird).

Options	
PLOT = string tokens	What to plot (cdf, pdf, histogram); default cdf, pdf
TRANSFORMATION = <i>string token</i>	Whether to transform the data to log base 2 (log2, none); default none
BANDWIDTH = $scalar$	Bandwidth to use in kernel density estimates for PDF
ARRANGEMENT = <i>string token</i>	Whether to use trellis or single plots (single, trellis); default trel
WINDOW = scalar	Window number for the graphs; default 3
KEYWINDOW = scalar	Window number for the key; default 0 i.e. none
DEVICE = scalar	Device number on which to plot the graphs
GRAPHICSFILE = text	What graphics filename template to use to save the graphs; default *
Parameters	
DATA = variates or pointers	Data coordinates
GROUPS = factors or texts	Groups

DMASS procedure

Plots discrete data like mass spectra, discrete probability functions (J.W. McNicol).

Options

X = variate	Positions on the x-axis at which to plot the lines; default uses
	1, 2
TITLE = text	Title for the graph; default * i.e. none
WINDOW = scalar	Window for the graph; default 3
YTITLE = texts	Title for the y-axis
XTITLE = texts	Title for the x-axis
YMARKS = scalars or variates	Distance between each tick mark on y-axis (scalar) or
_	positions of the marks (variate)
XMARKS = <i>scalars</i> or <i>variates</i>	Distance between each tick mark on x-axis (scalar) or positions of the marks (variate)
YMPOSITION = string tokens	Position of the tick marks across the y-axis (left, right,
XMPOSITION = string tokens	centre); default left Position of the tick marks across the x-axis (above, below,
	centre); default * i.e. none
YLABELS = texts	Labels at each mark on y-axis
XLABELS = texts	Labels at each mark on x-axis
PENAXES = scalar	Pen to be used for axes and their titles; default 1
PENTITLE = scalar	Pen to use for the title; default 1
LINETHICKNESS = scalar	Thickness for the vertical lines representing the mass heights; default 1
SCREEN = <i>string token</i>	Whether to clear screen before displaying the graph (keep, clear); default clea
Parameters	cicai), dolada cica
Y = variates	Heights for the masses
	· · · · · · · · · · · · · · · · · · ·
LINECOLOUR = <i>texts</i> or <i>scalars</i>	Colours for the vertical lines representing mass heights; default * sets suitable colours automatically

DMSCATTER procedure

Produces a scatter-plot matrix for one or two sets of variables (J. Ollerton & R.W. Payne).

PLOT = string tokens	Additional information to include in the scatter plots
	(correlation, histograms, boxplots, densities,
	dothistograms);
SCALING = string token	How to scale the x- and y-axes (common, equal, none);
	default none
PEN = scalar or variate or factor	Pens to plot the scatter plots; default 1
PENHISTOGRAM = $scalar$	Pens to plot the histograms; if PEN is a factor the default plots
	the histogram for each group separately using the pen used for
	that group in the scatter plots, otherwise the default is to use
	pen 2
PENCORRELATION = $scalar$	Pen to use to write the correlations; default 1
PENTITLE = scalar	Pen to use to write the axis titles; default uses the pens
	currently defined for the axes in the windows that are used for
	the plots
PENAXIS = scalar	Pen to use to draw the axes; default uses the currently defined
	pens
PENLABELS = $scalar$	Pen to use to write the axis labels; default uses the currently
	defined pens
NROWS = scalar	Number of rows of graphs to put in a single frame (i.e. page);
	default puts them all in one frame
NCOLUMNS = scalar	Number of columns of graphs to put in a single frame; default
	uses the same value as NROWS

ASPECTRATIO = scalar	Ratio of the length of the y-axis to the length of the x-axis in each graph
FRAMESHAPE = <i>string token</i>	Shape of the plotting frame (landscape, portrait, square); default squa
MARGINSIZE = scalar	Specifies the size of the margins at the bottom and left-hand edge of the frame
Parameters	edge of the frame
Y = pointers	Each pointer contains a set of variates and/or factors to be plotted
YTITLES = <i>texts</i>	Labels for the axes for the Y variates and factors, to use instead of their identifiers
YMARKS = variates, scalars or pointers	Marks to use on the axes for the Y variates and factors, if any of these contains missing values, the marks and their labels are suppressed for that variate or factor
x = <i>pointers</i>	Each pointer contains a set of variates and/or factors to be plotted as the x-variables in a rectangular scatter-plot matrix; if unset Y specifies both the x-variables and y-variables for a symmetric scatter-plot matrix
XTITLES = <i>texts</i>	Labels for the axes for the x variates and factors, to use instead of their identifiers
YMARKS = variates, scalars or pointe	rrs
	Marks to use on the axes for the Y variates and factors, if any of these contains missing values, the marks and their labels are suppressed for that variate or factor
XMARKS = variates, scalars or pointe	rrs
	Marks to use on the axes for the x variates and factors, if any of these contains missing values, the marks and their labels are suppressed for that variate or factor
DMST procedure	
Gives a high resolution plot of an ord	lination with minimum spanning tree (A.W.A. Murray).
Options	
DIMENSIONS = scalars	Two numbers specifying the dimensions to display on the y- and x-axes; default 2,1
TITLE = text	Title for the graph
WINDOW = scalar	Window for the graph; default 1
KEYWINDOW = scalar	Window for the key; default 2
CODEEN - atming tokon	Controls coroon (alloon hear); default alloo

Parameters COORDINATES = *matrices* or *datamatrices*

KEYWINDOW = scalar SCREEN = string token

	Coordinates from ordination
TREE = $matrices$	Minimum spanning tree
SIMILARITY = symmetric matrices	Association matrix used to derive ordination
SYMBOLS = factors or texts	Symbols to label the coordinates
PENCOORDINATES = $scalars$	Pen to use for the coordinates
PENTREE = scalars	Pen to use for the minimum spanning tree

DOTHISTOGRAM procedure

Plots dot histograms (L.S. Schmitt).

Options	
TITLE = $text$	Title for the plot; default * i.e. none
AXISTITLE = $text$	Title for the axis representing the data values; default * uses
	the name of the DATA variate if there is only one, otherwise no
	title
WINDOW = scalars	Window for the plot; default * uses window 1 when PEN is set,

Controls screen (clear, keep); default clea

ORIENTATION = <i>string token</i> YORIENTATION = <i>string token</i>	and window 3 when PEN is unset Direction of the plot (horizontal, vertical); default vert Direction of the y-axis for horizontal plots (reverse,	
SCREEN = string token	normal); default reve Whether to clear screen before displaying chart (keep, clear); default clea	
JUSTIFICATION = <i>string token</i>	How to position the dots; (right, left, centre, center, bottom, top, backtoback); default cent	
CREATEMISSINGLEVEL = text	Whether to create a level for missing GROUPS data (yes, no); default no	
OMITEMPTYLEVELS = text	Whether to omit levels of GROUPS for which there are no DATA values to plot (yes, no); default no	
SIZE = scalar	Size of the pen used to plot the dots; default 1	
KEYWINDOW = scalar	Window to use for a key when PEN is set; default 2	
KEYDESCRIPTION = text	Overall title for a key when PEN is set; default * uses name of PEN data structure	
SELECTION = string tokens	Selects the statistics to be plotted (mean, median,	
	interquartilerange); default * i.e. none	
BARWIDTH = scalar	Width of the bars for the selected statistics; default * sets an appropriate width automatically	
BARTHICKNESS = scalar	Thickness of the bars for the selected statistics; default 2	
CMEAN = scalar, variate or text	Colour of the bars for the means	
CMEDIAN = scalar, variate or text	Colour of the bars for the medians	
CINTERQUARTILE = scalar, variate or text		
	Colour of the bars for the inter-quartile ranges	
Parameters		
DATA = variates or pointers	Data to be plotted	
GROUPS = factors	Factor to divide values of a DATA variate into groups	
COLOURS = scalars, variates, texts or fa	actors	
	Colours for the histograms in each plot, a scalar to use the same colour for all the histograms, or a variate or factor to plot each histogram in a different colour; default 'black'	
NOBSERVATIONS = tables	Save tables of count	
PEN = variates, factors or pointers	Pens to define colours for the individual dots; default uses	
	those defined by the COLOURS parameter	
SYMBOLS = scalars, variates, texts or factors		
	Symbols for the points	
DESCRIPTION = texts	Annotation for key when PEN is set; default uses unique values of PEN	
DOTPLOT procedure		

Produces a dot-plot using line-printer or high-resolution graphics (J. Ollerton & S.A. Harding). **Options**

Options	
GRAPHICS = <i>string token</i>	Whether to use high-resolution graphics or line-printer
	graphics (lineprinter, highresolution); default high
TITLE = text	Title for the Dot Plot; default *
WINDOW = scalar	Window number for the graph; default 1
SCREEN = <i>string token</i>	Whether to clear the screen before plotting or to or continue
	plotting on the old screen (clear, keep); default clea
ENDACTION = string token	Action to be taken after completing the plot (continue,
	pause); default * uses the current setting
DIRECTION = string token	Order in which to sort the data before plotting, DIRECTION=*
	implies plot unsorted data (ascending, descending);
	default asce
LINES = <i>string token</i>	How to draw guide lines on the plot, LINES=* omits the guide
	lines (todot, full); default todot draws lines from the x-

origin to the dots

Parameters

YLABELS = texts	Text specifying Y labels for each dotplot
X = variates	Data to be plotted
PENDOTS = scalars	Pen to draw the dots; default 1
PENLINES = scalars	Pen to draw the lines; default 2

DPARALLEL procedure

Displays multivariate data using parallel coordinates (Z. Karaman).

Options	
TITLE = $text$	Title for the plot
GROUPS = factor	Defines grouping of the units (if any); by default, different pens are used for the observations in different groups
PERMUTATIONSALL = <i>string token</i>	Whether to display all necessary permutations so that any two variates will be adjacent in at least one plot, or just display once in the order given by the DATA pointer (yes, no); default no
SCALING = string token	Whether to do scaling overall (scale all variates on the same scale), or to scale each variate separately (overall, separate); default sepa
PEN = variate	Pens to be used for different groups (if any); default * uses pens from 1 up to the number of groups (number of levels of the GROUPS factor)
Parameter	
DATA = variates	Data variables to be plotted

DPIE directive

Draws a pie chart on a plotter or graphics monitor.

Options	
TITLE = $text$	General title; default *
WINDOW = scalar	Window number for the pie chart; default 1
KEYWINDOW = scalar	Window number for the key (zero for no key); default 2
ANNOTATION = string token	Whether to annotate the slices by their percentages
	(percentages); default perc
OUTLINE = string token	Where to draw outlines (slices, perimeter); default slices
PENOUTLINE = scalar	Pen to use for the outlines; default -10
SCREEN = string token	Whether to clear the screen before plotting or to continue
	plotting on the old screen (clear, keep); default clea
KEYDESCRIPTION = text	Overall description for the key
ENDACTION = string token	Action to be taken after completing the plot (continue,
	pause); default * uses the setting from the last DEVICE
	statement
Parameters	
SLICE = scalars	Amounts in each of the slices (or categories)
PEN = scalars	Pen number for each slice; default \star uses pens 1, 2, and so on
	for the successive slices
DESCRIPTION = texts	Description of each slice

DPOLYGON procedure

Draws polygons using high-resolution graphics (M.A. Mugglestone, S.A. Harding, B.Y.Y. Lee, P.J. Diggle & B.S. Rowlingson).

TITLE = text	Main title for the plot; default *
WINDOW = scalar	Which graphics window to use for the plot; default 1
KEYWINDOW = scalar	Which graphics window to use for the key; default 2

YTITLE = text	Title for the vertical axis; default *
XTITLE = text	Title for the horizontal axis; default *
YLOWER = scalar	Lower limit for the vertical axis
YUPPER = scalar	Upper limit for the vertical axis
XLOWER = scalar	Lower limit for the horizontal axis
XUPPER = scalar	Upper limit for the horizontal axis
SCREEN = <i>string token</i>	Whether to clear the screen before plotting or to continue plotting on the old screen (clear, keep); default clea
KEYDESCRIPTION = $text$	Overall description for the key; default *
ENDACTION = string token	Action to be taken after completing the plot (continue, pause); default paus
Parameters	
YPOLYGON = variates	Vertical coordinates of one or more polygons; no default – this parameter must be set
XPOLYGON = variates	Horizontal coordinates of one or more polygons; no default – this parameter must be set
PEN = scalars or variates or factors	Pen number for each graph
DESCRIPTION = texts	Annotation for the key

DPROBABILITY procedure

Creates a probability distribution plot of the values in a variate (D.B. Baird). **Options**

Options	
PRINT = string tokens	Controls whether to print estimated parameters of the distribution or test statistics (parameters, tests); default para
DISTRIBUTION = string token	Distribution for expected values against which to plot values
6	(normal, stdnormal, lognormal, exponential, gamma,
	weibull, beta, b2, pareto, chisquare, cauchy,
	logistic, ev1, ev2, ev3, gev, invnormal, t, f, uniform,
	stduniform, laplace, gpareto, ubetamix, ugammamix,
	loggamma, loglogistic, paralogistic, igamma,
	iweibull, burr, iburr); default norm
METHOD = string token	Method used for the plot axes (quantile, probability,
0	stabilizedprobability); default quan
GRAPHICS = string token	Type of graphics (highresolution, lineprinter); default high
PLOT = string tokens	Whether to plot differences from expectations or the 1-1
	reference line (differences, reference); default refe
CONSTANT = <i>string token</i>	Whether to estimate the constant for the distribution
	(estimate, omit) default omit
BANDS = <i>string token</i>	What type of confidence bands to plot, if any
	(simultaneous, pointwise); default simu
NSIMULATIONS = scalar	Number of simulations for pointwise bands; default 100
ALPHA = scalar	Acceptance limits for confidence bands; default 0.95
DF = scalar	Number of degrees of freedom of chi-square or t distribution;
	default 1
DFNUMERATOR = scalar	Numerator degrees of freedom of F distribution; default 1
DFDENOMINATOR = $scalar$	Denominator degrees of freedom of F distribution; default 1
WINDOW = scalar	Window to use for the plot; default 3
XMETHOD = string token	Scaling of X / Expected Plot axes (quantile, probability,
	stabilizedprobability); if unset, takes the same setting as METHOD
QMETHOD = string token	Whether to standardize plotted score in expected quantiles
	(standardized, unstandardized); default stan
TMETHOD = string tokens	Specifies the method used to perform the goodness-of-fit tests
	(likelihoodratio, traditional); default like

Number of Monte-Carlo simulations to perform for likelihood-NTIMES = scalarratio tests; default 999 Seed for random number generation for the likelihood-ratio SEED = scalar tests; default 0 continues an existing sequence or, if none, selects a seed automatically **Parameters** DATA = variates Values to plot Title for the graph; default * generates an appropriate title TITLE = textautomatically ESTIMATES = variates Saves the estimated parameters for the distribution Saves standard errors for the estimated parameters SE = variatesLower truncation points for Loss distributions LOWERTRUNCATION = scalars UPPERTRUNCATION = scalars Upper truncation points for Loss distributions DEVIANCE = scalars Saves the deviance for the fitted distribution PROBABILITIES = variates Saves the probabilities from the goodness-of-fit tests

4.1 Commands

165

DPSPECTRALPLOT procedure

Calculates an estimate of the spectrum of a spatial point pattern (C.J. Alexander & D.A.Murray). **Options**

PLOT = *string tokens* Which graphs to plot (periodogram, rspectrum, thetaspectrum, weights); default peri, rspe, thet, weig NROWS = scalarNumber of rows for periodogram; default 17 NCOLUMNS = scalarNumber of columns for periodogram; default 32 SCALING = string token Whether to normalize the coordinates of the points within the study region to a unit square (normalize, none); default norm **Parameters** Y = variatesVertical coordinates of each spatial point pattern Horizontal coordinates of each spatial point pattern X = variatesY-coordinates for the rectangular study region **YPOLGON** = *variates* X-coordinates for the rectangular study region XPOLYGON = variates YHOLEPOLGON = variates Y-coordinates for the missing region polygons X-coordinates for the missing region polygons XHOLEPOLYGON = variates Grouping factor where each level represents a different HOLEGROUPS = *variates* polygon for the missing regions. Saves the periodogram PERIODOGRAM = matrices WEIGHTS = variates Saves the weights used for the inter-event calculation YINTEREVENT = variates Saves the v-coordinates for the inter-event calculation XINTEREVENT = variates Saves the x-coordinates for the inter-event calculation

DPTMAP procedure

Draws maps for spatial point patterns using high-resolution graphics (M.A. Mugglestone, S.A. Harding, B.Y.Y. Lee, P.J. Diggle & B.S. Rowlingson).

Options

TITLE = text	Main title for the plot; default *
WINDOW = scalar	Which graphics window to use for the plot; default 1
KEYWINDOW = scalar	Which graphics window to use for the key; default 2
YTITLE = text	Title for the vertical axis; default *
XTITLE = text	Title for the horizontal axis; default *
YLOWER = scalar	Lower limit for the vertical axis
YUPPER = scalar	Upper limit for the vertical axis
XLOWER = scalar	Lower limit for the horizontal axis
XUPPER = scalar	Upper limit for the horizontal axis
SCREEN = string token	Whether to clear the screen before plotting or to continue
	plotting on the old screen (clear, keep); default clea

166	4 Syntax summary
KEYDESCRIPTION = <i>text</i> ENDACTION = <i>string token</i>	Overall description for the key; default * Action to be taken after completing the plot (continue, pause); default paus
Parameters	
Y = variates	Vertical coordinates of one or more spatial point patterns; no
	default - this parameter must be set
X = variates	Horizontal coordinates of one or more spatial point patterns;
	no default – this parameter must be set
PEN = scalars or variates or factors	Pen number for each graph
DESCRIPTION = texts	Annotation for the key

DPTREAD procedure

Adds points interactively to a spatial point pattern (M.A. Mugglestone, S.A. Harding, B.Y.Y. Lee, P.J. Diggle & B.S. Rowlingson).

Options

PRINT = string token	What to print (summary, monitoring); default summ, moni
WINDOW = $scalar$	Which graphics window to use for the plot; default 1
Parameters	
OLDY = variates	Vertical coordinates of each spatial point pattern; no default -
	this parameter must be set
OLDY = variates	Horizontal coordinates of each spatial point pattern; no default
	- this parameter must be set
NEWY = variates	Variates to receive the vertical coordinates of the original
	points and added points
NEWX = variates	Variates to receive the horizontal coordinates of the original
	points and added points

DQMAP procedure

y).
Orientation of map (vertical, horizontal); default vert
ly.
To specify a subset of the linkage groups to be displayed
General title; default *
Factor defining the linkage groups
Positions of markers within the linkage groups
Names of the markers
Factor defining the linkage groups of the QTLs
Positions of QTLs within the linkage groups
Names of the QTLs
Logical variate indicating whether the QTL has significant (1)
or non-significant (0) QTL-by-environment interaction

DQMKSCORES procedure

Plots a grid of marker scores for genotypes and indicates missing data (D.A. Murray).

be
t

Parameters

MKSCORES= <i>pointers</i>	Marker score code for each marker
CHROMOSOMES = $factors$	Linkage group for each marker
PARENTS = <i>pointers</i>	Parent information
IDPARENTS = <i>texts</i>	Labels to identify the parents

DQMQTLSCAN procedure

Plots the results of a genome-wide scan for QTL effects in multi-environment trials (M.P. Boer & J.T.N.M. Thissen).

Options

POPULATIONTYPE = string token	Type of population (BC1, DH1, F2, RIL, BCxSy, CP); must be
METHOD = string token	set Method to be used for plotting (line, spikes); default line
THRESHOLD = scalar	Threshold value for test statistic; default 0
DCHROMOSOMES = scalar, text or varia	
DCHROMOSOMES – Scalar, lexi of varia	
	Allows a subset chromosomes to be specified to display;
	default * i.e. all the chromosomes
SUPPRESSLINES = <i>string token</i>	Whether to suppress the vertical lines between the
	chromosomes (yes, no); default no
SYMBOL = scalar	Defines the plotting symbol for each point, as in the SYMBOL
	option of PEN, when METHOD=manhattan; default 2 i.e. circle
SIZEMULTIPLIER = scalar	Multiplier used in the calculation of sizes of symbols when
	METHOD=manhattan; default 1
BLACKOUTLINE = <i>string token</i>	Whether to draw the outer line the SYMBOL in black when
	METHOD=manhattan (yes, no); default no
COLOURS = scalar, variate or text	Colours to use for the chromosomes; default * uses the default
	colours of pens 1, 2 up to the number of chromosomes
TITLE = text	General title
YLOWERTITLE = text	Title for the y-axis of the lower graph; default
	'Environments'
YUPPERTITLE = text	Title for the y-axis of the upper graph; default uses the
	identifier of the STATISTICS variate or pointer
XTITLE = text	Title for the x-axis; default 'Chromosomes'
YAXUPPER = scalar	Upper bound for y-axis of the upper graph
ANNOTATION = <i>string token</i>	Whether to include annotation of the effects in the plot
	(include, omit); default incl
Parameters	
STATISTICS = variates or pointers	Test statistics to be plotted; must be set
C /	

STATISTICS = variates or pointers	l est statistics to be plotted; must be set
CHROMOSOMES = factors	Chromosome for each locus; must be set
POSITIONS = variates	Positions on the chromosome of each locus; must be set
QEFFECTS = pointers	QTL effects in the different environments; must be set
QSE = pointers	Standard errors of the QTL effects in the different
	environments; must be set
ENVNAMES = texts	Labels for the different environments; must be set
IDEFFECTS = texts	Labels to use to identify the effects
IDPARENTS = <i>texts</i>	Labels to use to identify the parents
DFILENAME = $texts$	Name of the graphics file for the plots

DQRECOMBINATIONS procedure

Plots a matrix of recombination frequencies between markers (S.J. Welham & D.A. Murray). **Options**

DCHROMOSOMES = *scalar*, *variate* or *text*

DCHROMOSOMES – scalar, variale of lexi	
	Specifies a subset of the linkage groups to be displayed
TITLE = text	General title for the plot
WINDOW = scalar	Window number for the graph; default 1
KEYWINDOW = scalar	Window number for the key (zero for no key); default 2

168	4 Syntax summary
PALETTE = string token	Colour scheme for plot (colour, color, greyscale, grayscale); default colo
Parameters	gra, coaro), actuan coro
RECFREQUENCIES = symmetric matrice	25
CHROMOSOMES = factors	Recombination frequencies to plot Linkage group for each marker
DQSQTLSCAN procedure Plots the results of a genome-wide s J.T.N.M. Thissen).	can for QTL effects in single-environment trials (M.P. Boer &
Options	
POPULATIONTYPE = <i>string token</i>	Type of population (BC1, DH1, F2, RIL, BCxSy, CP); must be set when QEFFECTS are supplied
METHOD = string token	Method to be used for plotting (line, manhattan, spikes); default line
THRESHOLD = scalar	Threshold value for test statistic; default 0
DCHROMOSOMES = scalar, text or variate	
	Allows a subset chromosomes to be specified to display;
	default * i.e. all the chromosomes
SUPPRESSLINES = <i>string token</i>	Whether to suppress the vertical lines between the
_	chromosomes (yes, no); default no
SYMBOL = scalar	Defines the plotting symbol for each point, as in the SYMBOL
	option of PEN, when METHOD=manhattan; default 2 i.e. circle
SIZEMULTIPLIER = scalar	Multiplier used in the calculation of sizes of symbols when METHOD=manhattan; default 1
BLACKOUTLINE = <i>string token</i>	Whether to draw the outer line the SYMBOL in black when
BLACKOUTLINE - String loken	METHOD=manhattan (yes, no); default no
COLOURS = <i>scalar</i> , <i>variate</i> or <i>text</i>	Colours to use for the chromosomes; default * uses the default
	colours of pens 1, 2 up to the number of chromosomes
TITLE = text	General title
YTITLE = text	Title for the y-axis; default uses the identifier of the
	STATISTICS variate or pointer
XTITLE = text	Title for the x-axis; default 'Chromosomes'
YUPPER = scalar	Upper bound for y-axis
WINDOW = scalar	Window number for the graphs; default 1
KEYWINDOW = scalar	Window number for key (zero for none); default 2
SCREEN = string token	Whether to clear the screen before displaying the graph
Description	(clear, keep); default clea
Parameters	Test statistic(s) to be plotted; must be set
STATISTICS = variates or pointers CHROMOSOMES = factors	Test statistic(s) to be plotted; must be set Chromosome for each locus; must be set
POSITIONS = variates	Position on the chromosome for each locus; must be set
QEFFECTS = variates or pointers	QTL effects along the genome,
QSE = variates or pointers	Standard errors of the QTL effects
IDEFFECTS = texts	Labels along the x-axis to identify the effects when QEFFECTS are supplied
IDPARENTS = <i>texts</i>	Labels to use to identify the parents
DFILENAME = $texts$	Name of the graphics file for the plots
DREAD directive	-

DREAD directive

Reads the locations of points from an interactive graphical device. **Options**

- F	
PRINT = string tokens	What to print (data, summary); default summ
CHANNEL = scalar	Number of the graphics device from which to read; default *
	takes the current graphics device
WINDOW = scalar	Window from which to read; default 1

169

CURSORTYPE = <i>scalar</i> SETNVALUES = <i>string token</i>	Type of cursor; default 1 Whether to set number of values of structures from the number of values read (yes, no); default no causes the number of values to be set only for structures whose lengths are not
ENDACTION = string token	defined already Action to be taken after completing the plot (continue, pause); default * uses the setting from the last DEVICE statement
Parameters	
Y = variates	Variate to receive the y-values that have been read
X = variates	Variate to receive the x-values that have been read
YGIVEN = variates	Y-coordinates of points that may be located on the graph
XGIVEN = variates	X-coordinates of points that may be located
SAVESET = variates	Unit numbers of the located points
PEN = scalars	Pen number to use to echo points; default 0
YSAVE = variates	Variate to receive the y-coordinates of the located points
XSAVE = variates	Variate to receive the x-coordinates of the located points

DREFERENCELINE procedure

Adds reference lines to a graph (R.W. Payne). Ontions

Options	
ORIENTATION = string token	Direction of the line (horizontal, vertical); default hori
WINDOW = scalar	Window in which to draw the line; default 1
Parameters	
POSITION = scalars	Positions of the lines
PEN = scalars	Pen to use for each line
LABEL = $texts$	Text to plot alongside each line
YLPOSITION = <i>string tokens</i>	Position of the label in the y-direction (above, below,
	centre, center); default belo
XLPOSITION = <i>string tokens</i>	Position of the label in the x-direction (centre, center,
	left, right); default left
PENLABEL = scalars	Pen to use for each label

DREPMEASURES procedure

Plots profiles and differences of profiles for repeated measures data (J.T.N.M. Thissen). **Options**

Options	
TITLE = text	Title for the plots; default *
GROUPS = factors	List of one or two factors; one factor gives one plot while a list with two factors gives as many plots as the number of levels of the first factor in the list; must be set
TIMEPOINTS = variate or factor	When the DATA parameter is set to a pointer containing a separate variate of observations for each time this can specify the actual time points (otherwise the suffixes of the DATA pointer are used), when there is a single DATA variate this must supply a factor to indicate the time of each observation
DIFFERENCES = <i>string token</i>	Can suppress plotting of the differences (no, yes); default no
Parameters	
DATA = pointers or variates	Data observations either in a pointer to a list of variates (one for each time), or a single variate (with TIMEPOINTS set to a factor indicating the time of each observation)
GROUPMEANS = tables	To save the calculated treatment means at each timepoint
DRESIDUALS procedure	

Plots residuals (R.W. Payne). Options RESIDUALS = variate

Residuals to plot

170	4 Syntax summary
FITTEDVALUES = variate INDEX = variate or factor GRAPHICS = string token	Fitted values against which to plot the residuals X-variable for an index plot; default ! (1, 2) What type of graphics to use (lineprinter, highresolution); default high
TITLE = text	Overall title for the plots; default * i.e. none
Parameters	
METHOD = string tokens	Type of residual plot (fittedvalues, normal, halfnormal, histogram, absresidual, index); default fitt, norm, half, hist
PEN = scalars, variates or factors	Pen(s) to use for each plot

DROP directive

Drops terms from a linear, generalized linear, generalized additive or nonlinear model. Options PRINT = *string tokens* What to print (model, deviance, summary, estimates, correlations, fittedvalues, accumulated, monitoring, confidence); default mode, summ, esti NONLINEAR = *string token* How to treat nonlinear parameters between groups (common, separate, unchanged); default unch How to treat the constant (estimate, omit, unchanged, CONSTANT = *string token* ignore); default unch FACTORIAL = scalar Limit for expansion of model terms; default * i.e. that in previous TERMS statement Whether to pool ss in accumulated summary between all terms POOL = *string token* fitted in a linear model (yes, no); default no Whether to base ratios in accumulated summary on rms from DENOMINATOR = *string token* model with smallest residual ss or smallest residual ms (ss, ms); default ss Which warning messages to suppress (dispersion, NOMESSAGE = *string tokens* leverage, residual, aliasing, marginality, df, inflation); default * Printing of probabilities for variance and deviance ratios (yes, FPROBABILITY = string token no); default no TPROBABILITY = *string token* Printing of probabilities for t-statistics (yes, no); default no SELECTION = string tokens Statistics to be displayed in the summary of analysis produced by $\ensuremath{\texttt{PRINT}}\xspace$ summary, seobservations is relevant only for a Normally distributed response, and Scv only for a gammadistributed response (%variance, %ss, adjustedr2, r2, seobservations, dispersion, %cv, %meandeviance, %deviance, aic, bic, sic); default %var, seob if DIST=normal, %cv if DIST=gamma, and disp for other distributions Probability level for confidence intervals for parameter PROBABILITY = scalar estimates; default 0.95 Description for line in accumulated analysis of variance (or AOVDESCRIPTION = *text* deviance) table when POOL=yes Parameter formula List of explanatory variates and factors, or model formula

DRPOLYGON procedure

Reads a polygon interactively from the current graphics device (M.A. Mugglestone, S.A. Harding, B.Y.Y. Lee, P.J. Diggle & B.S. Rowlingson).

PRINT = string token	What to print (summary); default summ
WINDOW = scalar	Window from which to read default 1

4.1 Commands

Parameters

YPOLYGON = variates	Variates to receive the vertical coordinates of the polygons
	that are read
XPOLYGON = variates	Variates to receive the horizontal coordinates of the polygons
	that are read
PEN = scalars	Pen numbers to use to echo points

DSAVE directive

 Saves the current graphics environment settings to an external file.

 No options

 Parameters

 FILENAME = text
 File in which to save the environment settings

 DESCRIPTION = text
 Description for these settings

DSCATTER procedure

Produces a scatter-plot matrix using high-resolution graphics (J. Ollerton).

plot
cifies linates
xis in
e

DSEPARATIONPLOT procedure

Creates a separation plot for visualising the fit of a model with a dichotomous (i.e. binary) or polytomous (i.e. multi-categorical) outcome (V.M. Cave).

METHOD = string token	Method used to plot the predicted probabilities (rectangles,
	lines, rbands, lbands); default rect
PLOT = string tokens	Information to be plotted on the graph (key, traceline,
	expectednumber); default key, trac, expe when
	METHOD=rectangles or lines, and key when
	METHOD=rbands or lbands
SUCCESSLEVEL = <i>string token</i>	Specifies which level corresponds to success when GROUPS
	supplies a factor with 2 levels (first, second); default seco
LINEORDER = string token	If METHOD=lines, whether the failures or successes are
	plotted first (failurefirst, successfirst); default fail
NGROUPS = scalar	Number of discrete bands used to group the predicted
	probabilities when <code>METHOD=rbands</code> or <code>lbands</code> ; default 10
TIES = string token	How tied data values in PROBABILITIES are handled when
	METHOD=rectangles or lines (permute, same); default perm
SEED = scalar	Seed for random number generator used to permute the tied
	data; default 0
COLOURS = variate or text	The two colours used to plot the predicted probabilities
THICKNESS = scalar	Thickness of the line for plotting the predicted probabilities
	when METHOD=lines or lbands; default 1
BACKGROUND = scalar or text	Colour of the background when METHOD=lines or lbands;
	default ligh
BORDER = string token	Whether to draw borders around the rectangles when
	METHOD=rectangles or rbands (yes, no); default no

172	4 Syntax summary
USEPENS = <i>string token</i>	Whether to use the current pen definitions of pens 2 and 3 for plotting the traceline and expectednumber. respectively (yes, no); default no
SAVE = <i>rsave</i> or <i>pointer</i>	Regression or HGLM save structure to provide the data if PROBABILITIES, GROUPS, NSUCCESSES and NBINOMIAL are not specified
Parameters	
PROBABILITIES = variate or matrix	Variate containing probabilities of success for a binary outcome (i.e. for binary or binomial data), or matrix containing probabilities of membership in each group for a polytomous outcome
GROUPS = variate or factor	Actual outcome, when NSUCCESSES and NBINOMIAL are not supplied
NSUCCESSES = variate	Number of successes when PROBABILITIES supplies predicted probabilities from binomial data
[†] NBINOMIAL = variate or scalar	Number of trials when PROBABILITIES supplies predicted probabilities from binomial data
TITLE = text	Title for the plot; default generates the title automatically
XTITLE = text	Title for the x-axis; default * i.e. none

DSHADE directive

Plots a shade diagram of 3-dimensional data. **Options**

options	
TITLE = text	General title; default *
WINDOW = scalar	Window number for the graph; default 1
KEYWINDOW = scalar	Window number for the key (0 for no key); default 2
YORIENTATION = <i>string token</i>	Y-axis orientation of the plot (reverse, normal); default reve
GRIDMETHOD = string token	How to draw a grid around the elements of the matrix
	(present, complete); default pres
PENGRID = scalar	Pen to use for the grid; default -7
SCREEN = string token	Whether to clear the screen before plotting or to continue
	plotting on the old screen (clear, keep); default clea
KEYDESCRIPTION = text	Overall description for the key
ENDACTION = string token	Action to be taken after completing the plot (continue,
	pause); default * uses the setting from the last DEVICE
	statement

Parameters

GRID = symmetric matrix, matrix or pointer to variates

	r ······
	Data to be plotted
PEN = scalar or variate	How to draw each shade
LIMITS = variate	Boundary values for changes in shade
NGROUPS = scalar	Number of groups to form from the data values (i.e. number of
	different shades)
INTERVAL = scalar	Interval between changes in shade
PERMUTATION = variate	Can define permutations to be done to the units of symmetric
	matrices prior to plotting
DESCRIPTION = text	Annotation for key

DSPIDERWEB procedure

Displays spider-web and star plots (W. van den Berg).

METHOD = string token	Type of plot (spiderweb, star); default spid
MARKS = $scalar$ or $variate$	Distances between the strands of the web or marks on the axes
	of the star (scalar), or positions of those strands or marks
	(variate); default 0.25

Angle to rotate the plot, in degrees; default 0 Controls the size of the labels identifying the categories; default selects a size appropriate to the number of plots in the frame
Shape of the plotting frame (landscape, portrait, square); default squa
Values to plot in each frame
Factor specifying the categories that define the axes in the plots
Factor specifying the groups to appear in each plot
Factor or factors specifying the different plots of a trellis plot of a multi-way table
Factor or factors specifying plots to be displayed on different pages
Title for the graph; default none
Colours to be used for the groups

DSTART directive

Starts a sequence of related high-resolution plots.

Options	
TITLE = text	Overall title for the plots
PEN = scalar	Pen to use for the title; if this is not set, pen – 12 is used

DSTTEST procedure

Plots power and significance for t-tests, including equivalence tests (R.W. Payne).

1	
Options	
NSAMPLES = scalar	Number of samples for the t-test (1 or 2); default 2
PROBABILITY = scalar	Significance level at which the response is to be tested; default 0.05
TMETHOD = string token	Type of test to be done (onesided, twosided, equivalence, noninferiority); default ones
RATIOREPLICATION = <i>scalar</i>	Ratio of replication sample2:sample1 (i.e. the size of sample 2 should be RATIOREPLICATION times the size of sample 1); default 1
Parameters	
RESPONSE = scalars	Response to be detected
VAR1 = scalars	Anticipated variance of sample 1
VAR2 = <i>scalars</i>	Anticipated variance of sample 2; default * assumes the same variance as sample 1
NREPLICATES = $scalars$	Number of replicates
RDF = scalars	Number of residual degrees of freedom; default * calculates these automatically, assuming a standard t-test

DSURFACE directive

Produces perspective views of two-way arrays of numbers.

Options	
TITLE = $text$	General title; default *
WINDOW = scalar	Window number for the plots; default 1
KEYWINDOW = scalar	Window number for the key (zero for no key); default 2
ELEVATION = scalar	The elevation of the viewpoint relative to the surface; default
	25 (degrees)
AZIMUTH = scalar	Rotation about the horizontal plane; the default of 225 degrees
	ensures that, with a square matrix M, the element M [1;1] is
	nearest to the viewpoint
DISTANCE = scalar	Distance of the viewpoint from the centre of the grid on the

base plane; default * gives a distance of 100 times the

	maximum of the x-range and the y-range
ZSCALE = scalar	defines the scaling of the z-axis relative to the horizontal (x-y)
ZSCALE – scalar	axes; default 1
SCREEN = <i>string token</i>	Whether to clear the screen before plotting or to continue
SCREEN - Siring loken	plotting on the old screen (clear, keep); default clea
KEYDESCRIPTION = <i>text</i>	Overall description for the key; default *
ENDACTION = string token	Action to be taken after completing the plot (continue,
ENDACIION Sining loken	pause); default * uses the setting from the last DEVICE
	statement
Parameters	statement
GRID = <i>identifier</i>	Pointer (of variates representing the columns of a data matrix),
	matrix or two-way table specifying values on a rectangular
	grid
PEN = scalar	Pen number to be used for the plot; default 1
PENFILL = scalar or variate	Pen number(s) defining how to fill the areas between contours
	(0 or * leaves the areas in the background colour); default 3
PENMESH = scalar	Pen number to use to draw the mesh (omitted if set to 0 or *);
	default 1
PENSIDE = scalar	Pen number to use to shade the sides of the surface (omitted if
	set to 0 or *); default *
NCONTOURS = $scalar$	Number of contours; default 10
CONTOURS = variate	Positions of contours
INTERVAL = scalar	Interval between contours
DESCRIPTION = text	Annotation for key
DTABLE procedure	
Plots tables (R.W. Payne).	
Options	
GRAPHICS = <i>string token</i>	Type of graph (highresolution, lineprinter); default
	high
METHOD = string token	What to plot (points, linesandpoints, onlylines, data,
	barchart, splines); default poin
XFREPRESENTATION = <i>string token</i>	How to label the x-axis (levels, labels); default labels
1	uses the XFACTOR labels, if available
DFSPLINE = scalar	Number of degrees of freedom to use when METHOD=splines
YTRANSFORM = <i>string tokens</i>	
	Transformed scale for additional axis marks and labels to be
	plotted on the right-hand side of the y-axis (identity, log,
	plotted on the right-hand side of the y-axis (identity, log, log10, logit, probit, cloglog, square, exp, exp10,
,	plotted on the right-hand side of the y-axis (identity, log, log10, logit, probit, cloglog, square, exp, exp10, ilogit, iprobit, icloglog, root); default iden i.e. none
PENYTRANSFORM = <i>scalar</i>	plotted on the right-hand side of the y-axis (identity, log, log10, logit, probit, cloglog, square, exp, exp10, ilogit, iprobit, icloglog, root); default iden i.e. none Pen to use to plot the transformed axis marks and labels;
PENYTRANSFORM = <i>scalar</i>	plotted on the right-hand side of the y-axis (identity, log, log10, logit, probit, cloglog, square, exp, exp10, ilogit, iprobit, icloglog, root); default iden i.e. none Pen to use to plot the transformed axis marks and labels; default * selects a pen, and defines its properties,
	plotted on the right-hand side of the y-axis (identity, log, log10, logit, probit, cloglog, square, exp, exp10, ilogit, iprobit, icloglog, root); default iden i.e. none Pen to use to plot the transformed axis marks and labels; default * selects a pen, and defines its properties, automatically
PENYTRANSFORM = scalar [†] KEYMETHOD = string token	plotted on the right-hand side of the y-axis (identity, log, log10, logit, probit, cloglog, square, exp, exp10, ilogit, iprobit, icloglog, root); default iden i.e. none Pen to use to plot the transformed axis marks and labels; default * selects a pen, and defines its properties, automatically What to use for the key descriptions when GROUPS specifies
	plotted on the right-hand side of the y-axis (identity, log, log10, logit, probit, cloglog, square, exp, exp10, ilogit, iprobit, icloglog, root); default iden i.e. none Pen to use to plot the transformed axis marks and labels; default * selects a pen, and defines its properties, automatically What to use for the key descriptions when GROUPS specifies more than one factor (labels, namesandlabels); default
[†] KEYMETHOD = <i>string token</i>	<pre>plotted on the right-hand side of the y-axis (identity, log, log10, logit, probit, cloglog, square, exp, exp10, ilogit, iprobit, icloglog, root); default iden i.e. none Pen to use to plot the transformed axis marks and labels; default * selects a pen, and defines its properties, automatically What to use for the key descriptions when GROUPS specifies more than one factor (labels, namesandlabels); default name</pre>
	<pre>plotted on the right-hand side of the y-axis (identity, log, log10, logit, probit, cloglog, square, exp, exp10, ilogit, iprobit, icloglog, root); default iden i.e. none Pen to use to plot the transformed axis marks and labels; default * selects a pen, and defines its properties, automatically What to use for the key descriptions when GROUPS specifies more than one factor (labels, namesandlabels); default name What to use for the titles of the plots when TRELLISGROUPS</pre>
[†] KEYMETHOD = <i>string token</i>	<pre>plotted on the right-hand side of the y-axis (identity, log, log10, logit, probit, cloglog, square, exp, exp10, ilogit, iprobit, icloglog, root); default iden i.e. none Pen to use to plot the transformed axis marks and labels; default * selects a pen, and defines its properties, automatically What to use for the key descriptions when GROUPS specifies more than one factor (labels, namesandlabels); default name What to use for the titles of the plots when TRELLISGROUPS specifies more than one factor (labels, namesandlabels);</pre>
[†] KEYMETHOD = <i>string token</i> [†] PLOTTITLEMETHOD = <i>string token</i>	<pre>plotted on the right-hand side of the y-axis (identity, log, log10, logit, probit, cloglog, square, exp, exp10, ilogit, iprobit, icloglog, root); default iden i.e. none Pen to use to plot the transformed axis marks and labels; default * selects a pen, and defines its properties, automatically What to use for the key descriptions when GROUPS specifies more than one factor (labels, namesandlabels); default name What to use for the titles of the plots when TRELLISGROUPS specifies more than one factor (labels, namesandlabels); default name</pre>
[†] KEYMETHOD = <i>string token</i>	<pre>plotted on the right-hand side of the y-axis (identity, log, log10, logit, probit, cloglog, square, exp, exp10, ilogit, iprobit, icloglog, root); default iden i.e. none Pen to use to plot the transformed axis marks and labels; default * selects a pen, and defines its properties, automatically What to use for the key descriptions when GROUPS specifies more than one factor (labels, namesandlabels); default name What to use for the titles of the plots when TRELLISGROUPS specifies more than one factor (labels, namesandlabels); default name What to use for the titles of the pages when PAGEGROUPS</pre>
[†] KEYMETHOD = <i>string token</i> [†] PLOTTITLEMETHOD = <i>string token</i>	<pre>plotted on the right-hand side of the y-axis (identity, log, log10, logit, probit, cloglog, square, exp, exp10, ilogit, iprobit, icloglog, root); default iden i.e. none Pen to use to plot the transformed axis marks and labels; default * selects a pen, and defines its properties, automatically What to use for the key descriptions when GROUPS specifies more than one factor (labels, namesandlabels); default name What to use for the titles of the plots when TRELLISGROUPS specifies more than one factor (labels, namesandlabels); default name What to use for the titles of the pages when PAGEGROUPS specifies more than one factor (labels, namesandlabels);</pre>
[†] KEYMETHOD = <i>string token</i> [†] PLOTTITLEMETHOD = <i>string token</i> [†] PAGETITLEMETHOD = <i>string token</i>	<pre>plotted on the right-hand side of the y-axis (identity, log, log10, logit, probit, cloglog, square, exp, exp10, ilogit, iprobit, icloglog, root); default iden i.e. none Pen to use to plot the transformed axis marks and labels; default * selects a pen, and defines its properties, automatically What to use for the key descriptions when GROUPS specifies more than one factor (labels, namesandlabels); default name What to use for the titles of the plots when TRELLISGROUPS specifies more than one factor (labels, namesandlabels); default name What to use for the titles of the pages when PAGEGROUPS specifies more than one factor (labels, namesandlabels); default name</pre>
[†] KEYMETHOD = <i>string token</i> [†] PLOTTITLEMETHOD = <i>string token</i>	<pre>plotted on the right-hand side of the y-axis (identity, log, log10, logit, probit, cloglog, square, exp, exp10, ilogit, iprobit, icloglog, root); default iden i.e. none Pen to use to plot the transformed axis marks and labels; default * selects a pen, and defines its properties, automatically What to use for the key descriptions when GROUPS specifies more than one factor (labels, namesandlabels); default name What to use for the titles of the plots when TRELLISGROUPS specifies more than one factor (labels, namesandlabels); default name What to use for the titles of the pages when PAGEGROUPS specifies more than one factor (labels, namesandlabels); default name What to use for the titles of the pages when PAGEGROUPS specifies more than one factor (labels, namesandlabels); default name What to use for the current axis definitions of window 1 to</pre>
[†] KEYMETHOD = <i>string token</i> [†] PLOTTITLEMETHOD = <i>string token</i> [†] PAGETITLEMETHOD = <i>string token</i>	<pre>plotted on the right-hand side of the y-axis (identity, log, log10, logit, probit, cloglog, square, exp, exp10, ilogit, iprobit, icloglog, root); default iden i.e. none Pen to use to plot the transformed axis marks and labels; default * selects a pen, and defines its properties, automatically What to use for the key descriptions when GROUPS specifies more than one factor (labels, namesandlabels); default name What to use for the titles of the plots when TRELLISGROUPS specifies more than one factor (labels, namesandlabels); default name What to use for the titles of the pages when PAGEGROUPS specifies more than one factor (labels, namesandlabels); default name</pre>

Tables to plot

Parameters TABLE = *tables*

DATA = variates XFACTOR = factors GROUPS = factors or pointers	Data values to plot with each table when METHOD=data Factor providing the <i>x</i> -values for the plot of each table Factor or factors identifying the different lines from a multi- way table
TRELLISGROUPS = <i>factors</i> or <i>pointers</i>	Factor or factors specifying the different plots of a trellis plot of a multi-way table
PAGEGROUPS = factors or pointers	Factor or factors specifying plots to be displayed on different pages
BAR = scalars, tables or pointers	Scalar defining the length of error bar to be plotted to indicate the overall (or average) variability of the values in each table, or table defining the variability of each individual table value, or pointer containing either two scalars or two tables defining the upper and lower positions of the error bar(s)
NEWXLEVELS = variates	Values to be used for XFACTOR instead of its existing levels
TITLE = texts	Title for the graph; default uses the identifier of the TABLE
YTITLE = texts	Title for the y-axis; default '
XTITLE = texts	Title for the x-axis; default is to use the identifier of the XFACTOR
BARDESCRIPTION = texts	Descriptions for the bars
PENS = variates	Defines the pen to use to plot the points and/or line for each group defined by the GROUPS factors

DTEXT procedure

Adds text to a graph (S.A. Harding).

Option	
WINDOW = scalar	Window number of the graph; default 1
Parameters	
Y = variates or scalars	Vertical coordinates
X = variates or scalars	Horizontal coordinates
TEXT = texts	Text to plot
PEN = scalars, variates or factors	Pens to use; default 1

DTIMEPLOT procedure

Produces horizontal bars displaying a continuous time record (S.J. Clark).

Options

Ontion

TITLE = textTitle for the plot; default * i.e. noneWINDOW = numbersWhich high-resolution graphics windows to use; default 3 for
single plots and 5...8 for the composite plotSCREEN = string tokenWhether to clear the graphics screen before plotting (clear,
keep); default clea

Parameters

DATA = variates GROUPS = factors LABELS = texts METHOD = texts Bout lengths Factor defining act performed during each bout Labels for each act Type of plot to produce for each DATA variate (barplot, cumulative, log, survivor, composite); default comp

DUMMY directive

Declares one or more dummy data structures.

Options	
VALUE = <i>identifier</i>	Value for all the dummies; default *
MODIFY = string token	Whether to modify (instead of redefining) existing structures
	(yes, no); default no
IPRINT = string tokens	Information to be used by default to identify the dummies in
	output (identifier, extra); if this is not set, they will be
	identified in the standard way for each type of output

Parameters

IDENTIFIER = *identifiers* VALUE = *identifiers* EXTRA = *texts* Identifiers of the dummies Value for each dummy Extra text associated with each identifier

DUMP directive

Prints information about data structures, and internal system information.

Options	
PRINT = string tokens	What information to print about structures (attributes,
	values, identifiers, space); default attr
CHANNEL = <i>identifier</i>	Channel number of file, or identifier of a text to store output;
	default current output file
INFORMATION = <i>string tokens</i>	What information to print for each structure (brief, full,
	extended); default brie
TYPE = string tokens	Which types of structure to include in addition to those in the
	parameter list (all, diagonalmatrix, dummy, expression,
	factor, formula, LRV, matrix, pointer, scalar, SSPM,
	symmetricmatrix,table,text,TSM,variate);
	i.e. none
SYSTEM = <i>string token</i>	Whether to display Genstat system structures (yes, no);
	default no
UNNAMED = string token	Whether to display unnamed structures (yes, no); default no
Parameter	
identifiers or numbers	Identifier or reference number of a structure whose information is to be printed

DUPLICATE directive

Forms new data structures with attributes taken from an existing structure.

Option	
ATTRIBUTES = <i>string tokens</i>	Which attributes to duplicate (all, nvalues, values,
	nlevels, levels, labels (of factors or pointers), extra,
	decimals, characters, rows, columns,
	classification, margins, suffixes, minimum,
	maximum, restriction, referencelevel); default all
REDEFINE = string token	Whether or not to delete the attributes of the new structures
	beforehand so that their types can be redefined (yes, no);
	default no
Parameters	
OLDSTRUCTURE = <i>identifiers</i>	Data structures to provide attributes for the new structures
NEWSTRUCTURE = <i>identifiers</i>	Identifiers of the new structures
VALUES = <i>identifiers</i>	Values for each new structure
DECIMALS = scalars	Number of decimals for printing numerical structures
CHARACTERS = <i>scalars</i>	Number of characters for printing texts or labels of a factor
EXTRA = texts	Extra text associated with each identifier
MINIMUM = scalars	Minimum value for numerical structures
MAXIMUM = scalars	Maximum value for numerical structures

DVARIOGRAM procedure

Plots fitted models to an experimental variogram (S.A. Harding, D.A. Murray & R. Webster).

I lots inted models to un expens	mentar variogram (5.74. marang, D.74. Maray & R. Webster).
Options	
MODELTYPE = <i>string token</i>	Defines which model to plot (power, boundedlinear,
	circular, spherical, doublespherical,
	pentaspherical, exponential, besselk1, gaussian,
	affinepower, linear, cubic, stable, cardinalsine,
	matern); default powe
ISOTROPY = <i>string token</i>	Defines whether this is an isotropic or geometrical anisotropic

	<pre>model(isotropic, geometrical); default isot</pre>
WINDOW = scalar	Window in which to plot a graph; default 1
TITLE = $text$	Title for the graph
Parameters	
VARIOGRAM = variates	Experimental variogram to which the model or matrices has
	been fitted, as a variate if in only one direction or as a matrix if
	there are several
DISTANCE = variates	Mean lag distances for the points in each or matrices
	variogram
DIRECTION = variates	Directions in which each variogram was computed
ESTIMATES = variates	Estimated parameter values
XUPPER = scalar	Upper limit for the x-axis in the graph
PENDATA = $scalar$	Pen to be used to plot the data; default 1
PENMODEL = scalar	Pen to be used to plot the model; default 2

DXDENSITY procedure

Produces one-dimensional density (or violin) plots (D. B. Baird). **Options**

- F	
BANDWIDTH = $scalar$	Bandwidth for kernel smoothing (0-1); default density is chosen according to the number of observations
GAP = scalar	The size of the gap $(0-1)$ between envelopes when there several densities are to be plotted; default 0.1
TRANSFORM = <i>string token</i>	Transformed scale for the data (identity, log, log10,
	logit, probit, cloglog, square, exp, exp10, ilogit,
	iprobit, icloglog, root); default is to use the transform
	defined for XAXIS
AXISTITLE = $text$	The title for the data axis; default is the name of the DATA
	variate
GROUPSTITLE = text	The title for the groups or variates axis; default is to use the
	name of the GROUPS factor
WINDOW = scalar	Window number for the graphs; default 3
ORIENTATION = string token	Orientation of plots (horizontal, vertical); default vert
METHOD = string token	Method for plotting the density envelope (fill, line); default fill
SCREEN = <i>string token</i>	Whether to clear screen before the plot (clear, keep, resize); default clea
Parameters	
DATA = variates or pointers	The data whose density is to be plotted
GROUPS = factors	Factor to divide values of a single variate into groups; default * i.e. none
TITLE = texts	Title for graph; default uses the names of the data variates and type of plot

DXYDENSITY procedure

Produces density plots for large data sets (D. B. Baird). **Options**

How to plot the density (pointplot, shadeplot,
contourplot, histogram, surface); default poin
Number of sections into which to divide each axis (4-400);
default 50
Method to use to smooth the density (thinplate,
radialspline, tensorspline, kernel); default * i.e.
none
Degrees of freedom for smoothing methods (2-50); default 12
Bandwidth for kernel smoothing (0-1); default 0.2
What smooth regression fits to the means to plot (yx, xy) ;

	default * i.e. none
NCONTOURS = $scalar$	Number of contours in the contour plot; default 9
SYMBOL = string token	Symbol to use in a point plot (circle, square); default circ
COLOURS = <i>text</i> , <i>variate</i> or <i>scalar</i>	Colour to use to draw the symbols, shades, contours or
	<pre>surface; default !t(red, blue, black)</pre>
XTRANSFORM = <i>string token</i>	Transformed scale for the x-axis (identity, log, log10,
	logit, probit, cloglog, square, exp, exp10, ilogit,
	iprobit, icloglog, root); default iden
YTRANSFORM = <i>string token</i>	Transformed scale for the y-axis (identity, log, log10,
	logit, probit, cloglog, square, exp, exp10, ilogit,
	iprobit, icloglog, root); default iden
ZTRANSFORM = <i>string token</i>	Transformed scale for the z-axis (identity, percentile,
	root); default iden
WINDOW = scalar	Window number for the graphs; default 3
SCREEN = string token	Whether to clear the screen before plotting or to continue
	plotting on the old screen (clear, keep, resize); default
	clea
Parameters	

Y = variate or factor	Y-coordinates of the data
X = variate or factor	X-coordinates of the data
TITLE = text	Title for graph; default uses the names of the data and type of plot

DXYGRAPH procedure

Draws two-dimensional graphs with marginal distribution plots alongside the y- and x-axes (D.A. Murray).

Options

Options	
YMETHOD = string token	Distribution plot to display in the margin of the y-axis
	(histogram, rugplot, boxplot); default hist
XMETHOD = string token	Distribution plot to display in the margin of the x-axis
	(histogram, rugplot, boxplot); default hist
YNGROUPS = scalar	Defines the number of groups in a margin plot of a histogram
	of the Y variate; default is then 10, or the integer value nearest
	the square root of the number of values in the Y variate if that
	is smaller
XNGROUPS = scalar	Defines the number of groups in a margin plot of a histogram
	of the x variate; default is then 10, or the integer value nearest
	the square root of the number of values in the x variate if that
	is smaller
YCOLOUR = <i>scalar</i> or <i>text</i>	Colour to use for the Y margin plot
XCOLOUR = <i>scalar</i> or <i>text</i>	Colour to use for the x margin plot
Parameters	
Y = variates or factors	Vertical coordinates
X = variates or factors	Horizontal coordinates
TITLE = texts	General title for the plot; default *
WINDOW = scalars	Window number for the graphs; default 1
KEYWINDOW = scalars	Window number for the key (zero for no key); default 2
PEN = scalars, variates or factors	Pen number for each graph; default * uses pens 1, 2, and so on
· · · · ·	for the successive graphs
SCREEN = string token	Whether to clear the screen before plotting or to continue
	plotting on the old screen (clear, keep); default clea
	proving on and ord bereen (orear, heep), denant orea

DYPOLAR procedure

Produces polar plots (D. B. Baird).

Options

MODULUS = scalar

TOPANGLE = scalar

COLOUR = scalar or text

LINESTYLE = scalar YORIGIN = scalar

YMARKS = variate XMARKS = variate

YLABELS = text
XLABELS = text
YTRANSFORM = string token

NRINGS = scalar NSECTORS = scalar

WINDOW = scalar KEYWINDOW = scalar SCREEN = string token

KEYDESCRIPTION = *text* **Parameters**

Y = variates, factors or pointers X = variates, factors or pointers GROUPS = factors TITLE = texts

PEN = scalar or variates DESCRIPTION = texts

D3GRAPH directive

Plots a 3-dimensional graph. **Options** TITLE = text WINDOW = scalar KEYWINDOW = scalar ELEVATION = scalar AZIMUTH = scalar DISTANCE = scalar SCREEN = string token

Number of units required to give a complete revolution in X; default 360 Angle at the top of the plot; default is a quarter of the MODULUS Colour for the lines marking rings and sectors; default 'black' Linestyle for the lines marking rings and sectors; default 1 Origin for the y-values; default 0 or the minimum of Y if this is less than 0 Y-values for the rings, plotted in the background of the plot X-values for the lines marking the sectors, plotted in the background of the plot Labels for the rings Labels for the sectors Transformed scale for the y-values (identity, log, log10, logit, probit, cloglog, square, exp, exp10, ilogit, iprobit, icloglog, root); default is to use the transform defined for YAXIS Number of rings to be plotted, if YMARKS is not set; default 9 Number of sectors to be plotted, if XMARKS is not set; default 12 Window number for the graph; default 1 Window number for the graph key; default 2 Whether to clear the screen before the plot (clear, keep); default clea Overall description for the key; default * Y-values specifying the amplitudes of the points X-values specifying the angles of the points

Factor to divide the points into groups; default \star i.e. none Title for the graph; default forms a title automatically with the names of the Y and X structures Pens used to plot the data; default 1 Annotation for key; default uses the names of the Y and X

structures, or the labels of GROUPS if set

General title; default *
,
Window number for the plots; default 1
Window number for the key (zero for no key); default 2
The elevation of the viewpoint relative to the surface; default
25 (degrees)
Rotation about the horizontal plane; the default of 225 degrees
ensures that a point at the minimum x- and y-value is nearest to
the viewpoint
Distance of the viewpoint from the centre of the grid on the
base plane; default * ensures that the data points fill the
viewing area
Whether to clear the screen before plotting or to continue
plotting on the old screen (clear, keep, resize); default
clea

KEYDESCRIPTION = text ENDACTION = string token	Overall description for the key; default * Action to be taken after completing the plot (continue, pause); default * uses the setting from the last DEVICE statement
Parameters	
X = identifiers	X-coordinates
Y = identifiers	Y-coordinates
z = identifiers	Z-coordinates
PEN = scalars, variates or factors	Pen number for each graph (use of a variate or factor allows different pens to be defined for different sets of units); default * uses pens 1, 2, and so on for the successive graphs
DESCRIPTION = texts	Annotation for key
UNITNUMBERS = <i>identifiers</i>	Specifies unit numbers to be used when points are selected in the graphics viewer; default $*$ uses the actual unit numbers of the values in the x and y structures

D3HISTOGRAM directive

Plots three-dimensional histograms.	
Options	
TITLE = text	General title; default *
WINDOW = scalar	Window number for the plots; default 1
KEYWINDOW = scalar	Window number for the key (zero for no key); default 2
ELEVATION = scalar	The elevation of the viewpoint relative to the surface; default
	25 (degrees)
AZIMUTH = scalar	Rotation about the horizontal plane; the default of 225 degrees
	ensures that, with a square matrix M , the element M [1;1] is
	nearest to the viewpoint
DISTANCE = scalar	Distance of the viewpoint from the centre of the grid on the
	base plane; default * gives a distance of 25 times the number
	of y points in the grid
SCREEN = string token	Whether to clear the screen before plotting or to continue
	plotting on the old screen (clear, keep); default clea
KEYDESCRIPTION = text	Overall description for the key; default *
ENDACTION = string token	Action to be taken after completing the plot (continue,
	pause); default * uses the setting from the last DEVICE
	statement
Parameters	
GRID <i>= identifier</i>	Pointer (of variates representing the columns of a data matrix), matrix or two-way table specifying values on a regular grid
PEN = scalar	Pen number to be used for the plot; default 3
DESCRIPTION = texts	Annotation for key
	-

ECABUNDANCEPLOT procedure

Produces rank/abundance, *ABC* and *k*-dominance plots (D.A. Murray). **Options**

Options	
PRINT = string token	Controls printed output (summary); default summ
PLOT = string token	Controls the type of plot (rankabundance, kdominance,
	abc); default rank, kdom
GROUPS = <i>factor</i>	Defines the groups if there is more than one sample
Parameters	
INDIVIDUALS = variates	Number of individuals per species
SPECIES = variates	Number of species
BIOMASS = variates	Biomass data for each species for an ABC plot
	· ·

ECACCUMULATION procedure

Plots species accumulation curves for samples or individuals (D.A. Murray).

Options	
PRINT = string token	Controls printed output (summary); default summ
CURVE = <i>string token</i>	Controls the type of species accumulation curve (collector,
	random, coleman); default coll
PLOT = string token	Controls plot type (sac); default sac
METHOD = string token	Controls collector curve when data supplied in variate or
	factor with groups (individual, sample); default samp
GROUPS = factor	Grouping factor for samples when data are supplied in variate
	of factor of individuals
NPERMUTATIONS = $scalar$	A scalar defining the number of permutations to be performed
	for the random method; default 100
SEED = scalar	Seed for random number generator; default 0
SCREEN = string token	Whether to clear screen before displaying the graph (keep,
	clear); defaul clea
WINDOW = scalar	Window for the graph; default 1
KEYWINDOW = scalar	Window number for the key (zero for no key); default 2
PEN = scalar	Pen number to draw the curve; default 1
Parameters	
DATA = variates, factors, matrices or pe	pinters
	For individual-based collector curves, a variate or factor
	containing the individuals in the order they were collected; for
	sample-based species accumulation curves, a pointer or matrix
	specifying the number of individuals for each species for
	different sites/samples
RICHNESS = variates	Saves the observed number of species for the collector method
	and the average or expected number of species at each sample
	size for the Coleman and random methods
VARIANCE = <i>variates</i>	Saves the variance for the richness (Coleman and random
	methods only)

ECANOSIM procedure

Performs an analysis of similarities i.e. ANOSIM (D.A. Murray).

Options

PRINT = string token	Controls printed output (test); default test
PLOT = string token	Type of plot (boxplot, histogram); default hist
NTIMES = scalar	Number of permutations to make; default 999
BLOCKS = $factor$	Factor specifying groups for a stratified test; default * i.e. none
SEED = scalar	Seed for the random number generator used to make the
	permutations; default 0 continues from the previous generation
	or (if none) initializes the seed automatically
Parameters	

DATA = symmetric matrices

DATA = symmetric matrices	Similarity matrix
GROUPS = factors	Specify the different groups for each matrix
STATISTIC = scalars	Save the <i>R</i> statistics
PROBABILITY = scalars	Save the probabilities

ECDIVERSITY procedure

Calculates measures of diversity with jackknife or bootstrap estimates (D.A. Murray).

Options

PRINT = string tokens	Controls printed output (index, estimate); default inde
INDEX = string token	Controls the type of measurement to be calculated (hshannon,
	qstatistic, simpsonyule, bergerparker, ibrillouin,
	ebrillouin, dmcintosh, emcintosh, evar,

GROUPS = factor BMETHOD = string token	margalef, isimpson, richness); default hsha Defines the groups if there is more than one sample Controls whether to use the bootstrap or jackknife method (jackknife, bootstrap); default jack for multiple samples and boot for individual samples
NBOOT = $scalar$	Number of times to resample in bootstrap; default 100
SEED = $scalar$	Seed for random number generator for bootstrap; default 0
CIPROBABILITY = scalar	Probability for the confidence interval produced by either
	jackknife or bootstrap method; default 0.95
Parameters	
INDIVIDUALS = variates	Number of individuals per species
SPECIES = variates	Number of species
INDICES = variate or pointer	Saved the diversity indices
ECFIT procedure Fits models to species abundance data (D.A. Murray).	

Controls printed output (summary, estimates,

Plots the fitted values (fittedabundance,

rankabundance); default fitt

Number of individuals per species

Saves the grouping of the estimates

Options PRINT = *string tokens*

	fittedvalues); default summ, esti
MODELTYPE = string token	The model or distribution fitted to the data (logseries,
	plognormal, negativebinomial, geometric, zipf,
	mandelbrotzipf); default logs
GROUPS = factor	Defines the groups if there is more than one sample
LOGBASE = <i>string token</i>	Log base to use to form the octaves for the logseries, Poisson
	log-Normal and negative binomial distributions (two, ten);

PLOT = string token

Parameters

INDIVIDUALS = variates SPECIES = variates ESTIMATES = variates EGROUPS = factors

ECNICHE procedure

Generates relative abundance of species for niche-based models (D.A. Murray). PRINT = string token Controls printed output (model, expected, replications);

default two

Number of species

Saves the model estimates

default mode, expe
The niche model (powerfraction, fixedratio,
preemption, randomfraction, macarthurfraction);
default powe
Whether to use the Fortran DLL to calculate the
relative abundance (dll, commands); default * uses the
DLL in Windows implementations, and commands for other
platforms
Power for the Power fraction model, must be in the range 0 to 1
Ratio for the fixed ratio model
Seed for random number generator for the random division of the
niche space; default 0
Plots the average relative abundance (relativeabundance);
default rela
Number of replications
Number of species
Saves the expected average relative abundance
Saves the standard deviation for the expected mean relative

4.1 Commands

abundance

ECNPESTIMATE procedure

Calculates nonparametric estimates of species richness (D.A. Murray).

Options

PRINT = string token	Controls printed output (summary, estimates); default
GROUPS = <i>factor</i>	summ, esti Grouping factor for different samples
NBOOT = $scalar$	A scalar defining the number of bootstrap samples to be performed; default 100
SEED = scalar	Seed for random number generator; default 0
Parameters	-
DATA = variates, matrices or pointers	A variate containing abundances of species or a pointer or matrix specifying the individuals for each species for different sites/samples
ESTIMATE = variates or pointer	Saves the estimated species richness in a variate, or in a pointer if GROUPS are specified
SE = variates or pointers	Saves the analytic standard errors in a variate, or in a pointer if groups are specified
BSE = <i>variates</i> or <i>pointers</i>	Saves the bootstrap standard errors in a variate, or in a pointer if groups are specified

ECRAREFACTION procedure

Calculates individual or sample-based rarefaction (D.A. Murray).

Options	
PRINT = string token	Controls printed output (summary); default summ
METHOD = string token	Controls the type of rarefaction (individual, sample); default indi
PLOT = string token	Controls plot type (expected); default expe
SAMPLESIZES = <i>scalar</i> or <i>variate</i>	A scalar defining a step between sample sizes or number of samples to estimate the number of species; alternatively, a variate specifing the actual sample size values or number of samples
CIPROBABILITY = scalar	Probability for the confidence interval; default 0.95
Parameters	
DATA = variates, matrices or pointers	For individual-based rarefaction, a variate containing the number of individuals for each species; for sample-based rarefaction, a pointer or matrix specifying the number of individuals for each species for different sites/samples
EXPECTED = variates	Saves the expected number of species at each sample size
VARIANCE = variates	Saves the variance for the expected number of species
LOWER = variates	Saves the lower confidence limit at each sample size
UPPER = variates	Saves the upper confidence limit at each sample size

EDDUNNETT procedure

Calculates equivalent deviates for Dunnett's simultaneous confidence interval around a control (R.W. Payne).

Options	
METHOD = string token	Form of the alternative hypothesis (twosided,
	greaterthan, lessthan); default twos
NTREATMENTS = $scalar$	Number of treatments being compared
DF = scalar	Number of residual degrees of freedom
REPTREATMENTS = <i>scalar</i> or <i>variate</i>	Specifies the replication of the treatments
REPCONTROL = scalar	Specifies the replication of the control
TOLERANCE = $scalar$	Tolerance for the difference between the probability for the
	calculated equivalent deviate and that requested by

CIPROBABILITY; default 0.0001

Parameters	
CIPROBABILITY = scalars	Specifies the probability for the confidence interval
ED = scalars	Saves the equivalent deviate

EDFTEST procedure

Performs empirical-distribution-function goodness-of-fit tests (V. M. Cave).

Options	
PRINT = string tokens	Controls printed output (summary, tests); default summ, test
PLOT = string tokens	What graphs to plot (kerneldensity, histogram); default *
TEST = string tokens	Specifies the type of goodness-of-fit test to perform
	(andersondarling, cramervonmises,
	kolmogorovsmirnov); default ande, cram, kolm
DISTRIBUTION = <i>string tokens</i>	Continuous distribution that is hypothesized to have generated the DATA; (beta, b2, burr, cauchy, chisquare, ev1 (or gumbel), ev2 (or frechet), ev3, exponential, fdistribution, gamma, gev, gpareto, iburr, igamma,
	invnormal, iweibull, laplace, loggamma, logistic,
	loglogistic, lognormal, normal, paralogistic,
	pareto, stdnormal, stduniform, tdistribution,
	ubetamix, ugammamix, uniform, weibull, calculated);
CONSTANT = <i>string tokens</i>	default norm Whether to estimate a constant for the distribution, when the
CONSTANT – string tokens	parameter values are estimated from the DATA (estimate,
	omit); default omit
TMETHOD = string tokens	Specifies the method used to perform the goodness-of-fit tests
6	(likelihoodratio, traditional); default like
PARAMETERS = <i>scalar</i> or <i>variate</i>	Parameter values for the hypothesized distribution; if this is
	not set, parameter values are estimated from the DATA
NAMES = $text$	Names to identify the parameters in PARAMETERS; if this is not
	set, the default parameter ordering is assumed
CDFCALCULATION = <i>expression</i>	Expression, formed using argument x, that defines the cumulative distribution function of the hypothesized
	distribution; must be specified when DISTRIBUTION = calculated
MCPARAMETERS = <i>string tokens</i>	Whether the parameters are re-estimated or fixed during the
	Monte-Carlo simulations, when the parameter values are
	estimated from the DATA (fix, estimate); default esti
NTIMES = scalar	Number of Monte-Carlo simulations to perform; default 999
SEED = scalar	Seed for random number generation; default 0 continues an
	existing sequence or, if none, selects a seed automatically
TITLE = text	Title for the graphs; default generates the title automatically
YTITLE = text	Y-axis title for the graphs; default generates the title automatically
XTITLE = text	X-axis title for the graphs; default generates the title automatically
WINDOW = scalar	Window to use for the graphs; default 3
SCREEN = string tokens	Whether to clear the screen before plotting the graph or to
	continue plotting on the old screen, when a single graph is requested (clear, keep); default clear
Parameters	
DATA = variate	Identifier of the variate holding the data
STATISTIC = pointer	Pointer to scalar(s) to save the test statistic(s)
MCSTATISTICS = pointer	Pointer to variates(s) to save the Monte-Carlo simulated test statistic(s)

4.1	Commana	ls
4.1	Communa	S

PROBABILITY = pointer	Pointer to scalar(s) to save the probability value(s) of the test statistic(s)
EDIT directive	
Edits text vectors.	
Options	
CHANNEL = scalar or text	Text structure containing editor commands or a scalar giving the number of a channel from which they are to be read; default is the current input channel
END = text	Character(s) to indicate the end of the commands read from an input channel; default is the character colon (:)
WIDTH = scalar	Limit on the line width of the text; default *
SAVE = $text$	Text to save the editor commands for future use; default *
Parameters	
OLDTEXT = texts	Texts to be edited
NEWTEXT = $texts$	Text to store each edited text; if any of these is omitted, the corresponding OLDTEXT is used

ELSE directive

Introduces the default set of statements in block-if or in multiple-selection control structures. **No options or parameters**

statements is to be executed.

ELSIF directive

Introduces a set of alternative statements in a block-if control structure. **No options Parameter** *expression* Logical expression to indicate whether or not the set of

ENDBREAK directive

Returns to the original channel or control structure and continues execution. **No options or parameters**

ENDCASE directive

Indicates the end of a "multiple-selection" control structure. No options or parameters

ENDDEBUG directive

Cancels a DEBUG statement. No options or parameters

ENDFOR directive

Indicates the end of the contents of a loop. **No options or parameters**

ENDIF directive

Indicates the end of a block-if control structure. **No options or parameters**

ENDJOB directive

Ends a Genstat job. **No options or parameters**

ENDPROCEDURE directive

Indicates the end of the contents of a Genstat procedure. No options or parameters

ENQUIRE directive

Provides details about files opened by Genstat.

No options Parameters

Channel numbers to enquire about; for FILETYPE=input or output, a scalar containing a missing value will be set to the number of the current channel of that type and a negative value can be used to check the existence of a file that is not yet connected to a channel
Type of each file (input, output, unformatted,
backingstore, procedurelibrary, graphics); default inpu
To indicate whether or not the corresponding channels are currently open (0=closed, 1=open)
External name of the file, if channel is open
To indicate whether files on corresponding channels currently exist (0=not yet created, 1=exist)
Maximum width of records in each file (only relevant for input and output files, set to * for other types)
Number of lines per page (relevant only for output files)
Allowed type of access: set to 'readonly', 'writeonly' or 'both'
Number of the current line (input files only)
Underlying style of an output channel: set to 'plaintext', 'html', 'rtf' or 'latex' (see OPEN)
Current style of an output channel: set to 'plaintext' or 'formatted' (see OUTPUT)

EQUATE directive

Transfers data between structures of different sizes or types (but the same modes i.e. numerical or text) or where transfer is not from single structure to single structure.

Options	
---------	--

OLDFORMAT = variate NEWFORMAT = variate	Format for values of OLDSTRUCTURES; within the variate, a positive value n means take n values, $-n$ means skip n values and a missing value means skip to the next structure; default * i.e. take all the values in turn Format for values of NEWSTRUCTURES; within the variate, a positive value n means fill the next n positions, $-n$ means skip n positions and a missing value means skip to the next structure; default * i.e. fill all the positions in turn
FREPRESENTATION = <i>string token</i>	How to interpret factor values (labels, levels, ordinals); default leve
Parameters	
OLDSTRUCTURES = <i>identifiers</i>	Structures whose values are to be transferred; if values of several structures are to be transferred to one item in the NEWSTRUCTURES list, they must be placed in a pointer
NEWSTRUCTURES = <i>identifiers</i>	Structures to take each set of transferred values; if several structures are to receive values from one item in the OLDSTRUCTURES list, they must be placed in a pointer

ESTIMATE directive

Estimates parameters in Box-Jenkins models for time series (synonym of TFIT).

Options	
PRINT = string tokens	What to print (model, summary, estimates,
	correlations, monitoring); default mode, summ, esti
LIKELIHOOD = string token	Method of likelihood calculation (exact, leastsquares,
	marginal); default exac
CONSTANT = string token	How to treat the constant (estimate, fix); default esti
RECYCLE = string token	Whether to continue from previous estimation (yes, no);
	default no
WEIGHTS = variate	Weights; default *
MVREPLACE = <i>string token</i>	Whether to replace missing values by their estimates (yes,
	no); default no
FIX = variate	Defines constraints on parameters (ordered as in each model, tf
	models first): zeros fix parameters, parameters with equal
	numbers are constrained to be equal; default *
METHOD = string token	Whether to carry out full iterative estimation, to carry out just
	one iterative step, to perform no steps but still give parameter
	standard deviations, or only to initialize for forecasting by
	regenerating residuals (full, onestep, zerostep,
	initialize); default full
MAXCYCLE = scalar	Maximum number of iterations; default 15
TOLERANCE = scalar	Criterion for convergence; default 0.0004
SAVE = <i>identifier</i>	To name save structure, or supply save structure with
	transfer-functions; default * i.e. transfer-functions taken from
D. (the latest model
Parameters	\mathbf{T}
SERIES = variate	Time series to be modelled (output series)
TSM = TSM	Model for output series
BOXCOXMETHOD = string token	How to treat transformation parameter in output series (fix,
	estimate); default fix To save residual series
RESIDUALS = variate	TO save residual series

EXAMPLE procedure

Obtains and runs a Genstat example program, PC Windows only (R.W. Payne). Option EXECUTE = *string token* Whether to run the example when Genstat is running interactively (no, yes); default no **Parameters** EXTYPE = *texts* Types of example Names of example EXNAME = textsTexts to store the source code of each example SOURCE = *texts* Saves a command to obtain each example (useful if the name STATEMENT = *texts* and type information has been specified in response to questions from EXAMPLE)

EXECUTE directive

Executes the statements contained within a text.

No options Parameter

texts

Statements to be executed

EXIT directive

Exits from a control structure.

Options	
NTIMES = scalar	Number of control structures, <i>n</i> , to exit (if <i>n</i> exceeds the number of control structures of the specified type that are
	currently active, the exit is to the end of the outer one; while
	for <i>n</i> negative, the exit is to the end of the $-n$ 'th structure in
	order of execution); default 1
CONTROLSTRUCTURE = <i>string token</i>	Type of control structure to exit (job, for, if, case,
	procedure); default for
REPEAT = string token	Whether to go to the next set of parameters on exit from a FOR
	loop or procedure (yes, no); default no
EXPLANATION = text	Text to be printed if the exit takes place; default *
Parameter	
expression	Logical expression controlling whether or not an exit takes place

EXPORT procedure

Saves data structures in Genstat, Excel, R, Quattro, dBase, SPlus, Gauss, MatLab, SAS, Instat, Image or text files (D.B. Baird).

Options	
PRINT = string token	What to print (summary); default summ
OUTFILE = text	Data file to be written
METHOD = string token	Action to take if the file already exists (add, append,
	concatenate, merge, overwrite, prompt, fail,
	replace); default prompt in interactive mode, fail in batch mode
PLAINNAMES = string token	Whether to leave the column names in the file in plain form rather than decorating them with the column type information i.e. ! for factors, :D for dates etc (yes, no) default no
SHEETNAME = $text$	Name of new sheet to be added to an existing Excel file
NONAMES = <i>string token</i>	Whether to suppress column names in output to spreadsheet or
	text file (yes, no); default no
TITLE = text	Description for spreadsheet
READONLY = <i>string token</i>	Whether to define the complete sheet as read only (yes, no);
	default no
ANALYSIS = $text$	Genstat commands to analyse columns in the spreadsheet
ASETUP = <i>text</i>	Genstat commands to be run once before the analysis of any
	columns in the spreadsheet
ADUMMY = text	The name of the dummy (if any) used the ANALYSIS
	commands
CSVOPTIONS = string tokens	Options for CSV files (noquotes, pack, round, fixed,
	align); default pack
HTMLOPTIONS = string token	Options for HTML files (allowformats, nogrid, centre,
	rightjustify); default * i.e. none
COLMATCH = string token	How to match columns when appending (name, position);
	default posi
GROUPS = <i>factor</i> or <i>text</i>	Identifier for the factor, or text containing the name of the
-	factor, to identify appended sections in the output file
GLABEL = texts	Labels for the GROUPS factor for the current appended section,
	and also for the original section if no previous sections have
	been appended
MATCH = texts, variates or pointers	Up to four DATA variables to use as keys when
_	METHOD=merge; default * uses the first DATA variable
WITH = texts, variates or pointers	Columns in the file to use as keys when METHOD=merge;
· •	default * uses as many columns of the initial columns in the

UPDATE = string token	file as are needed to give a column for each MATCH column Whether to use columns with matching names to replace existing columns when concatenating or merging (yes, no); default no changes the names of columns with the same name as existing columns so that they become unique
OUTOPTIONS = text	Optional output file arguments to be passed to the Dataload.dll
ROWCOLOURS = factor	The factor to be used for colouring the rows (the factor must have colours defined by the FACCOLOURS parameter)
TABLEFORMAT = <i>string token</i>	The format to use when displaying tables with two or more classifying factors (page, column); default page
MISSING = text	String to represent a numerical missing value when writing to a text file (.TXT, .TAB or .CSV) or a spreadsheet file (Excel,
DELETESHEETS = <i>string token</i>	Quattro or Open Office); default is to use '*' in .TXT or .TAB files, and leave cells with missing values empty in csv or spreadsheet files Whether to delete sheets if you are overwriting a multiple paged file with a single page (always, never, prompt); default prom when running interactively and neve when running in batch
NONASCII = string token	Specifies how to output non-ASCII characters to text files (utf8, unicode); default utf8
TIMEOUT = scalar	Number of seconds to wait when a file is open in another process; default 10
Parameters	x ,
DATA = <i>identifiers</i>	The data structures to be written to the file, these must be compatible (i.e. of the same length)
COLUMNS = texts	Names for the columns to be saved
PROTECT = scalars	Whether the column is to be defined as read only when option READONLY=no (yes, no); default no
FACCOLOURS = variates, texts or pointe	
	Specifies background colours for factor columns
FOREGROUND = variates, texts, scalars	· ·
· · · · · · · · · · · · · · · · · · ·	Specifies foreground colours for columns
BACKGROUND = variates, texts, scalars	
· · · · · · · · ·	Specifies background colours for columns
DECIMALS = <i>variates</i> or <i>scalars</i>	Specifies numbers of decimals for the columns

EXPRESSION directive

Declares one or more expression data structures.

Options

VALUE = expression	Value for all the expressions; default *
MODIFY = string token	Whether to modify (instead of redefining) existing structures
	(yes, no); default no
IPRINT = string tokens	Information to be used by default to identify the expressions in
	output (identifier, extra); if this is not set, they will be
	identified in the standard way for each type of output
Parameters	
IDENTIFIER = <i>identifiers</i>	Identifiers of the expressions
VALUE = expression structures	Expression data structures providing values for the expressions
EXTRA = $texts$	Extra texts associated with the identifiers

EXTERNAL directive

Declares an external function in a DLL for use by the OWN function.OptionsLIBRARY = textName of DLL file containing the function

Parameters	
FUNCTION = text	Name of the function entry point in the DLL
NAME = $text$	Name for the function to be used in the OWN function; default
	uses the name set in FUNCTION
RESULTS <i>=string token</i>	The type of result returned from the function (summary,
	transformation); default tran
NPARAMETERS = $scalar$	The number of parameters in the function call; default 0
ERRORS = <i>scalar</i> or <i>variate</i>	Error codes returned from the function; default * i.e. no error codes
MESSAGES = text	Messages for the corresponding error codes

EXTRABINOMIAL procedure

Fits the models of Williams (1982) to overdispersed proportions (M.S. Ridout & P.W. Goedhart). **Options**

PRINT = string tokens	What to print if iterative estimation process converges
	successfully and whether to monitor the iterations (model,
	summary, accumulated, estimates, correlations,
	fittedvalues,monitoring); default *
CONSTANT = <i>string token</i>	How to treat constant (estimate, omit); default esti
FACTORIAL = scalar	Limit for expansion of model terms; default 3
NOMESSAGE = <i>string tokens</i>	Which warning messages to suppress (dispersion,
	leverage, residual, aliasing, marginality); default *
METHOD = string token	Which model to fit to take account of the extra variation (II,
	III); default II
MODIFYMODEL = <i>string token</i>	Whether to leave the modified MODEL settings (WEIGHTS and
	DISPERSION) or whether to restore the original situation
	(yes, no); default no
WEIGHTS = variate	To save estimated weights
PHI = scalar	To save estimated overdispersion parameter
MAXCYCLE = scalar	Maximum number of iterations; default 10
TOLERANCE = $scalar$	Convergence criterion; default 0.01
Parameter	
TERMS = $formula$	Model terms to be fitted; if unset it is assumed that the model
	consists only of a constant term

FACAMEND procedure

Permutes the levels and labels of a factor (J.T.N.M. Thissen).

Order into which to sort the levels or labels of FACTOR
(ascending, descending); default asce
Factor whose levels or labels are to be permuted
To specify the new order of the factor levels or labels

FACCOMBINATIONS procedure

Forms a factor to indicate observations with identical values of a set of variates, texts or factors (R.W. Payne).

Options	
---------	--

FLABELS = string token	When to form labels (always, ifredeclared, only, never); default ifre
SEPARATOR = $text$	Separator to use when constructing labels; default ' '
ISEPARATOR = <i>text</i>	Separator to use between identifiers and levels or labels; default ' '
IMETHOD = string token	Whether to include identifiers in the labels (include, omit); default omit

4.1 Commands

Parameters

VECTORS = <i>pointers</i>	Pointers containing sets of vectors (variates, and/or factors,
	and/or texts)
FACTOR = factors	Saves a factor for each set of vectors with a level for every
	different combination of their values

FACDIVIDE procedure

Represents a factor by factorial combinations of a set of factors (R.W. Payne).

Option

OLDFACTOR = factor	Factor whose levels are to be represented by the factorial combinations of the NEWFACTORS
Parameters	
NEWFACTOR = factors	Factors formed to represent OLDFACTOR
LEVELS = <i>scalars</i> or <i>variates</i>	Levels of the NEWFACTORS

FACEXCLUDEUNUSED procedure

Redefines the levels and labels of a factor to exclude those that are unused (R.W. Payne).

No options Parameters

FACTOR = factors	Factors with unused levels
NEWFACTOR = $factors$	New factors, with levels (and labels) that exclude those that
	are unused; if unset, the original factor is redefined

FACGETLABELS procedure

Obtains the labels for a factor if it has been defined with labels, or constructs labels from its levels otherwise (V.M. Cave).

Options

PRINT = string token	Controls printed output (labels); default *
PREFIX = text	Supplies a single line of text to be used as a prefix when
	constructing labels from the factor levels; default * i.e. none
Parameters	
FACTOR = factors	Factor whose labels are to be obtained
LABELS =texts	Specifies text structures to save the labels of each factor
EXIST = scalars	Specifies a scalar for each factor, set to the value 1 if its labels
	already existed or 0 if they had to be constructed

FACLEVSTANDARDIZE procedure

Redefines a list of factors to coordinate their levels or labels (R.W. Payne).

Options

Options	
FREPRESENTATION = <i>string token</i>	Whether to coordinate the factors to have the same levels, labels or (ordinal) number of levels (levels, labels,
	ordinals); default leve
DIRECTION = string token	How to sort the levels or labels (ascending, descending, given); default asce
CASE = string token	Case to use for labels (given, lower, upper, sentence,
Sitting token	title); default give
REMOVEUNUSED = <i>string token</i>	Whether to remove unused levels (yes, no); default no
Parameters	
FACTOR = <i>factors</i>	Factors to be coordinated
NEWFACTOR = $factors$	New factors, redefined to share the same levels or labels; if unset, the original FACTOR is redefined

FACMERGE procedure

Merges levels of factors (S.D. Langton).

Options	
PRINT = string token	Controls printed output (summary); default * i.e. none
OLDFACTOR = factor	Original factor
NEWFACTOR = $factor$	New factor with merged levels
Parameters	
MERGE = <i>variates</i> or <i>texts</i>	Levels to merge
LEVMERGED = variates	Level to assign to the merged levels
LABMERGED = <i>texts</i>	Label to assign to the merged levels

FACPRODUCT procedure

Forms a factor with a level for every combination of other factors (R.W. Payne).

Options	
FLABELS = <i>string token</i>	When to form labels (always, ifredeclared, only, never); default ifre
SEPARATOR = $text$	Separator to use when constructing labels; default ' '
LMETHOD = <i>string token</i>	Whether to define levels for all combinations or only for those present in the data (all, present); default pres
ISEPARATOR = <i>text</i>	separator to use between identifiers and levels or labels; default ' '
IMETHOD = string token	Whether to include identifiers in the labels (include, omit); default omit
Parameters	
FACTORS = <i>pointers</i> or <i>formulae</i>	Factors contributing to each product

Factors to be formed

FACROTATE directive

PRODUCT = factors

Rotates factor loadings from a principal components, canonical variates or factor analysis. **Options**

PRINT = string tokens	Printed output required (communalities, loadings,
	orthogonalrotationmatrix, rotation); default * i.e. no
	printing
METHOD = string token	Criterion (varimax, quartimax); default vari
NROOTS = $scalar$	Sets the number of dimensions to rotate from the original
	loadings; default * i.e. all
Parameters	
OLDLOADINGS = matrices	Original loadings
NEWLOADINGS = matrices	Rotated loadings for each set of OLDLOADINGS

onginar roadings
Rotated loadings for each set of OLDLOADINGS
Communalities of the variables in each rotation
Saves the orthogonal rotation from the original solution to the
rotated space

FACSORT procedure

COMMUNALITIES = matrices ROTATION = matrices

Sorts the levels of a factor according to an index vector (R.W. Payne).

Direction in which to sort the index (ascending,
descending); default asce
Which aspects of each NEWFACTOR to define (levels,
labels, values); default * i.e. labels and values if defined
for FACTOR, also levels if not the integers 1,2
Factors whose levels are to be reordered
Index vectors defining the ordering of the levels of each factor
New factors with reordered levels; if unset, the original

4.1 Commands

	FACTOR is redefined
NEWLEVELS = variates	Saves the (reordered) levels as defined for each NEWFACTOR

FACTOR directive

Declares one or more factor data structures.

Declares one of more factor data site	
Options	
NVALUES = <i>scalar</i> or <i>vector</i>	Number of units, or vector of labels; default * takes the setting
	from the preceding UNITS statement, if any
LEVELS = <i>scalar</i> or <i>vector</i>	Number of levels, or series of numbers which will be used to
	refer to levels in the program; default *
VALUES = <i>numbers</i>	Values for all the factors, given as levels; default *
LABELS = text	Labels for levels, for input and output; default *
MODIFY = string token	Whether to modify (instead of redefining) existing structures
	(yes, no); default no
REFERENCELEVEL = scalar	Defines the reference level used e.g. to define the
	parameterization of regression models
IPRINT = string tokens	Information to be used by default to identify the factors in
	output (identifier, extra); if this is not set, they will be
	identified in the standard way for each type of output
Parameters	
IDENTIFIER = <i>identifiers</i>	Identifiers of the factors
VALUES = <i>identifiers</i>	Values for each factor, specified as levels or labels
DECIMALS = scalars	Number of decimals for printing levels
CHARACTERS = <i>scalars</i>	Number of characters for printing labels
EXTRA = texts	Extra text associated with each identifier
DREPRESENTATION = <i>scalars</i> or <i>texts</i>	Default format to use when the contents represent dates and

FACUNIQUE procedure

Redefines a factor so that its levels and labels are unique (R.W. Payne).

times

Options	
MERGESAME = <i>string tokens</i>	What must be the same for groups defined by the factor to be merged (levels, labels); default * i.e. no groups are merged
INCREMENT = scalar	Value to use to modify duplicate levels; default * i.e. a suitable (small) value is determined automatically
ADDTO = string token	Whether to add the increment to the value or the absolute value of duplicated levels (value, absolutevalue); default abso
Parameters	
OLDFACTOR = factors	Factors whose levels and labels are to be made unique
NEWFACTOR = factors	New factors with unique levels; if unset, the original OLDFACTOR is redefined
CHANGED = scalars	Indicates whether the factor has changed

FALIASTERMS procedure

Forms information about aliased model terms in analysis of variance (R.W. Payne).

Controls printed output (aovtable, aliasedterms); default alia
Treatment model for the design; if this is not set, the default is
taken from any existing setting defined by the
TREATMENTSTRUCTURE directive
Block model for the design; if this is not set, the default is
taken from any existing setting defined by the
BLOCKSTRUCTURE directive

FACTORIAL = scalar RESTRICTION = variate	Limit on number of factors in a treatment term; default 3 Defines a restriction on the units for the analysis; default * i.e. none
Parameters TERMS = formula	Model terms whose aliased terms are to be identified; the default is to take all the terms in the treatment model
ALIASTERMS = <i>formula</i> or <i>pointer</i>	Saves the aliased terms

FARGUMENTS directive

Forms lists of arguments involved in an expression.

Options

EXPRESSION = <i>expression structure</i>	Expression whose arguments are required
NRESULTS = scalar	Number of results generated by the expression
NCALCULATIONS = scalar	Number of calculations in the expression
Parameters	
ICALCULATION = scalars	The calculation from which to save the result and arguments
RESULT = <i>dummies</i>	Stores the result structure for calculation ICALCULATION
ARGUMENTS = pointers	Stores the arguments in calculation ICALCULATION

FAULT directive

Checks whether to issue a diagnostic, i.e. a fault, warning or message.

Options

options	
DIAGNOSTIC = string token	Severity of the diagnostic (fault, warning, message);
	default faul
FAULT = $text$	Diagnostic code; default 'UF 1' for fault, 'UF 2' for
	warning
EXPLANATION = text	Explanatory information
NCALLS = scalar	Number of calls from the main procedure (whose name should
	be used in fault or warning messages); default 0
Parameter	
expression	Logical expression to test whether or not to give the diagnostic

FBASICCONTRASTS procedure

Breaks a model term down into its basic contrasts (R.W. Payne).

Options
TERM = formula
PSEUDOFACTORS = <i>pointer</i>
NEWTERMS = <i>formula structure</i>

Model term to split into basic contrasts Pseudo-factors representing the basic contrasts Model formula containing the term followed by the pseudofactors

No parameters

FBETWEENGROUPVECTORS procedure

Forms variates and classifying factors containing within-group summaries to use e.g. in a between-group analysis (R.W. Payne).

Options

CLASSIFICATION = factors	Factors defining the groups; must be set
COUNTS = variate	Saves a variate counting the number of units with each factor combination; default \star
WEIGHTS = variate	Weights to be used to calculate the within-group summaries;
	default * indicates that all units have weight 1
METHOD = string token	How to summarize the data variates (totals,
	nobservations, means, minima, maxima, variances,
	quantiles, sds, skewness, kurtosis, semeans,
	seskewness, sekurtosis); default mean
PERCENTQUANTILES = scalar	Percentage point for quantiles; default 50

4.1	Commands
4.1	Commands

OMITEMPTYCELLS = <i>string token</i>	Whether to omit units arising from empty cells in the summary table (yes, no); default no
SETLEVELS = <i>string token</i> Parameters	Whether to redefine the levels of factors (yes, no); default no
VECTOR = variates and factors	Original data vectors
NEWVECTOR = variates and factors	New vectors containing the within-group summaries
	i en recei e en anning and manning see up e anninantee
FCA directive	
Performs factor analysis.	
Options	
PRINT = string tokens	Printed output required (communalities, loadings,
-	coefficients, scores, residuals, cresiduals,
	vresiduals, tests); default * i.e. no printing
NDIMENSIONS = scalar	Number of factors to fit; no default, must be specified
METHOD = string token	Whether to use correlations or variances and covariances
	(correlation, vcovariance, variancecovariance);
	default voov
MAXCYCLE = $scalar$	Maximum number of iterations; default 50
TOLERANCE = $scalar$	Minimum value to assume for the unique component ψ_i^2 of
iollitation seatan	each observed variable; default 10^{-6}
Parameters	
DATA = pointers or matrices or symmetric	ic matrices or SSPMs
F =	Pointer of variates forming the data matrix, or matrix storing
	the variate values by columns, or symmetric matrix storing
	their variances and covariances, or SSPM giving their sums of
	squares and products
NUNITS = scalars	When DATA is set to a symmetric matrix of variances and
NONLEO BOULUIS	covariances, NUNITS must specify the number of units from
	which they were calculated if tests are required
LRV = LRVs	Saves the loadings, latent roots and trace from each analysis
SSPM = SSPMs	Saves the SSPM formed from a DATA matrix or pointer
COMMUNALITIES = variates	Saves the communalities
COEFFICIENTS = matrices	Saves the factor score coefficients
SCORES = matrices or pointers	Saves the factor analysis scores
RESIDUALS = matrices of pointers	Saves residuals from the dimensions fitted in the analysis
CRESIDUALS = symmetric matrices	Saves the residual correlation or covariance matrix
VRESIDUALS = variates	Saves the residual correlation of covariance matrix
VITED TOURD - VUI IULED	Saves the residual valiances

FCLASSIFICATION directive

Forms a classification set for each term in a formula, breaks a formula up into separate formulae (one for each term), and applies a limit to the number of factors and variates in the terms of a formula.

Options

FACTORIAL = scalar	Limit on the number of factors and variates in each term; default * i.e. no limit
NTERMS = $scalar$	Outputs the number of terms in the formula
CLASSIFICATION = pointer	Saves a list of all the factors and variates in the $\ensuremath{\mathtt{TERMS}}$ formula
OUTFORMULA = <i>formula structure</i>	Identifier of a formula to store a new formula, omitting terms with too many factors and variates
INCLUDEFUNCTIONS = <i>string token</i>	Whether or not to include functions in the formulae saved by the OUTFORMULA option or the OUTTERMS parameter (yes, no); default no
REORDER = <i>string token</i>	When to reorder the terms in the model (always, standard, never); default stan
DROPTERMS = <i>string token</i>	Whether to include only terms that can be dropped individually from the formula (yes, no); default no
CHECKFUNCTIONS = $scalar$	Indicator, set to one if the TERMS formula contains any

FUNCTIONDEFINITIONS = pointer	functions, and zero if it contains none Saves details of the functions defined for each factor and variate in the TERMS formula
EXCLUDEPSEUDOTERMS = string token	Whether to omit pseudo-terms from the numbers of terms and the formulae saved by the OUTFORMULA option and OUTTERMS parameter (yes, no); default no
Parameters	F
TERMS = formula	Formula from which the classification sets, individual model terms and so on are to be formed
CLASSIFICATION = <i>pointers</i>	Identifiers for pointers to store the factors and variates composing each model term of the TERMS formula
OUTTERMS = <i>formula structures</i>	Identifiers for formulae to store each individual term of the TERMS formula
MAINTERMS = <i>formula structures</i>	Identifiers for formulae to store the main term for each individual term of the TERMS formula

FCOMPLEMENT procedure

Forms the complement of an incomplete block design (W. van den Berg).

Controls whether or not to print a plan of the design (design); default desi
Specifies the treatment factor of the original design
Specifies the replicate factor of the original design when this is a resolvable design
Specifies the block factor of the original design
Saves the treatment factor of the complement design
Saves the replicate factor of the complement design when this is a resolvable design
Saves the block factor of the complement design
Saves the treatment factor of the complement design
Seed for the random-numbers to randomize the design; default
0

FCONTRASTS procedure

Modifies a model formula to contain contrasts of factors (R.W. Payne).

Options

FORMULA = *formula* NEWFORMULA = *formula structure* FACTORIAL = *scalar*

Parameters

FACTOR = factors CONTRASTTYPE = string tokens ORDER = scalars XCONTRASTS = variates or matrices DEVIATIONS = string tokens ORTHOGONALIZE = string tokens SAVECONTRASTS = pointers

FCOPY directive

Makes copies of files. **No options Parameters** OLD = texts NEW = texts Formula to modify to contain contrasts Modified formula Limit on the number of variates or factors in terms generated from FORMULA; default 3

Factors over which to define contrasts Type of contrast (polynomial, regression); default poly Number of contrasts to define for each FACTOR X-values defining the contrasts for each FACTOR Whether to include deviations (yes, no); default no Whether to orthogonalize the contrasts (yes, no); default no Pointer to save the contrast variates defined for each FACTOR

Name of each file to copy Name for the new copy of each file

OVERWRITE = string tokens	Whether to overwrite any existing files (yes, no); default no $% \mathcal{A}(\mathcal{A})$
FCORRELATION procedure	
Forms the correlation matrix for a lis	t of variates (R.W. Payne).
Options	
PRINT = string tokens	Printed output (correlations, test); default corr
METHOD = string token	Type of test to make (against zero) for the correlations
	(twosided, greater, lessthan); default twos
WEIGHTS = variate	Provides weights for the units of the variates; default *
	assumes that they all have weight one
CORRELATIONS = <i>symmetric matrix</i>	Saves the correlations
PROBABILITIES = symmetric matrix	Saves the test probabilities
NOBSERVATIONS = scalars	Saves the number of observations from which the correlations
	have been calculated
Parameter	
DATA = variates	Variates for which the matrix is to be calculated

FCOVARIOGRAM directive

Forms a covariogram structure containing auto-variograms of individual variates and crossvariograms for pairs from a list of variates.

\mathbf{n}	- 4 •	-		
O	лтι	n	n	c
v	J U	v		N

Options	
PRINT = string token	Controls printed output (statistics, variograms,
	autovariograms); default stat
METHOD = string token	Specifies what to do when the measurements are not all made
	at the same locations (allwithcrossnugget,
	allnocrossnugget, commonpoints); default comm
COVARIOGRAM = pointer	Pointer to store the variograms, cross-variograms and
	associated information for use in MCOVARIOGRAM
MAXLAG = scalar	Maximum lag in all directions
STEPLENGTHS = scalar or variate	Length of the step or steps in which lag is incremented
DIRECTIONS = scalar or variates	Directions along which to form the variogram, scalar for a
	single direction in 2 dimensions, variate for several directions
	in 2 dimensions, and pairs of variates for 3 dimensional data
SEGMENTS = scalar	Angle subtended by each segment along the DIRECTIONS
COORDSYSTEM = <i>string token</i>	Coordinate system used for the geometry for discretizing the
	lag (mathematical, geographical); default math
MAXCONEDIAMETER = $scalar$	Diameter at which the segments over which averaging is to be
	done should cease to expand; default * implies no limit
MINCOUNT = scalar	Minimum number of points required at a particular lag point
	for the cross-variogram to be estimated there; default 1
DRIFT = string token	Mean function (constant, linear, quadratic); default
D	cons
Parameters	
DATA = variates	Measurements as a variate
X1 = variates	Locations of each set of measurements in the first dimension
X2 = variates	Locations of each set of measurements in the second
	dimension (if recorded in more than 1 dimension)
X3 = variates	Locations of each set of measurements in the third dimension
	(if recorded in 3 dimensions)

FDELETE directive

Deletes files. No options Parameter NAME = texts

Names of the files to delete

FDESIGNFILE procedure

Forms a backing-store file of information for AGDESIGN (R.W. Payne).

Option

Controls printed output (catalogue, data,
filestructure); default * i.e. none
Name of the data file containing the information required to
form each backing-store subfile
Name of the backing-store file
Identifier of the backing-store subfile

FDIALLEL procedure

Forms the components of a diallel model for REML or regression (R.W. Payne).

No options Parameters

MALEPARENTS = $factors$	Specifies the male parents
FEMALEPARENTS = $factors$	Specifies the female parents
PARENTS = matrices	Saves design matrices for the overall parental effects
COMPPARENTS = matrices	Saves comparison matrices for overall parental effects
PUREVSCROSS = factors	Saves factors to represent the comparison between pure and crossed lines
CROSSPAIR = factors	Saves factors to represent the comparison between types of pairs of parent (ignoring the individual genders)

FDISTINCTFACTORS procedure

Checks sets of factors to remove any that define duplicate classifications (R.W. Payne).

No options Parameters

1 al ametel s	
SET1 = pointers	First set of factors
SET2 = pointers	Second set of factors
DISTINCTSET = pointers	Saves the distinct factors

FDRBONFERRONI procedure

Estimates false discovery rates by a Bonferroni-type procedure (A.I. Glaser).

Options	
PRINT = string token	Controls printed output (pi0); default pi0
METHOD = string token	Controls the method used for calculating π_0 (smoother,
	bootstrap); default smoo
LOGP = string token	Whether to take logs of π_0 when METHOD=smoother (yes,
	no); default no
DF = scalar	Degrees of freedom for smoothing spline; default 3
PLOT = string token	Controls plots (phistogram, qhistogram, pi0vslambda,
	qvsp,tests,expfalsepositive,inference,
	loginference); default phis, qhis, pi0v, qvsp, test,
	expf, infe, logi
WINDOW = scalar	Window for the graphs; default 1
KEYWINDOW = scalar	Window for the key (zero for none); default 2
Parameters	
PROBABILITIES = variates	Significance values, must lie between 0 and 1
LAMBDA = scalars or variates	Values of tuning parameter λ , equivalent to significance levels
	at which to test the PROBABILITIES; default ! (0,
	0.050.9)
FDR = variates	Saves the False Discovery Rates (i.e. q-values) at the sorted p-
	values in PROBABILITIES
FRR = variates	Saves the False Rejection Rates at the sorted p-values in
	PROBABILITIES

4.1 Commands

PIO = scalars	Saves the value of π_0 , i.e. the maximum value of the FDR
LOWER = scalars	Lower bound of q-values to use with PLOT settings qvsp,
	tests and expfalsepositive; default 0
UPPER = scalar	Upper bound of q-values to to use with PLOT settings qvsp,
	tests and expfalsepositive; default 1, which indicates
	maximum q-value

FDRMIXTURE procedure

Estimates false discovery rates using mixture distributions (J.W. McNicol & D.B. Baird).

Options PRINT = string token What to print (monitoring, estimates); default esti DISTRIBUTION = string token Which distribution to mix with Uniform (beta, gamma); default beta Initial values for mixing proportion (ϕ) and Beta or Gamma INITIAL = *variate* parameters (A and B); default ! (0.90, 0.30, 2) Lower limits for parameters; default ! (0.00001, 0.001, LOWER = variate 0.001) Upper values for parameters; default ! (0.99999, 5, 1000) UPPER = *variate* What to plot (histogram, density, logdensity, PLOT = *string token* inference, loginference); default hist, dens, logd, infe, logi Window for graphs; default 1 WINDOW = scalar KEYWINDOW = scalar Key window for Inference plot; default 2 MAXCYCLE = scalar Maximum iteration cycles; default 50 TOLERANCE = *scalar* or *variate* Tolerance for convergence of parameters; default 0.01 for Beta, and 0.001 for Gamma **Parameters** PROBABILITIES = variates Significance values, must lie between 0 and 1 ESTIMATES = variates Saves the estimates of mixture parameters φ , A and B Saves the False Discovery Rates at the *p*-values in FDR = *variates* PROBABILITIES i.e. q-values Saves the False Rejection Rates at the *p*-values in FRR = variates PROBABILITIES Saves the power estimates as a function of the *p*-values in POWER = variates PROBABILITIES POSTHA = variates Saves the Posterior Probability of H_a at the *p*-values in PROBABILITIES Value of the loglikelihood at end of the iteration process LOGLIKELIHOOD = scalars NCYCLES = scalars Number of iterations taken to convergence

FEXACT2X2 procedure

Does Fisher's exact test for 2×2 tables (M.S. Ridout & M.W. Patefield). Option **PRINT** = *string tokens* Controls printed output (probabilities, tables); default prob **Parameters** The numbers in each 2×2 table, ordered row by row or column TABLE = *tables* or *variates* by column Saves the probabilities for each table in a variate of length 6 **PROBABILITIES** = variates (to store in positions 1, 3 and 5 one-tailed, two-tailed calculated as twice the one-tailed probability, and as the sum of the probabilities of all tables with probability less than that of the observed table with the corresponding mid-p values stored in positions 2, 4 and 6)

FFRAME procedure

Forms multiple windows in a plot-matrix for high-resolution graphics (P.W. Goedhart).

Options	
PRINT = string tokens	Whether to display the layout and numbering of the plot-
	matrix in a table or in a high-resolution test-graph on the
	<pre>current device (table, testgraph); default *</pre>
ARRANGEMENT = string token	Type of plot-matrix (rectangle, square,
	lowersymmetric, uppersymmetric, diagonal); default
	rectangle
ROWS = scalar	Number of rows of plot-matrix; default 3
COLUMNS = scalar	Number of columns of plot-matrix; default 3
DIAGONALWINDOWS = string token	Whether to include or exclude the diagonal in symmetric plot-
	matrices (include, exclude); default include
SQUARESHAPES = <i>string token</i>	Whether to force the individual windows, excluding margins
	for annotation, to be square (yes, no); default no
STARTWINDOW = scalar	Specifies the number of the first window; default 1
TESTGRAPH = variate	Specifies windows to be displayed in a test-graph (if this
	option is set, only a test-graph is produced and all other
	settings are ignored); default *
NUMBERING = string token	Controls the way in which the individual windows are
	numbered (rowwise, columnwise); default rowwise
DEFINE = string token	Whether to define the windows within the procedure
8	(windows, nothing); default wind
CLEARWINDOW = scalar or variate	Defines the windows for which the screen should be cleared;
	i.e. specifies the elements of the SCREEN pointer which are set
	to the single-values text 'clear', other element of SCREEN are
	set to 'keep'; default 1
RLOWER = scalar	Lowest y device coordinate; default 0
RUPPER = scalar	Highest y device coordinate; default 1
CLOWER = scalar	Lowest x device coordinate; default 0
CUPPER = scalar	Highest x device coordinate; default 1
RSKIP = scalar	Space between windows along the y-axis; default 0
CSKIP = scalar	Space between windows along the y-axis, default 0 Space between windows along the x-axis; default 0
MARGIN = string tokens	Sets the size of the margins for labels and titles (xtitle,
MARGIN – siring tokens	
YMLOWER = scalar	ytitle, none, small); default *
IMLOWER – Scalar	Size of bottom margin (x-axis labelling) in each window; default *
YMUPPER = scalar	Size of upper margin (overall title) in each window; default *
XMLOWER = scalar	Size of left-hand margin (y-axis labelling) in each window;
,	default *
XMUPPER = scalar	Size of right-hand margin in each window; default *
RMLOWER = scalar	Additional size of bottom margin (x-axis labelling) in windows
	at the bottom of the plot-matrix; default 0
RMUPPER = scalar	Additional size of upper margin (overall title) in windows at
	the top of the plot-matrix; default 0
CMLOWER = scalar	Additional size of left-hand margin (y-axis labelling) windows
	at the left of the plot-matrix; default 0
CMUPPER = scalar	Additional size of right-hand margin in windows at the right of
	the plot-matrix; default 0
BACKGROUND = $text$ or $scalar$	Specifies the colour to be used for the background in each
	window (where allowed by the graphics device); default
_	'background'
Parameters	
NGRAPHS = scalar	To save the number of windows in the plot-matrix
SWINDOW = pointer	Pointer to save scalars with window numbers
SYLOWER = pointer	Pointer to save scalars with lower y device coordinates for
	each window

4.1 Commands

SYUPPER = <i>pointer</i>	Pointer to save scalars with upper y device coordinates for
	each window
SXLOWER = pointer	Pointer to save scalars with lower x device coordinates for each window
SXUPPER = <i>pointer</i>	Pointer to save scalars with upper x device coordinates for each window
SSCREEN = <i>pointer</i>	Pointer to save single-valued texts with value 'clear' or 'keep'; this depends only on the setting of the CLEARWINDOW option
SMYLOWER = pointer	Pointer to save scalars with size of bottom margins for each window
SMYUPPER = <i>pointer</i>	Pointer to save scalars with size of upper margins for each window
SMXLOWER = pointer	Pointer to save scalars with size of left-hand margin for each window
SMXUPPER = pointer	Pointer to save scalars with size of right-hand margin for each window

FFREERESPONSEFACTOR procedure

Forms multiple-response factors from free-response data (R.W. Payne).

Options	
MRESPONSE = <i>pointer</i>	Pointer with a factor for each RESPONSECODE, indicating
	which of the DATA texts contain that response
RESPONSECODES = $text$	Specifies the codes to look for in the DATA texts
LABELCODES = $text$	Strings to label the factors within the MRESPONSE pointer;
	default RESPONSECODES
DUPLICATECODES = factor	Defines groupings of duplicate or alternative codes within the RESPONSECODES text
EXCLUDENULL = <i>string token</i>	Whether to exclude the factor recording which DATA contain none of the RESPONSECODES (yes, no); default no
SUFFIXNULL = scalars	Suffix to use to represent the null factor in MRESPONSE; default 0
LABELNULL = text	Label to use to represent a the null factor in MRESPONSE; default 'none'
DATAFORMAT = <i>string token</i>	Whether the data for the respondents is given line-by-line within the DATA text(s) or whether there is a separate text for each respondent (linebyline, textbytext); default line
CASE = string token	Whether to treat the case of letters (small or capital) as significant when searching for the codes (significant, ignored); default igno
MULTISPACES = <i>string token</i>	Whether to treat differences between multiple spaces and single spaces as significant, or to treat them all like a single space (significant, ignored); default igno
DISTINCT = <i>string tokens</i>	Whether to require each RESPONSECODE to have one or more separators to its left or right within each DATA text (left, right); default left, righ
SEPARATOR = $text$	Characters to use as separators; default ', ; : . '
Parameter	
DATA = texts	Information from the respondents

FHADAMARDMATRIX procedure

Forms Hadamard matrices (R.W. Pay	vne).
Options	
PRINT = string token	Controls printed output (monitoring); default * i.e. none
METHOD = string token	Method of construction (firstpaley, secondpaley,
	stored, sylvestre, tensorproduct, turyn,

williamson); default * i.e. determined automatically Parameters NROWS = scalars HADAMARDMATRIX = matrices ERROR = scalars Returns 0 if the matrix has been formed successfully and 1 if not

FHAT procedure

Calculates an estimate of the F nearest-neighbour distribution function (M.A. Mugglestone, S.A. Harding, B.Y.Y. Lee, P.J. Diggle & B.S. Rowlingson).

Option

Option	
PRINT = string token	What to print (summary); default summ
Parameters	
Y1 = variates	Vertical coordinates of the first spatial point patterns; no
	default – this parameter must be set
X1 = variates	Horizontal coordinates of the first spatial point patterns; no
	default – this parameter must be set
Y2 = variates	Vertical coordinates of the second spatial point patterns; no
	default – this parameter must be set
X2 = variates	Horizontal coordinates of the second spatial point patterns; no
	default – this parameter must be set
S = variates	Vectors of distances to use; no default - this parameter must
	be set
FVALUES = variates	Variates to receive the estimated F nearest-neighbour
	distribution functions
NNDISTANCES = variates	Variates to receive the nearest-neighbour distances

FIELLER procedure

Calculates effective doses or relative potencies (P.W. Lane).

Options	
PRINT = string token	What to output (value); default valu
ESTIMATES = variate	Parameter estimates; default extracts these with RKEEP
VCOVARIANCE = <i>symmetric matrix</i>	Variances and covariances; default extracts these with RKEEP
%LIMIT = scalar	Percentage points for limits; default 95, thus giving 95% confidence limits
RELATIVE = <i>string token</i>	Whether to calculate relative potencies (no, yes); default no
LINK = string token	Which link function to assume when forming effective doses (probit, logit, complementaryloglog); default obtained using RKEEP, if the ESTIMATES or VARIANCES are obtained in that way, otherwise prob
LOGBASE = <i>string token</i>	Base of antilog transformation to be applied to value and
	limits, (ten, e); default * i.e. none
DF = scalar	If this has a non-missing value, a t-distribution is used instead of a Normal distribution to calculate the confidence limits; default obtained using RKEEP if the ESTIMATES or VARIANCES are obtained in that way (setting DF to the number of residual d.f. when the dispersion factor is estimated, or a missing value when it is fixed), otherwise the default is a missing value
Parameters	
TREATMENT = <i>variates</i> or <i>scalars</i>	Positions of intercept parameters in list of estimates; default first estimate
SLOPE = variates or scalars	Positions of slope parameters in list of estimates; default last estimate
%DOSE = variates or scalars	Percentage dose; default 50, thus giving LD50
VALUE = variates or scalars	To store estimated values

4.1 Commands

LOWER = variates or scalars UPPER = variates or scalars SE = variates or scalars	To store lower limits To store upper limits To store approximate s.e.s of values
FILEREAD procedure Reads data from a file (P.W. Lane).	
Options PRINT = string tokens	What output to display (summary, groups, comments, firstline); default summ, grou, comm, firs
NAME = $text$	External name of the data file; no default in batch mode, name is prompted for in interactive mode
END = text	What string terminates data; default ':' (the end of file also terminates data for any setting); the setting END=* is not allowed
MISSING = text	What character represents missing values; default '*'
SKIP = $scalar$ or $text$	Number of lines to skip at the start of the file, or string to indicate the record before the first record of data; default 0
MAXCATEGORY = <i>number</i>	The maximum number of categories for which a structure is defined to be a factor unless otherwise specified by FGROUPS; default 10
COMMENTSYMBOLS = text	What characters to treat as introducing comments if found in the first column at the start of the file; default double-quote character (")
IMETHOD = <i>string token</i>	How identifiers are to be specified for the data structures to be read (supply, read, none); default supp
ISAVE = pointer	To store the identifiers, whether read or supplied, and to provide suffixed identifiers for data with no specified identifiers
SEPARATOR = <i>text</i>	What (single) character separates successive values; default is the space character
Parameters	1
IDENTIFIER = <i>identifiers</i>	Names for the data structures that are to be read; these are prompted for if this is unset when running interactively with IMETHOD=supply; identifiers are redefined if they have been used previously
FGROUPS = string tokens	Whether to form each data structure into a factor (check, form, leave); default chec, which causes FILEREAD when running interactively to ask about any structure whose number of distinct values is less than or equal to MAXCATEGORY, and when running in batch to define as factors all structures with
REPRESENTATION = <i>string tokens</i>	MAXCATEGORY or fewer distinct values (note: for compatibility with earlier releases, yes and no can be used as synonyms of form and leave) What representation to assume for each data structure (numbers, characters); default unset - representation is determined by whether the first value is a number; if set for one structure, this parameter must be set for all structures

FILTER directive

Filters time series by time-series models (synonym of TFILTER).	
Option	
PRINT = string tokens	What to print (series); default *
Parameters	
OLDSERIES = variates	Time series to be filtered
NEWSERIES = variates	To save filtered series
FILTER = TSMs	Models to filter with respect to

204	4 Syntax summary
ARIMA = TSMs	ARIMA models for time series
	ralized additive or generalized nonlinear model.
Options PRINT = string tokens	What to print (model, deviance, summary, estimates, correlations, fittedvalues, accumulated, monitoring, grid, confidence); default mode, summ, esti or grid if NGRIDLINES is set
CALCULATION = <i>expression structures</i>	Calculation of explanatory variates involving nonlinear parameters
OWN = scalar	Option setting for OWN directive if this is to be used rather than CALCULATE to calculate explanatory variates
CONSTANT = <i>string token</i>	How to treat the constant (estimate, omit, ignore); default esti
FACTORIAL = scalar	Limit for expansion of model terms; default as in previous TERMS statement, or 3 if no TERMS given
POOL = <i>string token</i>	Whether to pool ss in accumulated summary between all terms fitted in a linear model (yes, no); default no
DENOMINATOR = <i>string token</i>	Whether to base ratios in accumulated summary on rms from model with smallest residual ss or smallest residual ms (ss, ms); default ss
NOMESSAGE = <i>string tokens</i>	Which warning messages to suppress (dispersion, leverage, residual, aliasing, marginality, vertical, df, inflation); default *
FPROBABILITY = string token	Printing of probabilities for variance and deviance ratios (yes, no); default no
TPROBABILITY = string token SELECTION = string tokens	Printing of probabilities for t-statistics (yes, no); default no Statistics to be displayed in the summary of analysis produced by PRINT=summary, seobservations is relevant only for a Normally distributed response, and %cv only for a gamma- distributed response (%variance, %ss, adjustedr2, r2, seobservations, dispersion, %cv, %meandeviance, %deviance, aic, bic, sic); default %var, seob if DIST=normal, %cv if DIST=gamma, and disp for other distributions
PROBABILITY = scalar	Probability level for confidence intervals for parameter estimates; default 0.95
NGRIDLINES = scalar	Number of values of each nonlinear parameter for a grid of function evaluations
SELINEAR = <i>string token</i>	Whether to calculate s.e.s for linear parameters when nonlinear parameters are also estimated (yes, no); default no
INOWN = <i>identifiers</i>	Setting to be used for the IN parameter of OWN if used to calculate explanatory variates
OUTOWN = <i>identifiers</i>	Setting to be used for the OUT parameter of OWN if used to calculate explanatory variates
AOVDESCRIPTION = text	Description for line in accumulated analysis of variance (or deviance) table when POOL=yes
Parameter formula	List of explanatory variates and factors, or model formula

FITCURVE directive

Fits a standard nonlinear regression model.

Options

PRINT = string tokens	What to print (model, deviance, summary, estimates,
	correlations, fittedvalues, accumulated,

4.1 Commands

	monitoring); default mode, summ, esti
CURVE = <i>string token</i>	Type of curve (exponential, dexponential,
0	cexponential, lexponential, logistic, glogistic,
	gompertz, ldl, qdl, qdq, fourier, dfourier, gaussian,
	dgaussian, emax, gemax); default expo
SENSE = <i>string token</i>	Sense of curve (right, left); default righ
ORIGIN = scalar	Constrained origin; default *
NONLINEAR = <i>string token</i>	How to treat nonlinear parameters between groups (common,
	separate); default comm
CONSTANT = string token	How to treat the constant (estimate, omit); default esti
FACTORIAL = scalar	Limit for expansion of model terms; default as in previous
	TERMS statement, or 3 if no TERMS given
POOL = string token	Whether to pool ss in accumulated summary between all terms
	fitted in a linear model (yes, no); default no
DENOMINATOR = <i>string token</i>	Whether to base ratios in accumulated summary on rms from
	model with smallest residual ss or smallest residual ms (ss,
	ms); default ss
NOMESSAGE = string tokens	Which warning messages to suppress (dispersion,
	leverage, residual, aliasing, marginality,
	vertical); default *
FPROBABILITY = <i>string token</i>	Printing of probabilities for variance ratios (yes, no); default
	no
SELECTION = string tokens	Statistics to be displayed in the summary of analysis produced
	by PRINT=summary (%variance,%ss,adjustedr2,r2,
	<pre>seobservations, dispersion, %cv, %meandeviance,</pre>
	%deviance, aic, bic, sic); default %var, seob
Parameter	
£	E-mlanstermericte list of consists and faster an e-mista the faster

Explanatory variate, list of variate and factor, or variate*factor formula

FITINDIVIDUALLY procedure

Fits regression models one term at a time (R.W. Payne). **Options**

Options	
---------	--

What to print (model, deviance, summary, estimates,
correlations, fittedvalues, accumulated,
monitoring, confidence); default mode, summ, esti
How to treat the constant (estimate, omit); default esti
Limit for expansion of model terms; default 3
Whether to pool ss in accumulated summary between all terms
fitted in a linear model (yes, no); default no
Whether to base ratios in accumulated summary on rms from
model with smallest residual ss or smallest residual ms (ss,
ms); default ss
Which warning messages to suppress (dispersion,
leverage, residual, aliasing, marginality,
vertical, df, inflation); default *
Printing of probabilities for variance and deviance ratios (yes,
no); default no
Printing of probabilities for t-statistics (yes, no); default no
Statistics to be displayed in the summary of analysis produced
by PRINT=summary, seobservations is relevant only for a
Normally distributed response, and %cv only for a gamma-
distributed response (%variance, %ss, adjustedr2, r2,
seobservations, dispersion, %cv, %meandeviance,
%deviance, aic, bic, sic);
<code>DIST=normal, %cv</code> if <code>DIST=gamma</code> , and <code>disp</code> for other
distributions

206	4 Syntax summary
PROBABILITY = scalar	Probability level for confidence intervals for parameter estimates; default 0.95
DEVIANCE = $scalar$	Saves the residual deviance
DF = scalar	Saves the residual d.f.
LACKOFFIT = <i>string token</i>	Whether to use observations with replicated values of the
	explanatory variables to split the final residual term into a 'true' residual and lack of fit (estimate, omit); default omit
Parameter	
TERMS = formula	Terms to be fitted

FITMULTINOMIAL procedure

Fits generalized linear models with multinomial distribution (R.W. Payne). **Options**

Options	
PRINT = string tokens	What to print (model, deviance, summary, estimates,
	correlations, fittedvalues, accumulated,
	monitoring, confidence); default mode, summ, esti
RESPONSEFACTOR = factor	Factor representing the response categories of the multinomial
5	distribution
CLASSIFICATION = factors	Factors classifying the subjects; default uses the factors in TERMS
FACTORIAL = scalar	Limit for expansion of model terms from TERMS; default 3
POOL = string token	Whether to pool ss in accumulated summary between all terms
5	fitted in a linear model (yes, no); default no
DENOMINATOR = string token	Whether to base ratios in accumulated summary on rms from
0	model with smallest residual ss or smallest residual ms (ss,
	ms); default ss
NOMESSAGE = <i>string tokens</i>	Which warning messages to suppress (dispersion,
	leverage, residual, aliasing, marginality,
	vertical,df,inflation); default *
FPROBABILITY = string token	Printing of probabilities for variance and deviance ratios (yes,
	no); default no
TPROBABILITY = <i>string token</i>	Printing of probabilities for t-statistics (yes, no); default no
SELECTION = string tokens	Statistics to be displayed in the summary of analysis produced
	by PRINT=summary(%variance,%ss,adjustedr2,r2,
	dispersion, %meandeviance, %deviance, aic, bic,
	sic); default disp
PROBABILITY = scalar	Probability level for confidence intervals for parameter
	estimates; default 0.95
FULL = <i>string token</i>	Whether to assign all possible parameters to factors and
	interactions (yes, no); default no
Parameter	
TERMS = formula	Terms to be fitted

FITNONLINEAR directive

Fits a nonlinear regression model or optimizes a scalar function.

	· · · · · · ·	
	ntione	
v	ptions	

PRINT = string tokens	What to print (model, deviance, summary, estimates,
	correlations, fittedvalues, accumulated,
	monitoring, grid); $ ext{default}$ mode, summ, esti $ ext{or}$ grid $ ext{if}$
	NGRIDLINES is set
CALCULATION = <i>expression structures</i>	Calculation of fitted values or of explanatory variates
	involving nonlinear parameters; default * (valid only if OWN
	set)
OWN = scalar	Option setting for OWN directive if this is to be used rather than
	CALCULATE; default * requests CALCULATE to be used
CONSTANT = <i>string token</i>	How to treat the constant (estimate, omit); default esti

FACTORIAL = scalar	Limit for expansion of model terms; default as in previous TERMS statement, or 3 if no TERMS given
POOL = <i>string token</i>	Whether to pool ss in accumulated summary between all terms fitted in a linear model (yes, no); default no
DENOMINATOR = <i>string token</i>	Whether to base ratios in accumulated summary on rms from model with smallest residual ss or smallest residual ms (ss, ms); default ss
NOMESSAGE = <i>string tokens</i>	Which warning messages to suppress (dispersion, leverage, residual, aliasing, marginality, vertical, df); default *
FPROBABILITY = <i>string token</i>	Printing of probabilities for variance and deviance ratios (yes, no); default no
SELECTION = <i>string tokens</i>	Statistics to be displayed in the summary of analysis produced by PRINT=summary, seobservations is relevant only for a Normally distributed response, and %cv only for a gamma- distributed response (%variance, %ss, adjustedr2, r2, seobservations, dispersion, %cv, %meandeviance, %deviance, aic, bic, sic); default %var, seob if DIST=normal, %cv if DIST=gamma, and disp for other distributions
NGRIDLINES = scalar	Number of values of each parameter for a grid of function evaluations; default *
SELINEAR = <i>string token</i>	Whether to calculate s.e.s for linear parameters (yes, no); default no
INOWN = <i>identifiers</i>	Setting to be used for the IN parameter of OWN if used in place of CALCULATE; default *
OUTOWN = <i>identifiers</i>	Setting to be used for the OUT parameter of OWN if used in place of CALCULATE; default *
Parameter	r ····· , ·····
formula	List of explanatory variates and/or one factor to be used in linear regression, within nonlinear optimization

FKEY directive

Forms design keys for multi-stratum experimental designs, allowing for confounded and aliased treatments.

	٦.	- 4	۰.		
L)1	ы	11	Л	IS

- P	
BASICFACTORS = factors	Factors indexing the units of the design
ADDEDFACTORS = factors	Factors to be allocated to the units of the design
KEY = matrix	Stores the design key (ADDEDFACTORS × BASICFACTORS)
INKEY = $matrix$	Can be used to input existing allocations for some of the added factors
HIERARCHIES = <i>matrix</i>	Can be used to specify that some of the factors must be constant within each combination of levels of other factors; the matrix has a row for each added factor and columns first for the basic factors and then for the added factors, ones in the entries where the row factor must be constant within the combinations of the column factors, zero elsewhere
SEED = scalar	Can provide a seed to generate a random permutation of the sets of basic effects that may be allocated to each added factor, thus producing design randomly selected from all those that might be possible; default * i.e. no permutation
ROWPRIMES = variate	Prime numbers for the rows of the KEY matrix
COLPRIMES = variate	Prime numbers for the columns of the KEY matrix
ROWMAPPINGS = variate	Mappings from the rows of the KEY to the TREATMENTFACTORS
COLMAPPINGS = variate	Mappings from the columns of the KEY to the BLOCKFACTORS

208	4 Syntax summary	
SAVE = identifier	Structure to save all the information about the formation of the design; this can then be input later to give a different design (if possible) with the same properties	
Parameters		
REQUIRED = <i>formula structures</i>	Formulae each defining a list of terms that are to be estimated in the analysis	
NONNEGLIGIBLE = <i>formula structures</i>	•	
FLRV directive		
Forms the values of LRV structures.		
Options		
PRINT = string tokens	Printed output required (roots, vectors); default * i.e. no printing	
NROOTS = $scalar$	Number of roots or vectors to print; default * i.e. print them all	
SMALLEST = <i>string token</i>	Whether to print the smallest roots instead of the largest (yes, no); default no	
TOLERANCE = scalar	Tolerance for detecting zero roots	
Parameters		
INMATRIX = <i>matrices</i> or <i>symmetric ma</i>	itrices	
	Matrices whose latent roots and vectors are to be calculated	
LRV = $LRVs$	LRV to store the latent roots and vectors from each INMATRIX	
WMATRIX = symmetric matrices	(Generalized) within-group sums of squares and products	
Willing Symmetric manifees	matrix used in forming the two-matrix decomposition; if any of	
	these is omitted, it is taken to be the identity matrix, giving the	
	usual spectral decomposition	
ILRV = LRVs	LRV to store the imaginary parts of the latent roots and vectors	
	arising from the decomposition of a non-symmetric matrix	
FMEGAENVIRONMENTS procedure		
-	winning genotypes from an AMMI-2 model (D.A. Murray & M.	

Forms mega-environments based on winning genotypes from an AMMI-2 model (D.A. Murray & M. Malosetti).

Option	
PRINT = string tokens	What to print (summary); default summ
Parameters	
DATA = variates	Provides the data to be analysed
GENOTYPES = factors	Specifies the genotypes
ENVIRONMENTS = factors	Specifies the environments (or locations when years are supplied)
YEARS = factors	Specifies years within locations
MEGAENVIRONMENTS = $factors$	Saves the mega-environments

FMFACTORS procedure

Forms a pointer of factors representing a multiple-response (R.W. Payne). **Options**

Pointer with a factor for each code, indicating the units where
it occurs in the CODE texts or variates
Saves the set of distinct multiple-response codes
Code(s) used to represent a null value in the CODE texts or
variates; default * or ' '
Whether to exclude the null factor recording the respondents
that made no reply (yes, no); default no
Suffix to use to represent the null factor in MRESPONSE;
default 0
Label to use to represent the null factor in MRESPONSE; default
'none'

4.1 Commands 2		
LDIRECTION = string token	How to order the labels from textual codes (ascending, given); default asce	
Parameter CODE = <i>texts</i> , <i>variates</i> or <i>factors</i>	Codes from the respondents	
FNCORRELATION procedure		

Calculates correlations from variances and covariances, together with their variances and covariances (S.A. Gezan).

Options

PRINT = string token	Output required (summary); default summ
IVARIANCES = variate	Indexes of the two variances in the ESTIMATES variate; no
	default – must be set
ICOVARIANCE = scalar	Index of the covariance in the ESTIMATES variate; no default
	– must be set
Parameters	
ESTIMATES = variates	Estimated values of the variances and covariances
VCOVARIANCE = <i>symmetric matrices</i>	Variance-covariance matrix of the variances and covariances
FUNCTIONESTIMATE = $scalars$	Saves the estimated value of the function
SE = scalars	Saves the standard error of the function estimate
NEWESTIMATES = variates	Saves new vectors of estimates, including the estimated value
	of the function
NEWVCOVARIANCE = <i>symmetric matric</i>	es
	Saves variance-covariance matrices for the new vectors

(including the function estimate)

FNLINEAR procedure

Estimates linear functions of one or more random variables, and calculates their variances and covariances (S.A. Gezan).

Options

options	
PRINT = string token	Output required (summary); default summ
CONSTANTVALUE = scalar	Constant value for the function; default 0
COEFFICIENTS = scalar	Linear coefficients for the random variables in the function; no
	default – must be set
Parameters	
ESTIMATES = variates	Estimated values of the random variables
VCOVARIANCE = <i>symmetric matrices</i>	Variance-covariance matrix of the random variable estimates
FUNCTIONESTIMATE = scalars	Saves the estimated value of the function
SE = scalars	Saves the standard error of the function estimate
NEWESTIMATES = variates	Saves new vectors of estimates, including the estimated value
	of the function

NEWVCOVARIANCE = *symmetric matrices*

Saves variance-covariance matrices for the NEWESTIMATES

FNPOWER procedure

Estimates products of powers of two random variables, and calculates their variances and covariances (S.A. Gezan).

Options

PRINT = string token	Output required (summary); default summ
CONSTANTVALUE = scalar	Constant value for the function; default 0
POWERS = variate	Specifies the powers of the two random variables
INDEXES = variate	Specifies the locations of the random variables corresponding
	to the elements of the POWERS variate
CORRECTION = <i>string token</i>	Whether to apply an additional correction to the variance of a product, using terms from the second-order approximation; default no

Parameters	
ESTIMATES = variates	Estimated values of the random variables
VCOVARIANCE = <i>symmetric matrices</i>	Variance-covariance matrix of the random variable estimates
FUNCTIONESTIMATE = $scalars$	Saves the estimated value of the function
SE = scalars	Saves the standard error of the function estimate
NEWESTIMATES = variates	Saves new vectors of estimates, including the estimated value
	of the function
NEWVCOVARIANCE = symmetric matric	es

Saves variance-covariance matrices for the new vestors (including the function estimate)

FOCCURRENCES procedure

Counts how often each pair of treatm	ents occurs in the same block (W. van den Berg).
Options	
PRINT = string tokens	Controls printed output (concurrences, efficiency);
	default conc, effi
DIAGONAL = string token	What to store on the diagonal of the concurrence matrix
	(missingvalues, replication); default repl
Parameters	
TREATMENTS = $factors$	Supplies the treatment factor
REPLICATES = $factors$	Supplies the replicates factor
BLOCKS = factors	Supplies the block factor
CONCURRENCES = <i>symmetric matrices</i>	Saves the concurrence matrix, recording the number of times
	each pair of treatments occurs together in a block
EFFICIENCY = scalars	Save the efficiency of the design

FOR directive

Introduces a loop; subsequent statements define the contents of the loop, which is terminated by the directive ENDFOR.

Options	
NTIMES =	scalar

INDEX = scalar
START = scalar
END = scalar
STEP = scalar

VALUES = *variate*

Parameters

many times as the length of the first parameter list or once if the first list is null Records the loop index Defines an integer initial value for the loop index; default 1 Defines an integer final value for the loop index Defines an integer amount by which to increase the index each

Number of times to execute the loop; default is to execute as

time the loop is executed; default 1 Defines a set of values to be taken successively by the loop

index (overrides START, END and STEP if these are specified too)

Any number of parameter settings of the form *identifier* = *list* of data structures; the identifier is set up as a dummy which is then used within the loop to refer, in turn, to the structures in the list

FORECAST directive

Forecasts future values of a time series (synonym of TFORECAST).

Options	
PRINT = string tokens	What to print (forecasts, limits, setransform, sfe);
	default fore, limi
CHANNEL = scalar	Channel number for output; default * i.e. current output
	channel
ORIGIN = scalar	Number of known values to be incorporated; default 0
UPDATE = string token	Whether to update the forecast origin to the end of the new

	observations (yes, no); default no
NEWOBSERVATIONS = variate	Variate of length ≥ ORIGIN providing new values of the time
	series to be incorporated (must be set if $ORIGIN > 0$)
SFE = <i>variate</i>	Saves standardized forecast errors; default *
MAXLEAD = $scalar$	Maximum lead time i.e number of forecasts to be made;
	default * defines the number as the length of FORECAST
	variate
FORECAST = <i>variate</i>	Variate of length MAXLEAD to save forecasts of output series;
	default *
SETRANSFORM = variate	Saves standard errors of the forecasts (on transformed scale, if
	defined); default *
LOWER = variate	Saves lower confidence limits; default *
UPPER = variate	Saves upper confidence limits; default *
PROBABILITY = scalar	Probability level for confidence limits; default 0.9
COMPONENTS = pointer	Contains variates (of length ORIGIN + MAXLEAD) to save
	components of the forecast
SAVE = <i>identifier</i>	Save structure to supply fitted model; default * i.e. that from
5	last model fitted
Parameters	
FUTURE = <i>variates</i>	Variates (of length ORIGIN + MAXLEAD) containing future
	values of input series
METHOD = string tokens	How to treat future values of input series (observations,
	forecasts); default obse
	LULECASIS, aclaun UDSe

FORMULA directive

Declares one or more formula data structures.

Options	
VALUE = formula	Value for all the formulae; default *
MODIFY = string token	Whether to modify (instead of redefining) existing structures
	(yes, no); default no
IPRINT = string tokens	Information to be used by default to identify the formulae in
	output (identifier, extra); if this is not set, they will be
	identified in the standard way for each type of output
Parameters	
TDENTIFIER = <i>identifiers</i>	Identifiers of the formulae

IDENTIFIER = <i>identifiers</i>	Identifiers of the formulae
VALUE = <i>formula structures</i>	Value for each formula
EXTRA = texts	Extra text associated with each identifier

FOURIER directive

Calculates cosine or Fourier transforms of real or complex series.

Option	
PRINT = string tokens	What to print (transforms); default *
Parameters	
SERIES = variates	Real part of each input series
ISERIES = variates	Imaginary part of each input series
TRANSFORM = variates	To save real part of each output series
ITRANSFORM = variates	To save imaginary part of each output series
PERIODOGRAM = variates	To save periodogram of each transform

FPARETOSET procedure

Forms the Pareto optimal set of non-dominated groups (W. van den Berg).

Options

PRINT = string token	Controls whether to print the groups (groups); default grou
PLOT = string token	Controls whether to plot the data, using different coloured
	points to indicate the groups (data); default data
NGROUPS = scalar	Number of groups to form; default 1

GROUPS = factor	Saves the group allocations
TITLE = text	Title for the plot; default * i.e. none
LABELS = <i>text</i> , <i>variate</i> or <i>factor</i>	Labels for the items; default * i.e. none
Parameters	
DATA = variates	Data variates, defining the properties of the items
SIGN = scalars	Value by which to multiply each DATA variate: for example,
	this can be set to set to -1 if the variate is to be minimized
	instead of being maximized; default 1
TITLE = texts	Title to use for the axis of each DATA variate in the plot; if unset, its identifier is used

FPLOTNUMBER procedure

Forms plot numbers for a row-by-column design (K. Punyawaew).

Options		
FIRSTPLOT = string token	Defines the starting location for numbering the plots	
	(lowleft,lowright,upleft,upright);	
PLOTORDER = <i>string token</i>	Defines the order in which the numbers are allocated	
	(colserpentine, colbycol, rowserpentine, rowbyrow);	
	default rowb	
Parameters		
NROWS = scalars	Number of rows in the design	
NCOLUMNS = scalars	Number of columns in the design	
PLOTNUMBER = factors	Saves the plot numbers	

FPROJECTIONMATRIX procedure

Forms a projection matrix for a set of model terms (R.W. Payne).

No options

Parameters

TERMS = <i>formula structure</i>	Defines the model terms corresponding to the design matrices
	whose projection matrices are required
PROJECTION = symmetric matrix	Saves the projection matrix for each formula structure

FPSEUDOFACTORS directive

Determines patterns of confounding and aliasing from design keys, and extends the treatment model to incorporate the necessary pseudo-factors.

Options

TREATMENTSTRUCTURE = formula	Treatment model for the design
BLOCKSTRUCTURE = formula	Block model for the design
FACTORIAL = scalar	Limit on the number of factors in each treatment term
LROWS = <i>factors</i> or <i>scalars</i>	Numbers of levels of factors, or factors, corresponding to the rows of the key matrices
LCOLUMNS = <i>factors</i> or <i>scalars</i>	Numbers of levels of factors, or factors, corresponding to the columns of the key matrices
NEWTREATMENTSTRUCTURE = <i>identifier</i>	<i>ν</i>
	Store the extended treatment model
PSEUDOFACTORS = <i>pointer</i>	Pseudo-factors required for the keys
NPSEUDOFACTORS = $scalar$	Number of pseudo-factors required for the keys
KEYPSEUDOFACTORS = <i>matrix</i>	Key to generate the pseudo-factors from the treatment factors
KEYCONTRASTS = matrix	Key partitioning the treatment terms into orthogonal sets of contrasts
Parameters	
KEY = matrices	Design keys
KEYINVERSE = matrices	Store the inverses of the design keys
ALIASSETS = variates	Stores aliasing information about the orthogonal sets of treatment contrasts
RESOLUTION = scalars	Saves the resolution number of the design constructed by each

4.1 Commands

key

FRAME directive

Defines the positions and appearance of the plotting windows within the frame of a high-resolution graph.

Options GRID = string tokens Specifies grid lines (xy, xz, yx, yz, zx, zy) BOXFRAME = *string tokens* Whether to include a box enclosing the entire frame (include, omit) BACKGROUND = *scalars* or *texts* Specifies the colour to be used for the background of the whole frame (where allowed by the graphics device) RESET = *string token* Whether to reset the axis definition to the default values (no, yes); default no **Parameters** WINDOW = scalars Window numbers YLOWER = scalars Lower y device coordinate for each window YUPPER = *scalars* Upper y device coordinate for each window Lower x device coordinate for each window XLOWER = *scalars* XUPPER = *scalars* Upper x device coordinate for each window YMLOWER = scalars Size of bottom margin (for x-axis labels) Size of upper margin (for overall title) YMUPPER = *scalars* XMLOWER = scalars Size of left-hand margin (for y-axis labels) XMUPPER = scalars Size of right-hand margin BACKGROUND = *scalars* or *texts* Specifies the colour to be used for the background in each window (where allowed by the graphics device) BOX = *string tokens* Whether to include a box enclosing the plotted graphic (include.omit) BOXSURFACE = string token Box to include in a surface plot (full, bounded, omit) BOXKEY = *string token* Box to draw around key (full, bounded, omit) PENTITLE = scalars Pen to use to write the overall title PENKEY = scalar Pen to use for the key PENGRID = scalar Pen to use to draw the grid lines How to scale the axis in each window (xyequal, xzequal, SCALING = *string token* yzequal, xyzequal) **TPOSITION** = *string token* Position of title (right, left, center, centre) CINTERIOR = *scalars* or *texts* Specifies the colour to be used for the interior of each window (where allowed by the graphics device) Specifies the colour to be used for the frame of each window CFRAME = scalars or texts(where allowed by the graphics device) CTITLE = *scalars* or *texts* Specifies the colour to be used for the title bar of each window (where allowed by the graphics device) Additional oblique axes to include in each window AXES = *identifiers* or *pointers* SAVE = *pointers* Saves details of the current settings for the window concerned

FREGULAR procedure

Expands vectors onto a regular two-dimensional grid (R.W. Payne).

Options

ROWS = factor	Original row factor
COLUMNS = factor	Original column factor
NEWROWS = factor	New row factor expanded onto the full grid
NEWCOLUMNS = factor	New column factor expanded onto the full grid
SORT = string token	Whether to sort the new values into row \times column order (yes,
	no); default no

Parameters

OLDVECTOR = variates, factors or texts Original data vectors

NEWVECTOR = variates, factors or texts New vector with values, provided by the VALUES parameter,

VALUES = variates, scalars or texts	inserted in the units added to complete the grid Values to insert in the units added to complete the grid; default is to insert missing values
FRENAME directive	
Renames files.	
No options	
Parameters	
OLD = texts	Name of each file to rename
NEW = texts	New name for each file

Whether to overwrite any existing files (yes, no); default no

FRESTRICTEDSET procedure

OVERWRITE = *string tokens*

Forms vectors with the restricted subset of a list of vectors (R.W. Payne).

Options	
---------	--

METHOD = string token	Whether to form the new vectors only when the old vectors are restricted or aways (always, whenrestricted); default alwa
RESTRICTED = scalar	Scalar set to 1 or 0 according to whether or not the old vectors are found to be restricted
VRESTRICTED = variate	Variate with each unit set to 1 or 0 according to whether or not that unit is restricted in any of the OLDVECTORS
Parameters	·
OLDVECTOR = <i>factors</i> , <i>variates</i> or <i>texts</i>	List of vectors, one or more of which may be restricted
NEWVECTOR = factors, variates or texts	New vectors which will contain only the unrestricted units of the old vectors
SETLEVELS = <i>string token</i>	Whether to reform the levels (and labels) of factors to exclude
	those that do not occur in the restricted subset (yes, no);
	default no

FRIEDMAN procedure

Performs Friedman's nonparametric analysis of variance (S. Langton).

Options

PRINT = string tokens	Output required (test, ranks); default test
TREATMENTS = $factor$	Treatment factor
BLOCKS = factor	Block factor
Parameters	
DATA = variates	Identifier of the variate holding the data values
RANKS = variates	Saves the ranks
STATISTIC = scalars	Saves the test statistic
DF = scalars	Saves the degrees of freedom for the chi-square approximation
PROBABILITY = scalars	Saves the probability value for the chi-square statistic

FROWCANONICALMATRIX procedure

Puts a matrix into row canonical, or reduced row echelon, form (C.J. Brien).

Controls printed output (rowcanonicalmatrix); default *
i.e. none
Matrix to be put into row canonical form
Matrix in row canonical form

FRQUANTILES directive

Forms regression quantiles. **Options**

Options	
Y = variate	Response variate
DESIGNMATRIX = matrix	Design matrix for the regression model
TOLERANCE = scalar	Tolerance for the algorithm; default 10 ⁻¹²
Parameters	
PRQUANTILE = scalars	Values for which to perform the quantile regressions
RESIDUALS = variates	Parameter estimates from each quantile regression
ESTIMATES = variates	Estimates from each quantile regression
XBARQUANTILES = variates	When PRQUANTILE is set to a missing value, saves the sum of
	the mean of each design column multiplied by its regression quantile for all the quantile solutions
CUMPROBABILITIES = variates	When PRQUANTILE is set to a missing value, saves the
	cumulative probabilitiy values at which the estimated regression quantiles change
EXIT = scalars	Saves an exit code, with 0 to indicate success

FRTPRODUCTDESIGNMATRIX procedure

Forms summation, or relationship, matrices for model terms (C.J. Brien). No options

INO	options
Par	rameters

TERM = formula structures	Model terms corresponding to design matrices whose
	summation matrices are required
MATRIX = symmetric matrices	Saves the summation or relationship matrix for each term

FSIMILARITY directive

Forms a similarity matrix or a between-group-elements similarity matrix or prints a similarity matrix.

Options	
PRINT = string token	Printed output required (similarity, summary); default *
	i.e. no printing
STYLE = string token	Print percentage similarities in full or just the 10% digit
	(full, abbreviated); default full
METHOD = string token	Form similarity matrix or rectangular between-group-element
	similarity matrix (similarity,
	betweengroupsimilarity); default simi
SIMILARITY = matrix or symmetric m	natrix
	Input or output matrix of similarities; default *
GROUPS = factor	Grouping of units into two groups for between-group-element
	similarity matrix; default *
PERMUTATION = variate	Permutation of units (possibly from HCLUSTER) for order in
	which units of the similarity matrix are printed; default $*$
UNITS = <i>text</i> or <i>variate</i>	Unit names to label the rows of the similarity matrix; default *
MINKOWSKI = scalar	Index t for use with TEST=minkowski
Parameters	
DATA = variates or factors	The data values
TEST = string tokens	Test type, defining how each DATA variate or factor is treated
	in the calculation of the similarity between each unit
	(simplematching, jaccard, russellrao, dice,
	antidice, sneathsokal, rogerstanimoto, cityblock,
	manhattan, ecological, euclidean, pythagorean,
	minkowski, divergence, canberra, braycurtis,
	soergel); default * ignores that variate or factor
RANGE = $scalars$	Range of possible values of each DATA variate or factor; if
	omitted, the observed range is taken

FSPREADSHEET procedure

Creates a Genstat spreadsheet file (GWB or GSH) from specified data structures, PC Windows only (D.B. Baird).

Options

OUTFILE = text	Name of GSH file to store data in
SHEET = number	Sequence number of existing sheet, if this is set to 0 the data
	will be added to the first compatible spreadsheet open in the
	Windows interface
METHOD = string token	What to do with any existing columns with the same names as
C C	the new columns (replace, rename); default rena
READONLY = <i>string token</i>	Whether to make the complete sheet read-only (yes, no);
C C	default no
TITLE = text	The title associated with the spreadsheet
POINTER = <i>pointer</i> or <i>text</i>	A pointer or a name of a pointer to the columns in the
1	spreadsheet
ANALYSIS = $text$	Genstat directives to analyse columns in the spreadsheet
ASETUP = text	Genstat directives to be run once before the analysis of any
	columns in the spreadsheet
ADUMMY = text	The name of the dummy (if any) used in the ANALYSIS
	directives
CURSOR = <i>variate</i>	A variate of length 2 giving the active cell position (x,y) when
	the spreadsheet is first displayed
NOUNITS = string token	Whether to stop the inclusion of a units column in the
licentite shing tenen	spreadsheet (yes, no); default no
BOOK = <i>number</i>	Window number of existing book, if this is set to 0 the sheet
	will be created in a new book, if to -1 it will be created in the
	last book formed with $BOOK=0$, and if set to -2 it will be
	created in the last book created in the Windows interface.
PAGENAME = $text$	The 32 character text to be displayed on the sheet tab
$\frac{1}{ROWCOLOURS} = factor$	The factor to be used for colouring the rows (the factor must
ROWCOLOURS - Jucior	have colours defined by the FACCOLOURS parameter)
MADI EFORMAN - atving tokon	The format to use when displaying tables with two or more
TABLEFORMAT = string token	
ELLEEODMAN - atring token	classifying factors (page, column); default page
FILEFORMAT = <i>string token</i>	The format to use for the spreadsheet file (GWB, GSH); default GWB
MARGINNAME = $text$	The 60 character text to be displayed for the margin labels
FROZENCOLUMNS = $scalar$	The number of columns to freeze on the left hand side of the
ritozhiteohoriteo seutur	spreadsheet; default 0 i.e. none
Parameters	spreudsheet, default o het hone
DATA = identifiers	Data to write to the spreadsheet
PROTECT = string tokens	Whether to protect each data column by making it read-only
inormer suring tokens	(yes, no); default no
FACCOLOURS = variates, texts or pointer	
TREEDIDORS Variates, texis of pointer	Specifies background colours for factor columns
FOREGROUND = <i>variate, text, scalar</i> or <i>p</i>	
roneonoond variate, iexi, seatar or p	Specifies foreground colours for columns
BACKGROUND = <i>variate, text, scalar</i> or <i>p</i>	
BACKGROOND Variate, text, scalar of p	Specifies background colours for columns
HIDDEN = string tokens	Whether to hide each DATA column (yes, no); default no
interes su ing ionens	wheneve to mue each DATA column (yes, no), default no
FSSPM directive	
Forms the values of SSPM structures.	

Options PRINT = string tokens

Printed output required (correlations, wmeans, SSPM); default * i.e. no printing

WEIGHTS = variate or symmetric matrix

	4.1 Commands	217
SEQUENTIAL = scalar	Variate of weights for weighted SSP, or syn weights (one row and column for each unit of i.e. all units with weight one Used for sequential formation of SSPMs; a p indicates that formation is not yet complete directive); default * i.e. not sequential	of data); default * positive value
Parameter		
SSPMs	Structures to be formed	
FSTRING procedure		
Forms a single string from a	list of strings in a text (R.W. Payne).	
No options		
Parameters		
TEXT = texts	Texts containing the lists of strings to put in	to single strings
STRING = texts	Text to store the strings in each TEXT	
SEPARATOR = <i>texts</i>	Characters to separate all except last two str default ', '	ings of each TEXT;
LASTSEPARATOR = <i>texts</i>	Characters to separate last two strings of each SEPARATOR	ch TEXT; default
PREFIX = texts	Characters to insert at the start of each STRI (i.e. none)	ING; default ''
END = texts	Characters to put at the end of each STRING none)	; default '' (i.e.

FTEXT procedure

Forms a text structure from any Genstat data structure (A. Keen & J.T.N.M. Thissen). Option MISSING = textWhat to print for missing value; default '*' **Parameters** STRUCTURE = *identifiers* Structure (scalar, variate, factor, text, table, matrix, symmetricmatrix, diagonalmatrix, pointer) from which the text structure is to be formed Saves the text structure TEXT = textsNumber of decimals to use when forming the text structure; DECIMALS = scalars default * uses the number required to provide 4 significant figures, but unnecessary trailing zeros are ignored How factor values are to be represented in the text structure FREPRESENTATION = *string tokens* (labels, levels, ordinals); default is to use labels if available and levels otherwise

FTSM directive

Forms preliminary estimates of parameters in time-series models. Option **PRINT** = *string tokens* What to print (models); default * **Parameters** TSM = TSMsModels whose parameters are to be estimated Auto- or cross-correlations on which to base estimates for each CORRELATIONS = *variates* model Box-Cox transformation parameter BOXCOXTRANSFORM = *scalars* CONSTANTTERM = *scalars* Constant term Variance of ARIMA model, or ratio of input variance to output VARIANCE = *scalars* variance for transfer model

FUNIQUEVALUES procedure

Redefines a variate or text so that its values are unique (R.W. Payne).

Options	0	ptions
---------	---	--------

Increment to use to modify duplicated numbers; default * i.e. a suitable (small) value is determined automatically Whether to add the increment to the value or the absolute value of duplicated numbers (value, absolutevalue); default abso
value of duplicated numbers (value, absolutevalue);
Vectors whose values are to be made unique
New vectors with unique values; if unset, the values of the corresponding OLDVECTOR are replaced
Indicates whether the values have changed
Controls printed output (statistics); default stat
Y positions (needed only for 2-dimensional irregular data)
X positions or interval (not needed for 2-dimensional regular
data i.e. when DATA is a matrix)
Maximum lag in the y direction (2-dimensional regular data only)
Maximum lag in the x direction
How to estimate the variogram (moments, cressiehawkins,
dowd, genton); default mome
Length(s) of the steps in which lag is incremented
Directions (degrees) along which to form the variogram (relevant only for 2-dimensional irregular data)
Angles subtended by the segments (degrees) over which
averaging is to be done (relevant only for 2-dimensional irregular data)
Measurements as a variate or, for data on a regular grid, as a matrix
Structure to store the sample variogram
Numbers of comparisons involved in the calculation of each variogram
Mean lag distances at each step
Saves lag classes, indexes to observations and directions to plot in an h-scattergram

FVCOVARIANCE procedure

Forms the variance-covariance matrix for a list of variates (W. van den Berg). **Options**

PRINT = string tokens	Printed output (df, vcovariance); default df, vcov
8	
WEIGHTS = variate	Provides weights for the units of the variates; default *
	assumes that they all have weight one
VCOVARIANCE = <i>symmetric matrix</i>	Saves the variance-covariance matrix
DF = scalar	Saves the number of degrees of freedom of the (co)variances
Parameter	
DATA = variates	Variates for which the matrix is to be calculated

FVSTRING procedure

Forms a string listing the identifiers of a set of data structures (R.W. Payne).

Options	
STRING = text	Saves the string
POINTERNAME = $text$	If all the structures are belong to the same pointer, this saves
	its name
ELEMENTNAMES = <i>text</i> or <i>variate</i>	Saves the elements of the pointer, in a text if they have labels, otherwise in a variate
Parameter	
DATA = <i>identifiers</i>	Data structures to be used to form the string

*†***FWITHINTERMS** procedure

Forms factors to define terms representing the effects of one factor within another factor (R.W. Payne).

Options

Options	
LEVNULL = scalar	Numerical value to represent the null level assigned to units not involved in the comparison of the levels of one of the factors within a particular level of the other factor; default 0
LABNULL = text	String to label the null level; default '-'
Parameters	
F1 = factors	First factor
F2 = factors	Second factor
F1WITHINF2 = pointers	Pointer containing a factor for each level of the second factor, used to estimate the effects of the first factor within that level
F2WITHINF1 = pointers	Pointer containing a factor for each level of the first factor, used to estimate the effects of the second factor within that level

FZERO procedure

Gives the F function expectation under complete spatial randomness (M.A. Mugglestone, S.A. Harding, B.Y.Y. Lee, P.J. Diggle & B.S. Rowlingson).

0	p	ti	0	n

PRINT = string token	What to print (summary); default summ
Parameters	
DENSITY = scalars	Densities to use i.e. numbers of points per unit area; no default – this parameter must be set
s = variates	Vectors of distances to use; no default – this parameter must be set
FVALUES = variates	Variates to receive the expected values of the F nearest- neighbour distribution function under CSR

F2DRESIDUALVARIOGRAM procedure

Calculates and plots a 2-dimensional variogram from a 2-dimensional array of residuals (S.J. Welham).

Options	
PLOT = string token	What to plot (surface); default surf
ROWS = factor	Factor defining the rows of the grid
COLUMNS = factor	Factor defining the columns of the grid
REPLICATES = $factor$	Factor defining the replicate grids (if any)
RMAX = scalar	Maximum lag to include in variogram in row direction (default
	determined by procedure)
CMAX = scalar	Maximum lag to include in variogram in column direction
	(default determined by procedure)
RSCALE = scalar	Actual distance represented by 1 unit in row direction (default
	1)
CSCALE = scalar	Actual distance represented by 1 unit in column direction

MINREP = scalar	(default 1) Minimum replication required for position to be included in variogram (default 30)
TITLE = $text$	Title for surface/graph; default * i.e. none
WINDOW = scalar	Graphics window to be used for plotting; default 1
SCREEN = string token	Whether to keep or clear screen before plotting variogram
	(clear, keep); default clear
METHOD = text	Whether to use Fortran DLL or Genstat code to calculate
	<pre>variogram (dll, genstat); default dll</pre>
SCALEPLOT = string token	Whether to scale variogram to 0-1 (i.e. unit) scale for plotting
	(unit, none); default unit
Parameters	
RESIDUALS = variates	Variate of residuals to form variogram
VARIOGRAM = <i>matrices</i>	Calculated variogram (trimmed)
FULLVARIOGRAM = matrices	Calculated variogram (all values)
COUNTS = matrices	Number of comparisons contributing to each variogram
	position
COMPONENTS = pointers	Components used to calculate variogram (only available when
	METHOD=genstat)

GALOIS procedure

Forms addition and multiplication tables for a Galois finite field (I. Wakeling & R.W. Payne). **Option**

option	
METHOD = string token	Whether to choose the primitive polynomial to generate the
0	Galois field with the least number of higher terms or whether
	e
	to make a random choice (minimal, random); default rand
Parameters	
ORDER = scalars	Order of the required Galois field
ADDITION = symmetric matrices	Saves the addition table of the field
MULTIPLICATION = symmetric matrice	25
	Saves the field's multiplication table
PRIMITIVE = variates	Saves the primitive irreducible polynomial
ERROR = scalars	Returns 0 or 1 according to whether or not the tables have
	been formed successfully

GBGRIDCONVERSION procedure

Converts GB grid references to or from latitudes and longitudes or to or from UTM coordinates (R.W. Payne).

Options

INPUTSOURCE = *string token*

GRIDREFERENCES = texts LATITUDES = scalars or variates LONGITUDES = scalars or variates EASTINGS = scalars or variates NORTHINGS = scalars or variates GRIDACCURACY = string token Which of the coordinate systems if acting as input for conversion to either of the other two systems (gridreference, geographical, utm); default geog Grid references Latitudes Longitudes UTM easting references UTM northing references The accuracy for saving grid references (kilometres, hectometres, dekametres, metres); default hect

No parameters

GEE procedure

Fits models to longitudinal data by generalized estimating equations (D.M. Smith & M.G.Kenward). **Options**

PRINT = string token

What to display (estimates, correlations, scalefactor, wald, monitoring); default esti, corr,

	scal
DISTRIBUTION = <i>string token</i>	Distribution of response (normal, Poisson, binomial,
	gamma, inversenormal, negativebinomial); default *
LINK = <i>string token</i>	Link function (identity, logarithm, logit, reciprocal,
	power, squareroot, probit, complementaryloglog,
	logratio); default *
EXPONENT = scalar	Exponent for power link; default -2
TERMS = formula	Explanatory variates, factors etc
CONSTANT = string token	How to treat constant (estimate, omit); default esti
FACTORIAL = scalar	Limit for expansion of model terms; default 3
AGGREGATION = scalar	Fixed parameter for negative binomial distribution (parameter
	k as in variance function var = mean + mean ² /k); default 1
KLOGRATIO = scalar	Parameter for logratio link, in form $\log(\text{mean} / (\text{mean} + k));$
	default as set in AGGREGATION option
QUADESTIMATION = <i>string token</i>	Whether to use quadratic estimation (used, notused); default used
SCALEFACTOR = <i>string token</i>	How to calculate the scale factor (fixed, constant,
	varytime); default varies with distribution, fixed for
	Poisson and binomial, constant for rest
SFVALUE = scalar	Value for scale factor when SCALEFACTOR=fixed; default
	1.0 for Poisson and binomial, missing for rest
CRTYPE = string token	Form of correlation matrix (independence, unstructured,
	exchangeable, autoregressive, dependence,
	antedependence); default *
ORDER = scalar	Order in dependence and ante-dependence form of correlation matrix; default 1
TIMEDEPENDENT = string token	Whether correlation in dependence model changes with time
	(no, yes); default no
Parameters	
Y = variates	Response variate for each analysis
NBINOMIAL = variates or scalars	Denominator in binomial
FITTEDVALUES = variates	To store fitted values
RESIDUALS = variates	To store residuals
SUBJECT = factors	Identifier of subjects
OUTCOME = factors	Identifier of outcomes
COUNT = variates	Variate of counts of no. outcomes
TIME = factors	Times of repeated measures variate
WEIGHT = variates	Weight variate
OFFSET = variates	Offset variate
SAVE = $pointers$	Structure to save output variables

GENERATE directive

Generates factor values for designed experiments: with no options set, factor values are generated in standard order; the options allow treatment factors to be generated using the design-key method, or pseudo-factors to be generated to describe the confounding in a partially balanced experimental design.

TREATMENTS = formula	Model term for which pseudo-factors are to be generated; default *
REPLICATES = formula	Factors defining replicates of the design; default *
BLOCKS = formula	Block formula (for design-key generation) or term (for generation of pseudo-factors); default *
KEY = matrix	Key matrix (number of factors in the parameter list by number of factors in the BLOCKS formula) to generate the factors by
BASEVECTOR = <i>variate</i>	the design key method; default * Base vector for design key generation; default *

222	4 Syntax summary
Parameter factors	Factors whose values are to be generated
GENPROCRUSTES procedure	
	alysis (G.M. Arnold & R.W. Payne).
Options	
PRINT = string tokens	Printed output required (analysis, centroid, column,
_	individual, monitoring); default anal, cent
SCALING = string token	Type of scaling to use (none, isotropic, separate);
	default none
METHOD = string token	Method to be used (Gower, TenBerge); default Gowe
NROOTS = $scalar$	Number of roots (i.e. dimensions) to print for the output
	configurations, consensus and rotation matrices, and number
	of dimensions to save with the XOUTPUT, CONSENSUS and
	ROTATIONS paramaters if their matrices have alread not been
	defined; default is to print and save all the dimensions
PLOT = string tokens	Controls which graphs to display (consensus,
	individuals, projections); default * i.e. none
NDROOTS = $scalar$	Number of dimensions to display in the consensus and
	individuals plots; default 3
TOLERANCE = $scalar$	The algorithm is assumed to have converged when (last
	residual sum of squares) - (current residual sum of squares) <
	TOLERANCE × (number of configurations); default 0.00001
MAXCYCLE = scalar	Limit on number of iterations; default 50
Parameters	
XINPUT = pointers	Each pointer points to a set of matrices holding the original
	input configurations
XOUTPUT = <i>pointers</i>	Each pointer points to a set of matrices to store a set of final
	(output) configurations
CONSENSUS = matrices	Stores the final consensus configuration from each analysis
ROTATIONS = <i>pointers</i>	Each pointer points to a set of matrices to store the rotations
	required to transform each set of XINPUT configurations to
	their final (scaled) XOUTPUT configurations
RESIDUALS = <i>pointers</i>	Each pointer points to a set of matrices to store the distances
	of a set of scaled XINPUT configurations from its consensus
RSS = scalars	Stores the residual sum of squares from each analysis
ROOTS = <i>diagonal matrices</i>	Stores the latent roots from referring the centroid configuration
	to its principal axis form (consensus) for each analysis
WSS = scalars	Stores the initial within-configuration sum of squares from
	each analysis
SCALINGFACTOR = variates	Stores the isotropic scaling factors for configurations from
	each analysis
PROJECTIONS = pointers	Each pointer points to a set of matrices to store a set of
	projection matrices
_	

GESTABILITY procedure Calculates stability coefficients for genotype-by-environment data (R.W. Payne). **Options**

Controls printed output (means, stability,
sortedstability,quantiles); default stab,quan
Methods to use to calculate stability (superiority, static,
wricke, ranks); default supe
How to define the best genotype (minimum, maximum); default
maxi
What graphs to plot (stability); default * i.e. none
Number of best genotypes to print in tables of sorted stability

4.1	Command	s
4.1	Command	s

	coefficients; default * i.e. print all of them
DIRECTION = string token	Direction to sort tables of sorted stability coefficients
	(ascending, descending); default asce
PERCENTQUANTILES = scalar or varia	
	Percentage points for which quantiles are required; default ! (50, 5, 1, 0.1)
NTIMES = scalar	Number of permutations to make; default 999
BLOCKSTRUCTURE = formula	Model formula defining any blocking to consider during the permutation test; default none
EXCLUDE = factors	Factors in the block formula whose levels are not to be
	randomized in the permutation test
Parameters	
Y = variates	Yields (or other measurements) made on the genotypes in the environments
GENOTYPES = $factors$	Genotype corresponding to each yield
ENVIRONMENTS = factors	Environment where each yield was recorded
SEED = scalar	Seed for the random number generator used to make the
	permutations; default 0 continues from the previous generation
	or (if none) initializes the seed automatically
STABILITY = <i>tables</i> or <i>pointers</i>	Saves stability coefficients
QUANTILES = <i>tables</i> or <i>pointers</i>	Saves quantiles of the stability coefficients
TITLE = texts	Overall title for the graphs; default * i.e. none

GET directive

Accesses details of the "environment" of a Genstat job.

Options	
[†] ENVIRONMENT = <i>pointer</i>	<pre>Pointer given unit labels 'inprint', 'outprint', 'diagnostic', 'errors', 'pause', 'prompt',</pre>
	'newline', 'case', 'run', 'wordlength', 'captions',
	'typeset', 'cmethod', 'dataspace', 'algorithms',
	<pre>'actionafterfault', 'unsetdummy', 'language',</pre>
	'year2digitbreak' and 'timewithseconds' to save the
	current settings of those options of SET; default *
SPECIAL = <i>pointer</i>	Pointer given unit labels 'units', 'blockstructure',
	'treatmentstructure', 'covariate', 'asave',
	'dsave', 'rsave', 'tsave', 'vsave' and
	'vcomponents', used to save the current settings of those
	options of SET; default *
LAST = text	To save the last input statement; default *
FAULT = $text$	To save the last fault code; default *
FIELDWIDTH = scalar	Saves the fieldwidth currently defined as the default minimum
	for PRINT and other output commands
SIGNIFICANTFIGURES = scalar	Saves the minimum number of significant figures currently to
	be supplied in the default formats determined by PRINT and
	other output commands
SEEDS = <i>pointer</i>	Saves a pointer to variates defining the seeds currently used as
	defaults by random-number functions, the RANDOMIZE
	directive, and internally by various other directives
EPS = scalar	To obtain the value of the smallest x (on this computer) such
	that $1+x > 1$; default *
NJOB = $scalar$	Number of the current job within the program; default *
VERSION = pointer	Information about the version of Genstat that is being used;
	default *
PID = scalar	Gets an integer value unique in the current job to use, for
	example, in names of temporary files
WORKINGDIRECTORY = text	Saves the name of the current working directory

No parameters

GETATTRIBUTE directive

Accesses attributes of structures.

Option

ATTRIBUTE = *string tokens*

Which attributes to access (nvalues, nlevels, nrows,
ncolumns, type { type number }, levels, labels { of a
factor or pointer}, nmv, present, identifier, refnumber
{structure number}, extra, decimals, characters,
minimum, maximum, restriction, mode {integer code 1 - 5
denoting type of values: double real, real, integer, character
and word}, maxline {of a text or factor}, rows, columns,
classification, margins {of a table},
associatedidentifier {of a table}, unknown {cell of a
table}, suffixes {of a pointer}, owner, terms {of an
<pre>SSPM}, groups {of an SSPM}, weights {of an SSPM},</pre>
SSPMauxiliary,SSPrst,tsmmodel,rstat {of an
RSAVE}, stype {type as a character string},
referencelevel {of a factor}, drepresentation,
unitlabels {of a vector}, iprint, datavariate {of a
<pre>table}, summarytype {of a table}, percentquantile {of a</pre>
table of quantiles}, %margin {of a table of percentages},
coding {of a text}); default * i.e. none

Parameters

STRUCTURE = <i>identifiers</i>	Structures whose attributes are to be accessed
SAVE = <i>pointers</i>	Pointer to store copies of the attributes of each structure; these
	are labelled by the ATTRIBUTE strings

GETLOCATIONS directive

Finds locations of an identifier within a pointer, or a string within a factor or text, or a number within any numerical data structure.

Options

CASE = string token	Whether to treat the case of letters (small or capital) as
	significant when searching for a string (significant,
	ignored); default sign
TOLERANCE = $scalar$	Tolerance for comparing numbers
SUBSTITUTE = <i>string token</i>	Whether to substitute dummies within pointers in DATA or FIND (yes, no); default no
Parameters	
DATA = identifiers	Variates, scalars, matrices, tables, factors, texts or pointers to be searched
FIND = scalars, texts or pointers	Numbers, strings or identifiers to be located in DATA
NLOCATIONS = scalars	Saves the number of times that FIND occurs in DATA
LOCATIONS = variates or pointers	Saves the locations where FIND occurs as one of the values in DATA, in a variate if DATA is a one-dimensional data structure like a variate or text, or in a pointer containing a variate for each dimension if DATA is a multi-dimensional data structure like a matrix or table
CLASSIFICATION = <i>pointers</i>	Saves the classifying factors for a DATA table, in the same order as the corresponding variates in the LOCATIONS and LEVELS pointers
LEVELS = pointers	Saves the levels of the classifying factors where FIND occurs as one of the values of a DATA table, the information is saved in a pointer containing a variate for each factor

GETNAME procedure

Forms the name of a structure according to its IPRINT attribute (A.R.G. McLachlan).

No options Parameters

STRUCTURE = <i>identifiers</i>	Structures whose names are to be obtained
NAME = $texts$	Saves the names of the structures
IDENTIFIER = texts	Saves the identifiers of the structures
EXTRA = $texts$	Saves the extra texts of the structures
IPRINT = texts	Saves (or forms) IPRINT attributes

GETRGB procedure

Gets the RGB values of the standard graphics colours (R.W. Payne).

No options Parameters

COLOUR = scalars or variates	Colour numbers
RGB = scalars or variates	RGB values
NAME = $texts$	Names of nearest colours

GETTEMPFOLDER procedure

Gets gets the location of the folder used by Genstat for temporary files (R.W. Payne).OptionPRINT = string tokenControls printed output (tempfolder); default tempParameterEmpFolderSaves the name of the temporary folder

GGEBIPLOT procedure

Plots displays to assess genotype + genotype-by-environment variation (A.I. Glaser).

Options	
PRINT = string tokens	What to print (variation); default * i.e. nothing
DIMENSIONS = scalars	Which dimensions to display; default 1,2
PLOT = string token	Type of plot (scatter, ranking, compare, joint,
	centred); default scat
METHOD = string token	Whether the names in LEV1 (and LEV2) are from the
	ENVIRONMENTS or GENOTYPES factor (environments,
	genotypes); default envi
SCPLOT = string token	Features to add to a scatter plot (hull, sector,
	<pre>megaenvironment, vector, linear); default * i.e. none</pre>
SCALING = string tokens	What scaling to use (genotype, environment, symmetric);
	default envi
NORMALIZE = <i>string token</i>	Whether to scale the data using the within-environment
	standard deviation (yes, no); default no
CULL = <i>variate</i> or <i>text</i>	Specifies environments at which to examine the performance
	of the genotypes in order to decide which genotypes to cull
QUANTILE = scalar	Proportion at which to calculate quantile for CULL; default 0.5.
DIVISIONS = scalar	Number of parallel lines or concentric circles to use when
	ranking genotypes or environments; default 10
RANKINGLINES = <i>string token</i>	Whether the ranking lines drawn with PLOT setting ranking
	or joint are perpendicular to the biplot axis or projected onto
	the axis (perpendicular, projection); default perp
GENREVERSE = <i>string token</i>	Whether to reverse the order of the genotype scores (yes, no);
	default no
ENVREVERSE = <i>string token</i>	Whether to reverse the order of the environment scores (yes,
	no); default no
WINDOW = scalar	Which graphical window to use; default 1
KEYWINDOW = scalar	Window number for the key (zero for no key); default 2

Parameters

DATA = variates or tables	Provides the data to be analysed
GENOTYPES = factors	Specifies the genotypes
ENVIRONMENTS = $factors$	Specifies the environments
LEV1 = <i>texts</i> or <i>scalars</i>	First environment (or genotype) to use with PLOT settings
	centred, compare, joint or ranking, or with scatter
	when SCPLOT=linear
LEV2 = <i>texts</i> or <i>scalars</i>	Second environment (or genotype) to use with PLOT settings
	centred, compare or joint
LABGENOTYPES = <i>texts</i>	Labels for genotypes
LABENVIRONMENTS = $texts$	Labels for environments
TITLE = texts	Titles for the plots; if this is unset, an appropriate title is
	formed auomatically
MEGAGROUPS = variates or texts	Specifies or saves the groupings to use for the plot produced
	by SCPLOT=megaenvironment

GHAT procedure

Calculates an estimate of the G nearest-neighbour distribution function (M.A. Mugglestone, S.A. Harding, B.Y.Y. Lee, P.J. Diggle & B.S. Rowlingson).

8,	8
Option	
PRINT = string token	What to print (summary); default summ
Parameters	
Y = variates	Vertical coordinates of each spatial point pattern; no default -
	this parameter must be set
X = variates	Horizontal coordinates of each spatial point pattern; no default - this parameter must be set
s = variates	Vectors of distances to use with each pattern; no default – this parameter must be set
GVALUES = variates	Variates to receive the estimated G nearest-neighbour distribution functions
NNDISTANCES = variates	Variates to receive the nearest-neighbour distances
NNUNITS = variates	Variates to receive the unit numbers of the nearest neighbours

GINVERSE procedure

Calculates the generalized inverse of a matrix (S.K. Haywood).

Options	
PRINT = string token	Printed output from the procedure (inverse); default *, i.e. no printing
METHOD = string token	Method to be used to invert symmetric matrices (svd, lrv); default lrv
TOLERANCE = $scalar$	How close a number must be be to zero before it is recognised as zero; default 1.0^{-6}
Parameters	
INMATRIX = $matrices$	The matrix whose inverse is to be calculated
INVERSE = matrices	Matrix to save the generalized inverse

[†]GLDISPLAY procedure

Displays further output from a GLMM analysis (R.W. Payne).

Options

PRINT = string token	What output to display (model, components, effects,
	fittedvalues, means, backmeans, vcovariance,
	waldtests,missingvalues,covariancemodels,
	deviance); default *
PTERMS = formula	Formula specifying fixed terms for which means or back-
	transformed means are to be printed; default * prints all the
	fixed model terms

4.1 Commands

PSE = string token	Standard errors to print with tables of means (se, sesummary, sed, sedsummary, vcovariance, differences, estimates, alldifferences, allestimates); default seds
OFFSET = scalar	Offset value to use when calculating predicted means; default 0
RMETHOD = string token	Which random terms to use when calculating RESIDUALS (final, all); default fina
CFORMAT = string token	Whether printed output for covariance models gives the variance matrices or the parameters (variancematrices, parameters); default vari
FMETHOD = string token	Controls whether and how to calculate F-statistics for fixed terms (automatic, none, algebraic, numerical); default auto
GLSAVE = pointer No parameters	Save structure from the GLMM analysis

[†]GLKEEP procedure

Saves results from a GLMM analysis (R.W. Payne).

FACTORIAL = scalar	Limit on number of factors in the model terms generated from
	the TERMS parameter; default 3
RESIDUALS = variate	Residuals from the analysis
FITTEDVALUES = variate	Fitted values from the analysis
DISPERSION = scalar	Dispersion component
VCOVARIANCE = <i>symmetric matrix</i>	Variance-covariance matrix for the estimates of the variance components
VESTIMATES = variate	Saves a vector of all parameters in the variance model
VARESTIMATES = <i>symmetric matrix</i>	Variance-covariance matrix for the parameters in the variance model (as saved by VESTIMATES)
VLABELS = text	Vector of text labels for the VESTIMATES and VARESTIMATES structures
MVESTIMATES = variate	Estimates of missing values
MVSE = variate	Standard errors of missing-value estimates
MVUNITS = variate	Unit numbers of missing values
DEVIANCE = scalar	Saves the deviance
MODEL = pointer	Information defining the mode;
RMETHOD = string token	Which random terms to use when calculating RESIDUALS
	(final, all); default all
DFFIXED = scalar	Number of degrees of freedom in the fixed model
DFRANDOM = scalar	Number of degrees of freedom in the random model
FMETHOD = string token	Controls how to calculate F-statistics for fixed terms
	(automatic, none, algebraic, numerical); default auto
WMETHOD = string token	Controls which Wald statistics are saved (add, drop); default drop
OFFSET = scalar	Offset value to use when calculating predicted means; default 0
ITERATIVEWEIGHTS = variate	Saves the iterative weights from the generalized linear model fitting
LINEARPREDICTOR = variate	Linear predictor from a generalized linear model
YADJUSTED = variate	Adjusted response variate
ZADJUSTED = variate	Adjusted dependent variate on the linear predictor scale
LPRESIDUALS = variate	Residuals from the fit on the linear predictor scale
SELPRESIDUALS = variate	Standard errors for the residuals from the fit on the linear predictor scale
EXIT = scalar	Exit status of the fit (0 if successful)
GLSAVE = pointer	Save structure from the GLMM analysis
Parameters	

TERMS = <i>formula</i>	Model terms for which information is required	
COMPONENTS = scalar or pointer to sca	lars	
	Estimated variance components	
MEANS = <i>table</i> or <i>pointer</i> to <i>tables</i>	Predicted means for each term	
BACKMEANS = <i>table</i> or <i>pointer</i> to <i>tables</i>	Back-transformed means	
SEDMEANS = symmetric matrix or point	er to symmetric matrices	
	Standard errors of differences between means	
VARMEANS = <i>symmetric matrix</i> or <i>point</i>	er to symmetric matrices	
	Variance-covariance matrix for the means	
EFFECTS = <i>table</i> or <i>pointer</i> to <i>tables</i>	Effects for each term	
SEDEFFECTS = <i>symmetric matrix</i> or <i>po</i>	inter to symmetric matrices	
	Standard errors of differences between effects	
VAREFFECTS = symmetric matrix or pointer to symmetric matrices		
	Variance-covariance matrix for the effects	
CADJUSTMENT = scalar or pointer to sc	alars	
	For a term involving covariates, saves the adjustment made to	
	its values during the analysis	
WALD = scalar or pointer to scalars	Wald statistic (fixed terms only)	
FSTATISTIC = scalar or pointer to scalars		
	F statistics (fixed terms only)	
NDF = scalar or pointer to scalars	Numerator d.f. (fixed terms only)	
DDF = scalar or pointer to scalars	Denominator d.f. (fixed terms only)	

GLM procedure

Analyses non-standard generalized linear models (P.W. Lane).

Options	· · · · · · · · · · · · · · · · · · ·
PRINT = string tokens	What to display (deviance, estimates, correlations,
	monitoring); default devi, esti
DISTRIBUTION = string token	Distribution of response (Normal, Poisson, binomial,
	gamma, inversenormal); default * indicates calculations
	supplied for non-standard distribution via procedure
	GLMDISTRIBUTION (see the details of the procedures called
	by GLM)
LINK = string token	Link function (identity, logarithm, logit, reciprocal,
	<pre>power, squareroot, probit, complementaryloglog);</pre>
	default * indicates calculations supplied for non-standard link
	via procedure GLMLINK (see Method)
EXPONENT = scalar	Exponent for power link; default -2
TERMS = <i>list</i> or <i>formula</i>	Explanatory variates, factors, and interactions specified as for
	the standard regression directives; default null model
CONSTANT = <i>string token</i>	Whether to include constant term (estimate, omit); default esti
INITIALLINEAR = variate	Initial guess at linear predictor, if specifying own link function
	and not defining procedure GLMINITIAL
Parameters	
Y = variates	Response variate; this parameter must be set
NBINOMIAL = variates	Totals for use when DISTRIBUTION=binomial; must then be
	set
FITTEDVALUES = variates	To store correct fitted values

GLMM procedure

Fits a generalized linear mixed model (S.J. Welham).

[†] PRINT = string token	What output to display (model, components, effects,
	fittedvalues, means, backmeans, monitoring,
	vcovariance,waldtests,missingvalues,

	covariancemodels, deviance); default mode, comp, effe,
	mean, back, moni, vcov, cova
DISTRIBUTION = string token	Error distribution (binomial, poisson, normal, gamma,
-	negativebinomial); default bino
LINK = <i>string token</i>	Link function (identity, logarithm, logit, reciprocal,
	<pre>probit, complementaryloglog, logratio); default *</pre>
	gives the canonical link
DISPERSION = scalar	Value at which to fix the residual variance, if missing the
	variance is estimated; default 1 for binomial, Poisson and
	negative binomial distributions, a missing value otherwise
RANDOM = formula	Random model <i>excluding</i> bottom stratum; this must be set
FIXED = formula	Fixed model; default *
ABSORB = factor	Absorbing factor to be used at the REML step of the iterations Whether to estimate or omit constant term in fixed model
CONSTANT = string token	(omit, estimate); default esti
FACTORIAL = scalar	Limit on number of factors/covariates in a model term; default
FACIORIAL – Sculur	2
PTERMS = formula	Formula specifying fixed terms for which means or back-
Fillidio Jornala	transformed means are to be printed; default * prints all the
	fixed model terms
† PSE = string token	Standard errors to print with tables of means (se, sesummary,
C	sed, sedsummary, vcovariance, differences,
	estimates, alldifferences, allestimates); default
_	seds
MVINCLUDE = string tokens	Whether to include units with missing values in the
	explanatory factors and variates and/or the y-variates
	(explanatory, yvariate); default * i.e. omit units with
	missing values in either explanatory factors or variates or y- variates
MAXCYCLE = scalar	Maximum number of iterations of the GLMM algorithm; default
FIAACICIE Scului	20
TOLERANCE = $scalar$	Convergence criterion for iterative procedure; default 0.0001
[†] FMETHODGLMM = <i>string token</i>	Specifies fitting method (all, fixed): all indicates the
-	method of Schall (1991); fixed indicates the marginal
	method of Breslow & Clayton (1993); default all
OFFSET = variate	Variate holding values to be used as an offset on the linear
	predictor scale; default *
CADJUST = string token	What adjustment to make to covariates for the REML analysis
,	(mean, none); default mean
AGGREGATION = scalar	Fixed parameter for negative binomial distribution (parameter l_{1}
KLOGRATIO = scalar	<i>k</i> as in variance function var = mean + mean ² / <i>k</i>); default 1 Parameter <i>k</i> for logratio link, in form log(mean / (mean + k));
RLOGRATIO – Scular	default as set in AGGREGATION option
OWNDIST = $text$	For non-standard distributions only: text specifying the
WINDIST ICH	variance function to be used with dummy variable DUM, e.g.
	OWNDIST='DUM'
OWNLINK = text	For non-standard link functions only: text specifying 3
	functions using dummy variable DUM - the link function, its
	inverse and its derivative, e.g. OWNLINK =
ODERTNIETONG - fout	!T('log(DUM)', 'exp(DUM)', '1/DUM')
CDEFINITIONS = text	Statements to execute to define correlation models; default * i.e. none
CVECTORS = <i>pointer</i>	Data structures involved in the correlation models
WORKSPACE = $scalar$	Number of blocks of internal memory to be set up for use by
	the REML algorithm; default 1
VCONSTRAINTS = <i>string token</i>	Whether to constrain variance components to be positive
2	(none, positive); default posi

230	4 Syntax summary
[†] VMETHOD = <i>string token</i>	Indicates whether to use the standard Fisher-scoring algorithm or the new AI algorithm with sparse matrix methods (Fisher, AI); default AI
[†] VMAXCYCLE = $scalar$	Limit on the number of iterations; default 30
Parameters	
Y = variates	Dependent variates
NBINOMIAL = scalars or variates	Number of binomial trials for each unit (must be set if
	DISTRIBUTION=binomial)
FITTEDVALUES = variates	Variates to save fitted values
COMPONENTS = variates	Variate to save estimated variance components
VCOVARIANCE = <i>symmetric matrices</i>	Variance-covariance matrix for the variance components
MEANS = pointers	Pointer to save tables of means for each Y variate
VARMEANS = <i>pointers</i>	Pointer to save covariance matrices of tables of means for each Y variate
BACKMEANS = <i>pointers</i>	Pointer to save tables of back-transformed means for each Y variate
ITERATIVEWEIGHTS = variates	Saves the iterative weights from the generalized linear model fitting
INITIALFITTEDVALUES = variates	Defines initial values for the fitted values; if unset, these are formed automatically
$^{\dagger}EXIT = scalar$	Exit status for the fit of the GLMM (0 if successful)
SAVE = REML save structures	Saves details of the REML analysis used to fit the model
† GLSAVE = pointer	Saves details of the GLMM analysis

[†]GLPERMTEST procedure

Does random permutation tests for generalized linear mixed models (R.W. Payne).

Options	
PRINT = string tokens	Controls printed output (prwald, criticalwald, ownstatistics, monitoring); default prwa, crit
NTIMES = scalar	Number of permutations to make; default 99
NRETRIES = scalar	Maximum number of extra samples to take when some
	analyses fail to converge; default NTIMES
BLOCKSTRUCTURE = formula	Model formula defining any blocking to consider during the randomization; default none
EXCLUDE = factors	Factors in the block formula whose levels are not to be randomized
SEED = scalar	Seed for the random number generator used to make the permutations; default 0 continues from the previous generation or (if none) initializes the seed automatically
BINMETHOD = string token	How to permute binomial data (individuals, units; default indi
WMETHOD = string token	Controls which Wald statistics are used (add, drop); default add
OWNMETHOD = string token	Type of test required for own statistics (twosided,
	greaterthan, lessthan); default twos
CIPROBABILITY = scalar	Probability level for the confidence interval for own statistics; default 0.95
Parameters	
GLSAVE = pointers	Save structure of the original analysis from GLMM; default * uses the save structure from the most recent GLMM analysis
WALD = pointers	Saves a pointer with a variate for each of the fixed terms containing the Wald statistics from the permuted data sets
PRWALD = pointers	Saves a pointer with a scalar for each of the fixed terms, containing the test probability obtained from the position of its Wald statistic within those from the permuted data sets
CRITICALWALD = <i>pointers</i>	Saves a pointer with variates for the 5%, 1% and 0.1% significance levels containing the corresponding critical values

	for the fixed terms, obtained from the quantiles of the Wald statistics from the permuted data sets
NNOTCONVERGED = scalars	Saves the number of permuted data sets whose analyses failed
	to converge
OWNDATA = pointers	Data required to calculate own statistics
OWNOBSERVEDVALUES = variates	Saves observed values of the own statistics
OWNPROBABILITIES = variates	Saves bootstrap probabilities for the own statistics
OWNESTIMATES = variates	Saves bootstrap estimates for the own statistics
OWNSES = variates	Saves bootstrap standard errors for the own statistics
OWNLOWERCIS = variates	Saves bootstrap lower values of the confidence intervals for
	the own statistics
OWNUPPERCIS = variates	Saves bootstrap upper values of the confidence intervals for
	the own statistics
OWNSTATISTICS = <i>pointers</i>	Saves the own statistics obtained from the permuted data sets,
-	in a pointer with a variate for each statistic

[†]GLPLOT procedure

Plots residuals from a GLMM analysis (R.W. Payne).

Options	
RMETHOD = string token	Which random terms to use when calculating the residuals
	(final, all); default all
BACKTRANSFORM = <i>string token</i>	Whether to plot residuals on the natural scale (calculated using
	back-transformed fitted values) or standardized residuals on
	the linear-predictor scale (link, none); default none
INDEX = variate or factor	X-variable for an index plot; default ! (1, 2)
OFFSET = scalar	Value of offset to use when calculating the residuals; default 0
GRAPHICS = <i>string token</i>	What type of graphics to use (lineprinter,
-	highresolution); default high
TITLE = text	Overall title for the plots; the default is to form a title
	displaying the identifier of the y-variate and the type of residual
GLSAVE = pointer	Save structure from the GLMM analysis; default * uses the
	GLSAVE structure from the most recent GLMM analysis
Parameters	
METHOD = string tokens	Type of residual plot (fittedvalues, normal,
C C	halfnormal, histogram, absresidual, index); default
	fitt, norm, half, hist
PEN = scalars, variates or factors	Pen(s) to use for each plot

[†]GLPREDICT procedure

Forms predictions from a GLMM analysis (R.W. Payne).

Options	
PRINT = string tokens	What to print (description, predictions,
	backpredictions, se, sesummary, sed, sedsummary,
	vcovariance); default desc, pred, back, seds
MODEL = formula	Indicates which model terms (fixed and/or random) are to be
	used in forming the predictions; default * includes all the fixed
	terms and relevant random terms
OMITTERMS = formula	Specifies terms to be excluded from the MODEL; default * i.e.
	none
FACTORIAL = scalar	Limit on the number of factors or variates in each term in the
	models specified by MODEL or OMITTERMS; default 3
PRESENTCOMBINATIONS = $factors$	Lists factors for which averages should be taken across
	combinations that are present
WEIGHTS = tables	One-way tables of weights classified by factors in the model;
	default *

OFFSET = scalar NBINOMIAL = scalar	Value of offset on which to base predictions; default 0 Supplies the total number of trials to be used for prediction with a binomial distribution (providing a value n greater than one allows predictions to be made of the number of
	"successes" out of <i>n</i> , whereas the value one predicts the proportion of successes); default 1
PREDICTIONS = <i>table</i> or <i>scalar</i>	To save the predictions; default *
BACKPREDICTIONS = <i>table</i> or <i>scalar</i>	To save back-transformed predictions; default *
SE = table or scalar	To save standard errors of predictions; default *
SED = <i>symmetric matrix</i>	To save standard errors of differences between predictions; default *
VCOVARIANCE = <i>symmetric matrix</i>	To save variances and covariances of predictions; default *
GLSAVE = pointer	Save structure from the GLMM analysis; default * uses the SAVE structure from the most recent GLMM analysis
Parameters	
CLASSIFY = vectors	Variates and/or factors to classify table of predictions
LEVELS = <i>variates</i> , <i>scalars</i> or <i>texts</i>	To specify values of variates and/or levels of factors for which predictions are calculated
PARALLEL = <i>identifiers</i>	For each vector in the CLASSIFY list, allows you to specify another vector in the CLASSIFY list with which the values of
	this vector should change in parallel (you then obtain just one dimension in the table of predictions for these vectors)
NEWENCHOD - identifians	dimension in the table of predictions for these vectors) Identifiers for new factors that are defined when LEVELS are
NEWFACTOR = <i>identifiers</i>	specified

[†]GLRTEST procedure

Calculates likelihood tests to assess the random terms in a generalized linear mixed model (R.W. Payne).

Options

options		
PRINT = string tokens	Controls printed output (tests); default test	
SELECTION = string tokens	Specifies information to print with the tests (aic, sic, bic,	
	critical); default crit	
CRITICAL = variate	Saves the critical values	
GLSAVE = <i>pointer</i>	Save structure of the original analysis from GLMM; default *	
	uses the save structure from the most recent GLMM analysis	
Parameters		
TERMS = formula	Random terms to be tested; default is to test them all	
TESTSTATISTIC = <i>scalar</i> or <i>pointer</i> to <i>scalars</i>		
	Test statistics for each term	
DF = <i>scalar</i> or <i>pointer</i> to <i>scalars</i>	Degrees of freedom of the test statistics	
AIC = scalar or pointer to scalars	Akaike information coefficients for each term	
SIC = <i>scalar</i> or <i>pointer</i> to <i>scalars</i>	Schwarz (Bayesian) information coefficients for each term	

GPREDICTION procedure

Produces genomic predictions (breeding values) using phenotypic and molecular marker information (M. Malosetti, M.P. Boer & S.J. Welham).

Options	
PRINT = string token	What to print (summary); default summ
PLOT = string token	What to plot (scatterplot, pco); default scat, pco
MODELTYPE = string token	Model to use to obtain the predictions (gblup, gaussian,
	exponential); default gblu
THETA = variate	Values to use for the tuning parameter θ when the model is
	Gaussian or exponential
SIMILARITY = <i>symmetric matrix</i>	Similarity matrix between individuals of the whole population
Parameters	
TRAIT = variates	Quantitative trait to be analysed; must be set

	4.1 Commands	233
GENOTYPES = factors	Genotype factor; must be set	
MKSCORES = <i>pointers</i>	Marker scores	
IDMGENOTYPES = texts	Labels of the tested and untested genotypes	
PREDICTIONS = variates	Saves the predictions	
NEWGENOTYPES = $factors$	Factor to index the predictions	
TESTED = factors	Factor that classifies NEWGENOTYPES as part of the the untested set	e tested or
SAVE = pointers	Pointer to REML save structures to save details of t	he analyses
GRANDOM procedure		
-	ers from probability distributions (D.M. Roberts & P.W	. Lane).
Options		,
DISTRIBUTION = string token	Type of distribution required (beta, chisquare,	
	exponential, F, gamma, logNormal, Normal, t Weibull, binomial, hypergeometric, Poisso Norm	
NVALUES = $scalar$	Number of values to generate; default 1	
SEED = scalar	Seed to start random number generation; default se	et by
	CALCULATE or continued from previous generation	
MEAN = scalar	Mean for distribution, except for Weibull or hyper	
	default 0 for Normal distribution and 1 for Poisson exponential, otherwise *	1 and
VARIANCE = scalar	Variance for distribution, except for the Weibull o	r
	hypergeometric; must be positive; default *, excep when default is 1	ot for Normal
LOWER = scalar	Lower bound for the uniform or beta distribution;	default 0
UPPER = scalar	Upper bound for the uniform or beta distribution;	
LOCATION = scalar	Location parameter for the log-Normal, gamma or distribution; default 0	

SCALE = scalar Scale parameter for the Weibull distribution; must be positive; default 1 SHAPE = scalar Shape parameter for the Weibull distribution; must be positive; default 1 First shape parameter for the beta distribution; must be ABETA = scalarpositive; default 1 BBETA = scalar Second shape parameter for the beta distribution; must be positive; default 1 Location-scale parameter for the gamma distribution, must be AGAMMA = scalarpositive, usually denoted by alpha or theta; default 1 Shape parameter for the gamma distribution, must be positive, BGAMMA = scalarusually denoted by beta or kappa; default 1 Number of degrees of freedom for the t or chi distribution, DF = scalarmust be 1 or greater; default 1 DFNUMERATOR = scalar Number of degrees of freedom of the numerator for the F distribution, must be 1.0 or greater; default 1 Number of degrees of freedom of the denominator for the F DFDENOMINATOR = scalar distribution, must be 1.0 or greater; default 1 NBINOMIAL = scalar Number of binomial trials for the binomial distribution, must

be positive; default 1 PROBABILITY = scalar probability of success for the binomial or hypergeometric distribution, must be positive and not greater than 1; default 0.5 Number of elements for the hypergeometric distribution, must NHYPERGEOMETRIC = scalar be positive: default 1

SSHYPERGEOMETRIC = scalar

Parameter

NUMBERS = *scalar* or *variate*

The generated numbers are returned here; if the length of the supplied structure is defined, it must equal the setting of the NVALUES option

GRAPH directive

Produces scatter and line graphs on the terminal or line printer. This directive was replaced in Release 10 by the directive LPGRAPH (with exactly the same options and parameters). It is currently retained as a synonym of LPGRAPH, but may be removed in a future release.

GRCSR procedure

Generates completely spatially random points in a polygon (M.A. Mugglestone, S.A. Harding, B.Y.Y. Lee, P.J. Diggle & B.S. Rowlingson).

, 66	0)
Option	
PRINT = string token	What to print (summary); default summ
Parameters	
YPOLYGON = variates	Vertical coordinates of each polygon; no default – this parameter must be set
XPOLYGON = variates	Horizontal coordinates of each polygon; no default – this parameter must be set
NPOINTS = scalars	How many points to generate in each polygon; no default – this parameter must be set
YCSR = variates	Variates to receive the vertical coordinates of the points that have been generated
XCSR = <i>variates</i>	Variates to receive the horizontal coordinates of the points that have been generated
SEED = scalars	Seeds for the random numbers used to generate the points; default 0

GREJECTIONSAMPLE procedure

Options

Generates random samples using rejection sampling (W. van den Berg).

- I	
PLOT = string tokens	What to plot (density, sample); default dens, samp
NVALUES = $scalar$	Size of each random sample; no default, must be set
PRDENSITY = <i>expression structure</i>	Calculation defining the probability density function $f(x)$ to sample; no default, must be set
x = identifier	Data structure used inside PRDENSITY for the x-coefficient of the density function $f(x)$ no default, must be set
XLOWER = scalar	Lower bound of the region in which $f(x)$ is non-negligible; default -10
XUPPER = scalar	Upper bound of the region in which $f(x)$ is non-negligible; default 10
PRENVELOPE = <i>expression structure</i>	Calculation defining the probability density function $g(x)$ used to generate the sample; default $!e(PRT(X; 60))$
GRENVELOPE = <i>expression structure</i>	Calculation to sample from the probability density g(x) used to generate the sample (note, PRENVELOPE and GRENVELOPE must either be both set, or both unset); default !e (GRT (NTRIES; 60))
MULTIPLIER = scalar	Multiplier <i>M</i> used in the definition of the envelope $M \times g(x)$ that must always be greater than $f(x)$; default 10
NTRIES = scalar	Number of random samples to take in each sampling step; default * i.e. determined automatically
Parameters	
NUMBERS = variates	Saves each random sample
SEED = scalars	Seed to use for the random numbers used to generate each random sample; default 0

4.1 Commands

GRIBIMPORT procedure

Reads data from a GRIB2 meteorological data file, and loads it or converts it to a spreadsheet file (D.B. Baird).

PRINT = string token	What information to print (catalogue); default cata
OUTTYPE = string token	Output file type (GEN, GSH, GWB, XLS, XLSX, TXT, CSV, RECORDS); default GWB
METHOD = string token	Whether to load data into the Genstat server after creating the file, or merely to create the file (create, load); default load
SERIAL = <i>string token</i>	Whether to store the records in series, in a single column, instead of in parallel columns (no, yes); default no
LONGITUDERANGE = <i>string token</i>	What range to use for longitude (negative, positive); default posi
MISSING = scalar	What value represents a missing value; default -999
GRID = variate	Specifies limits on the longitude and latitude for the data to be read; default * i.e. read all grid points
ENDTIME = string token	Whether to keep the end time for each period when SERIAL = yes (yes, no); default no
SCOPE = <i>string token</i>	Whether to create the data locally in a procedure that is using GRIBIMPORT, or globally in the whole program (local, global); default loca
Parameters	5 ,,
FILE = texts	Input file or URL to be read
OUTFILE = texts	Name of the output file to be created; if this is not provided a temporary file will be created, and then deleted if the data are loaded
RECORDS = <i>scalars</i> or <i>variates</i>	The numbers of the records to read; default is to read all the records in the file
MATCH = texts	Text strings to match in the record descriptions; default * requests all the records selected by RECORDS
COLUMNS = texts	Names and/or type codes for the columns that are read (the type of column can be forced by ending the column name, if supplied, with the code ! for a factor, # for a variate, and \$ for a text), using a name of '*' will cause a column to be dropped
ISAVE = pointers	Saves the identifiers of the columns

GRLABEL procedure

Randomly labels two or more spatial point patterns (M.A. Mugglestone, S.A. Harding, B.Y.Y. Lee, P.J. Diggle & B.S. Rowlingson).

Options	
PRINT = string token	What to print (summary); default summ
SEED = scalar	Seed for the random numbers used to create the random
	labellings; default 0
Parameters	-
OLDY = variates	Vertical coordinates of two or more spatial point patterns; no
	default – this parameter must be set
OLDX = variates	Horizontal coordinates of two or more spatial point patterns;
	no default – this parameter must be set
NEWY = variates	Variates to receive the vertical coordinates of the spatial point
	patterns created by random labelling
NEWX = variates	Variates to receive the horizontal coordinates of the spatial
	point patterns created by random labelling
	· ·

GRMNOMIAL procedure

Generates multinomial pseudo-random numbers (D.B. Baird).

Options

NVALUES = scalar	Number of values to generate
SEED = scalar	Seed to generate the random numbers; default 0 continues an existing sequence or initializes the sequence automatically if
	no random numbers have been generated in this job
Parameters	
PROBABILITIES = variates or tables	Probabilities for the categories
NUMBERS = factors	Saves the random numbers
COUNTS = tables	Saves counts of the numbers generated in each category

GRMULTINORMAL procedure

Generates multivariate Normal pseudo-random numbers (P.W. Goedhart & K.L. Moore).

Number of values to generate; default 1
The mean for the multivariate Normal distribution; default is a
variate with values all equal to 0
The variance/covariance matrix for the multivariate Normal
distribution; default is to use an identity matrix
Seed to generate the random numbers; default 0 continues an
existing sequence or initializes the sequence automatically if
no random numbers have been generated in this job
Saves the random numbers as either a pointer to a set of
variates or a matrix

GROUPS directive

Forms a factor (or grouping variable) from a variate or text, together with the set of distinct values that occur.

Options

PRINT = string token	Printed output required (summary); default * i.e. no printing
NGROUPS = $scalar$	Number of groups to form when LIMITS is not specified; if
Noncorro sources	NGROUPS is also unspecified, each distinct value (allowing for
	rounding) defines a group; default *
LMETHOD = <i>string token</i>	Defines how to form the levels variate if the setting of the
LITETHOD String token	VECTOR parameter is a variate, or the labels if it is a text; if
	LMETHOD=* no levels/labels are formed, and existing levels
	(for a variate VECTOR) or labels (for a text VECTOR) of an
	already declared FACTOR will be retained if still appropriate
,	(given, minimum, median, maximum, limit); default medi
DECIMALS = scalar	Number of decimal places to which to round the VECTOR
	before forming the groups; default * i.e. no rounding
BOUNDARIES = string token	Whether to interpret the LIMITS as upper or lower boundaries
	(upper, lower); default lowe
REDEFINE = string token	Whether to allow a structure in the FACTOR list that has
	already been declared (e.g. as a variate or text) to be redefined
	(yes, no); default no
CASE = <i>string token</i>	Whether the case of letters (small and capital) in text should be
	regarded as significant or ignored (significant,
	ignored); default sign
LDIRECTION = string token	How to define the levels (for a variate VECTOR) or labels (for a
	text VECTOR) when LMETHOD = minimum, median or
	maximum (ascending, given); default asce
OMITUNBOUNDED = string token	Whether to omit the (unbounded) group that occurs below the
	lowest limit when BOUNDARIES=lower, or above the final

	4.1 Commands	23
	limit when BOUNDARIES=upper (yes, no); default no	
Parameters		
VECTOR = variates or texts	Vectors whose values are to define the groups	
FACTOR = factors	Structures to be defined as factors to save details of the groups; default * will, if REDEFINE=yes, cause the	
	corresponding VECTOR itself to be defined as a factor	
LIMITS = <i>variates</i> or <i>texts</i>	Limits to define the groups	
LEVELS = variates	Variate to define the levels of each FACTOR if	
	LMETHOD=give, or to save them otherwise	
LABELS = $texts$	Text to define the labels of each FACTOR if LMETHOD=g:	ive,
	or to save them otherwise	

GRTHIN procedure

Randomly thins a spatial point pattern (M.A. Mugglestone, S.A. Harding, B.Y.Y. Lee, P.J. Diggle & B.S. Rowlingson).

Bist He (fingeon)	
Option	
PRINT = string token	What to print (summary); default summ
Parameters	
OLDY = variates	Vertical coordinates of each spatial point pattern; no default -
	this parameter must be set
OLDX = variates	Horizontal coordinates of each spatial point pattern; no default - this parameter must be set
NPOINTS = scalars	How many points to return from each pattern; no default – this parameter must be set
NEWY = variates	Variates to receive the vertical coordinates of the randomly thinned patterns
NEWX = variates	Variates to receive the horizontal coordinates of the randomly thinned patterns
SEED = scalars	Seeds for the random numbers used to select the thinned points; default 0

GRTORSHIFT procedure

Performs a random toroidal shift on a spatial point pattern (M.A. Mugglestone, S.A. Harding, B.Y.Y. Lee, P.J. Diggle & B.S. Rowlingson).

	•
Option	
PRINT = string token	What to print (summary); default summ
Parameters	
OLDY = variates	Vertical coordinates of each spatial point pattern; no default -
	this parameter must be set
OLDX = variates	Horizontal coordinates of each spatial point pattern; no default
	- this parameter must be set
YBOX = variates	Vertical coordinates of the toroidal regions
XBOX = <i>variates</i>	Horizontal coordinates of the toroidal regions
NEWY = variates	Variates to receive the vertical coordinates of the randomly
	shifted patterns
NEWX = variates	Variates to receive the horizontal coordinates of the randomly
	shifted patterns
SEED = scalars	Seeds for the random numbers used to perform the shifts;
	default 0

GSTATISTIC procedure

Calculates the gamma statistic of agreement for ordinal data (A.W. Gordon).

Options PRINT = *string token* Whether to print the statistic with its associated information and the resulting test (test); default test METHOD = string token Type of test required (twosided, positive, negative);

Save the corresponding variances

Parameters	
DATA = tables	Tables of data each classified by the two variables (factors) of
	interest
STATISTIC = scalars	Save the value of gamma for each data table

G2AEXPORT procedure

VARIANCE = scalars

Forms a dbase file to transfer ANOVA output to Agronomix Generation II (R.W. Payne).

Options

Options	
PRINT = strings	Controls printed output (columns); default * i.e. none
REPLICATETERMS = formula	Specifies the term or terms that define the replication in the
	design
METHOD = string	How to form the means (loweststratum, combined);
	default lowe
ALPHALEVEL = scalar	Alpha value to use when calculating least significant
	differences; default 0.05
TAIL = scalar	Number of tails in the calculation of least significant
	differences (1, 2); default 1
SAVE = ANOVA save structure	Save structure for the analysis from which the means &c are to
	be saved; default * takes the information from the most recent
	ANOVA analysis
Parameters	
MEANTERM = formula	Defines the treatment term whose means are to be saved; no
MEAN I ERM – Joi mulu	,
	default (must be specified)
OUTFILE = text	Name of the output file (dbf) to form; default * i.e. file not
	formed

G2AFACTORS procedure

 Redefines block and treatment variables as factors (R.W. Payne).

 No options

 Parameter

 FACTOR = variates or texts

 Other variates or texts to convert into factors (if required)

G2VEXPORT procedure

Forms a dbase file to transfer REML output to Agronomix Generation II (R.W. Payne).

Options	
PRINT = strings	Controls printed output (columns); default * i.e. none
REPLICATETERMS = formula	Specifies the term or terms that define the replication in the design
MODEL = formula	Indicates which model terms (fixed and/or random) are to be used in forming the predictions; default * includes all the fixed terms and relevant random terms
OMITTERMS = formula	Specifies terms to be excluded from the $MODEL$; default * i.e. none
FACTORIAL = scalar	Limit on the number of factors or variates in each term in the models specified by MODEL or OMITTERMS; default 3
PRESENT = <i>identifiers</i>	Lists factors for which averages should be taken across combinations that are present
WEIGHTS = tables	One-way tables of weights classified by factors in the model; default *
ALPHALEVEL = scalar	Alpha value to use when calculating least significant differences; default 0.05
TAIL = scalar	Number of tails in the calculation of least significant differences (1, 2); default 1
SAVE = REML save structure	Save structure for the analysis from which the means &c are to

4.1 Commands

	be saved; default * takes the information from the most recent REML analysis
Parameters	
MEANTERM = formula	Defines the treatment term whose means are to be saved; no default (must be specified)
OUTFILE = text	Name of the output file (dbf) to form; default * i.e. file not formed

HANOVA procedure

Does hierarchical analysis of variance/covariance for unbalanced data (P.W. Lane).

Options	
PRINT = string token	Which analyses to print (all, some, none); default all
INCHANNEL = scalar	Channel from which to read data; default * specifies that the data values are already stored in the factors and variates
	specified by the parameters of HANOVA
FORMAT = variate	Format for reading data; default * requests free format
ANALYSIS = <i>symmetric matrix</i>	For PRINT=some, this indicates which analyses to print
sspm = <i>SSPM</i>	Stores the corrected sums of squares and products; default *
COEFFICIENT = matrix	Stores the estimated variance and co-variance components;
	default *
Parameters	
VARIATES = <i>pointers</i>	Variates to be analysed
FACTORS = pointers	Factors defining the hierarchy, the first factor of the pointer

HBOOTSTRAP directive

Performs bootstrap analyses to assess the reliability of clusters from hierarchical cluster analysis (R.W. Payne).

defining the first stratum, and so on

Options

PRINT = string token	Controls printed output (clusters, dendrograms; default *
	i.e. none
METHOD = string token	Criterion for forming clusters (singlelink,
	nearestneighbour, completelink,
	furthestneighbour, averagelink, mediansort,
	groupaverage); default sing
CLIMIT = scalar	Similarity value below which clusters are not recorded; default
	0
UNITS = <i>text</i> or <i>variate</i>	Names to label the units of the clusters when they are printed;
	default *
MINKOWSKI = scalar	Index <i>t</i> for use with TEST=minkowski
CLUSTERS = <i>pointer</i>	Specifies or saves the clusters
REPLICATION = variate	Saves the replication of the clusters in the bootstrap samples
NDATASAMPLE = $scalar$	Number of DATA vectors to take in each sample; default takes
	the same number as supplied by the DATA parameter
NTIMES = scalar	Number of times to resample; default 100
SEED = scalar	Seed for random number generator; default continue from
	previous generation or use system clock
Parameters	provious generation of use system crock
DATA = variates or factors	The characteristics of the units to be clustered
TEST = string tokens	Test type, defining how each DATA variate or factor is treated
	in the calculation of the similarity between each unit
	(simplematching, jaccard, russellrao, dice,
	antidice, sneathsokal, rogerstanimoto, cityblock,
	manhattan, ecological, euclidean, pythagorean,
	minkowski, divergence, canberra, braycurtis,
	minkowski, divergence, camperia, prayourus,

soergel); default * ignores that variate or factor

RANGE = *scalars* Range of possible values of each DATA variate or factor; if omitted, the observed range is taken

HCLUSTER directive

Performs hierarchical cluster analysis.

Options	,
---------	---

PRINT = string tokens	Printed output required (dendrogram, amalgamations);
	default * i.e. no printing
METHOD = string token	Criterion for forming clusters (singlelink,
	nearestneighbour, completelink,
	furthestneighbour, averagelink, mediansort,
	groupaverage); default sing
CTHRESHOLD = scalar	Clustering threshold at which to print formation of clusters;
	default * i.e. determined automatically
Parameters	
SIMILARITY = symmetric matrices	Input similarity matrix for each cluster analysis
GTHRESHOLD = scalars	Grouping threshold where groups are formed from the
	dendrogram
GROUPS = factors	Stores the groups formed
PERMUTATION = variates	Permutation order of the units on the dendrogram
AMALGAMATIONS = $matrices$	To store linked list of amalgamations

HCOMPAREGROUPINGS procedure

Compares groupings generated, for example, from cluster analyses (R.W. Payne).

compares groupings generated, for e	Manipro, nom eruster unaryses (R. W. Puyne).
Options	
PRINT = string tokens	Controls printed output (indexes, tests); default inde
PLOT = string	What to plot (histogram); default *
METHOD = string tokens	Which indexes to calculate (arand, jaccard, rand); default arand
NTIMES = scalar	Number of permutations to make for the tests; default 999
Parameters	
FIRSTGROUPING = factors	First set of groupings
SECONDGROUPING = factors	Second set of groupings
ESTIMATES = <i>pointers</i>	Saves the values of the indexes calculated from the original
SEED = scalars	data set Seed for the random number generator used to make the permutations; default 0 continues from the previous generation
PERMUTATIONESTIMATES = pointers	or (if none) initializes the seed automatically Saves the values of the indexes calculated from the permuted data sets

HDISPLAY directive

Displays results ancillary to hierarchical cluster analyses: matrix of mean similarities between and within groups, a set of nearest neighbours for each unit, a minimum spanning tree, and the most typical elements from each group.

Printed output required (neighbours, tree,
typicalelements, gsimilarities); default tree
Input similarity matrix for each cluster analysis
Number of nearest neighbours to be printed
Matrix to store nearest neighbours of each unit
Indicates the groupings of the units (for calculating typical
elements and mean similarities between groups)
To store the minimum spanning tree (as a series of links and
corresponding lengths)

4.1 Commands

GSIMILARITY = symmetric matrices To store similarities between groups

HEATUNITS procedure

Calculates accumulated heat units of a temperature dependent process (R.J. Reader, R.A. Sutherland & K. Phelps).

Options

METHOD = string token	Temperature/time relationship to be used (sawtooth,
	cosine, linsine, expsine); default sawt
LATITUDE = scalar	Latitude at which temperatures were measured; default 52.205
	N {Wellesbourne, U.K.}
RATE = <i>variate</i>	Value of rate relationship at cardinal temperatures
TEMPERATURE = variate	Cardinal temperatures
PARAMETERS = variate	Parameters a, b, c (a, c in hours) for the expsine method
Parameters	
MINTEMPERATURE = variates	Minimum temperature on each day
MAXTEMPERATURE = <i>variates</i>	Maximum temperature on each day
FIRSTDAY = scalars	Day of year of first temperature recorded
HEATUNITS = variates	Development on each day

HELP directive

Provides help information about Genstat commands and functions.

No options Parameter

TOPIC = texts

Single-valued texts indicating the command or function about which the information is required

HFAMALGAMATIONS procedure

Forms an amalgamations matrix from a minimum spanning tree (R.W. Payne).

No options Parameters TREE = matrices AMALGAMATIONS = matrices

Minimum spanning tree Saves the amalgamation matrices formed from the minimum spanning trees

HFCLUSTERS procedure

Forms a set of clusters from an amalgamations matrix (R.W. Payne).

Options

CLIMIT = scalarSimilarity value below which clusters are not formed; default 0ORDERING = string tokenHow to order the clusters (join, lexicographic); defaultNCLUSTERS = scalarSaves the number of clusters that have been formedParametersAmalgamation matricesCLUSTERS = pointersSaves the clustersSIMILARITIES = variatesSaves the similarity values at which the clusters are formed

HGANALYSE procedure

Analyses data using a hierarchical or double hierarchical generalized linear model (R.W. Payne, Y. Lee, J.A. Nelder & M. Noh).

PRINT = string tokens	Controls printed output (model, fixedestimates,
	randomestimates, dispersionestimates,
	likelihoodstatistics, deviance, waldtests,
	fittedvalues, monitoring, dhgmonitoring); default
	mode, fixe, disp, like, devi, moni

242	4 Syntax summary
LMETHOD = <i>string token</i>	Whether to use exact likelihood or extended quasi likelihood to obtain the y-variate and weights for the dispersion model
	(exact, eql); default exac
SEMETHOD = string token	Method to use to calculate the se's for the dispersion estimates
0	(approximate, profilelikelihood); default appr
DMETHOD = string token	Method to use for the adjusted profile likelihood when
	calculating the likelihood statistics (automatic, choleski,
	lrv); default auto
EMETHOD = string token	Extrapolation method to use (aitken, adjustedaitken);
0	default aitk
MLAPLACEORDER = scalar	Order of Laplace approximation to use in the estimation of the
	mean model (0 or 1); default 0
DLAPLACEORDER = scalar	Order of Laplace approximation to use in the estimation of the
	dispersion components $(0, 1 \text{ or } 2)$; default 0
MAXCYCLE = scalars	Maximum number of iterations of the hierarchical generalized
	linear model fits, and maximum number of iterations in the
	fitting of the mean and dispersion models; default 99,50
EXIT = scalar	Exit status (0 for success, 1 for failure to converge)
TOLERANCE = $scalar$	Criterion for convergence; default 0.0005
ETOLERANCE = scalar	Maximum size of ratio of the original to the new estimates
	allowed in Aitken extrapolation; default 7.5
groupterm = formula	Random term to use as groups when fitting the augmented
	mean model; default * i.e. none
Parameters	
Y = variate	Response variate (must be one only)
NBINOMIAL = variate	Total numbers for binomial data
RESIDUALS = variate	Saves the residuals
FITTEDVALUES = variate	Saves the fitted values
SAVE = pointer	Saves details of the analysis for use in subsequent HGDISPLAY,
	HGKEEP, HGPLOT or HGPREDICT statements

HGDISPLAY procedure

Displays results from a hierarchical or double hierarchical generalized linear model analysis (R.W. Payne, Y. Lee, J.A. Nelder & M. Noh). **Options**

options	
PRINT = string tokens	Controls printed output (model, fixedestimates,
	randomestimates, dispersionestimates,
	likelihoodstatistics, deviance, waldtests,
	fittedvalues);
SEMETHOD = string token	Method to use to calculate the se's for the dispersion estimates
	(approximate, profilelikelihood); default appr
DMETHOD = string token	Method to use for the adjusted profile likelihood when
	calculating the likelihood statistics (automatic, choleski,
	lrv); default auto
DISPERSIONTERM = formula	Model term for output from a dispersion analysis
SAVE = pointer	Save structure (from HGANALYSE) to provide details of the
	analysis; if omitted, output is from the most recent analysis

No parameters

HGDRANDOMMODEL procedure

Defines the random model in a hierarchical generalized linear model for the dispersion in a double hierarchical generalized linear model (R.W. Payne, Y. Lee, J.A. Nelder & M. Noh).

DISTRIBUTION = string token	Distribution for the random model (beta, normal, gamma,
	inversegamma); default norm
LINK = <i>string token</i>	Link for the random model (identity, logarithm, logit,

	reciprocal); default iden
randomterm = <i>formula</i>	Random term whose dispersion is being modelled; if unset, the
	model is assumed to be for the residual dispersion parameter
	(phi)
PHIMETHOD = string token	Whether to fix or estimate the residual dispersion parameter in
	the dispersion HGLM (fix, estimate); default fix
Parameters	
TERMS = formula	Random model
DLINK = string tokens	Link for the dispersion model for each random term
	(logarithm, reciprocal); default loga
DFORMULA = formula structures	Dispersion model for each random term; default * i.e. none
DOFFSET = variates	Offset variate for dispersion model for each random term;
	default * i.e. none
LMATRIX = <i>matrices</i>	Linear transformation to apply to design matrix \mathbf{Z} of each
	random term, in order to define correlations between its
	effects; default * i.e. none
DDISPERSION = scalar	Dispersion parameter to use in the dispersion model for each
	random term; default 1
FDISPERSION = scalar	Fixed value for the dispersion parameter of each random term;
	default !s (*) i.e. dispersion is estimated

HGFIXEDMODEL procedure

Defines the fixed model for a hierarchical or double hierarchical generalized linear model (R.W. Payne, Y. Lee, J.A. Nelder & M. Noh).

Options

DISTRIBUTION = string token	Distribution of the data (binomial, poisson, normal,
	gamma); default norm
LINK = string token	Link for the fixed model (identity, logarithm, logit,
	reciprocal,probit,complementaryloglog);default iden
DLINK = string token	Link for the dispersion model (logarithm, reciprocal);
	default loga
DISPERSION = scalar	Value of dispersion parameter in calculation of s.e.s etc;
	<pre>default * for DIST=norm or gamm, and 1 for DIST=pois or bino</pre>
dterms = <i>formula</i>	Dispersion model; default * i.e. none
CONSTANT = <i>string token</i>	How to treat the constant (estimate, omit) default esti
FACTORIAL = scalar	Limit on number of variates and/or factors in a fixed model
	term; default 3
WEIGHTS = variate	Prior weights; default * i.e. 1
OFFSET = variate	Offset variate; default * i.e. none
DOFFSET = variate	Offset variate for dispersion model; default * i.e. none
DDISPERSION = scalar	Dispersion parameter to use in a dispersion model for the
	residual dispersion parameter phi; default 1
IDISPERSION = scalar	Initial value for the residual dispersion parameter phi; default
	* i.e. formed automatically
Parameter	
TERMS = formula	Fixed model

HGFTEST procedure

Calculates likelihood tests for fixed terms in a hierarchical generalized linear model (R.W. Payne, Y. Lee, J.A. Nelder & M. Noh).

PRINT = string token	Controls printed output (tests); default test
FACTORIAL = scalar	Limit on number of factors in the model terms generated from
	the TERMS parameter

244	4 Syntax summary
LMETHOD = <i>string token</i>	Whether to use exact likelihood or extended quasi likelihood to obtain the y-variate and weights for the dispersion model (exact, eql); default is to use the same setting as in the
	original analysis
DMETHOD = string token	Method to use for the adjusted profile likelihood when calculating the likelihood statistics (automatic, choleski, lrv); default auto
EMETHOD = string token	Extrapolation method to use (aitken, adjustedaitken);
	default is to use the same setting as in the original analysis
MLAPLACEORDER = scalar	Order of Laplace approximation to use in the estimation of the mean model (0 or 1); default is to use the same setting as in the
	original analysis
DLAPLACEORDER = scalar	Order of Laplace approximation to use in the estimation of the
	dispersion components (0, 1 or 2); default is to use the same
MAXCYCLE = scalars	setting as in the original analysis Maximum number of iterations of the hierarchical generalized
MAXCICLE - Scalars	linear model fits, and maximum number of iterations in the
	fitting of the mean and dispersion models; default 99,50
EXIT = scalar	Exit status (0 for success, 1 for failure to converge with any of
	the fixed terms)
TOLERANCE = $scalar$	Criterion for convergence; default is to use the same setting as
	in the original analysis
ETOLERANCE = scalar	Maximum size of ratio of the original to the new estimates
	allowed in Aitken extrapolation; default is to use the same
	setting as in the original analysis
SAVE = pointer	Save structure from the original analysis
Parameters	_
TERMS = formula	Terms to test
TESTSTATISTIC = <i>pointer</i> or <i>scalar</i>	Saves the test statistics
DF = pointer or scalar	Saves the degrees of freedom

HGGRAPH procedure

Draws a graph to display the fit of an HGLM or DHGLM analysis (R.W. Payne, Y. Lee, J.A. Nelder & M. Noh).

Type of graphics to use (lineprinter, highresolution); default high
Title for the graph; default * sets an appropriate title automatically
Which high-resolution graphics window to use; default 4 (redefined if necessary to fill the frame)
Whether to clear the graphics screen before plotting (clear, keep); default clea
What back-transformation to make (link, none, axis); default none
Whether to omit the adjusted response values (no, yes); default no
Specifies the save structure (from HGANALYSE) of the analysis from which to predict; default uses the most recent analysis
Which variate or factor to display along the x-axis; default * if GROUPS is set, otherwise INDEX is set to the first variate in the fixed model
Factor to define groups of points to display; default $*$ if INDEX is set, otherwise GROUPS is set to the first factor in the fixed model

HGKEEP procedure

Saves information from a hierarchical or double hierarchical generalized linear model analysis (R.W. Payne, Y. Lee, J.A. Nelder & M. Noh). **Ontions**

Options	
MODELTYPE = string token	Type of model from which to save information (mean,
	dispersion); default mean
RMETHOD = string token	Type of residuals to save using the RESIDUALS parameter
	(deviance, Pearson, simple); default devi
DMETHOD = string token	Method to use for the adjusted profile likelihood when
	calculating the likelihood statistics (automatic, choleski,
	lrv); default auto
IGNOREFAILURE = <i>string token</i>	Whether to save information even if the fitting of the HGLM
_	failed to converge (yes, no); default no
SAVE = pointer	Save structure (from HGANALYSE) to provide details of the
	analysis; if omitted, information is saved from the most recent
	analysis
Parameters	
randomterm = formula	Random model terms from whose analysis the information is
	to be saved
dhgrandomterm = <i>formula</i>	Random model terms in a DHGLM from whose (HGLM)
	analysis the information is to be saved
RESIDUALS = variates	Residuals
FITTEDVALUES = variates	Fitted values
LEVERAGES = variates	Leverages
ESTIMATES = variates	Estimates of parameters
SE = variates	Standard errors of the estimates
VCOVARIANCE = <i>symmetric matrices</i>	Variance-covariance matrix of each set of estimates
DEVIANCE = scalars or tables	Scaled deviances (in a table) for a mean model, or residual
	deviance (in a scalar) for a dispersion model
DF = scalars or tables	Residual degrees of freedom
ITERATIVEWEIGHTS = variates	Iterative weights
LINEARPREDICTOR = variates	Linear predictors
YADJUSTED = variates	Adjusted responses
LIKELIHOODSTATISTICS = variates	Likelihood statistics
LDF = variates	Numbers of fixed and random parameters in the mean and
	dispersion models

HGNONLINEAR procedure

Defines nonlinear parameters for the fixed model of a hierarchical generalized linear model (R.W. Payne, Y. Lee, J.A. Nelder & M. Noh).

CALCULATION = <i>expression structures</i>	Calculation of explanatory variates involving nonlinear
	parameters
METHOD = string token	Algorithm for fitting the nonlinear model (GaussNewton,
	NewtonRaphson, FletcherPowell); default Gaus
VECTORS = variates	Vectors involved in the calculations (data vectors or factors or
	derived vectors that appear in the fixed model)
Parameters	
PARAMETER = scalars	Nonlinear parameters in the model
LOWER = scalars	Lower bound for each parameter
UPPER = <i>scalars</i>	Upper bound for each parameter
STEPLENGTH = scalars	Initial step length for each parameter
INITIAL = scalars	Initial value for each parameter
DELTA = scalars	Parameter increment to use when calculating numerical
	derivatives

HGPLOT procedure

Produces model-checking plots for a hierarchical or double hierarchical generalized linear model analysis (R.W. Payne, Y. Lee, J.A. Nelder & M. Noh).

Options

- I	
MODELTYPE = string token	Type of model for which plots are required (mean,
	dispersion); default mean
RANDOMTERM = formula	Random term whose residuals are to be plotted; default * i.e. the residuals from the full model
DHGRANDOMTERM = <i>formula</i>	Random model term in a DHGLM whose residuals are to be
5	plotted; default *
RMETHOD = string token	Type of residual to use (deviance, Pearson, simple);
C	default devi
INDEX = variate or factor	X-values to use for an index plot; default ! (1, 2)
GRAPHICS = <i>string token</i>	What type of graphics to use (lineprinter,
0	highresolution); default high
TITLE = text	Overall title for the plots; if unset, the identifier of the y-
	variate is used
SAVE = pointer	Specifies the analysis (by HGANALYSE) from which the
-	residuals and fitted values are to be taken; by default they are
	taken from the most recent analysis
Parameters	·
METHOD = string tokens	Types of graph (up to four out of the six possible) to be plotted
0	(histogram, fittedvalues, absresidual, normal,
	halfnormal, index); default hist, fitt, norm, absr
PEN = <i>scalars</i> , <i>variates</i> or <i>factors</i>	Pen(s) to use for each plot
- 0	× / ±

HGPREDICT procedure

Forms predictions from a hierarchical or double hierarchical generalized linear model analysis (R.W. Payne, Y. Lee, J.A. Nelder & M. Noh).

PRINT = string token	What to print (description, predictions, se, sed, vcovariance); default desc, pred, se
COMBINATIONS = string token	Which combinations of factors in the current model to include (full, present, estimable); default esti
ADJUSTMENT = string token WEIGHTS = table	Type of adjustment (marginal, equal); default marg Weights classified by some or all of the factors in the model;
	default *
OFFSET = scalar	Value of offset on which to base predictions; default mean of offset variate
METHOD = string token	Method of forming margin (mean, total); default mean
ALIASING = string token	How to deal with aliased parameters (fault, ignore); default faul
BACKTRANSFORM = <i>string token</i>	What back-transformation to apply to the values on the linear scale, before calculating the predicted means (link, none); default none
NOMESSAGE = <i>string tokens</i>	Which warning messages to suppress (dispersion, nonlinear); default *
NBINOMIAL = $scalar$	Supplies the total number of trials to be used for prediction with a binomial distribution (providing a value <i>n</i> greater than one allows predictions to be made of the number of "successes" out of <i>n</i> , whereas the value 1 predicts the proportion of successes); default 1
PREDICTIONS = <i>table</i> or <i>scalar</i>	To save the predictions; default *
SE = table or scalar	To save standard errors of predictions; default *
SED = <i>symmetric matrix</i>	To save matrices of standard errors of differences between

VCOVARIANCE = symmetric matrix SAVE = pointer	predictions; default * To save variance-covariance matrices of predictions; default * Specifies the save structure (from HGANALYSE) of the analysis from which to predict; default uses the most recent analysis
Parameters	
CLASSIFY = vectors	Variates and/or factors to classify table of predictions
LEVELS = <i>variates</i> or <i>scalars</i>	To specify values of variates, levels of factors
NEWFACTOR = <i>identifiers</i>	Identifiers for new factors that are defined when LEVELS are specified

HGRANDOMMODEL procedure

Defines the random model for a hierarchical or double hierarchical generalized linear model (R.W. Payne, Y. Lee, J.A. Nelder & M. Noh).

Options

DISTRIBUTION = string token	Distribution for the random model (beta, normal, gamma,
	inversegamma); default norm
LINK = <i>string token</i>	Link for the random model (identity, logarithm, logit,
	reciprocal); default iden
Parameters	
TERMS = formula	Random model
DLINK = string tokens	Link for the dispersion model for each random term
	(logarithm, reciprocal); default loga
DFORMULA = <i>formula structure</i>	Dispersion model for each random term; default * i.e. none
DOFFSET = variates	Offset variate for dispersion model for each random term;
	default * i.e. none
LMATRIX = matrices	Linear transformation to apply to design matrix Z of each
	random term, in order to define correlations between its
	effects; default * i.e. none
DDISPERSION = scalar	Dispersion parameter to use in the dispersion model for each
	random term; default 1
FDISPERSION = scalar	Fixed value for the dispersion parameter of each random term;
	default !s (*) i.e. dispersion is estimated
IDISPERSION = scalar	Initial value for the dispersion parameter for each random
	term; default * i.e. formed automatically
	· · · · · · · · · · · · · · · · · · ·

HGRTEST procedure

Calculates likelihood tests for random terms in a hierarchical generalized linear model (R.W. Payne, Y. Lee, J.A. Nelder & M. Noh).

Options	
PRINT = string token	Controls printed output (tests); default test
LMETHOD = string token	Whether to use exact likelihood or extended quasi likelihood to obtain the y-variate and weights for the dispersion model (exact, eql); default is to use the same setting as in the original analysis
DMETHOD = string token	Method to use for the adjusted profile likelihood when
	<pre>calculating the likelihood statistics (automatic, choleski, lrv); default auto</pre>
EMETHOD = string token	Extrapolation method to use (aitken, adjustedaitken); default is to use the same setting as in the original analysis
MLAPLACEORDER = scalar	Order of Laplace approximation to use in the estimation of the mean model (0 or 1); default is to use the same setting as in the original analysis
DLAPLACEORDER = scalar	Order of Laplace approximation to use in the estimation of the dispersion components (0, 1 or 2); default is to use the same setting as in the original analysis
MAXCYCLE = scalars	Maximum number of iterations of the hierarchical generalized

linear model fits, and maximum number of iterations in the fitting of the mean and dispersion models; default 99,50 Exit status (0 for success, 1 for failure to converge for any of EXIT = scalarthe random terms) TOLERANCE = scalar Criterion for convergence; default is to use the same setting as in the original analysis ETOLERANCE = scalar Maximum size of ratio of the original to the new estimates allowed in Aitken extrapolation; default is to use the same setting as in the original analysis GROUPTERM = formula Random term to use as groups when fitting the augmented mean model; default is to use the same setting as in the original analysis Save structure from the original analysis SAVE = *pointer* **Parameters** TERMS = *formula* Terms to test Saves the test statistics TESTSTATISTIC = *pointer* or *scalar* Saves the degrees of freedom DF = *pointer* or *scalar*

4 Syntax summary

HGSTATUS procedure

Displays the current HGLM model definitions (R.W. Payne, Y. Lee, J.A. Nelder & M. Noh). **Option**

- I	
SAVE = $pointer$	Save structure (from HGANALYSE) to provide details of the
	HGLM; if omitted, information is printed for the most recently
	defined or fitted HGLM

No parameters

HGWALD procedure

Prints or saves Wald tests for fixed terms in an HGLM (R.W. Payne, Y. Lee, J.A. Nelder & M. Noh).

Options

Options	
PRINT = string token	Controls printed output (waldtests); default wald
FACTORIAL = scalar	Limit on number of factors in the model terms generated from
	the TERMS parameter; default 3
SAVE = $pointer$	Specifies the save structure (from HGANALYSE) of the analysis
_	from which to calculate the tests; default uses the most recent
	analysis
Parameters	
TERMS = formula	Model terms for which tests are required
WALDSTATISTIC = scalar or pointer to scalars	
	Saves Wald statistics
DF = scalar or pointer to s	scalars Saves d.f. of Wald statistics

HISTOGRAM directive

Produces histograms of data on the terminal or line printer. This directive was replaced in Release 10 by the directive LPHISTOGRAM (with exactly the same options and parameters). It is currently retained as a synonym of LPHISTOGRAM, but may be removed in a future release.

HLIST directive

Lists the data matrix in abbreviated form.

Defines groupings of the units; used to split the printed table at
appropriate places and to label the groups; default *
Names for the rows (i.e. units) of the table; default *
The data variables

TEST = string tokens	Test type, defining how each variable is treated in the calculation of the similarity between each unit
	(simplematching, jaccard, russellrao, dice,
	antidice, sneathsokal, rogerstanimoto, cityblock,
	manhattan, ecological, euclidean, pythagorean,
	minkowski, divergence, canberra, braycurtis,
	soergel); default * ignores that variable
RANGE = $scalars$	Range of possible values of each variable; if omitted, the observed range is taken

HPCLUSTERS procedure

Prints a set of clusters (R.W. Payne). nti.

Option	
--------	--

	Nouses to see fourth a surite in the alcostory
UNITS = variate or text	Names to use for the units in the clusters
Parameters	
CLUSTERS = <i>pointers</i>	Clusters to print
EXTRA = pointers	Extra information to print

HREDUCE directive

Forms a reduced similarity matrix (referring to the GROUPS instead of the original units).

Options	
PRINT = string token	Printed output required (similarities); default * i.e. no printing
METHOD = string token	Method used to form the reduced similarity matrix (first,
	last, mean, minimum, maximum, zigzag); default firs
Parameters	

Parameters

SIMILARITY = symmetric matrices	Input similarity matrix
REDUCEDSIMILARITY = symmetric	matrices

, i i i i i i i i i i i i i i i i i i i	Output (reduced) similarity matrix
GROUPS = factors	Factor defining the groups
PERMUTATION = variates	Permutation order of units (for METHOD = firs, last or
	zigz)

HSUMMARIZE directive

Forms and prints a group by levels table for each test together with appropriate summary statistics for each group.

Option

Option	
GROUPS = factor	Factor defining the groups; no default i.e. this option must be specified
Parameters	
DATA = variates or factors	The data variables
TEST = string tokens	Test type, defining how each variable is treated in the
-	calculation of the similarity between each unit
	(simplematching, jaccard, russellrao, dice,
	antidice, sneathsokal, rogerstanimoto, cityblock,
	manhattan, ecological, euclidean, pythagorean,
	minkowski, divergence, canberra, braycurtis,
	soergel); default * ignores that variable
RANGE = $scalars$	Range of possible values of each variable; if omitted, the
	observed range is taken

IDENTIFY procedure

Identifies an unknown specimen from a defined set of objects (R.W. Payne).

Options

PRINT = string tokens	Controls printed output (identification, transcript);
-----------------------	---

250	4 Syntax summary
	default iden, tran
METHOD = string token	Type of run (batch, interactive); if this is not set
C C	IDENTIFY checks whether the run of Genstat itself is batch or
	interactive
TAXA = $text$ or $factor$	Names for the taxa (i.e. the objects); default uses the positive
-	integers 1, 2
NMISTAKE = $scalar$	Number of mistakes to allow for; default 0
IDENTIFICATION = text	Saves the names of the taxa that are identified; default * i.e.
	not saved
DIFFERENCES = variate	Saves the number of differences between the observed
	character states and those that can be displayed by each taxon;
	default * i.e. not saved
Parameters	
CHARACTER = <i>factors</i> or <i>tables</i>	Define the characteristics of the taxa; must be set
OBSERVATION = scalars or texts	Can define an observation for each character; default * i.e.
	none
COST = scalars	Costs of observing each character; default 1
IF directive	

Introduces a block-if contr	ol structure.
No options	
Parameter	
expression	Logical expression, indicating whether or not to execute the
-	first set of statements.

IFUNCTION procedure

Estimates implicit and/or explicit functions of parameters (W.M. Patefield).

Options

PRINT = string token	What to print (estimates, correlations, monitoring);
	default esti
NOMESSAGE = <i>string token</i>	Which warning messages to suppress (parameter,
	convergence); default *
NPARAMETER = scalar	Number of parameters; default zero
MAXCYCLE = scalar	Maximum number of iterations; default 20
STRINGENCY = scalar	Stringency of tests for convergence, 0,1,2etc; default 5
EXITCONTROL = <i>string token</i>	Control for exit on fault detection (job, procedure); default
	job for batch jobs, proc for interactive
ZCALCULATION = <i>expression structures</i>	Specify the calculation of ZERO and DZBIMPLICIT
DZPCALCULATION = <i>expression structure</i>	res
	Specify the calculation of DZBPARAMETER
ECALCULATION = <i>expression structures</i>	Specify the calculation of EXPLICIT, DEBPARAMETER and DEBIMPLICIT

Parameters

IMPLICIT = *variate* or *pointer to scalars*

Implicit functions
Initial values for IMPLICIT functions
Lower bounds to IMPLICIT functions; default -10^{10}
Upper bounds to IMPLICIT functions; default +10 ¹⁰
Variance-covariance matrix of parameter estimates
Equations defining implicit functions (values calculated by
ZCALCULATION)
First derivatives of equations ZERO with respect to implicit
functions IMPLICIT (values calculated by ZCALCULATION);
rows correspond to ZERO, columns correspond to IMPLICIT
First derivatives of equations ZERO with respect to parameters
(must not be set for NPARAMETER=0; values calculated by

	DZPCALCULATION); rows correspond to ZERO, columns to
	parameters
DIBPARAMETER = <i>matrix</i>	First derivatives of IMPLICIT functions with respect to
	parameters (must not be set for NPARAMETER=0); rows
	correspond to IMPLICIT, columns correspond to parameters
EXPLICIT = variate or pointer to scala	rs
	Explicit functions of parameters and/or implicit functions
	(values calculated by ECALCULATION)
DEBPARAMETER = matrix	First partial derivatives of EXPLICIT functions with respect to
	parameters (values calculated by ECALCULATION); rows
	correspond to EXPLICIT, columns correspond to parameters
DEBIMPLICIT = matrix	First partial derivatives of EXPLICIT functions with respect to
	IMPLICIT functions (values calculated by ECALCULATION);
	rows correspond to EXPLICIT, columns correspond to
	IMPLICIT
dfbparameter = <i>matrix</i>	First derivatives of ESTIMATES with respect to parameters;
	rows correspond to ESTIMATES, columns correspond to
	parameters
ESTIMATES = variate	Estimates of IMPLICIT and EXPLICIT functions
SE = variate	Standard errors of ESTIMATES
CORRELATIONS = <i>symmetric matrix</i>	Correlation matrix of ESTIMATES
FCOVARIANCE = <i>symmetric matrix</i>	Variance-covariance matrix of ESTIMATES

IMPORT procedure

Reads data from a foreign file format and loads it or converts it to a spreadsheet file (D.B. Baird).

• •	nti	u	115

PRINT = string token	What to print (catalogue, summary); default cata
OUTTYPE = string token	Output file type (GEN, GSH, GWB, XLS, XLSX, TXT, CSV,
	SHEETS); default GWB
METHOD = string token	Whether to load data into the Genstat server after creating the
	file, or merely to create the file (create, load); default load
IMETHOD = string token	How identifiers are to be specified for the columns (read,
	supply, none, overlay); default supply if COLUMNS is set
	(and specifies names rather than just types), otherwise read
ENDSTATEMENT = string token	Ending statement for a type GEN output file (return,
	endbreak); default retu
SPSSMV = string token	What to do with SPSS missing value codes (ignore,
	convert); default conv
MISSING = text	What labels represent missing values in Excel, Quattro or
	Lotus files; default ' * '
FORDER = string token	The order in which to define the labels or levels of a factor
	(sorted, unsorted); default sort
TEXTCONVERSION = <i>string token</i>	How to convert text to numbers for the columns (strict,
	single, common, standard, lax); default stan
KEEPEMPTY = string tokens	Whether to retain any empty rows or columns found in the data
	(rows, columns, none); default none
NAMEROW = $scalar$	The row number within an Excel or Quattro spreadsheet which
	contains the column names (IMETHOD must be unset or set to
	read); default, the first row in CELLRANGE
EMETHOD = string token	Whether to read column descriptions/extra from Excel,
	SigmaPlot or Quattro spreadsheets (read, none); default
	none
EXTRAROW = scalar	The row number within an Excel or Quattro spreadsheet which
	contains the column descriptions (EMETHOD must be set to
	read); default, the second row in CELLRANGE
PREFIX = text	The string with which to prefix numerical column names;

4 Syntax summary

	default '%'
TEMPMISSING = string token	Whether to read temporarily missing values as missing (yes,
INOPTIONS = <i>text</i>	no); default no Optional input file arguments to be passed to the
	Dataload.dll
OUTOPTIONS = text	Optional output file arguments to be passed to the Dataload.dll
RGBMETHOD = <i>string token</i>	How to read colour values (combined, separate, matrix); default sepa
SEPARATORS = <i>text</i>	Alternative separators to use in text or csv files
SCOPE = <i>string token</i>	Whether to create the data locally in a procedure that is using IMPORT, or globally in the whole program (local, global); default loca
IPREFIX = text	Prefix to use with unnamed columns, default 'C'
TRANSPOSE = <i>string token</i>	Whether to transpose the rows and columns of the input file (yes, no); default no
UNICODE = string token	What to do with Unicode characters found e.g. in Excel XLSX input files (utf8, typeset, ascii, remove); default utf8
COLUNICODENAMES = string token	How to convert Unicode column names (suffix, extra, ignore) default suff
UNINAME = $text$	Name of the pointer for Unicode column names used as
[†] XLSCONTENT = <i>string tokens</i>	suffixes; default 'C' What content to read from an Excel XLSX file (values,
ALSCONTENT – sinng lokens	formulae, forecolour, backcolour, fontname, style, size); default valu
Parameters	
FILE = texts	Input file or URL to be read
<pre>FILE = texts OUTFILE = texts</pre>	Name of the output file to be created; if this is not provided a temporary file will be created, and then deleted if the data are
	Name of the output file to be created; if this is not provided a
OUTFILE = texts	Name of the output file to be created; if this is not provided a temporary file will be created, and then deleted if the data are loaded Name of a spreadsheet worksheet or named range, or number of a worksheet within the file; default is the first sheet in the file Cell range within a worksheet, giving the top left and bottom right cell in the format XXNN: XXNN where XX = A - IV, NN = 1
OUTFILE = <i>texts</i> SHEETNAME = <i>texts</i> or <i>scalars</i>	 Name of the output file to be created; if this is not provided a temporary file will be created, and then deleted if the data are loaded Name of a spreadsheet worksheet or named range, or number of a worksheet within the file; default is the first sheet in the file Cell range within a worksheet, giving the top left and bottom right cell in the format XXNN: XXNN where XX = A - IV, NN = 1 - 64384; default * requests all data on the sheet Names and/or type codes for the columns read (the type of column can be forced by ending the column name, if supplied, with the code ! for a factor, # for a variate, and \$ for a text),
OUTFILE = texts SHEETNAME = texts or scalars CELLRANGE = texts COLUMNS = texts	 Name of the output file to be created; if this is not provided a temporary file will be created, and then deleted if the data are loaded Name of a spreadsheet worksheet or named range, or number of a worksheet within the file; default is the first sheet in the file Cell range within a worksheet, giving the top left and bottom right cell in the format XXNN: XXNN where XX = A - IV, NN = 1 - 64384; default * requests all data on the sheet Names and/or type codes for the columns read (the type of column can be forced by ending the column name, if supplied,
OUTFILE = texts SHEETNAME = texts or scalars CELLRANGE = texts	 Name of the output file to be created; if this is not provided a temporary file will be created, and then deleted if the data are loaded Name of a spreadsheet worksheet or named range, or number of a worksheet within the file; default is the first sheet in the file Cell range within a worksheet, giving the top left and bottom right cell in the format XXNN : XXNN where XX = A - IV, NN = 1 - 64384; default * requests all data on the sheet Names and/or type codes for the columns read (the type of column can be forced by ending the column name, if supplied, with the code ! for a factor, # for a variate, and \$ for a text), using a name of '*' will cause a column to be dropped Saves the identifiers of the columns
OUTFILE = texts SHEETNAME = texts or scalars CELLRANGE = texts COLUMNS = texts ISAVE = pointers	 Name of the output file to be created; if this is not provided a temporary file will be created, and then deleted if the data are loaded Name of a spreadsheet worksheet or named range, or number of a worksheet within the file; default is the first sheet in the file Cell range within a worksheet, giving the top left and bottom right cell in the format XXNN: XXNN where XX = A - IV, NN = 1 - 64384; default * requests all data on the sheet Names and/or type codes for the columns read (the type of column can be forced by ending the column name, if supplied, with the code ! for a factor, # for a variate, and \$ for a text), using a name of '*' will cause a column to be dropped Saves the identifiers of the columns Contents of a cell in a spreadsheet file or a line in a text file from which to start reading Contents of a cell in a spreadsheet file or a line in a text file at
OUTFILE = texts SHEETNAME = texts or scalars CELLRANGE = texts COLUMNS = texts ISAVE = pointers START = texts	Name of the output file to be created; if this is not provided a temporary file will be created, and then deleted if the data are loaded Name of a spreadsheet worksheet or named range, or number of a worksheet within the file; default is the first sheet in the file Cell range within a worksheet, giving the top left and bottom right cell in the format XXNN : XXNN where XX = A - IV, NN = 1 - 64384; default * requests all data on the sheet Names and/or type codes for the columns read (the type of column can be forced by ending the column name, if supplied, with the code ! for a factor, # for a variate, and \$ for a text), using a name of ' * ' will cause a column to be dropped Saves the identifiers of the columns Contents of a cell in a spreadsheet file or a line in a text file from which to start reading Contents of a cell in a spreadsheet file or a line in a text file at which to end reading Extra information returned by some file formats (currently
OUTFILE = texts SHEETNAME = texts or scalars CELLRANGE = texts COLUMNS = texts ISAVE = pointers START = texts END = texts	Name of the output file to be created; if this is not provided a temporary file will be created, and then deleted if the data are loaded Name of a spreadsheet worksheet or named range, or number of a worksheet within the file; default is the first sheet in the file Cell range within a worksheet, giving the top left and bottom right cell in the format XXNN : XXNN where XX = A - IV, NN = 1 - 64384; default * requests all data on the sheet Names and/or type codes for the columns read (the type of column can be forced by ending the column name, if supplied, with the code ! for a factor, # for a variate, and \$ for a text), using a name of '*' will cause a column to be dropped Saves the identifiers of the columns Contents of a cell in a spreadsheet file or a line in a text file from which to start reading Contents of a cell in a spreadsheet file or a line in a text file at which to end reading Extra information returned by some file formats (currently only population type from QTL location files)
OUTFILE = texts SHEETNAME = texts or scalars CELLRANGE = texts COLUMNS = texts ISAVE = pointers START = texts END = texts ANCILLARY = texts	Name of the output file to be created; if this is not provided a temporary file will be created, and then deleted if the data are loaded Name of a spreadsheet worksheet or named range, or number of a worksheet within the file; default is the first sheet in the file Cell range within a worksheet, giving the top left and bottom right cell in the format XXNN : XXNN where XX = A - IV, NN = 1 - 64384; default * requests all data on the sheet Names and/or type codes for the columns read (the type of column can be forced by ending the column name, if supplied, with the code ! for a factor, # for a variate, and \$ for a text), using a name of ' * ' will cause a column to be dropped Saves the identifiers of the columns Contents of a cell in a spreadsheet file or a line in a text file from which to start reading Contents of a cell in a spreadsheet file or a line in a text file at which to end reading Extra information returned by some file formats (currently

INPUT directive

Specifies the input file from which to take further statements. **Options**

PRINT = string tokens	What output to g	generate fro	om the statement	s in the file
	(statements,	macros,	procedures,	unchanged);

252

	default stat
REWIND = string token	Whether to rewind the file (yes, no); default no
Parameter	
scalar	Channel number of input file

INSIDE procedure

Determines whether points lie within a specified polygon (S.A. Harding).

Option TOLERANCE = scalar Value used for testing against zero; default 10⁻⁴ **Parameters** Y = variatesY coordinates of points X coordinates of points X = variatesYPOLYGON = variates Y coordinates of polygon XPOLYGON = variates X coordinates of polygon INSIDE = variates Indicate whether points are inside (1) the polygon, outside (-1) or on an edge (0)

INTERPOLATE directive

Interpolates values at intermediate points.

Options	
CURVE = string token	Type of curve to be fitted to calculate the interpolated value
	(linear, cubic); default line
METHOD = string token	Type of interpolation required (interval, value,
	missing): for METHOD=valu, values are interpolated for each
	point in the NEWINTERVAL variate and stored in the NEWVALUE
	variate; for METHOD=inte, points are estimated in the
	NEWINTERVAL variate for the observations in the NEWVALUE
	variate; while for METHOD=miss, the NEWVALUE and
	NEWINTERVAL lists are irrelevant, INTERPOLATE now
	interpolates for missing values in the OLDVALUE and
	OLDINTERVAL variates (except those missing in both variates);
	default inte
Parameters	
OLDVALUES = variates	Observations from which interpolation is to be done
NEWVALUES = variates	Results of each interpolation
OLDINTERVALS = variates	Points at which each set of OLDVALUES was observed
NEWINTERVALS = variates	Points for each set of NEWVALUES

IRREDUNDANT directive Forms irredundant test sets for the efficient identification of a set of objects. **Options** PRINT = string tokens Controls printed output (numbers, diagram, notdistinguished, messages); default numb, diag, notd, mess BESTSET = pointer Saves the best set Saves details of the available sets SETS = matrixNOTDISTINGUISHED = matrix Saves details of the objects that cannot be distinguished Algorithm to use (exact, sequential); default exac METHOD = *string token* TAXONNAMES = *text*, *variate* or *factor* Defines labels for the objects (or taxa) to be identified; default uses the unit labels vector of the CHARACTER factors GROUPS = factor Defines groupings of the objects so that the sets are constructed to distinguish only between the objects that belong to different groups; default constructs sets to distinguish between individual objects If this is specified, sets are constructed just to distinguish the OBJECT = *scalar* or *text*

254	4 Syntax summary
	specified object (or <i>taxon</i>) from the other objects
NDISTINCTIONS = scalar	Number of factors required in each set to distinguish between each pair of objects; default 1
MAXPREFERENCE = $scalar$	Maximum preference of the factors to be included in the sets
MAXSIZE = $scalar$	Limit on number of factors in a set (sets containing more than this are discarded); default * i.e. none
NPRINT = scalar	Number of sets to print (a positive number specifies the number to print, a negative number sets a tolerance on the difference between the sizes of the sets printed and the size of the best set); default * prints them all
NSAVE = scalar	Number of sets to save in the SETS matrix; default * saves them all
LIMSETS = variate	Variate containing two numbers n_1 and n_2 , if this is specified then every time that there are more than n_1 sets under construction using the exact method, the sets are arranged in order of increasing size and all sets containing more factors than set n_2 are deleted
DISTINCTIONS = <i>string token</i>	Whether or not to store the distinctions or recalculate them at every stage in the exact algorithm (store, calculate); default stor
CRITERION = <i>string token</i>	Function to be use to select factors by the sequential method (ndistinctions, weightedndistinctions); default ndis
MAXCYCLE = scalar	Maximum number of improvement cycles to perform during the sequential method; default 20
EQUIVALENCE = scalar	Value for determining equivalence of the selection criteria of tests selected during the sequential method
Parameters	
CHARACTER = <i>identifiers</i>	Factors, and/or tables classified by a single factor, defining the properties of the objects to to be identified
COST = scalars	Cost associated with each factor; default 1
PREFERENCE = scalar	Preference rating for each factor (1 representing most preferred etc.); default 1
VARIABLE = <i>scalar</i> or <i>text</i>	Factor level used to represent variable information; default is to use a missing value
INAPPLICABLE = <i>scalar</i> or <i>text</i>	Factor level used to indicate that the information provided by that factor is inapplicable for a particular object

JACKKNIFE procedure

Produces Jackknife estimates and standard errors (R.W. Payne).

Options

PRINT = string token Controls printed output (estimates, vcovariance); default esti Data vectors from which the statistics are to be calculated DATA = variates, factors or texts ANCILLARY = *any type* Other relevant information needed to calculate the statistics Saves the variance-covariance matrix for the statistics VCOVARIANCE = *symmetric matrix* **Parameters** Texts, each containing a single line, to label the statistics LABEL = textsSaves the Jackknife estimate for each statistic ESTIMATE = scalars SE = scalars Saves Jackknife estimates of the standard errors Saves the Jackknife pseudo-values PSEUDOVALUES = *variates* Saves the acceleration parameter for bias-corrected and ACCELERATION = scalars accelerated bootstrap confidence intervals

4.1 Commands

JOB directive

Starts a Genstat job.

Options

INPRINT = string tokens	Printing of input as in PRINT option of INPUT (statements,
	macros, procedures, unchanged); default unch
OUTPRINT = string tokens	Additions to output as in PRINT option of OUTPUT (dots,
	page, unchanged); default unch
DIAGNOSTIC = <i>string tokens</i>	Defines the least serious class of Genstat diagnostic which
	<pre>should still be generated (messages, warnings, faults,</pre>
	extra, unchanged); default unch
ERRORS = <i>scalar</i>	Limit on number of error diagnostics that may occur before the
	job is abandoned; default * i.e. no change
PROMPT = text	Characters to be printed for the input prompt
WORDLENGTH = <i>string token</i>	Length of word (8 or 32 characters) to check in identifiers,
	directives, options, parameters and procedures (long, short);
	default * i.e. no change
Parameter	
text	Name to identify the job

JOIN procedure

Joins or merges two sets of vectors together, based on the values of sets of classifying keys (C.F. Johnston & D.B. Baird).

Options

NINDEX = scalar	Number of index vectors in structures (up to 10); default 1
METHOD = string token	Type of join (inner, left, right, full); default full
REPEATS = string token	How to handle repeats of matches (combinations, single);
-	default sing outputs one row per match
INCLUDE = string token	How to handle restrictions on the input vectors (all,
-	nonrestricted); default all uses all the data rows
SORT = string token	Whether NEWVECTORS should be sorted on the index vectors
-	(ascending, descending, unsorted); default unsorted
	keeps the same ordering as the input sets
Parameters	
LEFTVECTORS = <i>pointer</i>	Pointer to a list of vectors in left set (keys and variables)
RIGHTVECTORS = <i>pointer</i>	Pointer to a list of vectors in right set (keys and variables)
NEWVECTORS = pointer	Pointer to a list of output vectors (keys and variables)

KALMAN procedure

Calculates estimates from the Kalman filter (A.I. Glaser).

Option

Option		
PRINT = string tokens	Controls printed output (xpredicted, xfiltered,	
-	deviance, residuals, gain, varpredictions,	
	varfiltered, varresiduals); default *	
Parameters	variii:0010a, vario01aaa10), uuluu	
Y = variates, matrices or pointers	Time series data	
YTRANSITIONMATRIX = scalars, matric	ces or pointers	
	Observation transition matrix, mapping the relationship	
	between the current value of the state vector and the	
	observation	
_		
YVCOVARIANCE = scalars, symmetric matrices or pointers		
	Observation error covariance matrix	
XSTATETRANSITIONMATRIX = scalars.	, matrices or pointers	
	State transition matrix, mapping the relationship between the	
	current value of the state vector and its previous value	
	1	
BXVCOVARIANCE = <i>scalars</i> , <i>matrices</i> or	pointers	
	State noise coefficient matrix	

4 Syntax summary

XVCOVARIANCE = scalars, symmetric matrices or pointers		
	State error covariance matrix	
MEANINITIAL = <i>scalars</i> , <i>variates</i> or <i>matrices</i>		
	Initial value of the mean of the state vector	
VARINITIAL = scalars or symmetric ma	trices	
	Initial value of the variance-covariance matrix of the state	
	vector	
DEVIANCE = scalars	To save the deviance of the model	
XPREDICTED = matrices	Saves the predicted (a priori) state estimate matrix	
XFILTERED = matrices	Saves the filtered (a posteriori) state estimate matrix	
RESIDUALS = <i>matrices</i>	Saves the matrix of residuals	
GAIN = pointers	Saves the Kalman gain matrix at each iteration	
VARPREDICTIONS = <i>pointers</i>	Saves the variances of the predicted state estimate matrix at each iteration	
VARFILTERED = pointers	Saves the variances of the filtered state estimate matrix at each iteration	
VARRESIDUALS= <i>pointers</i>	Saves the variances of the residuals at each iteration	
SAVE = pointers	Save structure which provides information for use in DKALMAN	

KAPLANMEIER procedure

Calculates the Kaplan-Meier estimate of the survivor function (J.T.N.M. Thissen). **Options**

Options	
PRINT = string tokens	Whether to print the estimates or to display the Kaplan-Meier
	estimate in a graph (estimate, mean, quantiles, summary,
	graph); default esti, grap
GRAPHICS = <i>string token</i>	Type of graphics to use (lineprinter, highresolution);
	default high
TITLE = text	General title for the graph; default *
WINDOW = scalar	Window number for the high-resolution graph; default 1
KEYWINDOW = scalar	Window number for the key (zero for no key); default 2
SCREEN = string token	Whether to clear the screen before plotting or to continue
	plotting on the old screen (clear, keep); default clea
PROBABILITY = scalar	Probability level of the confidence interval for the Kaplan-
	Meier estimates; default 0.95
XLOWER = scalar	Lower bound for x-axis; default 0
XUPPER = scalar	Upper bound for x-axis; default * i.e. a value slightly larger
	than the maximum of the TIME parameter (or EVENT parameter
	if TIME is not set) is used
PLOT = string tokens	What additional plotting features to include
	(referenceline, censored); default * i.e. none
PERCENTILES = <i>variate</i> or <i>scalar</i>	Percentiles at which to estimate quantiles of survival times;
	default 25,50,75
Parameters	
TIME = variates	Observed timepoints
CENSORED = variates	Variate specifying whether the corresponding element of TIME
	is censored (1) or not (0); default is to assume no censoring
GROUPS = <i>factors</i>	Factor specifying the different groups for which the survivor
	function is estimated
EVENT = variates	Saves the distinct TIME values when TIME is set; otherwise
	supplies an input variate specifying the endpoint of each
	interval
NDEATH = variates	Saves the number of deaths at each EVENT when TIME is set;
	otherwise supplies an input variate specifying the number of
	deaths in each interval
NATRISK = variates	Saves the number of units at risk at each EVENT when TIME is
	set; otherwise supplies an input variate with the number at risk

256

	in each interval
ESTIMATE = variates	Saves the Kaplan-Meier estimates of the survivor function
NEWGROUPS = $factors$	Saves the grouping of the EVENT, NDEATH, NATRISK and
	ESTIMATE variates when TIME is set

KAPPA procedure

Calculates a kappa coefficient of agreement for nominally scaled data (A.J. Rook).

PRINT = string token	Whether to print kappa and its associated information (test); default test
Parameters	
DATA = tables	Data sets, each consisting of an object × category table whose entries are the number of judges assigning the <i>i</i> th object to the <i>i</i> th extension
STATISTIC = scalars	<i>j</i> th category Save the value of kappa for each data table
	11
VARIANCE = $scalars$	Save the corresponding variances

KCONCORDANCE procedure

Calculates Kendall's Coefficient of Concordance; synonym CONCORD (S.J. Welham, N.M. Maclaren & H.R. Simpson).

$\mathbf{\Omega}$		
())	otions	

Output required (test, ranks): test produces the relevant
test statistics, ranks produces the vector of mean ranks and
the ranks for each sample; default test
Defines the variable stored in each unit if only one variate is specified by DATA
Scalar to save the coefficient of concordance
Scalar to save the chi-square approximation to the coefficient
(calculated only if the sample size is at least 8)
Variate to save the mean ranks for individuals over variables
Scalar to save the degrees of freedom for CHISQUARE
List of variables to be compared, or a single variate containing
the data for all the variables (the GROUPS option must then be
set to indicate the variable recorded in each unit belongs)
Save the ranks of the variables

KCROSSVALIDATION procedure

Computes cross validation statistics for punctual kriging (D.A. Murray & R. Webster).

Options	
PRINT = string tokens	Controls printed output (statistics, correlation);
	default stat
PLOT = string token	Whether to produce a scatter plot of the predicted against the
	true values (scatter); default * i.e. none
Y = variate or scalar	Y positions or interval (not needed for 2D regular data i.e.
	when DATA is a matrix)
X = variate	x positions (needed only for 2D irregular data)
YOUTER = variate	Variate containing 2 values to define the Y-bounds of the
	region to be examined (bottom then top); by default the whole
	region is used
XOUTER = <i>variate</i>	Variate containing 2 values to define the x-bounds of the
	region to be examined (bottom then top); by default the whole
	region is used
RADIUS = scalar	Maximum distance between target point and usable data
SEARCH = <i>string token</i>	Type of search (isotropic, anisotropic); default isot
MINPOINTS = scalar	Minimum number of data points from which to compute
	_

4 Syntax summary

	elements; default 7
MAXPOINTS = $scalar$	Maximum number of data points from which to compute
MARTOINIS Sculur	elements; default 20
DRIFT = string token	Amount of drift (constant, linear, quadratic); default
Divit i Siring loken	cons
YXRATIO = scalar	Ratio of Y interval to X interval
SAVE = <i>pointer</i>	Pointer containing model estimates saved from MVARIOGRAM
Parameters	-
DATA = variates or matrices	Observed measurements as a variate or, for data on a regular
	grid, as a matrix
ISOTROPY = <i>string tokens</i>	Form of variogram (isotropic, Burgess, geometrical);
	default isot
MODELTYPE = string tokens	Model fitted to the variogram (power, boundedlinear,
	circular, spherical, doublespherical,
	pentaspherical, exponential, besselk1, gaussian,
	cubic, stable, cardinalsine, matern);
NUGGET = scalars	The nugget variance
SILLVARIANCES = <i>scalars</i> or <i>variates</i>	Sill variances of the spatially dependent component
RANGES = <i>scalar</i> or <i>variates</i>	Ranges of the spatially dependent component
GRADIENT = scalars or variates	Slope of the unbounded component
EXPONENT = scalars or variates	Power of the unbounded component or power for the stable
_	model
SMOOTHNESS = scalar	Value of v parameter for the Matern model
PHI = scalars or variates	Phi parameters in anisotropic model (ISOTROPY = burg or
	geom)
RMAX = scalars or variates	Maximum gradient of an anisotropic model
RMIN = scalars or variates	Minimum gradient of an anisotropic model
MEASUREMENTERROR = scalars	Variance of measurement error
PREDICTIONS = variates or matrices	Saves the kriged estimates in matrices for 2D Regular data,
	otherwise in variates
VARIANCES = variates or matrices	Saves the estimation variances in matrices for 2D Regular
	data, otherwise in variates
STATISTICS = variates	Saves the cross validation statistics

KCSRENVELOPES procedure

Simulates K function bounds under complete spatial randomness (M.A. Mugglestone, S.A. Harding, B.Y.Y. Lee, P.J. Diggle & B.S. Rowlingson).

Option	
PRINT = string tokens	What to print (summary, monitoring); default summ, moni
Parameters	
YPOLYGON = variates	Vertical coordinates of each polygon; no default – this parameter must be set
XPOLYGON = variates	Horizontal coordinates of each polygon; no default – this parameter must be set
NPOINTS = scalars	How many points to generate in each simulation; no default – this parameter must be set
NSIMULATIONS = scalars	How many simulations of CSR to use; no default – this parameter must be set
s = variates	Vectors of distances to use; no default – this parameter must be set
KLOWER = variates	Variates to receive the values of the lower bound of the K function
KUPPER = variates	Variates to receive the values of the upper bound of the K function
SEED = scalars	Seeds for the random numbers used in the simulations; default 0

258

4.1 Commands

KERNELDENSITY procedure

Uses kernel density estimation to estimate the underlying density of a sample (P.W. Goedhart). **Options**

Options	
PRINT = string token	What to print (integral, summary, monitoring, graph); default inte
METHOD = string token	Which automatic bandwidth selection method should be used when the BANDWIDTH option is not set (s1, s2, s3, sj);
	default sj
BANDWIDTH = scalar or variate	Which bandwidth value or values are to be used; default *
NGRIDEXPONENT2 = $scalar$	Defines the number of grid points as 2**NGRIDEXPONENT2; default 11
SAVEGRIDEXTENT = scalar	Defines the lower and upper limit of the interval on which the kernel density is saved; the default value of 4 uses the full interval on which the kernel density is calculated
NFOURIER = scalar	Defines the upper limit of the sample size for which the kernel density is calculated directly (when the sample size exceeds the setting of this option, the fast Fourier transform is used to calculate the kernel density); default 100
PROPORTION = variate	Proportions at which to calculate quantiles of the kernel density estimate; default !(0.025, 0.25, 0.5, 0.75, 0.975)
WINDOW = scalar or variate	Window number(s) for the graph(s); default 1
SCREEN = <i>string token</i>	Whether to clear the screen before plotting into the first window, or whether to or continue plotting on the old screen (clear, keep); default clea
Parameters	
SAMPLE = variates	The sample for which to calculate the kernel density estimate
GRID = variates	Saves the grid of equidistant points at which the kernel density is calculated
DENSITY = variates or pointers	Saves the kernel density estimate
CUMULATIVE = variates or pointers	Saves the estimated cumulative distribution
QUANTILE = variates or pointers	Saves the quantiles calculated from the estimated cumulative distribution
SAVEBANDWIDTH = $scalars$	Saves the automatically selected bandwidths as specified by the METHOD option

KHAT procedure

Calculates an estimate of the K function (M.A. Mugglestone, S.A. Harding, B.Y.Y. Lee, P.J. Diggle & B.S. Rowlingson).

What to print (summary); default summ
Vertical coordinates of each spatial point pattern; no default -
this parameter must be set
Horizontal coordinates of each spatial point pattern; no default
- this parameter must be set
Vertical coordinates of each polygon; no default - this
parameter must be set
Horizontal coordinates of each polygon; no default - this
parameter must be set
Vectors of distances to use; no default - this parameter must
be set
Variates to receive the estimated values of the K function

4 Syntax summary

KLABENVELOPES procedure

Gives bounds for K function differences under random labelling (M.A. Mugglestone, S.A. Harding, B.Y.Y. Lee, P.J. Diggle & B.S. Rowlingson).

B.Y.Y. Lee, P.J. Diggle & B.S. Rowlingson).		
Options		
PRINT = string tokens	What to print (summary, monitoring); default summ, moni	
Parameters		
Y1 = variates	Vertical coordinates of the first spatial point patterns; no	
	default - this parameter must be set	
X1 = variates	Horizontal coordinates of the first spatial point patterns; no	
	default - this parameter must be set	
Y2 = variates	Vertical coordinates of the second spatial point patterns; no	
	default – this parameter must be set	
X2 = variates	Horizontal coordinates of the second spatial point patterns; no	
	default - this parameter must be set	
YPOLYGON = variates	Vertical coordinates of each polygon; no default - this	
	parameter must be set	
XPOLYGON = variates	Horizontal coordinates of each polygon; no default - this	
	parameter must be set	
NSIMULATIONS = $scalars$	How many simulations of random labelling to use; no default	
	- this parameter must be set	
S = variates	Vectors of distances to use; no default - this parameter must	
	be set	
KLOWER = variates	Variates to receive the values of the lower bound of the	
	difference between the K functions	
KUPPER = <i>variates</i>	Variates to receive the values of the upper bound of the	
	difference between the K functions	
SEED = scalars	Seeds for the random numbers used to generate the random	
	labellings; default 0	

KNEARESTNEIGHBOURS procedure

PREDICTIONS = *variates* or *factors*

Classifies items or predicts their responses by examining their k nearest neighbours (R.W. Payne).OptionsPRINT = string tokensPrinted output required (neighbours, predictions);

	default pred
SIMILARITY = matrix or symmetric	matrix
	Provides the similarities between the training and prediction
	sets of items
NEIGHBOURS = pointer	Pointer with a variate for each prediction item to save the
	numbers of its nearest neighbours in the training set
GROUPS = factor	Defines groupings to identify the training and prediction sets
	of items when SIMILARITY is a symmetric matrix
LEVTRAINING = scalar or text	Identifies the level of GROUPS or dimension of SIMILARITY
	that represents the training set; default 1
LEVPREDICTION = <i>scalar</i> or <i>text</i>	Identifies the level of GROUPS or dimension of SIMILARITY
	that represents the prediction set; default 2
METHOD = string token	How to calculate the prediction from a DATA variate (mean,
	median); default medi
MINSIMILARITY = scalar	Cut-off minimum value of the similarity for items to be
	regarded as neighbours; default 0.75
MINNEIGHBOURS = scalar	Minimum number of nearest neighbours to use; default 5
MAXNEIGHBOURS = $scalar$	Maximum number of nearest neighbours to use; default 10
SEED = scalar	Seed for the random numbers used to select neighbours when
	more than MAXNEIGHBOURS are available; default 0
Parameters	
DATA = variates or factors	Data values for the items in the training set

Saves the predictions

260

KOLMOG2 procedure

Performs a Kolmogorov-Smirnoff two-sample test (S.J. Welham, N.M. Maclaren & H.R. Simpson). **Options**

$\mathbf{D} \mathbf{D} \mathbf{T} \mathbf{M} = a t u u a t o b o u a$	Output magning $d(t - t + t) = f(t - t) + f(t - t) + t + t + t + t + t + t + t + t + t $
PRINT = <i>string tokens</i>	Output required (test, differences, ranks): test gives the test statistic, differences gives signed differences, and ranks produces the ranks for each sample; default test
GROUPS = factor	Defines the groups for a two-sample test if only the Y1 parameter is specified
Parameters	
Y1 = variates	Identifier of the variate holding the first sample
Y2 = variates	Identifier of the variate holding the second sample
R1 = variates	Saves the ranks of the first sample
R2 = variates	Saves the ranks of the second sample
STATISTIC = scalars	Scalar to save the test statistic (the maximum absolute
	difference between the cumulative distribution functions)
CHISQUARE = scalars	Scalar to save the chi-square approximation to the test statistic
DIFFERENCES = variates	Variate to save the signed differences between the cumulative
	distribution functions

KRIGE directive

Calculates kriged estimates using a model fitted to the sample variogram. **Options**

Options		
PRINT = string token	Controls printed output (description, search, weights,	
	monitor, data); default desc	
Y = variate	Y positions (not needed for 2-dimensional regular data i.e. when DATA is a matrix)	
X = variate	X positions (needed only for 2-dimensional irregular data)	
YOUTER = variate	Variate containing 2 values to define the Y-bounds of the	
	region to be examined (bottom then top); by default the whole region is used	
XOUTER = <i>variate</i>	Variate containing 2 values to define the X-bounds of the	
	region to be examined (left then right); by default the whole region is used	
YINNER = variate	Variate containing 2 values to define the Y-bounds of the	
	interpolated region (bottom then top); no default	
XINNER = variate	Variate containing 2 values to define the X-bounds of the	
	interpolated region (left then right); no default	
BLOCK = variate	Dimensions (length and height) of block; default $!(0, 0)$ i.e.	
	punctual kriging	
RADIUS = scalar	Maximum distance between target point in block and usable	
	data	
SEARCH = <i>string token</i>	Type of search (isotropic, anisotropic); default isot	
MINPOINTS = scalar	Minimum number of data points from which to compute	
	elements; default 7	
MAXPOINTS = scalar	Maximum number of data points from which to compute	
	elements (2 < MINPOINTS < MAXPOINTS < 41); default 20	
NSTEP = scalar	Number of steps for numerical integration; (3 < NSTEP < 11);	
	default 8	
DRIFT = string token	Amount of drift (constant, linear, quadratic); default	
C C	cons	
YXRATIO = scalar	Ratio of Y interval to X interval; default 1.0	
INTERVAL = scalar	Distance between successive interpolations; default 1.0	
Parameters		
DATA = variates or matrices	Observed measurements as a variate or, for data on a regular	
	grid, as a matrix	

262	4 Syntax summary
ISOTROPY = <i>string tokens</i>	Form of variogram (isotropic, Burgess, geometrical); default isot
MODELTYPE = <i>string tokens</i>	Model fitted to the variogram (power, boundedlinear, circular, spherical, doublespherical, pentaspherical, exponential, besselk1, gaussian, cubic, stable, cardinalsine, matern); default powe
NUGGET = scalars	The nugget variance
SILLVARIANCES = variates	Sill variances of the spatially dependent component; default none
RANGES = variates	Ranges of the spatially dependent component; default none
GRADIENT = variates	Slope of the unbounded component; default none
EXPONENT = variates	Power of the unbounded component or power for the stable model; default none
SMOOTHNESS = scalar	Value of v parameter for the Matern model; defalt none
PHI = variates	Phi parameters of an anistropic model (ISOTROPY = Burg or geom)
RMAX = variates	Maximum gradient or distance parameter of an anistropic model
RMIN = variates	Minimum gradient or distance parameter of an anistropic model
PREDICTIONS = <i>matrices</i>	Kriged estimates
VARIANCES = <i>matrices</i>	Estimation variances
LAGRANGEMULTIPLIER = matrices	or pointers
	Saves the Lagrange multipliers from each kriging solution
MEASUREMENTERROR = $scalar$	Specifies the variance of the measurement error
SAVE = pointers	Supplies the model name and estimates, as saved from MVARIOGRAM

KRUSKAL procedure

Carries out a Kruskal-Wallis one-way analysis of variance (S.J. Welham, N.M. Maclaren & H.R. Simpson).

Options

PRINT = string tokens	Output required (test, ranks): test produces the relevant test statistics, ranks produces a vector of ranks for each sample relative to the whole data set; default test
GROUPS = factor	Defines the sample membership if only one variate is specified by DATA
STATISTIC = scalar	Scalar to save the Kruskal-Wallis test statistic
MEANRANKS = $variate$	Variate to save the mean ranks of the samples
DF = scalar	Scalar to save the degrees of freedom for the statistic
Parameters	-
DATA = variates	List of variates containing the data for each sample, or a single variate containing the data from all the samples (the GROUPS option must then be set to indicate the sample to which each unit belongs)
RANKS = variates	Allow the ranks to be saved (relative to the combined data)

KSED procedure

Calculates the standard error for K function differences under random labelling (M.A. Mugglestone, S.A. Harding, B.Y.Y. Lee, P.J. Diggle & B.S. Rowlingson).

Option	
PRINT = string token	Controls printed output (summary); default summ
Parameters	
Y1 = variates	Vertical coordinates of the first spatial point patterns; no
	default – this parameter must be set
X1 = variates	Horizontal coordinates of the first spatial point patterns; no

4.1 Commands

	default – this parameter must be set
Y2 = variates	Vertical coordinates of the second spatial point patterns; no
	default – this parameter must be set
X2 = variates	Horizontal coordinates of the second spatial point patterns; no
	default - this parameter must be set
YPOLYGON = variates	Vertical coordinates of the polygons; no default - this
	parameter must be set
XPOLYGON = variates	Horizontal coordinates of the polygons; no default - this
	parameter must be set
S = variates	Vectors of distances to use; no default - this parameter must
	be set
KSED = variates	Variates to receive the values of the standard error of the
	difference between the K functions for the two patterns under
	random labelling
VCOVARIANCE = <i>symmetric matrices</i>	Saves the variance-covariance matrix
VK1 = variates	Saves the variance of Khat for first spatial point pattern
VK2 = variates	Saves the variance of Khat for second spatial point pattern
VK12 = variates	Saves the covariance of Khat for the two samples

KSTHAT procedure

Calculates an estimate of the K function in space, time and space-time (D.A. Murray, P.J. Diggle & B.S. Rowlingson).

Option	
PRINT = string token	Controls printed output (summary); default summ
Parameters	
Y = variates	Vertical coordinates of the spatial point patterns; no default – this parameter must be set
x = variates	Horizontal coordinates of the spatial point patterns; no default - this parameter must be set
TIMES = variates	Times for each event
YPOLYGON = variates	Vertical coordinates of the polygons; no default – this parameter must be set
XPOLYGON = variates	Horizontal coordinates of the polygons; no default – this parameter must be set
s = variates	Vectors of distances to use; no default – this parameter must be set
TVALUES = variates	Time scales for the analysis
TLOWER = variates	Lower temporal domain
TUPPER = variates	Upper temporal domain
KS = variates	Saves the spatial K function estimates
KT = variates	Saves the spatial K function estimates
KST = variates	Saves the space-time K function estimates

KSTMCTEST procedure

Performs a Monte-Carlo test for space-time interaction (D.A. Murray, P.J. Diggle & B.S. Rowlingson).

Options

PRINT = string token	Controls printed output (statistic, rank); default stat, rank
PLOT = string token	Whether to produce a plot of the test statistic (histogram);
	default hist
NTIMES = scalar	Number of simulations for Monte-Carlo test; default 49
SEED = scalar	Seed for random number generator; default 0 continues from previous generation or uses system clock
Parameters	
Y = variates	Vertical coordinates of the first spatial point patterns; no

4 Syntax summary

x = variates	default – this parameter must be set Horizontal coordinates of the first spatial point patterns; no default – this parameter must be set
TIMES = variates	Times for each event
YPOLYGON = variates	Vertical coordinates of the polygons; no default – this parameter must be set
XPOLYGON = variates	Horizontal coordinates of the polygons; no default – this parameter must be set
s = variates	Vectors of distances to use; no default – this parameter must be set
TVALUES = variates	Time scales for the analysis
TLOWER = variates	Lower temporal domain
TUPPER = variates	Upper temporal domain
STATISTIC = scalars	Saves the Monte-Carlo statistic

KSTSE procedure

Calculates the standard error for the space-time K function (D.A. Murray, P.J. Diggle & B.S. Rowlingson).

Option	
PRINT = string token	Controls printed output (summary); default summ
Parameters	
Y = variates	Vertical coordinates of the spatial point patterns; no default -
	this parameter must be set
X = variates	Horizontal coordinates of the spatial point patterns; no default
	- this parameter must be set
TIMES = variates	Times for each event
YPOLYGON = variates	Vertical coordinates of the polygons; no default - this
	parameter must be set
XPOLYGON = variates	Horizontal coordinates of the polygons; no default - this
	parameter must be set
S = variates	Vectors of distances to use; no default - this parameter must
	be set
TVALUES = variates	Time scales for the analysis
TLOWER = variates	Lower temporal domain
TUPPER = variates	Upper temporal domain
SE = variates	Saves the standard errors

KTAU procedure

Calculates Kendall's rank correlation coefficient τ (R.W. Payne & D.B. Baird).

-				
O	nf	in	ns	

options	
PRINT = string tokens	Output required (correlations, probabilities); default
	corr, prob
GROUPS = factor	Defines the sample membership if only one variate is specified
	by data
CORRELATIONS = <i>scalar</i> or <i>symmetric</i>	matrix
	Scalar to save the rank correlation coefficient if there are two
	samples, or symmetric matrix to save the coefficients between
	all pairs of samples if there are several
PROBABILITIES = <i>scalar</i> or <i>symmetric</i>	c matrix
	Scalar to save the probability for the correlation coefficient if
	there are two samples, or symmetric matrix to save the
	probabilities for all pairs of samples if there are several
NORMAL = scalar or symmetric matrix	Scalar to save a transformation of tau that approximately
	follows a Normal distribution with mean zero and variance if there are two samples, or symmetric matrix to save the
	transformation for all pairs of samples if there are several

264

DATA = variates

List of variates containing the data for each sample, or a single variate containing the data from all the samples (the GROUPS option must then be set to indicate the sample to which each unit belongs)

KTORENVELOPES procedure

Gives bounds for the bivariate K function under independence (M.A. Mugglestone, S.A. Harding, B.Y.Y. Lee, P.J. Diggle & B.S. Rowlingson).

\mathbf{O}	otion	
U	puon	

PRINT = string tokens	What to print (summary, monitoring); default summ, moni
Parameters	
Y1 = variates	Vertical coordinates of the first spatial point patterns; no
	default – this parameter must be set
X1 = variates	Horizontal coordinates of the first spatial point patterns; no
	default – this parameter must be set
Y2 = variates	Vertical coordinates of the second spatial point patterns; no
	default – this parameter must be set
X2 = variates	Horizontal coordinates of the second spatial point patterns; no
	default – this parameter must be set
YPOLYGON = variates	Vertical coordinates of each polygon; no default – this
	parameter must be set
XPOLYGON = variates	Horizontal coordinates of each polygon; no default – this
XIOLIGON Variates	parameter must be set
	•
NSIMULATIONS = scalars	How many simulations of independence to use; no default –
	this parameter must be set
S = variates	Vectors of distances to use; no default - this parameter must
	be set
KLOWER = variates	Variates to receive the values of the lower bound of the
	bivariate K function
KUPPER = variates	Variates to receive the values of the upper bound of the
	bivariate K function
SEED = scalars	Seeds for the random numbers used to generate the random
	shifts; default 0

K12HAT procedure

Calculates an estimate of the bivariate K function (M.A. Mugglestone, S.A. Harding, B.Y.Y. Lee, P.J. Diggle & B.S. Rowlingson).

Option	
PRINT = string token	What to print (summary); default summ
Parameters	
Y1 = variates	Vertical coordinates of the first spatial point patterns; no
	default - this parameter must be set
X1 = variates	Horizontal coordinates of the first spatial point patterns; no
	default – this parameter must be set
Y2 = variates	Vertical coordinates of the second spatial point patterns; no
	default – this parameter must be set
X2 = variates	Horizontal coordinates of the second spatial point patterns; no
	default – this parameter must be set
YPOLYGON = variates	Vertical coordinates of each polygon; no default - this
	parameter must be set
XPOLYGON = variates	Horizontal coordinates of each polygon; no default - this
	parameter must be set
S = variates	Vectors of distances to use; no default - this parameter must
	be set

266	4 Syntax summary
KVALUES = variates	Variates to receive the estimated values of the bivariate K functions

LCONCORDANCE procedure

Calculates Lin's concordance correlation coefficient (R.W. Payne & M.S. Dhanoa).

Options	
PRINT = string token	Controls printed output (concordance); default conc
GROUPS = factor	Defines the sets of measurements when they are all supplied in a single DATA variate
	Saves Lin's the concordance coefficient
CONCORDANCE = scalar or variate	
LOWER = scalar or variate	Saves the lower confidence limit for the coefficient
UPPER = scalar or variate	Saves the upper confidence limit for the coefficient
CORRELATION = scalar or variate	Saves the correlation coefficient
CB = scalar or variate	Saves the bias correction factor
ZTRANSFORMATION = scalar or variate	Saves the Z transformation of the coefficient
ZSD = scalar or variate	Saves the standard deviation of the Z transformation
CIPROBABILITY = scalar	Defines the size of the confidence interval; default 0.95 i.e. 95%
REFERENCELEVEL = <i>scalar</i> or <i>text</i>	Defines the set of measurements to be used as the control if there are more than two variates or groups; default 1
Parameter	
DATA = variates	List of variates specifying the sets of measurements to be compared, or a single variate containing all the measurements (the GROUPS option must then be set to indicate the set to which each unit belongs)

LIBEXAMPLE procedure

Accesses examples and source code of library procedures (R.W. Payne).

No options Parameters

r al ametel s	
PROCEDURE = $texts$	Single-valued texts indicating the procedures about which the
	information is required
EXAMPLE = texts	Identifiers of text structures to store the example for each
	procedure
SOURCE = $texts$	Identifiers of text structures to store the source code of each
	procedure

LIBFILENAME procedure

Supplies the names of information files for library procedures (R.W. Payne).

No options Parameters

FILENAME = $texts$	Text in which to store the name of the backing-store file
	containing the required information
CONTENTS = <i>string tokens</i>	Indicates which file is required (procedures, adesign,
	afraction, acyclic, agenerator); default proc

LIBHELP procedure

Provides help information about library procedures (R.W. Payne).

No options

Parameter PROCEDURE = *texts*

Single-valued texts indicating the procedures about which the information is required; if this is not set, information is given about LIBHELP itself

LIBSOURCE procedure

Obtains the source code of a Genstat procedure, PC Windows only (R.W. Payne).

No options

Parameters	
PROCEDURE = <i>texts</i>	Procedure names
SOURCE = $texts$	Texts to store the source code of each procedure
STATEMENT = texts	Saves a command to obtain the source of each procedure
	(useful if the name has been specified in response to questions
	from PROCEDURE)

LIBVERSION procedure

Provides the name of the current Genstat Procedure Library (R.W. Payne).

Option	
PRINT = string token	Controls printed output (release); default rele
Parameter	
RELEASENAME = $text$	Text in which to store the name of the currently available
	release of the Genstat 5 Procedure Library

LINDEPENDENCE procedure

Finds the linear relations associated with matrix singularities (J.H. Maindonald).

Option	
PRINT = string tokens	Printed output (dependent, coefficients); default depe
Parameters	
DATA = <i>symmetric matrices</i>	Specifies the positive semi-definite matrix for which the
	information is required
COEFFICIENTS = matrices	Stores the coefficients of the linear dependencies

LIST directive

Lists details of the data structures currently available within Genstat.

Options	
PRINT = string tokens	What to print (identifier, attributes); default iden, attr
CHANNEL = <i>identifier</i>	Channel number of file, or identifier of a text to store output; default current output file
SYSTEM = <i>string token</i>	Whether to include "system" structures with prefix _ (yes, no); default no
SCOPE = string token	When used within a procedure, this allows the listing of structures in the program that called the procedure (SCOPE=external), or in the main program itself (SCOPE=global), rather than those within the procedure (local, external, global); default loca
NSTRUCTURES = scalar	Saves the number of structures of the requested types
SAVE = pointer	Saves a pointer containing the structures of the requested types
Parameter	
strings	Types of structure to list (all, diagonal, dummy, expression, factor, formula, lrv, matrix, pointer, scalar, sspm, symmetric, table, text, tsm, variate); default all

LORENZ procedure

Plots the Lorenz curve and calculates the Gini and asymmetry coefficients (R.W. Payne).

Options	
PRINT = string tokens	Controls printed output (gini, lorenz, asymmetry); default
	gini, lore, asym
PLOT = string token	Controls graphical output (curve); default curv
TITLE = string	Title for the graph; default uses the identifier of the DATA

268	4 Syntax summary
	variate
NBOOT = $scalar$	Number of samples to make to construct the bootstrap
	confidence intervals; default 100
SEED = scalar	Seed for the random number generator used to construct the
	bootstrap samples; default 0 i.e. continue an existing sequence
	of random numbers or, if none, initialize the generator automatically
CIPROBABILITY = scalar	Probability for the bootstrap confidence interval; default 0.95
Parameters	
DATA = variates	Specifies sets of data values
GINI = scalars	Saves the Gini coefficient for each DATA variate
ASYMMETRY = scalars	Saves the asymmetry coefficient for each DATA variate

LPCONTOUR directive

Produces contour maps of two-way arrays of numbers using character (i.e. line-printer) graphics. **Options**

- F	
CHANNEL = scalar	Channel number of output file; default is current output file
INTERVAL = scalar	Contour interval for scaling; default * i.e. determined
	automatically
TITLE = text	General title; default *
YTITLE = text	Title for y-axis; default *
XTITLE = text	Title for x-axis; default *
YLOWER = scalar	Lower bound for y-axis; default 0
YUPPER = scalar	Upper bound for y-axis; default 1
XLOWER = scalar	Lower bound for x-axis; default 0
XUPPER = scalar	Upper bound for x-axis; default 1
YINTEGER = <i>string token</i>	Whether y-labels integral (yes, no); default no
XINTEGER = <i>string token</i>	Whether x-labels integral (yes, no); default no
LOWERCUTOFF = scalar	Lower cut-off for array values; default *
UPPERCUTOFF = scalar	Upper cut-off for array values; default *
Parameters	
GRID = <i>identifiers</i>	Pointers (of variates representing the columns of a data
	matrix), matrices or two-way tables specifying values on a
	regular grid
DESCRIPTION = texts	Annotation for key

LPGRAPH directive

Produces point and line graphs using character (i.e. line-printer) graphics. **Ontions**

Channel number of output file; default is current output file
General title; default *
Title for y-axis; default *
Title for x-axis; default *
Lower bound for y-axis; default *
Upper bound for y-axis; default *
Lower bound for x-axis; default *
Upper bound for x-axis; default *
Numbers of plots per frame; default * i.e. all plots are on a single frame
Order in which to join points (ascending, given); default asce
Whether/how to make bounds equal (no, scale, lower, upper); default no
Number of rows in the frame; default * i.e. determined automatically
Number of columns in the frame; default * i.e. determined

	automatically
YINTEGER = string token	Whether y-labels integral (yes, no); default no
XINTEGER = <i>string token</i>	Whether x-labels integral (yes, no); default no
Parameters	
Y = identifiers	Y-coordinates
X = identifiers	X-coordinates
METHOD = string tokens	Type of each graph (point, line, curve, text); if unspecified, poin is assumed
SYMBOLS = factors or texts	For factor SYMBOLS, the labels (if defined), or else the levels, define plotting symbols for each unit, whereas a text defines textual information to be placed within the frame for METHOD=text or the symbol to be used for each plot for other METHOD settings; if unspecified, * is used for points, with integers 1-9 to indicate coincident points, ' and . are used for lines and curves
DESCRIPTION = texts	Annotation for key

LPHISTOGRAM directive

Produces histograms using character (i.e. line-printer) graphics. **Options**

Options	
CHANNEL = scalar	Channel number of output file; default is the current output file
TITLE = text	General title; default *
LIMITS = variate	Variate of group limits for classifying variates into groups; default *
NGROUPS = scalar	When LIMITS is not specified, this defines the number of groups into which a data variate is to be classified; default is the integer value nearest to the square root of the number of values in the variate
LABELS = text	Group labels
SCALE = scalar	Number of units represented by each character; default 1
Parameters	
DATA = <i>identifiers</i>	Data for the histograms; these can be either a factor indicating the group to which each unit belongs, a variate whose values are to be grouped, or a one-way table giving the number of units in each group
NOBSERVATIONS = tables	One-way table to save numbers in the groups
GROUPS = <i>factors</i>	Factor to save groups defined from a variate
SYMBOLS = $texts$	Characters to be used to represent the bars of each histogram
DESCRIPTION = texts	Annotation for key

LRIDGE procedure

Does logistic ridge regression (A.I. C	flaser).
Options	
PRINT = string token	What output to print (correlation, crossvalidation, ridge, scaledridge, standarderrors); default corr
PLOT = string tokens	What graphs to plot (correlation, ridgetrace,
	buildup); default * i.e. none
LINK = <i>string token</i>	Link function (logit, probit, complementaryloglog);
	default logi
DISPERSION = scalar	Value of the the dispersion parameter; default 1
TERMS = $formula$	Explanatory model
FACTORIAL = scalar	Limit on number of factors/covariates in a model term; default
	3
LAMBDA = variate or scalar	Values for the ridge parameter lambda
CROSSVALIDATION = string token	Whether to use cross-validation to find an optimal value of
	lambda (yes, no); default no

270	4 Syntax summary
NCROSSVALIDATIONGROUPS = scalar	Number of groups for cross-validation; default 10
CVMETHOD = string token	Which method to use for cross-validation (deviance, squarederror, countingerror); default devi
SEED = scalar	Seed for random numbers to use in cross-validation; default 0
Parameters	,
Y = variates	Response variate
NBINOMIAL = scalars or variates	Number of binomial trials for each unit; default 1
YVALIDATION = variates	Response variate for validation
XVALIDATION = pointers	Explanatory variables for validation
XDATA = pointers	Pointer containing the original explanatory variables in the
	same order as in XVALIDATION; default takes the variables in
	the order in which they occur in TERMS
NVALIDATION = variates or scalars	Number of binomial trials for the units of each YVALIDATION
	variate; default 1
BESTLAMBDA = scalars	Saves the optimal lambda value from cross-validation
CVSTATISTICS = matrices	Saves the cross-validation statistics
RESIDUALS = variates	Saves residuals when LAMBDA is a scalar
FITTEDVALUES = variates	Saves fitted values when LAMBDA is a scalar
ESTIMATES = variates	Saves parameter estimates when LAMBDA is a scalar

DEVIANCE = scalars LINEARPREDICTOR = *variates*

LRV directive

SE = variates

Declares one or more LRV data structures.

Options

ROWS = *scalar*, *vector* or *pointer* Number of rows, or row labels, for the matrix; default * Number of columns, or column labels, for matrix and diagonal COLUMNS = *scalar*, *vector* or *pointer* matrix; default * **Parameters** Identifiers of the LRVs IDENTIFIER = *identifiers*

is a scalar

VECTORS = *matrices* ROOTS = *diagonal matrices* TRACE = *scalars*

Matrix to contain the latent vectors for each LRV Diagonal matrix to contain the latent roots for each LRV Trace of the matrix

Saves standard errors of the parameter estimates when LAMBDA

Saves the residual deviance when LAMBDA is a scalar

Saves the linear predictor when LAMBDA is a scalar

LRVSCREE procedure

Prints a scree diagram and/or a difference table of latent roots (P.G.N. Digby).

Option PRINT = *string tokens* PLOT = *string token*

Printed output (scree, differences); default scre What to plot in high-resolution graphics (scree); default scre Title for the graph; default * i.e. none Window to use for the graph; default 1

Parameters ROOTS = *LRVs* or *any numerical structures*

	Latent roots to be displayed; if an LRV is supplied the trace
	will also be extracted from it
TRACE = scalars	Supplies or saves the total of the latent roots
DIFFERENCES = <i>pointers</i>	Contains 3 variates to save the difference table

LSIPLOT procedure

Plots least significant intervals, saved from SEDLSI (M.C. Hannah).

Options

TITLE = textWINDOW = scalar

WINDOW = scalar	Window in which to plot the graph				
TITLE = text	Title for the graph; default	'Estimates	with	LSIS	by

4.1 Commands

Treatment'	
Title for the y-axis; default	'Estimates'

YTITLE = text **Parameters** LSI = pointers [†]SYMBOL = texts or scalars [†]CSYMBOL = texts or scalars [†]SMSYMBOL = scalars

[†]SMLABEL = scalars

Defines the least significant intervals Symbol to use to plot each set of estimates Colour for each symbol Multiplier to use in the calculation of the size of each symbol Multiplier to use in the calculation of the size of the labels in each plot

LSPLINE procedure

Calculates design matrices to fit a natural polynomial or trigonometric L-spline as a linear mixed model (S.J. Welham).

model (5.5. Wemann):	
Options	
KMETHOD = string token	Method for constructing the set of knots (equal, quantile,
	given); default equa
NSEGMENTS = scalar	Specifies the number of segments between boundaries; default
	* obtains a value automatically
INKNOTS = variate	Provides the set of internal knots when KMETHOD=given
CORE = string token	The form of core function to use; (cossin, intcossin,
	lincossin, intercept, linear, quadratic) default linc
PERIOD = scalar	Defines the period for trigonometric functions (not required
	for polynomial splines)
LOWER = scalar	Specifies the lower boundary when KMETHOD=equal; default
Lower Source	takes the minimum value in X
UPPER = scalar	Specifies the upper boundary when KMETHOD=equal; default
off like search	takes the maximum value in X
ORTHOGONALIZETO = variate	Variate to use to get an orthogonalized basis; default * i.e.
ORTHOGONALIZETO – Variale	
	orthogonalization with respect to X
SCALING = scalar	Scaling of the XRANDOM terms (automatic, none); default auto
Parameters	
X = variates	The explanatory variate for which the spline values are
A variates	required
	•
XFIXED = matrices	Saves the design matrix to define the fixed terms (excluding
	the constant) for fitting the L-spline
XRANDOM = <i>matrices</i>	Saves the design matrix to define the random terms for fitting
	the L-spline
KNOTS = variates	Saves the internal knots and boundaries used to form the basis
	for the spline
PX = variates	Specifies x-values at which predictions are required
PFIXED = matrices	Saves the design matrix for the fixed terms (excluding the
	constant) for the spline at the prediction points
PRANDOM = $matrices$	Saves the design matrix for the random terms for the spline at
	the prediction points
	and production points

LVARMODEL procedure

Analyses a field trial using the Linear Variance Neighbour model (D.B. Baird).

Options	0	· · · · · · · · · · · · · · · · · · ·
PRINT = string tokens	Controls printed	d output (data, effects, sed, residuals,
	variances); de	efault effe, sed, vari
METHOD = string token	Indicates which	version of the LV model to use (full,
	reduced); defa	ault full
LAMBDA = $scalar$	Number between	en 0 and 1 which defines the value for the
	variance parame	eter λ (if METHOD=full and LAMBDA=0, the
	value is estimate	ed by REML); default 0

272	4 Syntax summary
VARMETHOD = string token	Specifies which estimator of residual variance to use to calculate the sed's of treatment effects (RMS2, GLS) default RMS2
TOLERANCE = $scalar$	Defines the precision to which the variance parameter λ should be estimated; default 0.01
Parameters	
Y = variates	Y-values (usually plot yields) row by row
TREATMENTS = $factors$	Plot treatments for each y-variate
BLOCKS = factors	Block factor, defining groups of plots to be de-trended independently
UNITS = $factors$	Unit-within-block factor, defining the order of plots within each block
EFFECTS = tables	To save the estimated treatment effects from each analysis
SED = matrices or symmetric matrices	To save the estimated standard errors of differences between treatments
WNOISE = variates	To save the estimated white noise component
TREND = variates	To save the estimated trend component
COMPONENTS = variates	To save the estimated variance components: the tuning parameter λ , and either the variance of the random walk innovations ($\lambda < 0.9$) or the white noise variance ($\lambda \ge 0.9$)

MAANOVA procedure

Does analysis of variance for a single-channel microarray design (R.W. Payne & D.B. Baird). Ontions

Options	
PRINT = string tokens	Controls printed output (summary, monitoring); default *
	i.e. none
TREATMENTSTRUCTURE = formula	Treatment formula for the analysis; if this is not set, the default
	is taken from the setting (which must already have been
	defined) of the TREATMENTSTRUCTURE directive
BLOCKSTRUCTURE = formula	Block formula for the analysis; if this is not set, the default is
	taken from any existing setting specified by the
	BLOCKSTRUCTURE directive and if neither has been set the
	design is assumed to be unstratified (i.e. to have a single error
	term)
COVARIATE = variates	Defines any covariates
FACTORIAL = scalar	Limit on the number of factors in a treatment term
SAVETERMS = formula	Treatment terms for which to save information; if this is not
	set, information is saved for all the treatment terms
REPLICATION = pointer	Pointer to tables saving the replication of the SAVETERMS
SPREADSHEET = <i>string tokens</i>	What results to save in spreadsheets (aov, means, vcmeans,
	effects, vareffects, seeffects, teffects,
	preffects, contrasts, secontrasts, tcontrasts,
	prcontrasts); default * i.e. none
CONTRASTSLIMIT = scalar	Limit on the order of a contrast of a treatment term; default 4
DEVIATIONSLIMIT = scalar	Limit on the number of factors in a treatment term for the
	deviations from its fitted contrasts to be retained in the model;
	default 9
Parameters	
Y = variates or pointers	Y-variates for each analysis
PROBES = factors or texts	Defines the probe information for each analysis
SLIDES = factors or texts	Defines the slide information for each analysis
CHECK = <i>texts</i> or <i>variates</i>	Slide ID's that can be compared with the labels or levels of the
	SLIDES factor to ensure that the slide order is correct in each
	analysis
IDS = texts	Saves the probes names that have been generated to label the
	rows of the output structures from each analysis
RESIDUALS = $matrices$	Saves the residuals

FITTEDVALUES = <i>matrices</i> MEANS = <i>pointers</i>	Saves the fitted values Pointer to a matrix for each of the SAVETERMS, saving the means from each analysis
VCMEANS = <i>pointers</i>	Pointer to matrices saving variances and covariances for the means
EFFECTS = <i>pointers</i>	Pointer to matrices saving effects
VAREFFECTS = <i>pointers</i>	Pointer to variates saving unit variances for effects
SEEFFECTS = <i>pointers</i>	Pointer to variates saving standard errors of effects
TEFFECTS = <i>pointers</i>	Pointer to variates saving t-statistics of effects
PREFFECTS = pointers	Pointer to variates saving probabilities for t -statistics of effects
DF = pointers	Pointer to variates saving degrees of freedom
ss = pointers	Pointer to variates saving sums of squares
MS = pointers	Pointer to variates saving mean squares
RDF = pointers	Pointer to variates saving degrees of freedom for the residual corresponding to each of the SAVETERMS
RSS = <i>pointers</i>	Pointer to variates saving residual sums of squares
RMS = pointers	Pointer to variates saving residual mean squares
VR = pointers	Pointer to variates saving variance ratios
PRVR = pointers	Pointer to variates saving probabilities for the variance ratios
CONTRASTS = <i>pointers</i>	Pointer to matrices saving estimates of contrasts
SECONTRASTS = <i>pointers</i>	Pointer to matrices saving standard errors of contrasts
TCONTRASTS = <i>pointers</i>	Pointer to matrices saving t-statistics for contrasts
PRCONTRASTS = pointers	Pointer to matrices saving probabilities for t-statistics of contrasts

MABGCORRECT procedure

Performs background correction of Affymetrix slides (D.B. Baird).

PRINT = string token	What to print (quantiles); default quan
METHOD = string token	Method of establishing grid background (mean, quantile);
	default mean
WEIGHTING = string token	Weighting method to use (affymetrix, distance); default affy
POWER = scalar	Power applied to distance; default 2 i.e. square
SMOOTH = scalar	Smoothing parameter applied to weights; default 100
Parameters	
DATA = variates or pointers	Data values
SLIDES = factors or texts	Defines the slides
ROWS = factors	Defines the rows within each slide
COLUMNS = factors	Defines the columns within each slide
NEWDATA = variates or pointers	Saves the corrected values; if unset, they replace the original DATA values

MACALCULATE procedure

Corrects and transforms two-colour microarray differential expressions (D.B. Baird).

Options	
PRINT = string token	What to print (summary); default summ
BMETHOD = string token	How to correct for spot foreground for background values
	(subtract, smooth, none); default subtracts
	REDBACKGROUND and GREENBACKGROUND ${ m if}$ set
TRANSFORMATION = <i>string token</i>	Type of transformation to apply to the red/green ratios (log,
	glog); default log
MINIMUM = scalar	Minimum value per channel; if RSDBACKGROUND and
	GSDBACKGROUND are supplied, this is the multiplier of these
	per spot, default 0

274	4 Syntax summary
PERSPOTMINIMUM = <i>string token</i>	Use a single minimum value per spot rather than per slide
CONSTANTVALUE = scalar	(yes, no); default no Constant to add to red and green foreground values; default 0
DF = scalar	Degrees of freedom to use for loess smoothing of background; default 20
Parameters	
RFOREGROUND = variates or pointers	Red foreground values per spot
GFOREGROUND = variates or pointers	Green foreground values per spot
RBACKGROUND = variates or pointers	Red background values per spot
GBACKGROUND = variates or pointers	Green background values per spot
RSDBACKGROUND = variates or pointers	Standard deviation of red background
GSDBACKGROUND = variates or pointers	Standard deviation of green background
SLIDES = factors or texts	Defines the slide to which each spot belongs for smoothing, or
	per slide minima
ROWS = factors	Defines the row position of each spot for background smoothing
COLUMNS = factors	Defines the column position of each spot for background smoothing
LOGRATIOS = variates or pointers INTENSITIES = variates or pointers RCORRECTED = variates or pointers GCORRECTED = variates or pointers	Saves the differential expression per spot Saves the intensity of each spot Saves the corrected red values per spot Saves the corrected green values per spot

MADESIGN procedure

Assesses the efficiency of a two-colour microarray design (D.B. Baird).

What to print (design, sed, secontrasts, vcovariance,
summary); default desi, sed, seco, vcov, summ
Whether to estimate dye bias effects (estimate, omit);
default esti
What results to put in spreadsheets (sed, secontrasts,
vcovariance); default sed, seco
Targets on red dye
Targets on green dye
Contrasts to estimate
Saves standard errors of differences

MAEBAYES procedure

VCOVARIANCE = *symmetric matrices*

SECONTRASTS = *symmetric matrices*

Modifies t-values by an empirical Bayes method (D.B. Baird).

Options	•
PRINT = string tokens	What to print (estimates); default esti
PLOT = string tokens	What to plot (phistograms, thistograms, pvalues,
	tvalues); default * i.e. nothing
DATATYPE = <i>string token</i>	Type of data specified by the DATA parameter when it is a
	variate (means, tvalues); default tval
METHOD = string token	Type of test to use to form probability values (twosided,
	greaterthan, lessthan); default twos
DEVICE = scalar	Device number on which to plot the graphs
GRAPHICSFILE = text	What graphics filename template to use to save the graphs;
	default *
Parameters	
DATA = <i>pointers</i> or <i>variates</i>	Pointers of variates or variates of means or t-values to be

Pointers of variates or variates of means or t-values to be summarized

Saves variance and covariances of treatments

Saves standard errors of contrasts specified in XCONTRASTS

SD = variates	Supplies standard deviations of the data when DATA is a
	variate of means or t-values
DF = variates	or scalars Supplies degrees of freedom when DATA is a variate
	of means or t-values
SD0 = scalars	Saves the estimated prior standard deviation
DF0 = scalars	Saves the estimated number of degrees of freedom assigned to
	the prior standard deviation
TMODIFIED = variates	Saves the modified t-values
SDMODIFIED = variates	Saves the shrunken SD values
PMODIFIED = variates	Saves the modified probability values

4.1 Commands

MAESTIMATE procedure

Estimates treatment effects from a two-colour microarray design (D.B. Baird).

Estimates treatment effects from a	two-colour interbarray design (D.D. Dand).
Options	
PRINT = string tokens	What to print (design, summary, monitoring); default
	desi, summ, moni
DYEBIASMETHOD = string token	Whether to estimate dye bias effects (estimate, omit);
	default esti
SPREADSHEET = <i>string tokens</i>	What results to put in spreadsheets (estimates, df, rsd,
	dyebias, seestimates, tvalues, probabilities,
	contrasts, secontrasts, tcontrasts, prcontrasts);
	default esti, df, rsd, dyeb, sees, tval, prob, cont, seco,
	tcon, prco
Parameters	
LOGRATIOS = variates or pointers	Log-ratios
PROBES = factors or texts	Probes for the log-ratios
SLIDES = factors or texts	Slides for the log-ratios
REDTREATMENTS = factors	Targets on red dye for slides
GREENTREATMENTS = factors	Targets on green dye for slides
CHECK = <i>texts</i> or <i>variates</i>	Slide ID's of the red and green treatments for a check matching
	the slide order with the labels or levels of SLIDE
XCONTRASTS = matrices	Contrasts to estimate
IDPROBES = texts	Saves the probe names for each output row
DF = variates	Saves degrees of freedom for t-values
RSD = variates	Saves the residual standard deviation
DYEBIAS = variates	Saves estimated dye swap bias effects
ESTIMATES = pointers	Saves the estimates
SEESTIMATES = pointers	Saves the standard errors of the estimates
TVALUES = <i>pointers</i>	Saves t-values of the estimates
PROBABILITIES = pointers	Saves probabilities for the t-values
CONTRASTS = <i>pointers</i>	Saves estimates of the contrasts
SECONTRASTS = <i>pointers</i>	Saves the standard errors of the contrasts
TCONTRASTS = <i>pointers</i>	Saves t-values for the contrasts
PRCONTRASTS = <i>pointers</i>	Saves probabilities for the contrasts

MAHISTOGRAM procedure

Plots histograms of microarray data (D.B. Baird).

Options	
SLIDES = factor or text	Defines the slides when the DATA variate contains data from more then one slide
SLIST = variate or text	Subset of slides to plot; default * i.e. all
NGROUPS = scalar	Number of groups into which to classify the DATA units; default 100
COLOUR = text or scalar	Colour to use for the bars of the histogram; default 'red'
TRANSFORMATION = <i>string token</i>	Whether to transform data to logarithms base 2 (log2, none); default none

276	4 Syntax summary
SCALING = string token	Whether to use a common scale when not using Trellis plots (common, none); default comm
NROWS = $scalar$	Number of rows on a page in a trellis plot
NCOLUMNS = scalar	Number of columns on a page in a trellis plot
TITLE = text	Title for the graph
YTITLE = text	Title for the y-axis
XTITLE = text	Title for the x-axis
ARRANGEMENT = <i>string token</i>	Whether to use trellis or single plots when the DATA variate
	<pre>contains data from more then one slide (single, trellis); default trel</pre>
WINDOW = scalar	Window number for the graphs; default 3
DEVICE = scalar	Device number on which to plot the graphs
GRAPHICSFILE = text	What graphics filename template to use to save the graphs; default *
YMINIMUM = scalar	Minimum value on the y-axis of the histogram
YMAXIMUM = scalar	Maximum value on the y-axis of the histogram
XMINIMUM = scalar	Minimum value on the x-axis of the histogram
XMAXIMUM = scalar	Maximum value on the x-axis of the histogram
Parameter	
DATA = variates or pointers	Data values to plot

MANNWHITNEY procedure

Performs a Mann-Whitney U test (S.J. Welham, N.M. Maclaren & H.R. Simpson). **Options**

Options	
[†] PRINT = string tokens	Output required (test, ranks, hodgeslehmann,
	confidence); default test
METHOD = string token	Type of test required (twosided, greaterthan, lessthan);
	default twos
GROUPS = factor	Defines the samples for a two-sample test if the Y2 parameter
	is not set
CIPROBABILITY = scalar	Probability for the confidence interval for the median
	difference between the samples; default 0.95
CONTROL = scalar or text	Identifies the control group against which to make
	comparisons if GROUPS is set; default uses the reference level
	of groups
Parameters	
Y1 = variates	Identifier of the variate holding the first sample if Y2 is set, or
	both samples if Y2 is unset (the GROUPS option must then also
	be set)
Y2 = variates	Identifier of the variate holding the second sample
R1 = variates	Saves the ranks of the first sample if Y2 is set, or both samples
	if Y2 is unset
R2 = variates	Saves the ranks of the second sample if Y2 is set
STATISTIC = <i>scalars</i> or <i>tables</i>	Saves the test statistics U
PROBABILITY = scalars or tables	Probability values for the test statistics
SIGN = <i>scalars</i> or <i>tables</i>	Saves indicators: 1 if the first sample scores the highest ranks
	on average, 0 otherwise
[†] HODGESLEHMANN = <i>scalars</i> or <i>tables</i>	Saves the Hodges-Lehmann estimates for the differences in
	location of the two samples (i.e. the median differences
	between the samples)
LOWER = scalars or tables	Saves lower confidence values for median differences between
	the samples
UPPER = scalars or tables	Saves upper confidence values for median differences between
	the samples

MANOVA procedure

Performs multivariate analysis of variance and covariance (R.W. Payne & G.M. Arnold).

Options	
PRINT = string tokens	Printed output required from the multivariate analysis of
C	covariance (ssp, tests); default test
APRINT = string tokens	Printed output from the univariate analyses of variance of the
5	y-variates (as for the ANOVA PRINT option); default *
UPRINT = string tokens	Printed output from the univariate unadjusted analyses of
	variance of the y-variates (as for the ANOVA UPRINT option);
	default *
CPRINT = string tokens	Printed output from the univariate analyses of variance of the
	covariates (as for the ANOVA CPRINT option); default *
TREATMENTSTRUCTURE = formula	Treatment formula for the analysis; if this is not set, the default
	is taken from the setting (which must already have been
	defined) by the TREATMENTSTRUCTURE directive
BLOCKSTRUCTURE = formula	Block formula for the analysis; if this is not set, the default is
	taken from any existing setting specified by the
	BLOCKSTRUCTURE directive and if neither has been set the
	design is assumed to be unstratified (i.e. to have a single error
	term)
COVARIATES = variates	Covariates for the analysis; by default MANOVA uses those
$\Box a c \Box c \Box c \Box t = a c a l a c$	listed by a previous COVARIATE directive (if any) Limit on the number of factors in a treatment term
FACTORIAL = scalar LRV = pointer	Contains elements first for the treatment terms and then the
LRV – pointer	covariate term (if any), allowing the LRV's to be saved from
	one of the analyses; if a term is estimated in more than one
	stratum, the LRV is taken from the lowest stratum in which it
	is estimated
FPROBABILITY = <i>string token</i>	Printing of probabilities for F statistics and Chi-square
	variables (no, yes); default no
SELECTION = string tokens	Which test statistics to print when PRINT=test
	(lawleyhotellingtrace, pillaibartletttrace,
	roysmaximumroot,wilkslambda};default lawl,pill,
	roys,wilk
NTIMES = scalar	Number of permutations to make when PRINT=perm; default
	999
EXCLUDE = $factors$	Factors in the block model of the design whose levels are not
_	to be randomized
SEED = scalar	Seed for the random number generator used to make the
	permutations; default 0 continues from the previous generation
Davamatar	or (if none) initializes the seed automatically
Parameter Y = variates	Y-variates for an analysis
1 - variates	1 - variates for all allalysis

MANTEL procedure

Assesses the association between similarity matrices (J.W. McNicol, E.I. Duff & D.A. Elston).

Options	
PRINT = string token	Controls printed output (test); default * i.e. none
METHOD = string token	The type of metric by which to compare the distance matrices
	(correlation, rankcorrelation, mantel); default corr
NPERMUTATIONS = $scalar$	The number of permutations of the units in the second distance
	matrix x on which the significance of the correlation between
	Y and X is to be based; default 100
Parameters	
Y = symmetric matrices	The first distance or similarity matrix: the order of the units of
	this matrix is held fixed

278	4 Syntax summary
x = symmetric matrices	The second distance or similarity matrix: the rows of x are permuted to allow the significance of the correlation between y and x to be assessed
SEED = scalars	Random number seed for the permutations; default set by RANDOMIZE
M = scalars	Association between Y and X
MPERMUTED = variates	Associations between Y and the permuted X's
CUPROB = scalars	The proportion of MPERMUTED values greater than or equal to ${\tt M}$
YOFFDIAGONAL = variates	Variate to save the off-diagonal elements of the distance/similarity matrix Y
XOFFDIAGONAL = variates	Variate to save the off-diagonal elements of the distance/similarity matrix X

MAPCLUSTER procedure

Clusters probes or genes with microarray data (D.B. Baird).

Options	
PRINT = string tokens	What to print (cluster, groups, summary); default clus
PLOT = string tokens	What to plot (dendrogram, groups, meangroups); default
	dend, grou
METHOD = string token	Type of clustering to use (hierarchical, kmeans); default hier
DMETHOD = string token	Distance method to use for hierarchical clustering
	(euclidean, cityblock); default eucl
LMETHOD = string token	What type of link to use in hierarchal clustering
	(singlelink, nearestneighbour, completelink,
	furthestneighbour, averagelink, mediansort, groupaverage); default aver
CRITERION = <i>string token</i>	Criterion to use in forming groups when LMETHOD=kmeans
C	(sums, predictive, within, Mahalanobis); default sums
NGROUPS = scalar	Number of groups to form when LMETHOD=kmeans
GTHRESHOLD = scalar	Grouping threshold for forming groups from the dendrogram;
	default *
PERCENT = scalar	Percentage of the probes/genes to use; default 100
DTITLE = text	Title for the dendrogram
GTITLE = text	Title for the groups plot
ARRANGEMENT = <i>string token</i>	Whether to use a trellis or single plot (single, trellis);
	default trel
WINDOW = scalar	Window number for the graphs; default 3
DEVICE = scalar	Device number on which to plot the graphs
GRAPHICSFILE = text	What graphics filename template to use to save the graphs;
	default *
SPREADSHEET = <i>string token</i>	What results to put in spreadsheets (top%probes); default *
	i.e. none
Parameters	
DATA = variates or pointers	Data values (i.e. log-ratios)
SLIDES = factors, texts or variates	Identifies the slides

PROBES = factors, texts of variates SIMILARITY = symmetric matrices GROUPS = factors

AMALGAMATIONS = matrices

Identifies the slides Identifies the probes or genes Saves the pair-wise similarities between probes or genes when METHOD=hier Saves the group membership for each probe Saves the probe or gene amalgamation data when METHOD=hier

MAPLOT procedure

Produces two-dimensional plots of microarray data (D.B. Baird). **Options**

Options	
SLIDES = factor or text	Defines the slides when the x and Y variates contain data from more than one slide
SLIST = variate or text	Subset of slides to plot; default * i.e. all
	*
GROUPS = factor	Specifies groups within slides
COLOURS = text, scalar or variate	Colours to use for the plots
SYMBOLS = scalar or variate	Symbols to use for the plots
REFERENCELINECHOICE = string toke	
	Reference line to include (identity, zero, none); default none
TRANSFORMATION = <i>string token</i>	Whether to transform data to logarithms base 2 (log2, none); default none
SCALING = string token	Whether to use a common scale when not using Trellis plots
	(common, none); default comm
BANDS = <i>string token</i>	Whether to plot approximate confidence bands (confidence, none); default none
SMOOTHEDMEAN = <i>string token</i>	Whether to plot spline smooth of mean (yes, no); default no
NROWS = scalar	Number of rows on a page in a trellis plot
NCOLUMNS = scalar	Number of columns on a page in a trellis plot
TITLE = text	Title for the graph
YTITLE = text	Title for the y-axis
XTITLE = text	Title for the x-axis
ARRANGEMENT = <i>string token</i>	Whether to use trellis, single or multiple plots when the X and Y variates contain data from more than one slide (separate, overlaid, trellis); default trel
WINDOW = $scalar$	Window number for the graphs; default 3
KEYWINDOW = scalar	Window number for the key; default 0
EVICE = scalar	Device number on which to plot the graphs
GRAPHICSFILE = text	What graphics filename template to use to save the graphs; default *
Parameters	
Y = variates or pointers	Y-coordinates
x = variates or pointers	X-coordinates
1	

MAREGRESSION procedure

Does regressions for single-channel microarray data (P. Brain, R.W. Payne & D.B. Baird).

Options	
PRINT = string tokens	Controls printed output (model, summary); default * i.e. none
TERMS = formula	Defines the regression model over the slides
WEIGHTS = variate	Weights for the regression; default 1
OFFSET = variate	Offset; default * i.e. none
CONSTANT = <i>string token</i>	How to treat the constant (estimate, omit); default esti
FACTORIAL = scalar	Limit for expansion of model terms; default 3
FULL = <i>string token</i>	Whether to assign all possible parameters to factors and
	interactions (yes, no); default no
POOL = string token	Whether to pool the information on each term in the analysis
	of variance (yes, no); default no
RMETHOD = string token	Type of residuals to form (deviance, Pearson, simple);
	default devi
SPREADSHEET = <i>string tokens</i>	What results to save in a book of spreadsheets (aov,
	residuals, fittedvalues, estimates, se, testimates,
	prestimates); default * i.e. none
Parameters	
Y = variates or pointers	Y-values for each set of analyses

PROBES = factors or texts	Defines the probe information for each analysis
SLIDES = factors or texts	Defines the slide information for each analysis
CHECK= texts or variates	Slide ID's that can be compared with the labels or levels of the
	SLIDES factor to ensure that the slide order is correct in each
	analysis
IDS = texts	Saves the probes names that have been generated to label the
	rows of the output structures from each analysis
RESIDUALS = <i>matrices</i>	Saves residuals from each set of analyses
FITTEDVALUES = matrices	Saves fitted values from each set of analyses
ESTIMATES = matrices	Saves estimates from each set of analyses
SE = matrices	Saves s.e.'s of estimates
TESTIMATES = matrices	Saves t-statistics of estimates
PRESTIMATES = matrices	Saves t-probabilities of estimates
DF = pointers	Saves degrees of freedom for the model terms or variates in
	each analysis of variance
SS = <i>pointers</i> or <i>variates</i>	Saves sums of squares for the model terms in each analysis of
	variance
MS = <i>pointers</i> or <i>variates</i>	Saves mean squares for the model terms in each analysis of
	variance
RDF = variates	Saves degrees of freedom from the "residual" lines in each
	analysis of variance
RSS = variates	Saves sums of squares from the "residual" lines
RMS = variates	Saves mean squares from the "residual" lines
TDF = variates	Saves degrees of freedom from the "total" lines in each
	analysis of variance
TSS = variates	Saves sums of squares from the "total" lines
TMS = variates	Saves mean squares from the "total" lines
VR = <i>pointers</i> or <i>variates</i>	Saves variance ratios for the model terms in each analysis of
	variance
PRVR = pointers or variates	Saves probabilities of the variance ratios

MARGIN directive

Forms and calculates marginal values for tables.

Option

option	
CLASSIFICATION = factors	Factors classifying the margins to be formed; default * requests all margins to be formed
Parameters	
OLDTABLE = tables	Tables from which the margins are to be taken or calculated
NEWTABLE = $tables$	New tables formed with margins
METHOD = string tokens	Way in which the margins are to be formed for each table
	(totals, means, minima, maxima, variances,
	medians, deletion, or a null string to indicate that the
	marginal values are all to be set to the missing value); default
	tota

MARMA procedure

Calculates Affymetrix expression values (D.B. Baird).

S	
= string token	What to print (estimates, monitoring); default esti
= string token	Method of establishing grid background (rma, rma2); default rma
LIZED = string token	Whether slides have been normalized (yes, no); default no
eters	
variates or pointers	Perfect-match data
S = factors or texts	Defines the slides
TA = variates or pointers	Saves the corrected values; if this is unset, they replace the
= string token D = string token LIZED = string token eters variates or pointers S = factors or texts	Method of establishing grid background (rma, rma2); defau rma Whether slides have been normalized (yes, no); default no Perfect-match data Defines the slides

280

4.1 Commands

	original values in DATA
ESTIMATES = variates	Saves the estimated parameters of the model
MAROBUSTMEANS procedure	
Does a robust means analysis for Aff	ymetrix slides (D.B. Baird).
Options	
TRANSFORMATION = <i>string token</i>	How to transform the data (log2, none); default none
MAXCYCLE = scalar	Maximum number of iterations; default 50
TOLERANCE = scalar	Tolerance for convergence; default 0.0001
Parameters	
DATA = variates or pointers	Expression data to be summarized
SLIDES = factors or texts	Defines the slides
PROBES = factors	Defines the probes
IDPROBES = factors	Saves the probe IDs
MEDIANS = variates or pointers	Saves the robust means
SEM = variates or pointers	Saves approximate standard errors of the robust means
MASCLUSTER procedure	
Clusters microarray slides (D.B. Bai	rd).

Options PRINT = *string tokens* What to print (cluster, pco, correlations, distances); default clus, pco, corr, dist **PLOT** = *string tokens* What to plot (dendrogram, mst); default dend, mst DMETHOD = *string token* What distance method to use to form the similarity matrix (correlation, euclidean, cityblock); default corr Percentage of the probes/genes to use to calculate correlations; PERCENT = scalar default 100 DTITLE = textTitle for the dendrogram MTITLE = textTitle for the minimum spanning tree

MTITLE = textIf the for the minimum spanning treeWINDOW = scalarWindow number for the graphs; default 3DEVICE = scalarDevice number on which to plot the graphsGRAPHICSFILE = textWhat graphics filename template to use to save the graphs;
default *

Parameters

DATA = variates or pointers SLIDES = factors, texts or variates PROBES = factors, texts or variates CORRELATION = symmetric matrices DISTANCE = symmetric matrices

MASHADE procedure

Produces shade plots to display spatial variation of microarray data (D.B. Baird).

Data values (i.e. log-ratios) Identifies the slides

Identifies the probes or genes Saves the correlation matrix

Saves the distance matrix

Options SLIDES = *factor* or *text*

SLIST = variate or text ROWS = factor or variate COLUMNS = factor or variate COLOURS = text, scalar or variate SHADING = string token TITLE = text YTITLE = text XTITLE = text WINDOW = scalar DEVICE = scalar GRAPHICSFILE = text Defines the slides when the DATA variate contains data from more than one slide
Subset of slides to plot; default * i.e. all
Row to which each DATA unit belongs
Column to which each DATA unit belongs
Colours to use for the plots; default !t (blue, red)
Shading scale (natural, percentiles); default natu
Title for the graph
Title for the y-axis
Title for the x-axis
Window number for the graphs; default 3
Device number on which to plot the graphs
What graphics filename template to use to save the graphs;

4 Syntax summary

default *

Parameter

DATA = variates or pointers

Values for each shade plot

MATRIX directive

Declares one or more matrix data structures.

Options

ROWS = scalar, vector, pointer or text	Number of rows, or labels for rows; default *	
COLUMNS = <i>scalar</i> , <i>vector</i> , <i>pointer</i> or <i>tex</i>	ct	
	Number of columns, or lobals for columns; default	+

	Number of columns, or labels for columns; default *
VALUES = <i>numbers</i>	Values for all the matrices; default *
MODIFY = string token	Whether to modify (instead of redefining) existing structures
	(yes, no); default no
IPRINT = string tokens	Information to be used by default to identify the matrices in
-	output (identifier, extra); if this is not set, they will be
	identified in the standard way for each type of output
Parameters	
IDENTIFIER = <i>identifiers</i>	Identifiers of the matrices
VALUES = <i>identifiers</i>	Values for each matrix
DECIMALS = scalars	Number of decimal places for printing
EXTRA = $texts$	Extra text associated with each identifier
MINIMUM = scalars	Minimum value for the contents of each structure
MAXIMUM = scalars	Maximum value for the contents of each structure
DREPRESENTATION = <i>scalars</i> or <i>texts</i>	Default format to use when the contents represent dates and
	times

MAVDIFFERENCE procedure

Applies the average difference algorithm to Affymetrix data (D.B. Baird).

Options	
---------	--

PRINT = string token	Whether to print monitoring information (monitoring); default *
SDLIMIT = scalar	Maximum number of iterations; default 50
Parameters	
DATA = variates or pointers	Data values
GROUPS = factors	Groupings of the data values
MEANS = variates	Saves the means
SE = variates	Saves standard errors

MAVOLCANO procedure

Produces volcano plots of microarray data (D.B. Baird).

Options

NGROUPS = scalar COLOURS = text, scalar or variate SYMBOL = scalar TRANSFORMATION = string token

TITLE = text YTITLE = text XTITLE = text WINDOW = scalar KEYWINDOW = scalar DEVICE = scalar GRAPHICSFILE = text

Parameters

X = variates

Number of groupings for a Z variate; default 10 Colours to use for the plots; default !t (blue, red) Symbol to use for the points; default 1 Whether to transform data to logarithms base 2 (log10, none); default log10 Title for the graph Title for the y-axis Title for the x-axis Window number for the graphs; default 3 Window number for the graphs; default 0 Device number on which to plot the graphs What graphics filename template to use to save the graphs; default *

X-coordinates

282

Y = variates or factors	Y-coordinates
Z = variates or factors	Z-coordinates

MA2CLUSTER procedure

Performs a two-way clustering of microarray data by probes (or genes) and slides (D.B. Baird).

Options	
PRINT = string tokens	What to print (cluster, groups, summary); default clus
PLOT = string tokens	What to plot (dendrogram, shade, meanshade); default
	dend, shad
METHOD = string token	Type of clustering to use (hierarchical, kmeans); default hier
DMETHOD = string token	Distance method to use for hierarchical clustering
	(euclidean, cityblock); default eucl
LMETHOD = string token	What type of link to use in hierarchal clustering
	(singlelink, nearestneighbour, completelink,
	furthestneighbour, averagelink, mediansort,
	groupaverage); default aver
CRITERION = string token	Criterion to use in forming groups when LMETHOD=kmeans
_	(sums, predictive, within, Mahalanobis); default sums
PNGROUPS = scalar	Number of probe groups to form when LMETHOD=kmeans
SNGROUPS = scalar	Number of target (slide) groups to form when
	LMETHOD=kmeans
GTHRESHOLD = scalar	Grouping threshold for forming probe groups from the
	dendrogram; default *
SGTHRESHOLD = scalar	Grouping threshold for forming target (slide) groups from the
	dendrogram; default *
MINOBSERVATIONS = scalar	Smallest number of observations before probes are dropped;
	default *
PERCENT = scalar	Percentage of the probes/genes to use; default 100
STANDARDIZE = <i>string token</i>	Allows you to centre the values by slide and probe (centre);
	default * i.e. no centring
COLOURS = <i>text</i> , <i>scalar</i> or <i>variate</i>	Colours to use for shade plot; default !t (blue, red)
DTITLE = text	Title for the dendrogram
STITLE = text	Title for the shade plot
WINDOW = scalar	Window number for the graphs; default 3
DEVICE = $scalar$	Device number on which to plot the graphs
GRAPHICSFILE = <i>text</i>	What graphics filename template to use to save the graphs;
	default *
SPREADSHEET = <i>string token</i>	What results to put in spreadsheets (top%probes); default *
	i.e. none
Parameters	
DATA = variates or pointers	Data values (i.e. log-ratios)
SLIDES = factors, texts or variates	Identifies the slides
PROBES = factors, texts or variates	Identifies the probes or genes
GMEANS = matrices	Saves the tabulation of the data by probe groups and target
	groups, as a two-way matrix
PGROUPS = <i>factors</i>	Saves the group membership for each probe (or gene)
SGROUPS = $factors$	Saves the group membership for each slide (or target)
PAMALGAMATIONS = matrices	Saves the probe (or gene) amalgamation data when
	METHOD=hier
SAMALGAMATIONS = matrices	Saves the slide (or target) amalgamation data when METHOD=hier

MCNEMAR procedure

Performs McNemar's test for the significance of changes (R.W. Payne & D.A. Murray). **Options**

284	4 Syntax summary
METHOD = string token	Type of test required (twosided, greaterthan, lessthan); default twos
Parameters	
Y1 = factors or tables	Factor containing the responses obtained before the treatment (with 1 indicating a positive response) or two-by-two table (classified by factors representing the two occasions of testing) summarizing the responses before and after treatment
Y2 = factors	Factor containing the responses obtained after the treatment (need not be specified if Y1 is a table)
STATISTIC = scalars	Saves the test statistic
PROBABILITY = scalars	Saves the probability value

MCOMPARISON procedure

Performs pairwise multiple comparison tests within a table of means (D.M. Smith). **Options**

Options	
PRINT = string tokens	Controls printed output (comparisons, critical,
	<pre>description, lines, letters, plot, mplot, pplot);</pre>
	default lett
METHOD = string token	Test to be performed (flsd, bonferroni, sidak); default flsd
DIRECTION = string token	How to sort means (ascending, descending); default asce
PROBABILITY = scalar	The required significance level; default 0.05
STUDENTIZE = string token	Whether to use the alternative LSD test where the Studentized
	Range statistic is used instead of Student's t (yes, no); default no
Parameters	
MEANS = tables	Means to be compared
SED = symmetric matrix or scalar	Standard errors of differences of the means
DF = symmetric matrix or scalar	Degrees of freedom for the standard errors of differences
VMEANS = <i>pointer</i> or <i>variate</i>	Saves the means in a variate, sorted as requested by the DIRECTION option
DIFFERENCES = symmetric matrix	Saves differences between the (sorted) means
LABELS = $text$	Saves labels for the (sorted) means
LETTERS = $text$	Saves letters indicating groups of means that do not differ
	significantly
SIGNIFICANCE = symmetric matrix	Indicators to show significant comparisons between (sorted)
	means
CIWIDTH = symmetric matrix	Saves the width of the confidence interval for the absolute differences between the (sorted) means
TERMNAME = $texts$	Name of the term, to use to annotate the graphs

MCORANALYSIS procedure

Does multiple correspondence analysis (A.I. Glaser).

Options	
PRINT = string tokens	Printed output from the analysis (roots, rowscores,
	rowinertias, rowchisquare, rowmass, rowquality,
	colscores, colinertias, colchisquare, colmass,
	colquality); default * i.e. no output
ROWMETHOD = string token	Analysis method for rows i.e. units (indicator); default indi
COLMETHOD = string token	Analysis method for columns i.e. factors (adjusted, burt, indicator); default adju
NROOTS = scalar	Number of latent roots for printed output; default * requests
	them all to be printed
%METHOD = string token	How to represent proportions or %s in quality statistics
	(permills, percentages, proportions); default prop
NDIMENSIONS = scalar	Number of dimensions for which quality statistics are required;

4.1 Commands

	default 2
TOLERANCE = $scalar$	Tolerance criteria for zero eigenvalues; default 10 ⁻⁶
Parameters	
DATA = <i>pointers</i>	Data to be analysed
ROOTS = <i>diagonal matrices</i>	Saves the squared singular values from each analysis
ROWSCORES = matrices	Saves the scores for the rows of the data
COLSCORES = <i>matrices</i>	Saves the scores for the columns of the data
ROWINERTIAS = matrices	Saves the total inertias for the rows of the data
COLINERTIAS = matrices	Saves the total inertias for the columns of the data
ROWQUALITY = matrices	Saves the quality statistics for rows of the data
COLQUALITY = matrices	Saves the quality statistics for columns of the data
SUBINERTIAS = matrices	Saves the inertias of the subtables of the Burt matrices
FREQUENCY = variates	Frequencies for elements of DATA
SAVE = pointers	Saves details of the analysis for use by CABIPLOT

MCOVARIOGRAM directive

Fits models to sets of variograms and cross-variograms.

$\mathbf{\Omega}$		
()	ptions	
v	σασπο	

Options	
PRINT = string tokens	Controls printed output from the fit (model, summary,
	estimates, fittedvalues, monitoring); default mode,
	summ, esti
WEIGHTING = string token	Method to be used for weighting (counts, equal); default
	coun
MAXLAG = scalar	Maximum lag distance of points to be included in the
	modelling
MINCOUNT = scalar	Minimum number of points required at a particular lag point
	for a pair of variables for this to be used to model their cross-
	variogram; default 30 for equal weighting and 10 for counts
MAXCYCLE = scalar	Maximum number of iterations for model fitting; default 30
TOLERANCES = variate	Tolerances for model fitting; default * i.e. appropriate default
	values
COORDSYSTEM = <i>string token</i>	Coordinate system used for the geometry for discretizing the
	lag (mathematical, geographical); default math
COVARIOGRAM = <i>pointers</i>	Experimental variograms, cross-variograms and associated
	information defining the data for fitting the model
Parameters	
MODELTYPE = string tokens	Defines the model structures to be fitted (nugget, power,
C C	boundedlinear, circular, spherical,
	pentaspherical, cubic, stable, besselk1,
	cardinalsine, dampenedcosine); no default i.e. must be
	specified
INITIAL = scalars or variates	Scalar defining the initial distance parameter for fitting an
	isotropic model structure or a variate defining initial values for
	an anisotropic ellipse or ellipsoid for fitting an geometrical
	anisotropic model
ISOTROPY = <i>string tokens</i>	Specifies the zonal anisotropy to be used for model structure
	(isotropic, x, y, z, xy, xz, yz); default isot
ESTIMATES = pointers	Structures to store the estimated non-linear parameters and sill
F	values
LOWER = scalars	Lower bound for each non-linear distance parameter
UPPER = scalars	Upper bound for each non-linear distance parameter
STEPLENGTH = scalars	Initial step length for each non-linear distance parameter
SMOOTHNESS = scalars	Value of exponent parameter for the power and stable models,
STICTINGS SCAMED	or theta parameter for the dampened-cosine model
	or meta parameter for the dampened cosine model

MCROSSPECTRUM procedure

Performs a spectral analysis of a multiple time series (G. Tunnicliffe Wilson & R.P. Littlejohn). **Options**

Options	
PRINT = string token	Controls printed output (description); default desc
PLOT = string tokens	Variables for which to plot the analysis (explanatory,
	response); default expl, resp
CORRECT = string token	Whether to mean or trend correct the series (mean, linear,
	quadratic, none); default mean
BANDWIDTH = $scalar$	Bandwidth for smoothing, must be between 0 and 0.5; if unset,
	a default is calculated automatically
MAXLAG = $scalar$	Maximum lag for the time domain outputs; if unset, a default is
	calculated automatically
PROBABILITY = scalar	Probability value for confidence limits; default 0.95
TAPER = scalar	The proportion of data to be tapered using a cosine bell
TATER Scalar	window; default 0
YLOG = string token	Whether to plot the univariate spectra with a \log_{10} -transformed
1109 string token	y-axis (yes, no); default no
Parameters	y-axis (yes, no), default no
Y = variates	Desmanas times series
	Response time series
X = variates or pointers	Explanatory time series
ALIGN = variates	Shifts to apply to the explanatory series; default none
SPECTRUM = pointers	Saves autospectra, co-spectra and quad-spectra
FREQUENCY = variate	Saves the frequency values at which the spectra are calculated
VARSPECTRUM = <i>pointers</i>	Saves information about the variation of the spectrum:
	coefficient of variation, degrees of freedom, and lower and
	upper multiplicative limits for the univariate spectra
MULTICOHERENCYSQUARED = pointers	
	confidence limits for the squared multiple coherency between
	the response and explanatory series
PARTIALCOHERENCYSQUARED = pointe	27S
	Saves estimates, significance limits, lower and upper
	confidence limits for the squared partial coherency of the
	response series with each explanatory series
GAIN = pointers	Saves estimates, lower and upper limits for the estimated gain
-	of response series from each of the explanatory series
PHASE = pointers	Saves estimates, lower and upper limits for the estimated phase
1	of response series from each of the explanatory series
NOISESPECTRUM = variates	Saves the estimated spectrum of the noise process
IMPULSERESPONSE = pointers	Saves the impulse response from – maxlag to +maxlag:
	estimates and significance limit
LAGS = <i>variates</i>	Saves the lags for the impulse response
ACFNOISE = variates	Saves the ACF of the noise process
ACTIVIJE VUIUUES	Surves the rich of the holse process

MC1PSTATIONARY procedure

Gives the stationary probabilities for a 1st-order Markov chain (R.P. Littlejohn).

Option	
PRINT = string token	What to print (transitions, pstationary); default psta
Parameters	
DATA = matrices or factors	Specifies the Markov chain as a factor, or matrix of transitions
STATES = <i>texts</i>	Labels for the states
PSTATIONARY = variates	Saves the stationary probabilities
TRANSITIONS = <i>matrices</i>	Saves the transition matrices

MDS directive

Performs non-metric multidimensional scaling.

Options

PRINT = string tokens	Printed output required (coordinates, roots,
	distances, fitteddistances, stress,
	monitoring); default * i.e. no printing
DATA = symmetric matrix	Distances amongst a set of units
METHOD = string token	Whether to use non-metric scaling, or metric scaling with
	linear regression of the fitted distances to the actual distances
	(nonmetric, linear); default nonm
SCALING = string token	Whether least-squares, least-squares-squared, or log-stress
	scaling is to be used (ls, lss, logstress); default ls
TIES = string token	Treatment of tied data values (primary, secondary,
	tertiary); default prim
WEIGHTS = symmetric matrix	Weights for each distance value; default * i.e. all distances
	with weight one
INITIAL = matrix	Initial configuration; default * i.e. a principal coordinate
	solution is used
NSTARTS = scalar	Number of starting configurations to be used, by making
	random perturbations to the initial configuration; default 10
SEED = scalar	Seed for the random-number generator; default 0
MAXCYCLE = scalar	Maximum number of iterations; default 30
Parameters	
NDIMENSIONS = scalars	Number of dimensions for each solution
COORDINATES = matrices	To store the coordinates of the units for each solution
STRESS = scalars	To store the stress value for each solution
DISTANCES = <i>symmetric matrices</i>	To store the distances amongst the points for the units in the
-	fitted number of dimensions
FITTEDDISTANCES = symmetric matric	ces
-	To store the fitted distances from the monotonic
	(METHOD=nonmetric) or linear (METHOD=linear)
	· · · · · · · · · · · · · · · · · · ·

MEDIANTETRAD procedure

Gives robust identification of multiple outliers in 2-way tables (J.K.M. Brown).

regression

Gives robust rechained of manip	to outliers in 2 way tables (s.R.M. Drown).
Options	
PRINT = string tokens	Printed output required (graph, table); default grap, tabl
GRAPHICS = <i>string tokens</i>	Type of graph required (highresolution, lineprinter); default high
SORT = string tokens	Sorting of printed output, in order of absolute value of median tetrad (ascending, descending, none); default none
Parameters	tonad (ascenaring, aescenaring, none), donant none
TABLE = $tables$	Specifies the two-way table of data
	1 2
ROWS = factors	Saves the factor classifying the table rows
COLUMNS = factors	Saves the factor classifying the table columns
DATA = variates	Saves the data values in the body of the table
MEDIANTETRADS = variates	Saves median tetrads for each cell in the table
RANKS = variates	Saves ranks of absolute values of median tetrads
HALFNORMALSCORES = variates	Saves half-Normal scores of absolute values of median tetrads
TESTOUTLIERS = <i>scalars</i>	Specifies the number of cells, with the highest absolute median tetrads, to be set to their predicted values before re-running the analysis

META procedure

Combines estimates from individual trials (R.W. Payne & S. Senn).

Options	
PRINT = string tokens	Controls output (estimates, overalltest,
	heterogeneity, confidenceplot, galbraithplot,
	monitoring); default esti, over, hete, conf
SELECTION = <i>string tokens</i>	Which combined estimates to include in the output (fixed,
	random); default fixe, rand
RMETHOD = string token	How to form the random estimate (maxlikelihood,
	<pre>maxremllikelihood, moments, reml); default reml</pre>
XLABEL = text	Label for the x-axis of the confidence plot; default
	'treatment effect'
SMETHOD = string token	How to set the sizes of symbols on the confidence plot
	(equal, inversese); default inve
CIPROBABILITY = scalar	Probability level to use for the confidence intervals; default
	0.95
CIMETHOD = string token	Method to use for calculating the confidence interval for
	random estimates formed by maximum likelihood or REML
	(approximate, profile); default prof
PRMETHOD = string token	Type of test to use for the overall probability values
	(greaterthan, lessthan, twosided); default grea
MAXCYCLE = scalar	Maximum number of iterations to use with RMETHOD settings
	maxlikelihood and maxremllikelihood; default 100
TOLERANCE = $scalar$	Convergence criterion to use with RMETHOD settings
	maxlikelihood and maxremllikelihood; ${ m default}\;10^{-6}$
Parameters	
ESTIMATES = variates	Supplies the estimates to combine
SEESTIMATES = variates	Specifies the standard errors of the estimates
LABELS = texts	Labels to use for each variate of ESTIMATES in the output
FIXEDESTIMATE = scalars	Saves the combined estimate for each variate of ESTIMATES,
	treating them as fixed effects
SEFIXEDESTIMATE = scalars	Saves the standard error of the combined estimate for each
	variate of ESTIMATES, treating them as fixed effects
PRFIXEDESTIMATE = scalars	Saves the probability of the combined estimate for each variate
	of ESTIMATES, treating them as fixed effects
RANDOMESTIMATE = $scalars$	Saves the combined estimate for each variate of ESTIMATES,
	treating them as random effects
SERANDOMESTIMATE = scalars	Saves the standard error of the combined estimate for each
	variate of ESTIMATES, treating them as random effects
PRRANDOMESTIMATE = scalars	Saves the probability of the combined estimate for each variate
	of ESTIMATES, treating them as random effects
QSTATISTIC = scalars	Saves the statistic Q for the test of heterogeneity across trials
QDF = scalars	Saves the degrees of freedom of the statistic Q
RVARIANCE = scalars	Saves the random effect variance
LOWER = variates	Saves lower values of the confidence interval
UPPER = variates	Saves upper values of the confidence interval

MICHAELISMENTEN procedure

Fits the Michaelis-Menten equation for substrate concentration versus time data (M.C. Hannah). **Options**

PRINT = string tokens	What to print (model, deviance, summary, estimates,
	correlations, fittedvalues, monitoring); default
	mode, summ, esti
PLOT = string tokens	What to plot (concentration, rate); default conc
WINDOW = scalar	Window in which to plot the graphs; default 1
TITLE = text	Title for the graphs; default 'Michaelis-Menten

	process'
TTIMES = text	Title for the times axis; if this is unset, the identifier of the
	TIMES variate is used
TCONCENTRATIONS = $text$	Title for the concentrations axis; if this is unset, the identifier
	of the CONCENTRATIONS variate is used if available, otherwise 'Concentration'
TRATES = $text$	Title for the rates axis; if this is unset, the identifier of the
	RATES variate is used if available, otherwise 'Rate'
WEIGHTS = variate	Weights for the observations, to use in the fit, if required;
	default * i.e. all observations with weight one
Parameters	
TIMES = variates	Times at which substrate concentration data were measured
CONCENTRATIONS = variates	Substrate concentration data
STEPLENGTHS = variates	Variate with four values defining initial step lengths for the
	parameters S_0 , V_{max} , K_m and K_1 (in that order)
INITIAL = variates	Variate containing initial values for the parameters, similarly
	to STEPLENGTHS
RESIDUALS = variates	Saves the residuals from each fit
FITTEDVALUES = variates	Saves the fitted concentration values
ESTIMATES = variates	Saves the parameter estimates
SE = variates	Saves the standard errors of the estimates
VCOVARIANCE = <i>symmetric matrix</i>	Saves the variance-covariance matrix of the estimates
OBSRATES = variates	Saves reaction rates, calculated from the observed
	concentrations
FITRATE = variates	Saves fitted reaction rates

MINFIELDWIDTH procedure

Calculates minimum field widths for printing data structures (R.W. Payne).

Option	
IPRINT = string tokens	What identifier and/or text to print for the structure
	(identifier, extra); default is to take the IPRINT setting
	of each STRUCTURE
Parameters	
STRUCTURE = <i>identifiers</i>	Data structures to be printed
FIELDWIDTH = scalars	Saves the minimum field widths
DECIMALS = scalars	Number of decimal places to be used for numerical data
	structures; if unset, a default is obtained using the DECIMALS
	procedure
SKIP = scalars	Number of spaces to leave before each value of the structure;
	default 1
FREPRESENTATION = <i>string tokens</i>	How to represent factor values (labels, levels,
	ordinals); default is to use labels if available, otherwise
	levels

MINIMIZE procedure

Finds the minimum of a function calculated by a procedure (R.W. Payne).

Options	
PRINT = string tokens	What output to produce (minimum, monitoring); default mini
FUNCTIONVALUE = $scalar$	Saves the minimum function value
DATA = any type	Data to be used with procedure _MINFUNCTION
MAXCYCLE = scalar	Maximum number of iterations; default 2000
NSTARTS = scalar	Maximum number of restarts; default 4
STEPADJUSTMENT = scalar	Adjustment to step lengths at each restart; default 0.1
EXIT = scalar	Indicates whether there has been convergence (zero) or non-
	convergence (non-zero)
TOLERANCE = $scalar$	Convergence criterion; default 0.0001

ussNewton, efault Newt

MIN1DIMENSION procedure

Finds the minimum of a function in one dimension (R.W. Payne).

Options	· · ·
PRINT = string tokens	What output to produce (minimum, monitoring, plot);
U U	default mini
CALCULATION = <i>expression structures</i>	Expressions to calculate the target function
FUNCTIONVALUE = $scalars$	Identifier of the scalar, calculated by CALCULATION, whose
	value is to be minimized
DATA = any type	Data to be used with procedure _MIN1DFUNCTION
CRITERION = <i>string token</i>	Criterion for convergence (function, parameters); default func
MAXCYCLE = scalars	Maximum number of iterations; default 250
EXIT = scalars	Indicates whether there has been convergence (0) or non- convergence (1)
TOLERANCE = $scalars$	Convergence criterion; default 10^{-6} or variate
Parameters	-
PARAMETER = $scalars$	Parameters to be estimated
LOWER = scalars	Lower bound for each parameter
UPPER = scalars	Upper bound for each parameter
STEPLENGTH = scalars	Step length for each parameter
INITIAL = scalars	Initial value for each parameter

MERGE directive

Copies subfiles from backing-store files into a single file.

6
What to print (catalogue); default *
Channel number of the backing-store file where the subfiles are to be stored; default 0, i.e. the workfile
How to append subfiles to the OUT file (add, overwrite, replace); default add, i.e. clashes in subfile identifiers cause a fault (note: replace overwrites the complete file)
Password to be checked against that stored with the file; default *
Identifiers of the subfiles
Channel number of the backing-store file containing each subfile
Identifier to be used for each subfile in the new file

MMPREDICT procedure

Predicts the Michaelis-Menten curve for a particular set of parameter values (M.C. Hannah).

Options	
PLOT = string tokens	What to plot (concentration, rate); default conc
WINDOW = scalar	Window in which to plot the graphs; default 1
TITLE = text	Title for the graphs; default 'Michaelis-Menten process'
TTIMES = $text$	Title for the times axis; if this is unset, the identifier of the

4.1 Commands

TCONCENTRATIONS = <i>text</i>	TIMES variate is used Title for the concentrations axis; if this is unset, the identifier of the CONCENTRATIONS variate is used if available, otherwise
	'Concentration'
TRATES = $text$	Title for the rates axis; if this is unset, the identifier of the
	RATES variate is used if available, otherwise 'Rate'
Parameters	
PARAMETERS = variates	Variate with four values specifying the values of the
	parameters S_0 , V_{max} , K_m and K to use to form the predictions
TIMES = variates	Times at which to make predictions
CONCENTRATIONS = variates	Saves the predicted substrate concentrations
RATES = variates	Saves the predicted reaction rates

MNORMALIZE procedure

Normalizes two-colour microarray data (D.B. Baird).

Options	
---------	--

PRINT = string tokens	What to print (summary, slidesummary, monitoring);
-	default summ, slid, moni
PLOT = string tokens	What plots to produce (pineffects, roweffects,
	columneffects, intensityeffects, rowxcoleffects,
	ma, standardizedma, spatialresiduals); default * i.e.
	none
METHOD = string token	What type of model components to fit (spline, loess);
	default spli
MODELTERMS = <i>string tokens</i>	What model components to fit (pins, rows, columns,
-	intensity, pinxintensity, ar1, rowxcolumn, pinxrow,
	pinxcolumn); default pins, rows, colu, inte
DFINTENSITY = $scalar$	Degrees of freedom for intensity cubic spline; default 24
DFROWXCOLUMN = scalar	Degrees of freedom for row \times col thinplate spline; default 49
POORFLAGS = <i>text</i> or <i>variate</i>	Levels of FLAGS that are poor quality spots
BADFLAGS = <i>text</i> or <i>variate</i>	Levels of FLAGS that are bad spots
ARRANGEMENT = <i>string token</i>	Whether to use trellis or single plots (single, trellis);
	default trel
WINDOW = scalar	Window number for the graphs; default 3
DEVICE = scalar	Device number on which to plot the graphs
GRAPHICSFILE = text	What graphics filename template to use to save the graphs;
	default *
Parameters	
LOGRATIOS = variates or pointers	Log-ratios

INTENSITIES = *variates* or *pointers* SLIDES = *factors* or *texts* PINS = factors SROWS = factors SCOLUMNS = factors PROWS = factors PCOLUMNS = factors FLAGS = *factors* or *pointers* CLOGRATIOS = variates or pointers SLOGRATIOS = variates or pointers SDSMOOTH = *variates* or *pointers* PINEFFECTS = tables ROWEFFECTS = tables COLEFFECTS = tables INTEFFECTS = variates or pointers CLRED = *variates* or *pointers* CLGREEN = variates or pointers

Spot intensities Slides Pins Rows across whole slide Columns across whole slide Rows within pins Columns within pins Quality flags Save corrected log-ratios Save standardized log-ratios Save smoothed deviations Save estimated pin effects Save estimated row effects Save estimated column effects Save estimated intensity effects Save corrected log2 red values Save corrected log2 green values

292	4 Syntax summary
VAREXPLAINED = variates	Save the variance explained by slide

MODEL directive

Defines the response variate(s) and the type of model to be fitted for linear, generalized linear, generalized additive, and nonlinear models.

Options

Options	
DISTRIBUTION = string token	Distribution of the response variable (normal, poisson,
	binomial, gamma, inversenormal, multinomial,
	calculated, negativebinomial, geometric,
	exponential, bernoulli); default norm
LINK = <i>string token</i>	Link function (canonical, identity, logarithm, logit,
	reciprocal, power, squareroot, probit,
	complementaryloglog, calculated, logratio); default
	cano (i.e. iden for DIST=norm or calc; loga for
	DIST=pois; logi for DIST=bino, bern or mult; reci for
	DIST=gamm or expo; powe for DIST=inve; logr for
	DIST=nega or geom)
EXPONENT = scalar	Exponent for power link; default -2
AGGREGATION = scalar	Fixed parameter for negative binomial distribution (parameter
incontrolling of the second	<i>k</i> as in variance function Var = mean + mean ² /k); default 1
KLOGRATIO = scalar	Parameter for logratio link, in form $log(mean/(mean+k));$
REGORATIO Scalar	default as set in AGGREGATION option
DISPERSION = scalar	Value of dispersion parameter in calculation of s.e.s etc;
DISPERSION Scalar	default * for DIST=norm, gamm, inve or calc, and 1 for
	DIST=pois, bino, mult, nega, geom, expo Or bern
WEICHES - variate or symmetric matrix	Variate of weights for weighted regression, or symmetric
WEIGHIS – Variate of symmetric matrix	matrix of weights (one row and column for each unit of data)
	for generalized least squares; default * Offset variate to be included in model; default *
OFFSET = variate	
GROUPS = factor	Absorbing factor defining the groups for within-groups linear
DUTTURD - string to have	or generalized linear regression; default *
RMETHOD = <i>string token</i>	Type of residuals to form, if any, after each model is fitted
DUTTURD - string to have	(deviance, Pearson, simple); default devi
DMETHOD = string token	Basis of estimate of dispersion, if not fixed by DISPERSION
1	option (deviance, Pearson); default devi
FUNCTIONVALUE = scalar	Scalar whose value is to be minimized by calculation; default
YRELATION = <i>string token</i>	Whether to analyse the y-variates separately, as in ordinary
indimition string token	regression, or to analyse them cumulatively as counts in
	successive categories of a multinomial distribution
	(separate, cumulative); default sepa
DCALCULATION = arprassion structures	Calculations to define the deviance contributions and variance
DEALCOLATION – expression structures	function for a non-standard distribution; must be specified
	when DIST=calc
$I \subseteq A I \subseteq U I A \equiv I \subseteq A = a \times P \times$	Calculations to define the fitted values and link derivative for a
LCALCOLATION – <i>expression structures</i>	non-standard link; must be specified when LINK=calc
$P=P_1 = a_1 a_1$	
DFDISPERSION = scalar	Allows you to specify the number of degrees of freedom for a
	dispersion parameter specified by the DISPERSION option; if
	this is not set, the supplied dispersion is assumed to be known
	exactly
SAVE = <i>identifier</i>	To name regression save structure; default *
Parameters	Demonstration of the Cost 1 1 1 1
Y = variates	Response variates; only the first is used in nonlinear models
	and in generalized linear models except when DIST=mult,
	when they specify the numbers in each category of an ordinal
	response model

NBINOMIAL = <i>variate</i> or <i>scalar</i> RESIDUALS = <i>variates</i>	Total numbers for DIST=bino To save residuals for each y variate after fitting a model
FITTEDVALUES = variates	To save fitted values, and provide fitted values if no terms are given in FITNONLINEAR
LINEARPREDICTOR = variate	Specifies the identifier of the variate to hold the linear predictor
DERIVATIVE = variate	Specifies the identifier of the variate to hold the derivative of the link function at each unit
DEVIANCE = variate	Specifies the identifier of the variate to hold the contribution to the deviance from each unit
VFUNCTION = variate	Specifies the identifier of the variate to hold the value of the variance function at each unit

MONOTONIC directive

Fits an increasing monotonic regression of y on x.

No options Parameters

Parameters	
Y = variates	Y-values of the data points
X = variates	X-values of the data points; default is to assume that the x-
	values are monotonically increasing
RESIDUALS = variates	Variate to save the residuals from each fit
FITTEDVALUES = variates	Variate to save the fitted values from each fit
RESIDUALS = variates	values are monotonically increasing Variate to save the residuals from each fit

MOVINGAVERAGE procedure

Calculates and plots the moving average of a time series (R.P. Littlejohn, G. Tunnicliffe Wilson & D.B. Baird).

$\mathbf{\Omega}$		• _	
O	pt	10	n

Options	
PRINT = string token What to print (parameters); default * i.e. no	othing
NSAMPLES = <i>scalar</i> Number of samples used to calculate each mo	oving average
METHOD = <i>string token</i> How to calculate the averages (past, centre	ed,
exponential, filter, holtwinters) def	ault past
ORDER = <i>scalars</i> Order for polynomial smoothing $(0, 1, 2, 3, 4)$); default 0 i.e.
ordinary moving-averages calculated from me	eans
TRIM = string tokenWhether to trim transients with METHOD setting	ngs past or
centre when ORDER=0 (yes, no); default no	0
PLOT = <i>string token</i> What to plot (components, movingaverage	es); default * i.e.
nothing	
ALPHA = scalar Allows the smoothing parameter for the contract of the con	ribution of the last
value in the series to the moving average to b	e specified for
the exponential or Holt-Winters methods	
BETA = scalar Allows the smoothing parameter for the trend	l to be specified
for the Holt-Winters method	
GAMMA = scalar Allows the smoothing parameter for the seaso	onal component to
be specified for the Holt-Winters method	
MULTIPLICATIVE = string token Controls whether the seasonal component is r	multiplicative in
the Holt-Winters method (yes, no); default n	10
Parameters	
SERIES = variates Time series whose moving averages are requi	
MASERIES = <i>pointers</i> Saves the moving averages for the defined OF	RDER settings
TITLE = texts Title for the graph	
SEASONAL = $factors$ Factor for seasonal adjustment	
SAVE = <i>pointers</i> Saves results from the Holt-Winters method of adjustment	or from seasonal

MPOLISH procedure

Performs a median polish of two-way data (D.B. Baird).

Options

- F	
MAXCYCLE = scalar	Maximum number of iterations; default 50
TOLERANCE = scalar	Tolerance for convergence; default 0.0001
Parameters	
DATA = variates or pointers or main	trices or tables
	Two-way data to be polished
ROWS = factors	Row definitions for a DATA variate
COLUMNS = factors	Column definitions for a DATA variate

ROWEFFECTS = variate Row effects removed from polished results Column effects removed from polished results COLEFFECTS = *variate* POLISH = variates or pointers or matrices or tables Polished result in same format as DATA Estimate of overall centre point

CENTRE = scalars

MPOWER procedure

Forms integer powers of a square matrix (P.W. Lane).

No options **Parameters**

MATRIX = $matrices$,	an un atui a		diaconal	
MATRIX $-$ mainces,	symmetric	mairices of	alagonal	mairices

	Matrix from which to form the power
POWER = scalars	Power to which each matrix is to be raised
RESULT = <i>identifiers</i>	Structure to store the result

MSEKERNEL2D procedure

Estimates the mean square error for a kernel smoothing (M.A. Mugglestone, S.A. Harding, B.Y.Y. Lee, P.J. Diggle & B.S. Rowlingson). Ontion

Option	
PRINT = string token	What to print (summary); default summ
Parameters	
Y = variates	Vertical coordinates of each spatial point pattern; no default – this parameter must be set
X = variates	Horizontal coordinates of each spatial point pattern; no default – this parameter must be set
YPOLYGON = variates	Vertical coordinates of each polygon; no default – this parameter must be set
XPOLYGON = variates	Horizontal coordinates of each polygon; no default – this parameter must be set
NSTEP = scalars	How many values of the kernel width to use; no default – this parameter must be set
HMAX = scalars	Maximum values for the kernel width; no default – this parameter must be set
HVALUES = variates	Variates to receive the values of the kernel width
MSE = variates	Variates to receive the estimated mean square error for each value of the kernel width

MTABULATE procedure

Forms tables classified by multiple-response factors (R.W. Payne).

Options	
PRINT = string token	Controls printed output (counts, totals, nobservations,
	means, minima, maxima, variances, quantiles, sds,
	skewness, kurtosis, semeans, seskewness,
	sekurtosis); default * i.e. none
CLASSIFICATION = factors	Non multiple-response factors classifying the tables
MRESPONSE = <i>pointers</i>	Pointers to factors defining the multiple-responses for the

4.1 Commands

MRFACTOR = <i>identifiers</i>	tables Identifier of factors to index the sets of multiple responses in
incriticitor <i>wontypers</i>	the tables
COUNTS = table	Saves a table counting the number of units with each factor
	combination; default *
MARGINS = string token	Whether the tables should be given margins (yes, no); default
	no Weilte te he set is the tell letiens left let is lister that
WEIGHTS = variate	Weights to be used in the tabulations; default * indicates that all units have weight 1
PERCENTQUANTILES = scalar or varia	e
	Percentages for which quantiles are required; default 50 i.e.
	median
Parameters	
DATA = variates	Data values to be tabulated
TOTALS = $tables$	Tables to contain totals
NOBSERVATIONS = $tables$	Tables containing the numbers of non-missing values in each
	cell
MEANS = tables	Tables of means
MINIMA = tables	Tables of minimum values in each cell
MAXIMA = tables	Tables of maximum values in each cell
VARIANCES = $tables$	Tables of cell variances
QUANTILES = tables or pointers	Table to contain quantiles at a single PERCENTQUANTILE, or
	pointer of pointers to tables for several PERCENTQUANTILES
SDS = tables	Tables of standard deviations
SKEWNESS = tables	Tables of skewness coefficients
KURTOSIS = $tables$	Tables of kurtosis coefficients
SEMEANS = $tables$	Tables of standard errors of means
SESKEWNESS = tables	Tables of standard errors of skewness
SEKURTOSIS = tables	Tables of standard errors of kurtosis

MULTMISSING procedure

Estimates missing values for units in a multivariate data set (H.R. Simpson & R.P. White).

Option	
MAXCYCLE = scalar	Defines the maximum allowed number of iterations; default 10
Parameters	
DATA = pointers	Each pointer contains a set of variates whose missing values are to be estimated; these will be overwritten by the estimates
	unless the OUT parameter is specified
OUT = pointers	Each pointer contains a set of variates to hold the results

MVAOD procedure

Does an analysis of distance of multivariate data (R.W. Payne & R.P. White).

Options	
PRINT = string tokens	Controls printed output (aodtable, permutationtest);
	default aodt
TERMS = formula	Model terms to fit in the analysis; must be specified
FACTORIAL = scalar	Limit on the number of factors or variates in a term for it to be
	included in the analysis; default 3
NTIMES = scalar	Number of permutations to use in the permutation test; default
	999
SEED = scalar	Seed for the random number generator used to make the
	permutations; default 0 continues from the previous generation
	or (if none) initializes the seed automatically
Parameters	
DATA = symmetric matrices	Supplies the squared distances between the data points
SSD = variates	Saves the sums of squared distances

DF = variates	Saves the numbers of degrees of freedom
PRPERMUTATION = variates	Saves probabilities from the permutation test
DISTANCES = pointers	Contains a symmetric matrix of distances for each model term

MVARIOGRAM procedure

Fits models to an experimental variogram (S.A. Harding & R. Webster).

Options	
PRINT = string tokens	Controls printed output from the fit (model, summary,
	estimates, correlations, fittedvalues,
	monitoring); default mode, summ, esti
MODELTYPE = string token	Defines which model to fit (power, boundedlinear,
	circular, spherical, doublespherical,
	pentaspherical, exponential, besselk1, gaussian,
	affinepower, linear, cubic, stable, cardinalsine,
	matern); default powe
WEIGHTING = string token	Method to be used for weighting (counts, cbyvar, equal);
	default coun
CONSTANT = <i>string token</i>	How to treat the constant (estimate, omit); default esti
SMOOTHNESS = scalar	Value of power parameter for the stable model, or $\boldsymbol{\nu}$ parameter
	for the Matern model; default * i.e. estimate
ISOTROPY = string token	Defines whether to fit an isotropic or geometrical anisotropic
	<pre>model(isotropic, geometrical); default isot</pre>
WINDOW = scalar	Window in which to plot a graph; default 0 i.e. no graph
TITLE = text	Title for the graph
XUPPER = scalar	Upper limit for the <i>x</i> -axis in the graph
PENDATA = scalar	Pen to be used to plot the data; default 1
PENMODEL = scalar	Pen to be used to plot the model; default 2
Parameters	
VARIOGRAM = variates or matrices	Experimental variogram to which the model is to be fitted, as a
	variate if in only one direction or as a matrix if there are
	several
COUNTS = variates or matrices	Counts for the points in each variogram (not required if
	WEIGHTING=equal)
DISTANCE = variates or matrices	Mean lag distances for the points in each variogram
DIRECTION = variates	Directions in which each variogram was computed
INITIAL = <i>scalars</i> or <i>variates</i>	Scalar defining initial distance parameter for an isotropic
	model, or variate with two values for a double-spherical
	isotropic model, or a variate with three values for a
	geometrical anisotropic model
ESTIMATES = variates	Estimated parameter values
FITTEDVALUES = variates	Fitted values
EXIT = scalars	Exit status from the nonlinear fitting
SAVE = <i>pointers</i>	Saves the model name and estimates in a pointer that can be
	used in KRIGE

MVFILL procedure

 Replaces missing values in a vector with the previous non-missing value in that vector (J.T.N.M. Thissen).

 No options

 Parameter

 VECTORS = vectors

 Variates, texts or factors whose missing values are replaced by the previous non-missing value of that vector

4.1 Commands

NAG directive

Calls an algorithm from the NAG Library.

Options

PRINT = string token	Controls printed output (algorithms, monitoring); default * i.e. none
NAME = <i>string token</i>	Name of the algorithm to call; default * i.e. none
ZDZ = string token	Value to be given to zero divided by zero in Genstat
	expressions defined in the ARGUMENTS (missing, zero); default miss
TOLERANCE = $scalar$	If the scalar is non missing, this defines the smallest non-zero
	number for use in Genstat expressions defined in the
	ARGUMENTS; otherwise it accesses the default value, which is
	defined automatically for the computer concerned
SEED = scalar	Seed to use for any random number generation in Genstat
	expressions defined in the ARGUMENTS; default 0
INDEX = scalar	If a Genstat expression defined in the ARGUMENTS has a list of
	structures before the assignment operator (=), the scalar
	indicates the position within the list of the structure currently
	being evaluated
Parameters	
ARGUMENTS = pointer	Arguments for the call
RESULT = scalar	Stores the result for algorithms that take the form of a function rather than a subroutine

NCONVERT procedure

Converts integers between base 10 and other bases (R.W. Payne). **Options**

Options	
PRINT = string token	Controls printed output (number); default numb
METHOD = string token	Whether to convert NUMBER to DIGITS or vice versa (tobase,
	frombase); default toba
BASE = scalars	Base to which to convert number; default 2
Parameters	
NUMBER = scalars	Number in base 10
DIGITS = <i>pointers</i>	Digits of the NUMBER in the base specified by the BASE option
SIGN = scalars	Sign of the NUMBER
	-

NCSPLINE procedure

Calculates natural cubic spline basis functions for use e.g. in REML (S.J. Welham).

Options	
INKNOTS = variate	Defines a set of knots to use to construct the spline
METHOD = string token	Whether to produce a basis suitable for use with independent or correlated random effects; (independent, correlated); default inde
ORTHOGONALIZETO = variate	Variate to use to get an orthogonalized basis; default * i.e. orthogonalization with respect to KNOTS
Parameters	-
X = variates	Values for which the basis functions are calculated
BASIS = pointers	Non-linear part of spline basis for use as design matrix for
	random effects in REML analysis
DBASIS = pointers	First derivative of BASIS functions
D2BASIS = pointers	Second derivative of BASIS functions
INVCOVARIANCE = <i>symmetric matrices</i>	Inverse covariance matrix for use with correlated spline
,	random effects
SECONDDIFFERENCES = matrices	Scaled second divided difference matrix associated with KNOTS
KNOTS = variates	Knots used in construction of basis

298	4 Syntax summary
DISTANCES = variates SCALE = scalars	Inter-knot distances used in construction of basis Saves the appropriate value for scaling design matrix
NLAR1 procedure	
Fits curves with an AR1 or a power-or Options	listance correlation model (R.W. Payne).
PRINT = string tokens	What to print (model, deviance, summary, estimates, correlations, fittedvalues, accumulated, monitoring, cparameter, cmonitoring, cplot); default mode, summ, esti, cpar
CURVE = string token	Which standard curve to fit (exponential, dexponential, cexponential, lexponential, logistic, glogistic, gompertz, ldl, qdl, qdq, fourier, dfourier, gaussian, dgaussian); default expo
SENSE = <i>string token</i>	Sense of a standard curve (right, left); default righ
ORIGIN = scalars	Constrained origin for a standard curve; default * i.e. not constrained
NONLINEAR = string token	How to treat nonlinear parameters between groups in standard
	curves (common, separate); default comm
CALCULATION = <i>expression structures</i>	Define a nonlinear model involving explanatory variates and nonlinear parameters; default * implies that a standard curve is fitted
CONSTANT = <i>string token</i>	How to treat the constant (estimate, omit); default esti
FACTORIAL = scalars	Limit for expansion of model terms; default 3
POOL = string token	Whether to pool ss in accumulated summary between all terms
	fitted in a linear model (yes, no); default no
DENOMINATOR = <i>string token</i>	Whether to base ratios in accumulated summary on rms from model with smallest residual ss or smallest residual ms (ss, ms); default ss
NOMESSAGE = <i>string tokens</i>	Which warning messages to suppress (dispersion, leverage, residual, aliasing, marginality, vertical, df, inflation); default *
FPROBABILITY = string token	Printing of probabilities for variance and deviance ratios (yes, no); default no
SELECTION = <i>string tokens</i>	Statistics to be displayed in the summary of analysis produced by PRINT=summary (%variance, %ss, adjustedr2, r2, seobservations, dispersion, %cv, %meandeviance, %deviance, aic, bic, sic); default %var, seob
SELINEAR = string token	Whether to calculate s.e.s for linear parameters when nonlinear parameters are also estimated (yes, no); default no
WEIGHTS = variate	Prior weights for the units
CPARAMETER = scalars	Correlation parameter
CPOSITIONS = variate	Correlation positions
CGROUPS = factor	Groupings of correlation positions
MAXCYCLE = scalars	Maximum number of iterations; default 100
TOLERANCE = scalars	Convergence criterion; default 10^{-5}
Parameter	
TERMS = formula	Terms to be fitted

NLCONTRASTS procedure

Fits nonlinear contrasts to quantitative factors in ANOVA (R.C. Butler).

Options

PRINT = string tokensPrinted output required (aovtable, information,
covariates, effects, residuals, contrasts, means,
%cv, missingvalues); default aovt, info, cova, mean,
miss

CURVE = <i>string token</i>	Curve (as in FITCURVE) to use for nonlinear regression (exponential, dexponential, cexponential,
	<pre>(exponential, logistic, glogistic, gompertz, ldl, qdl, qdq); default expo</pre>
FPROBABILITY = string token	Printing of probabilities for variance ratios (yes, no); default no
PSE = string token	Standard errors to print with means tables (differences, means); default diff
WEIGHT = variate	Variate of weights for each unit; default * (no weights)
Parameters	
Y = variates	Data to be analysed
XFACTOR = factors	Factor with quantitative levels for which contrasts are to be found
XLEVELS = variates	Variate of values to use for the levels of XFACTOR; if unset, the factor levels themselves are used
GROUPFACTOR = <i>factors</i>	Factor whose interaction with XFACTOR is to be assessed
CONTRASTS = <i>pointers</i>	Structures to hold the estimates of the fitted contrasts:
	CONTRASTS[1] is a pointer with two values, labelled
	'Curve' (parameter estimates for a single fitted curve) and
	'Deviations' (the differences between this curve and the
	means for XFACTOR); CONTRASTS[2] has three values,
	labelled 'Common NonLin' (parameter estimates for curves
	fitted with common nonlinear parameters for all levels of
	GROUPFACTOR), 'Separate Curves' (parameter estimates
	for curves fitted with all parameters varying with the levels of
	GROUPFACTOR) and 'Deviations' (differences between the
	treatment means and the Separate Curves); the order of the
	parameters is as in the output of the procedure, the variates of
	estimated contrasts are labelled by the parameter names as
	used in the printed output, while the 'Deviations' are both
	tables, labelled by the relevant factors
SECONTRASTS = <i>pointers</i>	Structures to save the standard errors for the contrast
SECONTRASTS pouners	estimates, including 'deviations'; the pointer has the same
	form as the CONTRASTS pointer
DFCONTRASTS = <i>pointers</i>	Structures to save the degrees of freedom for the contrast
$p_{\rm r}$ contrasts – pointers	estimates; the pointer has the same form as the CONTRASTS
	pointer, except that the variates and tables are replaced by
	scalars

NNDISPLAY directive

Displays output from a multi-layer perceptron neural network fitted by NNFIT. Ontion

Option	
PRINT = string tokens	Controls fitted output (description, estimates, fittedvalues, summary); default desc, esti, summ
Parameter	
pointers	Save structure with details of the network and the estimated parameters

NNFIT directive

Fits a multi-layer perceptron neural network. **Ontions**

Options	
PRINT = string tokens	Controls fitted output (description, estimates,
NHIDDEN = scalar	fittedvalues, summary); default desc, esti, summ
	Number of functions in the hidden layer; no default, must be
	set
HIDDENMETHOD = string token	Type of activation function in the hidden layer (logistic,

OUTPUTMETHOD = <i>string token</i>	hyperbolictangent); default logi Type of activation function in the output layer (linear,
GATN = scalar	logistic, hyperbolictangent); default line Multiplicative constant to use in the functions; default 1
	-
NTRIES = scalar	Number of times to search for a good initial starting point for
7	the optimization; default 5
NSTARTITERATIONS = scalar	Number of iterations to use to find a good starting point for the
	optimization; default 30
VALIDATIONOPTIONS = variate	Variate containing three integers to control validation for early
	stopping; default * i.e. no early stopping; default ! (10, 4, 16)
SEED = scalar	Seed for random numbers to generate initial values for the free
	parameters; default 0
MAXCYCLE = $scalar$	Maximum number of iterations of the conjugate-gradient
	algorithm; default 50
Parameters	
Y = variates	Response variates
X = pointers	Input variates
YVALIDATION = variates	Validation data for the dependent variates
XVALIDATION = pointers	Validation data for the independent variates
FITTEDVALUES = variates	Fitted values generated for each y-variate by the neural
	network
NCOMPLETED = scalars	Number of completed iterations of the conjugate-gradient
Sources Sources	algorithm
EXIT = scalars	Saves the exit code
SAVE = $pointers$	Saves details of the network and the estimated parameters
SAVE - pointers	saves details of the network and the estimated parameters

NNPREDICT directive

Forms predictions from a multi-layer perceptron neural network fitted by NNFIT.

desc, pred

Option

PRINT = string tokens

Parameters

X = pointers PREDICTIONS = variates SAVE = pointers Input variates Predictions Details of the network

Controls fitted output (description, predictions); default

NORMTEST procedure

Performs tests of univariate and/or multivariate normality (M.S. Ridout).

Option

PRINT = string tokens	Allows the required printed output to be selected: test
	statistics, tables of critical values and the flagging of
	significant values with stars (marginal, bivariateangle,
	radius, critical, stars); default marg, biva, radi
Parameter	
DATA = variates or pointers	Variates whose univariate normality is to be tested or pointers, each to a set of variates whose normality and/or multivariate normality are to be tested

NOTICE procedure

Provides news and other information about Genstat (R.W. Payne).

Option

PRINT = string tokens	Indicates what information is required (news, release,
	errors, instructions); default news

No parameters

4.1 Commands

OPEN directive

Opens files.	
No options	
Parameters	
NAME = $texts$	External names of the files
CHANNEL = scalars	Channel number to be used to refer to each file in other statements (numbers for each type of file are independent); if
	this is set to a scalar containing a missing value, the first available channel of the specified type is opened and the scalar
	is set to the channel number
FILETYPE = string tokens	Type of each file (input, output, unformatted,
	backingstore, procedurelibrary, graphics);
	default inpu
WIDTH = scalars	Maximum width of a record in each file; default 80
INDENTATION = $scalar$	Number of spaces to leave at the start of each line; default 0
PAGE = scalars	Number of lines per page (relevant only for output files)
ACCESS = string token	Allowed type of access (readonly, writeonly, both); default both
STYLE = string token	Style in which to write to an output file (plaintext, html,
	latex, rtf); default plai
HTMLHEAD = texts	Text structures containing custom content for the header of an HTML document

OPLS procedure

Performs orthogonal partial least squares regression (V. M. Cave).

())	otions	
• •	ULIUIIS.	

Printed output required (data, xloadings, yloadings, ploadings, scores, leverages, xerrors, yerrors,
scree, xpercent, ypercent, predictions, groups,
estimates, fittedvalues, summary); default esti, xper,
yper, scor, xloa, yloa, ploa, summ
Controls printed output from principal components analysis of
orthogonal X matrix (loadings, roots, scores, tests); default root
What graphs to plot (pcplot); default * (i.e. none)
Number of orthogonal components to extract; default 1
Number of predictive (i.e. PLS) components to extract; default 1
Whether to standardize the Y, X and filtered X variables to unit variance and zero mean (Y, X, filteredX); default * (i.e. no standardizing)
Number of cross-validation groups used by PLS; default 1 (i.e. no cross-validation performed)
A scalar indicating the seed value used for dividing the data randomly into NGROUPS groups for cross-validation by PLS, or a factor indicating a specific set of groupings to use for cross-validation by PLS; default 0
Sample labels for x and y to use in output; default uses the integers 1 <i>n</i> where <i>n</i> is the length of the variates in x and y
Labels for XPREDICTIONS; default uses P1, P2 etc.
Method used by PCP to perform principal components analysis
on the orthogonal X matrix (ssp, correlation,
vcovariance, variancecovariance);
principal components analysis not performed)
Window to use for graph (available only when
NORTHOGONALROOTS = 1); default 3

302	4 Syntax summary
Parameters Y = pointers	Pointer to variates containing the dependent variable(s) for
x = pointers	each analysis Pointer to variates containing the independent variables for
YLOADINGS = <i>pointers</i>	each analysis Pointer to variates containing the Y component loadings, for the predictive (i.e. PLS) dimensions, extracted from the
XLOADINGS = <i>pointers</i>	filtered x matrix Pointer to variates containing the component loading weights for the predictive dimensions, extracted from the filtered x
PLOADINGS = pointers	matrix Pointer to variates containing the bilinear model loadings for the predictive dimensions, extracted from the filtered x matrix
YSCORES = <i>pointers</i>	Pointer to variates containing the Y component scores, for each predictive dimension extracted from the filtered X matrix
XSCORES <i>=pointers</i>	Pointer to variates containing the component scores for each predictive dimension, extracted from the filtered x matrix
B = diagonal matrices	Saves the regression coefficients of YSCORES on XSCORES, for the predictive dimensions, extracted from the filtered X matrix
YPREDICTIONS = <i>pointer</i>	Pointer to variates used to store predicted y-values for samples in the prediction set
XPREDICTIONS = <i>pointer</i>	Pointer to variates containing data for the independent variables in the prediction set
ESTIMATES = <i>matrices</i>	An n_X +1 by n_Y matrix (where n_X and n_Y are the number of variates contained in X and Y, respectively) to store the PLS regression coefficients
FITTEDVALUES = pointers	Pointer to variates used to store the fitted values for the Y variates
LEVERAGES = variates	Variate to store the leverage that each sample has on the PLS model
PRESS = variates	Variate used to store the Predictive Residual Error Sum of Squares for each dimension in the PLS model, available only if cross-validation has been selected
RSS = variates	Variate to save residual sums of squares
YRESIDUALS = <i>pointers</i>	Pointer to variates containing the residuals from the Y block after NROOTS predictive dimensions have been extracted,
XRESIDUALS = <i>pointers</i>	uncorrected for any scaling applied using STANDARDIZE Pointer to variates containing the residuals from the X block after NROOTS predictive dimensions have been extracted, uncorrected for any scaling applied using STANDARDIZE
PCSCORES = matrices	Matrix to save principal component scores
PCSAVE = <i>pointers</i>	Pointer to save structures from the principal component analysis (by PCP) of the orthogonal x matrix
SAVE = pointers	Pointer to save structures from the orthogonal projection

OPTION directive

Defines the options of a Genstat procedure with information to allow them to be checked when the procedure is executed.

nes of the options
de of each option (e, f, p, t, v, as for unnamed structures);
ult p
cifies allowed numbers of values
ines the allowed values for a structure of type variate or

DEFAULT = <i>identifiers</i>	Default values for each option
SET = string tokens	Indicates whether or not each option must be set (yes, no); default no
DECLARED = string tokens	Indicates whether or not the setting of each option must have
	been declared (yes, no); default no
TYPE = texts	Text for each option, whose values indicate the types allowed
	(ASAVE, datamatrix {i.e. pointer to variates of equal lengths
	as required in multivariate analysis}, diagonalmatrix,
	dummy, expression, factor, formula, LRV, matrix,
	pointer, RSAVE, scalar, SSPM, symmetricmatrix,
	table, text, tree, TSAVE, TSM, variate, VSAVE); default
	* meaning no limitation
COMPATIBLE = <i>texts</i>	Defines aspects to check for compatibility with the first
	parameter of the directive or procedure (nvalues, nlevels, nrows, ncolumns, type, levels, labels
	{of factors or pointers}, mode, rows, columns, classification, margins, associatedidentifier,
	suffixes {of pointers}, restriction)
PRESENT = string tokens	Indicates whether or not each structure must have values (yes,
PRESENT - String tokens	·- ·
TTOM - stains to have	no); default no
LIST = <i>string tokens</i>	Whether to allow a list of identifiers (MODE=p) or of values
	(MODE=v or t) instead of just one (yes, no); default no
INPUT = string token	Whether the option only supplies input information to the procedure (yes, no); default no

OR directive

Introduces a set of alternative statements in a "multiple-selection" control structure. **No options or parameters**

ORTHPOLYNOMIAL procedure

Calculates orthogonal polynomials (P.W. Lane).

Options

MAXDEGREE = scalar	Maximum degree of polynomial to be calculated; default is the number of identifiers in the pointer specified by the
	POLYNOMIAL parameter
WEIGHTS = variate	Weights to be used in orthogonalization; default * gives an
	equal weight to each unit
Parameters	
X = variates	Values from which to calculate the polynomials; no default -
	this parameter must be set
POLYNOMIAL = pointers	Identifiers of variates to store results; no default - this
	parameter must be set

OUTPUT directive

Defines where output is to be stored or displayed.

Options	
PRINT = string tokens	Additions to output (dots, page, unchanged); default dots, page
DIAGNOSTIC = string tokens	What diagnostic printing is required (messages, warnings,
	faults, extra, unchanged); default faul, mess, warn
WIDTH = scalar	Limit on number of characters per record; default width of output file
INDENTATION = $scalar$	Number of spaces to leave at the start of each line; default 0
PAGE = $scalar$	Number of lines per page
STYLE = string token	Style for future output to the channel (plaintext, formatted); default * i.e. unchanged

304	4 Syntax summary
Parameter	
scalar	Channel number of output file
OWN directive	
Does work specified in Fortran subp	ograms linked into Genstat by the user.
Option	
SELECT = scalar	Sets a switch, designed to allow OWN to be used for many applications; standard set-up assumes a scalar in the range 0-9; default 0
Parameters	
IN = identifiers	Supplies input structures, which must have values, needed by the auxiliary subprograms
OUT = <i>identifiers</i>	Supplies output structures whose values or attributes are to be defined by the auxiliary subprograms
PAGE directive	
Moves to the top of the next page of	an output file.
Option	-
CHANNEL = scalar	Channel number of file; default * i.e. current output file
No parameters	
PAIRTEST procedure	
Performs t-tests for pairwise differen	ces (P.W. Goedhart).
Options	
PRINT = string tokens	What to print (differences, sed, tvalues,
	tprobabilities); default diff, sed, tval
DF = scalar	Degrees of freedom for calculation of TPROBABILITIES from TVALUES; default 10000, approximates to the normal distribution
SORT = string token	Whether ESTIMATES (and other output) are sorted in
	ascending order (yes, no); default no
Parameters	
ESTIMATES = variates	Estimates to be compared
VCOVARIANCE = <i>symmetric matrices</i>	Symmetric matrix containing the variance-covariance matrix of the estimates
LABELS = $texts$	Text vector naming the elements of ESTIMATES; if unset, the numbers 1, 2 are used as labels
DIFFERENCES = <i>symmetric matrices</i>	To save the pairwise differences (ESTIMATES on the diagonal)
SED = symmetric matrices	To save the standard errors of the pairwise differences (missing values on the diagonal)
TVALUES = <i>symmetric matrices</i>	To save the t-values (missing values on the diagonal)
TPROBABILITIES = symmetric matrice	
	To save the t-probabilities (missing values on the diagonal)
PARAMETER directive	

Defines the parameters of a Genstat procedure with information to allow them to be checked when the procedure is executed. No options

Parameters	
NAME = $texts$	Names of the parameters
MODE = string tokens	Mode of each parameter (e, f, p, t, v, as for unnamed structures); default p
NVALUES = scalars or variates	Specifies allowed numbers of values
VALUES = variates or texts	Defines the allowed values for a structure of type variate or
	text
DEFAULT = <i>identifiers</i>	Default values for each parameter

SET = string tokens	Indicates whether or not each parameter must be set (yes, no);
DECLARED = <i>string tokens</i>	default no Indicates whether or not the setting of each parameter must have been declared (yes, no); default no
TYPE = texts	Text for each option, whose values indicate the types allowed (ASAVE, datamatrix {i.e. pointer to variates of equal lengths as required in multivariate analysis}, diagonalmatrix, dummy, expression, factor, formula, LRV, matrix, pointer, RSAVE, scalar, SSPM, symmetricmatrix, table, text, TSAVE,
COMPATIBLE = texts	TSM, variate); default * meaning no limitation Defines aspects to check for compatibility with the first parameter of the directive or procedure (nvalues, nlevels, nrows, ncolumns, type, levels, labels {of factors or pointers}, mode, rows, columns, classification, margins, associatedidentifier, suffixes {of pointers}, restriction)
PRESENT = string tokens	Indicates whether or not each structure must have values (yes, no); default no
INPUT = string token	Whether the parameter only supplies input information to the procedure (yes, no); default no

PARTIALCORRELATIONS procedure

Calculates partial correlations for a list of variates (S. Langton). **Options**

options	
PRINT = string token	Output required (correlations); default corre
CORRELATIONS = <i>symmetric matrix</i>	Saves the partial correlations
WEIGHTS = variate	Supplies weights for the units; default * i.e. all 1
Parameters	
DATA = variates	Set of variates whose partial correlations are to be calculated

PASS directive

Performs tasks specified in subprograms supplied by the user, but not linked into Genstat; this directive may not be available on some computers.

Option

NAME = $text$	Filename of external executable program; default 'GNPASS'
Parameter	
pointers	Structures whose values are to be passed to the external
	program, and returned

PCO directive

Performs principal coordinates analysis, also principal components and canonical variates analysis (but with different weighting from that used in CVA) as special cases.

Options

Printed output required (roots, scores, loadings,
residuals, centroid, distances); default * i.e. no
printing
Number of latent roots for printed output; default * requests
them all to be printed
Whether to print the smallest roots instead of the largest (yes,
no); default no
These can be specified either as a symmetric matrix of
similarities or transformed distances or, for the canonical
variates analysis, as an SSPM containing within-group sums of
squares and products etc or, for principal components analysis,
either as a pointer containing the variates of the data matrix or

306	4 Syntax summary
	as a matrix storing the variates by columns
LRV = LRVs	Latent vectors (i.e. coordinates or scores), roots, and trace
	from each analysis
CENTROID = diagonal matrices	Squared distances of the units from their centroid
RESIDUALS = <i>matrices</i> or <i>variates</i>	Distances of the units from the fitted space
LOADINGS = matrices	Principal component loadings, or canonical variate loadings
DISTANCES = <i>symmetric matrices</i>	Computed inter-unit distances calculated from the variates of a
	data matrix, or inter-group Mahalanobis distances calculated
	from a within-group SSPM
SAVE = pointers	Saves details of the analysis; if unset, an unnamed save
	structure is saved automatically (and this can be accessed
	using the GET directive)

PCOPROCRUSTES procedure

Performs a multiple Procrustes analysis (P.G.N. Digby). **Options**

Options	
PROTATE = <i>string tokens</i>	Printed output required from each Procrustes rotation
	(rotations, coordinates, residuals, sums);
	i.e. no output
PPCO = string tokens	Printed output required from the PCO analysis (roots,
	scores, centroid); default root, score, cent
SCALING = string token	Whether isotropic scaling should be used for the Procrustes
	rotations (no, yes); default no
STANDARDIZE = <i>string tokens</i>	Whether to centre the configurations and/or normalize them to
	unit sums-of-squares for the Procrustes rotations (centre,
	normalize); default cent, norm
Parameters	
DATA = pointers	Each pointer points to a set of matrices holding the original
	input configurations
LRV = LRVs	Stores the latent vectors (i.e. coordinates), roots and trace from
	the PCO analysis
CENTROID = diagonal matrices	Stores the squared distances of the points representing the
	input configurations from their overall centroid from the PCO
	analysis
DISTANCES = symmetric matrices	Stores the residual sums-of-squares from the Procrustes
	rotations

PCORELATE directive

Relates the observed values on a set of variates or factors to the results of a principal coordinates analysis.

Options

COORDINATES = matrix	Points in reduced space; no default i.e. this option must be specified
NROOTS = $scalar$	Number of latent roots for printed output; default * requests them all to be printed
Parameters	
DATA = variates or factors	The data variables
TEST = string tokens	Test type, defining how each variable is treated in the
0	calculation of the similarity between each unit
	(simplematching, jaccard, russellrao, dice,
	antidice, sneathsokal, rogerstanimoto, cityblock,
	manhattan, ecological, euclidean, pythagorean,
	minkowski, divergence, canberra, braycurtis,
	soergel); default * ignores that variable
RANGE = scalars	Range of possible values of each variable; if omitted, the observed range is taken

PCP directive

Performs principal components analysis. **Options** PRINT = *string tokens* Printed output required (loadings, roots, residuals, scores, tests); default * i.e. no printing NROOTS = scalar Number of latent roots for printed output; default * requests them all to be printed Whether to print the smallest roots instead of the largest (yes, SMALLEST = string token no); default no Whether to use sums of squares, correlations or variances and METHOD = *string token* covariances (ssp, correlation, vcovariance, variancecovariance); default ssp **Parameters** DATA = *pointers* or *matrices* or *SSPMs* Pointer of variates forming the data matrix, or matrix storing the variate values by columns, or SSPM giving their sums of squares and products (or correlations) etc LRV = LRVsTo store the principal component loadings, roots, and trace from each analysis SSPM = SSPMs To store the computed sum-of-squares-and-products or correlation matrix To store the principal component scores SCORES = *matrices* To store residuals from the dimensions fitted in the analysis **RESIDUALS** = *matrices* or *variates* (i.e. number of columns of the SCORES matrix, or as defined by the NROOTS option) SAVE = *pointers* Saves details of the analysis; if unset, an unnamed save structure is saved automatically (and this can be accessed using the GET directive)

PDESIGN procedure

Prints or stores treatment combinations tabulated by the block factors (R.W. Payne).

Options

PRINT = string token	Controls the printing of the design (design); default desi
BLOCKSTRUCTURE = formula	Defines the block factors for the design; the default is to take
	those specified by the BLOCKSTRUCTURE directive
TREATMENTSTRUCTURE = formula	Defines the treatment factors for each design; the default is to
	take those specified by the TREATMENTSTRUCTURE directive
TABLES = <i>pointer</i>	Contains tables to store the tabulated factor values for printing
	outside the procedure in some other format
FREPRESENTATION = <i>string token</i>	How to represent the factor values (labels, levels); default
	leve

No parameters

PDUPLICATE procedure

Duplicates a pointer, with all its components (R.W. Payne).No optionsParametersOLDPOINTER = pointersPointers to duplicateNEWPOINTER = pointersDuplicated pointers

PEAKFINDER procedure

Finds the locations of peaks in an observed series (D.B. Baird).

Options

PRINT = string token	Controls printed output (peaks); default peak
CURVE = <i>string token</i>	Shape of curve to fit to peaks (normal, exponential);
	default norm

308	4 Syntax summary
PLOT = string tokens	What to plot (peaks, trace); default peak
METHOD = string token	The method for finding the peaks (additive, local); default addi
BANDWIDTH = scalar	Width of window to use when fitting peaks locally, or the number of low points at the edge of each zone when fitting peaks additively; default takes the number of points divided by ten, or six if this is greater
MINPEAK = scalar	Minimum height of a peak; no default (must be set)
MINGAP = scalar	Minimum number of points between two peaks when METHOD=additive; default 5
MINFALL = scalar	Minimum fall around a peak before a new peak will be found when METHOD=additive; default MINPEAK/10
MINCOHERENCY = scalar	Minimum coherency (i.e. proportion of variation explained) for a peak to be selected when METHOD=local; default 0.1
MAXSIGMA = scalar	The maximum value of sigma for peaks when METHOD=local; default 4*BANDWIDTH
MAXRESIDUAL = scalar	Limit on the absolute size of any residual for the adding of peaks to stop when METHOD=additive; default MINPEAK/3
WINDOW = scalar	Window number for the plots; default 3
SCREEN = <i>string token</i>	Whether to clear the screen before plotting or continue plotting on the old screen (clear, keep); default clea
Parameters	
Y = variates	Series to search for peaks
X = variates	X-coordinates for the series; default $!(1n)$ where n is the number of Y values
YPEAKS = variates	Saves the y-values of the peaks
XPEAKS = variates	Saves the positions of the peaks
FITTEDYPEAKS = variates	Saves the heights of the peaks predicted by the fitted models
SIGMA = variates	Saves the sigma values of the fitted Normal or exponential models, which provide a measure of the widths of the peaks
COHERENCY = variates	Saves the coherency (i.e. the proportion of variation accounted for) of the model fitted to identify each peak model
TITLE = texts	Titles for the plots

PEN directive

Defines the properties of "pens" for high-resolution graphics.

Option	
RESET = string token	Whether to reset the pen definitions to their default values (yes, no); default no
BOXUNITS = string token	Units to use for text boxes (characters, distance); the default is to retain the existing setting
Parameters	
NUMBER = scalars	Numbers associated with the pens
COLOUR = <i>texts</i> or <i>scalars</i>	Colour to use with each pen unless otherwise specified by the CSYMBOL, CLINE, CFILL or CAREA parameters
LINESTYLE = <i>texts</i> or <i>scalars</i>	Style for line used by each pen when joining points
METHOD = string tokens	Method for determining line (point, line, monotonic, closed, open, fill, spline, polygon)
SYMBOL = <i>texts</i> , <i>scalars</i> , <i>pointers</i> or <i>mai</i>	
	Defines the plotting symbol for each pen, by a text or scalar for a pre-defined symbol, a pointer for a user-defined symbol, or a matrix to supply a bitmap
LABELS = texts or factors	Define labels that will be printed alongside the plotting symbols
ROTATION = <i>scalars</i> or <i>variates</i>	Rotation required for the plotting symbols and labels (in degrees)

JOIN = string tokens	Order in which points are to be joined by each pen
	(ascending, given)
BRUSH = scalars	Number of the type of area filling used with each pen when
	drawing pie charts or histograms
FONT = $texts$ or $scalars$	Font to be used for any text written by each pen
THICKNESS = scalars	Thickness with which any lines are drawn by each pen
SIZEMULTIPLIER = scalars or variates	Multiplier to used in the calculation of the size in which to
	draw symbols and labels by each pen unless otherwise
	specified by SMSYMBOL or SMLABEL
CSYMBOL = texts or scalars	Colour to use with each pen when drawing symbols
CLINE = <i>texts</i> or <i>scalars</i>	Colour to use with each pen when drawing lines
CFILL = <i>texts</i> or <i>scalars</i>	Colour to use with each pen when filling areas inside hollow
	symbols
CAREA = <i>texts</i> or <i>scalars</i>	Colour to use with each pen when filling areas inside polygons
	and bars of histograms
SMSYMBOL = scalars or variates	Multiplier used in the calculation of the size in which to draw
	symbols by each pen
SMLABEL = <i>scalars</i> or <i>variates</i>	Multiplier used in the calculation of the size in which to draw
	labels by each pen
DFSPLINE = scalars	Number of degrees of freedom to use when METHOD=spline
YMISSING = string token	How to treat missing y-values when METHOD=spline (break,
	interpolate)
XMISSING = string token	How to treat missing x-values when METHOD=spline (break,
	ignore)
YLPOSITION = <i>string token</i>	How to position labels in the y-direction with respect to the
	points (above, centre, below, automatic)
XLPOSITION = string token	How to position labels in the x-direction with respect to the
	<pre>points (left, centre, right, automatic)</pre>
YLSIZE = <i>scalars</i> or <i>variates</i>	Widths in the y-direction of the text boxes into which to plot
	labels
XLSIZE = <i>scalars</i> or <i>variates</i>	Widths in the x-direction of the text boxes
YLOFFSET = scalars or variates	Offsets in the y-direction of the text boxes
XLOFFSET = scalars or variates	Offsets in the x-direction of the text boxes
BARTHICKNESS = scalars	Thickness with which any error bars are drawn by each pen
BARCAPWIDTH = scalars	Width of the cap drawn by each pen at the top and bottom of
	any error bars
DESCRIPTION = texts	Description for points plotted by the pen, to be used by the
	Data Information tool in the Graphics Viewer
TSYMBOL = scalars	Defines the transparency of symbols drawn by each pen, on a
	scale of 0 (opaque) to 255 (completely transparent)
TLINE = scalars	Defines the transparency of lines drawn by each pen
TFILL = scalars	Defines the transparency to use when filling areas inside
	hollow symbols with each pen
TAREA = scalars	Defines the transparency to use when filling areas inside
	polygons and bars of histograms with each pen
SAVE = pointers	Saves details of the current settings for the pen concerned

PENSPLINE procedure

Calculates design matrices to fit a penalized spline as a linear mixed model (S.J. Welham). **Options**

Options	
KMETHOD = string token	Method for constructing the set of knots (equal, quantile,
	given); default equa
NSEGMENTS = scalar	Specifies the number of segments between boundaries; default
	* obtains a value automatically
INKNOTS = variate	Provides the set of knots when KMETHOD=given
DEGREE = scalar	Degree of polynomial used to form the underlying spline basis

310	4 Syntax summary
	functions; default 1
LOWER = scalar	Specifies the lower boundary when KMETHOD=equal; default
	takes the minimum value in X
UPPER = scalar	Specifies the upper boundary when KMETHOD=equal; default
	takes the maximum value in X
ORTHOGONALIZETO = variate	Variate to use to get an orthogonalized basis; default * i.e.
	orthogonalization with respect to X
SCALING = scalar	Scaling of the XRANDOM terms (automatic, none); default
	auto
Parameters	
X = variates	The explanatory variate for which the spline values are required
XFIXED = matrices	Saves the design matrix to define the fixed terms (excluding
	the constant) for fitting the penalized spline
XRANDOM = matrices	Saves the design matrix to define the random terms for fitting
	the penalized spline
KNOTS = variates	Saves the internal knots and boundaries used to form the basis
	for the spline
PX = variates	Specifies x-values at which predictions are required
PFIXED = matrices	Saves the design matrix for the fixed terms (excluding the
	constant) for the spline at the prediction points
PRANDOM = <i>matrices</i>	Saves the design matrix for the random terms for the spline at the prediction points

PERCENT procedure

Expresses the body of a table as percentages of one of its margins (R.W. Payne).

Ontiona	
Options	
CLASSIFICATION = factors	Factors classifying the margin over which the percentages are to be calculated; if this is not set, the percentages are over the
	final margin (grand mean or grand total etc.)
METHOD = string token	Method to use to calculate the margin if not already present
	(totals, means, minima, maxima, variances, medians);
	default tota
HUNDRED = string token	Whether to put 100% values into the margin instead of the
8	original values (no, yes); default no
Parameters	
OLDTABLE = tables	Tables containing the original values
NEWTABLE = $tables$	Tables to store the percentage values; if any of these is unset, the new values replace those in the original table

PERIODTEST procedure

Gives periodogram-based tests for white noise in time series (R.P. Littlejohn).

 Option

 LENGTH = scalar or variate
 Scalar specifying that the first N units of the series are to be used, or a variate specifying the first and last units of the series to be used

 Parameters
 Series = variates

 SERIES = variates
 Specify the time series to be analysed

 PERIODOGRAM = variates
 Save periodograms of the time series

PERMUTE procedure

Forms all possible permutations of the integers 1...n (J.W. McNicol & R.W. Payne).

Option	
SORT = string token	Whether or not to sort the permutations (no, yes); default no
Parameters	
NVALUES = $scalars$	Specifies the final number, n , in the sequence of integers $1n$

PERMUTATIONS = <i>pointers</i>	to be permuted Pointer to a set of variates of length NVALUES storing the permutations
PFACLEVELS procedure Prints levels and labels of factors (R.W. Payne).	
No options	
Parameter	
FACTOR = factors	Factors whose levels and labels are to be printed
PLINK procedure	

Prints a link to a graphics file into an HTML file (D.A. Murray). Options CHANNEL = scalar Output channel number of file; default current output channel Whether to remove path information when printing the link EXCLUDEPATH = *string token* (yes, no); default no Parameter Name of the graphics file to be linked within the html file

FILENAME = *texts*

PLS procedure

Fits a partial least squares regression model (Ian Wakeling & Nick Bratchell).

Options

PRINT = string tokens	Printed output required (data, xloadings, yloadings,
	ploadings, scores, leverages, xerrors, yerrors,
	scree, xpercent, ypercent, predictions, groups,
	estimates, fittedvalues); default esti, xper, yper,
	scor, xloa, yloa, ploa
NROOTS = $scalar$	Number of PLS dimensions to be extracted
YSCALING = <i>string token</i>	Whether to scale the Y variates to unit variance; (yes, no);
	default no
XSCALING = <i>string token</i>	Whether to scale the X variates to unit variance; (yes, no); default no
NGROUPS = scalar	Number of cross-validation groups into which to divide the
	data; default 1 (i.e. no cross-validation performed)
SEED = scalar or factor	A scalar indicating the seed value to use when dividing the
	data randomly into NGROUPS groups for the cross-validation or
	a factor to indicate a specific set of groupings to use for the
	cross-validation; default 0
LABELS = $text$	Sample labels for x and y that are to be used in the printed
	output; defaults to the integers $1n$ where <i>n</i> is the length of the
	variates in X and Y
PLABELS = text	Sample labels for XPREDICTIONS that are to be used in the
	printed output; default uses the integers 1, 2
Parameters	
Y = pointers	Pointer to variates containing the dependent variables
X = pointers	Pointer to variates containing the independent variables
YLOADINGS = pointers	Pointer to variates used to store the Y component loadings for
	each dimension extracted
XLOADINGS = <i>pointers</i>	Pointer to variates used to store the <i>X</i> component loadings for each dimension extracted
PLOADINGS = <i>pointers</i>	Pointer to variates used to store the loadings for the bilinear model for the X block
YSCORES = <i>pointers</i>	Pointer to variates used to store the <i>Y</i> component scores for
-	each dimension extracted
XSCORES = <i>pointers</i>	Pointer to variates used to store the X component scores for
	each dimension extracted

312	4 Syntax summary
B = matrices	A diagonal matrix containing the regression coefficients of YSCORES on XSCORES for each dimension
YPREDICTIONS = <i>pointers</i>	A pointer to variates used to store predicted <i>Y</i> values for samples in the prediction set
XPREDICTIONS = <i>pointers</i>	A pointer to variates containing data for the independent variables in the prediction set
ESTIMATES = matrices	An n_X +1 by n_Y matrix (where n_X and n_Y are the numbers of variates contained in X and Y respectively) used to store the PLS regression coefficients for a PLS model with NROOTS dimensions
FITTEDVALUES = <i>pointers</i>	Pointer to variates used to store the fitted values for each Y variate
LEVERAGES = variates	Variate used to store the leverage that each sample has on the PLS model
PRESS = variates	Variate used to contain the Predictive Residual Error Sum of Squares for each dimension in the PLS model, available only if cross-validation has been selected
RSS = variates	Variate used to store the Residual Sum of Squares for each dimension extracted
YRESIDUALS = <i>pointers</i>	Pointer to variates used to store the residuals from the <i>Y</i> block after NROOTS dimensions have been extracted, uncorrected for any scaling applied using YSCALING
XRESIDUALS = <i>pointers</i>	Pointer to variates used to store the residuals from the X block after NROOTS dimensions have been extracted, uncorrected for any scaling applied using XSCALING
XPRESIDUALS = <i>pointers</i>	Pointer to variates used to store the residuals from the XPREDICTIONS block after NROOTS dimensions have been extracted
[†] FTEST = pointers	Pointer to save the results from the Osten F test (when $NGROUPS > 1$)

PNTEST procedure

Calculates one- and two-sample Poisson tests (D.A. Murray).

Options

PRINT = string tokens	Controls printed output (test, summary, confidence);
-	default test, summ, conf
METHOD = string token	Type of test required (twosided, greaterthan, lessthan);
	default twos
TEST = string token	Form of the test for one-sample test (exact,
-	normalapproximation); default norm
S1 = scalar	Sample size for sample 1; default 1
S2 = scalar	Sample size for sample 2; default 1
CIPROBABILITY = scalar	The probability level for the confidence interval; default 0.95
NULL = scalar	The value of the probability of success under the null
	hypothesis for the one-sample test
Parameters	
MU1 = scalars	Number recorded in the first sample
MU2 = scalars	Number recorded in the second sample
R2 = scalars	Sample size of the second sample
NORMAL = scalars	Saves the Normal approximation
PROBABILITY = scalars	Saves the probability value from the one-sample or two-
	sample tests
LOWER = scalars	Saves the lower limit of the confidence interval
UPPER = scalars	Saves the upper limit of the confidence interval

POINTER directive

Declares one or more pointer data structures.

Options	
NVALUES = scalar or text	Number of values, or labels for values; default *
VALUES = <i>identifiers</i>	Values for all the pointers; default *
SUFFIXES = <i>variate</i> or <i>scalar</i>	Defines an integer number for each of the suffixes; default * indicates that the numbers 1,2, are to be used
CASE = string token	Whether to distinguish upper and lower case in the labels of the pointers (significant, ignored); default sign
ABBREVIATE = <i>string token</i>	Whether or not to allow the labels to be abbreviated (yes, no); default no
FIXNVALUES = <i>string token</i>	Whether or not to prohibit automatic extension of the pointers (yes, no); default no
RENAME = string token	Whether to reset the default names of elements of the pointer if they do not have their own identifiers (yes, no); default no
MODIFY = string token	Whether to modify (instead of redefining) existing structures (yes, no); default no
IPRINT = string tokens	Information to be used by default to identify the pointers in output (identifier, extra); if this is not set, they will be identified in the standard way for each type of output
EXTEND = string token	Whether to extend (instead of redefining) an existing pointer (yes, no); default no
Parameters	
IDENTIFIER = <i>identifiers</i>	Identifiers of the pointers
VALUES = pointers	Values for each pointer
EXTRA = texts	Extra text associated with each identifier

POSSEMIDEFINITE procedure

Calculates a positive semi-definite approximation of a non-positive semi-definite symmetric matrix (L.C.P Keizer, M. Malosetti & J.T.N.M. Thissen).

Options

PRINT = string tokens	Controls printed output (approximation, eigenvalues,
	epsilon); default * i.e. none
EPSILON = scalar	Specifies the lowest eigenvalue for the positive semi-definite
	matrix; default 0.0001
_	

Symmetric matrices to approximate

Parameters

OLDSYMMETRICMATRIX = *symmetric matrices*

NEWSYMMETRICMATRIX = symmetric matrices

Positive semi-definite approximations to the old symmetric matrices

PPAIR procedure

Displays results of t-tests for pairwise differences in compact diagrams (P.W. Goedhart, H. van der Voet & D.C. van der Werf).

 PRINT = string token
 What to print (items, groups); default grou

 PROBABILITY = scalar or symmetric matrix

Level of significance of pairwise comparison tests; default 0.05

Parameters

TPROBABILITIES = symmetric matrice	25
	Probabilities of tests of pairwise comparisons
DIFFERENCES = symmetric matrices, variates or tables	
	What to print alongside the labels of TPROBABILITIES;
	default *
LABELS = $texts$	Text vector labelling the output; if unset the row labels of

TPROBABILITIES and the diagonal of DIFFERENCES (if set)
are used
Saves the letters showing the items not significantly different
from each item
Saves the letters showing groups of items not significantly
different from each other

PRCORRELATION procedure

 Calculates probabilities for product moment correlations (R.W. Payne).

 Option

 NOBSERVATIONS = scalar

 Number of observations from which the correlation(s) were calculated

 Parameters

DATA = scalars, variates, tables, matrices, diagonal matrices or symmetric matrices
Correlations for calculating probabilities or cumulative lower
probabilities for calculating equivalent deviates
CLPROBABILITY = scalars, variates, tables, matrices, diagonal matrices or symmetric matrices
Saves cumulative lower probabilities
CUPROBABILITY = scalars, variates, tables, matrices, diagonal matrices or symmetric matrices
Saves cumulative upper probabilities
PROBABILITY = scalars, variates, tables, matrices, diagonal matrices or symmetric matrices
Saves probability densities
CORRELATION = scalars, variates, tables, matrices, diagonal matrices or symmetric matrices
Saves correlations

PRDOUBLEPOISSON procedure

Calculates the probability density for the double Poisson distribution (V.M. Cave).

Options

- F	
PRINT = string tokens	Controls printed output (probability, summary); default prob
PLOT = string token	Whether to plot the k terms used to approximate the
C	normalizing constant by the kpartialsum method (yes, no); default no
MERLIOD - atuing to how	
METHOD = string token	How to approximate the normalizing constant (kpartialsum,
	edgeworth); default kpar
LOCATION = scalar or variate	Location parameter; no default, must be set
SHAPE = scalar or variate	Shape parameter; default 1
MAXCYCLE = <i>scalar</i> or <i>variate</i>	Limits the number of terms, k, used to approximate the
	normalizing constant by the kpartialsum method; default
	MAX(1000, 2*LOCATION)
TOLERANCE = scalar	Convergence criterion used when approximating the
	normalizing constant by the kpartialsum method; default 1E-12
Parameters	
DATA = scalar or variate	Non-negative integer values for which the double Poisson probabilities are to be calculated
DECIMALS = scalars	Number of decimal places for printing; default *
PROBABILITY = variate	Saves the probabilities
	F

PREDICT directive

Forms predictions from a linear or generalized linear model.

Options

PRINT = string token	What to print (description, lsd, predictions, se, sed,
	vcovariance); default desc, pred, se
CHANNEL = scalar	Channel number for output; default * i.e. current output
	channel

COMBINATIONS = <i>string token</i>	Which combinations of factors in the current model to include
ADJUSTMENT = string token	(full, present, estimable); default esti Type of adjustment (marginal, equal); default marg
WEIGHTS = $table$	Weights classified by some or all of the factors in the model;
	default *
OFFSET = scalar	Value of offset on which to base predictions; default mean of
	offset variate
METHOD = string token	Method of forming margin (mean, total); default mean
ALIASING = <i>string token</i>	How to deal with aliased parameters (fault, ignore); default
BACKTRANSFORM = <i>string token</i>	What back-transformation to apply to the values on the linear
	scale, before calculating the predicted means (link, none);
	default link
SCOPE = <i>string token</i>	Controls whether the variance of predictions is calculated on
	the basis of forecasting new observations rather than
	summarizing the data to which the model has been fitted
·····	(data, new); default data
NOMESSAGE = <i>string tokens</i>	Which warning messages to suppress (dispersion,
DISPERSION = scalar	nonlinear); default * Value of dispersion parameter in calculation of s.e.s; default is
DISPERSION - Scalar	as set in the MODEL statement
DMETHOD = string token	Basis of estimate of dispersion, if not fixed by DISPERSION
	option (deviance, Pearson); default is as set in the MODEL
	statement
NBINOMIAL = $scalar$	Supplies the total number of trials to be used for prediction
	with a binomial distribution (providing a value n greater than
	one allows predictions to be made of the number of
	"successes" out of <i>n</i> , whereas the value one predicts the
PREDICTIONS = <i>tables</i> or <i>scalars</i>	proportion of successes); default 1 Saves predictions for each y variate; default *
SE = tables or scalars	Saves standard errors of predictions for each y variate; default
	*
SED = symmetric matrices	Saves standard errors of differences between predictions for
	each y variate; default *
LSD = symmetric matrices	Saves least significant differences between predictions for
	each y variate (models with Normal errors only); default *
LSDLEVEL = scalar	Significance level (%) to use in the calculation of least
VCOVARIANCE = <i>symmetric matrices</i>	significant differences; default 5 Saves variance-covariance matrices of predictions for each y
veovariance symmetric mutrices	variate; default *
SAVE = <i>identifier</i>	Specifies save structure of model to display; default * i.e. that
5	from latest model fitted
Parameters	
CLASSIFY = vectors	Variates and/or factors to classify table of predictions
LEVELS = <i>variates</i> , <i>scalars</i> or <i>texts</i>	
	To specify values of variates, levels of factors
PARALLEL = <i>identifiers</i>	For each vector in the CLASSIFY list, allows you to specify another vector in the CLASSIFY list with which the values of
	this vector should change in parallel (you then obtain just one
	dimension in the table of predictions for these vectors)
NEWFACTOR = <i>identifiers</i>	Identifiers for new factors that are defined when LEVELS are
5	specified

PREWHITEN procedure

Filters a time series before spectral analysis (A.W.A. Murray). **Option**

PHI = scalar

Specifies the value of the parameter used in filtering; default

0.99

Parameters

SERIES = variates FILTERED = variates Input series Output series

PRIMEPOWER procedure

Decomposes a positive integer into its constituent prime powers (I. Wakeling & R.W. Payne). **Option**

Option	
PRINT = string token	Controls printed output (decomposition); default *
Parameters	
NUMBER = scalars	Number to be decomposed
PRIMES = pointers	Prime factors of NUMBER
POWERS = pointers	Powers of the prime factors in NUMBER

PRINT directive

Prints data in tabular format in an output file, unformatted file or text.

Options	
CHANNEL = <i>identifier</i>	Channel number of file, or identifier of a text to store output;
	default current output file
SERIAL = string token	Whether structures are to be printed in serial order, i.e. all
	values of the first structure, then all of the second, and so on
	(yes, no); default no, i.e. values in parallel
IPRINT = string tokens	What identifier and/or text to print for the structure
	(identifier, extra, associatedidentifier), for a table
	associatedidentifier prints the identifier of the variate
	from which the table was formed (e.g. by TABULATE),
	IPRINT=* suppresses the identifier altogether; default iden
RLPRINT = string tokens	What row labels to print (labels, integers,
	<pre>identifiers), RLPRINT=* suppresses row labels altogether;</pre>
	default labe, iden
CLPRINT = string tokens	What column labels to print (labels, integers,
	identifiers), CLPRINT=* suppresses column labels
	altogether; default labe, iden
RLWIDTH = scalar	Field width for row labels; default 13
INDENTATION = scalar	Number of spaces to leave before the first character in the line;
	default 0
WIDTH = scalar	Last allowed position for characters in the line; default width
	of current output file
SQUASH = string token	Whether to omit blank lines in the layout of values (yes, no);
	default no
MISSING = text	What to print for missing value; default uses '*' for numbers
	and blanks in texts
ORIENTATION = <i>string token</i>	How to print vectors or pointers (down, across); default
	down, i.e. down the page
ACROSS = <i>scalar</i> or <i>factors</i>	Number of factors or list of factors to be printed across the
	page when printing tables; default for a table with two or more
	classifying factors prints the final factor in the classifying set
	and the notional factor indexing a parallel list of tables across
	the page, for a one-way table only the notional factor is printed
	across the page
DOWN = scalar or factors	Number of factors or list of factors to be printed down the
	page when printing tables; default is to print all other factors
	down the page
WAFER = scalar or factors	Number of factors or list of factors to classify the separate
	"wafers" (or slices) used to print the tables; default 0
PUNKNOWN = string token	When to print unknown cells of tables (present, always,

	zero, missing, never); default pres
UNFORMATTED = string token	Whether file is unformatted (yes, no); default no
REWIND = string token	Whether to rewind unformatted file before printing (yes, no);
	default no
WRAP = string token	Whether to wrap output that is too long for one line onto
	subsequent lines, rather than putting it into a subsequent
	"block" (yes, no); default no
STYLE = string token	Style to use for an output file (plaintext, formatted);
	default * uses the current style of the channel
PMARGIN = string tokens	Which margins to print for tables (full, columns, rows,
interior string tokens	wafers); default full
OMITMISSINGROWS = string token	Whether to omit rows of tables that contain only missing
OFFICE INSTITUTION OF STUDY OF	values (yes, no); default no
VSPECIAL = <i>scalar</i> or <i>variate</i>	Special values to be modified in the output
TSPECIAL = <i>text</i>	Strings to be used for the special values; must be set if
	VSPECIAL is set
Parameters	
STRUCTURE = <i>identifiers</i>	Structures to be printed
FIELDWIDTH = scalars	Field width in which to print the values of each structure (a
	negative value - <i>n</i> prints numbers in E-format in width <i>n</i>); if
	omitted, a default is determined (for numbers, this is usually
	12; for text, the width is one more character than the longest
	line)
DECIMALS = <i>structures</i>	Number of decimal places for numerical data structures, a
	scalar if the same number of decimals is to be used for all
	values of the structure, or a data structure of the same type and
	size to use different numbers of decimals for each value; if
	omitted or set to a missing value, a default is determined which
	prints the mean absolute value to 4 significant figures
CHARACTERS = <i>scalars</i>	Number of characters to print in strings
SKIP = scalars or variates	Number of spaces to leave before each value of a structure (*
	means a new line before structure)
FREPRESENTATION = <i>string tokens</i>	How to represent factor values (labels, levels,
5	ordinals); default is to use labels if available, otherwise
	levels
JUSTIFICATION = <i>string tokens</i>	How to position values within the field (right, left,
U	center, centre); if omitted, right is assumed
MNAME = <i>string tokens</i>	Name to print for table margins (margin, total, nobservd,
0	mean, minimum, maximum, variance, count, median,
	quantile); if omitted, "Margin" is printed
DREPRESENTATION = <i>scalars</i> or <i>texts</i>	Format to use for dates and times (stored in numerical
	structures)
HEADING = $texts$	Heading to be used for vectors printed in columns down the
HEADING LEADS	page; default is to use the information requested by the
mi D P F i C = torta	IPRINT option
TLABELS = texts	If this is specified for a table STRUCTURE, the values of the table are intermeted as references to lines within the TURDER OF
	table are interpreted as references to lines within the TLABELS
	text that are to be printed instead of the values of the table
	itself

PRKTAU procedure

Calculates probabilities for Kendall's rank correlation coefficient τ (D.B. Baird).

No optionsParametersN = scalarsSizes of the first groups of observationsTAU = scalarsValues of Kendall's τ statisticCLPROBABILITY = scalarsCumulative lower probability of TAU

CUPROBABILITY = scalars	Cumulative upper probability of TAU
PROBABILITY = scalars	Probability density of TAU
LPROBABILITIES = variates	Probability densities of -1TAU
LTAU = variates	$Values \ of \ Tau \ at \ corresponding \ values \ of \ {\tt LPROBABILITIES}$

PRMANNWHITNEYU procedure

Calculates probabilities for the Mann-Whitney U statistic (D.B. Baird).

No options **Parameters** Sizes of the first groups of observations N1 = scalarsSizes of the second groups of observations N2 = scalarsU = scalarsValues of the U statistic Number of tied observations; default 0 TIES = scalars CLPROBABILITY = scalars Cumulative lower probability of U Cumulative upper probability of U CUPROBABILITY = *scalars* PROBABILITY = scalars Probability density of U Probability densities of 0...U LPROBABILITIES = variates Set to 1 if it has not been possible to calculate the probabilities EXIT = scalars when there are ties, otherwise 0

PROBITANALYSIS procedure

Fits probit models allowing for natural mortality and immunity (R.W. Payne).

Options	
PRINT = string tokens	Printed output required (model, summary, estimates, correlations, fittedvalues, monitoring,
	effectivedoses); default mode, summ, esti, fitt
TRANSFORMATION = <i>string token</i>	Transformation to be used (probit, logit,
	complementaryloglog); default prob
MORTALITY = string token	Whether to estimate natural mortality (omit, estimate);
0	default omit
IMMUNITY = <i>string token</i>	Whether to estimate natural immunity (omit, estimate);
C C	default omit
GROUPS = factor	Defines groups for an analysis of parallelism; default * i.e. no
·	groups
SEPARATE = <i>string tokens</i>	Which parameters (apart from intercept) should be estimated
	separately for different groups (slope, mortality,
	<pre>immunity, notintercept); default * i.e. none</pre>
LD = scalar or variate	Effective, or lethal, doses to be estimated, other than 50
CIPROBABILITY = scalar	Probability level for the confidence interval of effective doses;
	default 0.95, i.e. a 95% confidence interval
LOGBASE = <i>string token</i>	Base of antilog transformation to be applied to LD's (ten, e);
	default * i.e. none
DISPERSION = scalar	Controls the use of a heterogeneity factor in the calculation of
	s.e.s etc; with the default of 1 no factor is used, a missing value
	* estimates the heterogeneity from the residual deviance
FITMETHOD = string token	Method to use to fit the model (generalizednonlinear,
	nonlinear) default non1 for Wadley's problem, otherwise
	gene
MAXCYCLE = scalar	Maximum number of iterations for fitting the model; default
	30
Parameters	
Y = variates	Number of subjects responding in each batch
DOSE = variates	Dose received by each batch of subjects
NBINOMIAL = variates, scalars or fac	
	Variate specifying the number of subjects in each batch, or
	factor specifying groupings of the observations assumed to

	4.1 Commands	319
INITIAL = variates STEPLENGTHS = variates LDESTIMATES = variates LDLOWER = variates LDUPPER = variates	have equal expected total numbers of subjects in problem; if omitted, assumes Wadleys's problem observations having the same expected total num subjects Initial values for parameters Step lengths for parameters Saves estimates of the effective, or lethal, doses Saves lower values of the confidence intervals for estimates of the effective, or lethal, doses (for FITMETHOD=gene only) Saves upper values of the confidence interval val estimates of the effective, or lethal, doses (for FITMETHOD=gene only)	with all ber of r the
PROCEDURE directive Introduces a Genstat procedure. Options		
PARAMETER = string token	Whether to process the structures in each parame procedure sequentially using a dummy to store ea turn, or whether to put them all into a pointer so the procedure is called only once (dummy, pointer dumm	ach one in that the
RESTORE = <i>string tokens</i>	Which aspects of the Genstat environment to stor of the procedure and restore at the end (inprint outstyle, diagnostic, errors, pause, pror newline, case, run, units, blockstructure treatmentstructure, covariate, asave, da rsave, tsave, vsave, vcomponents, seeds, o cmethod, actionafterfault, unsetdummy, a *	t,outprint, mpt, e, save,msave, captions,
SAVE = $text$	Text to save the contents of the procedure (omitt	ing comments
WORDLENGTH = string token Parameter	and some spaces) Length of word (8 or 32 characters) to check in id directives, options, parameters and procedures w procedure (long, short); default * i.e. no change	ithin the
text	Name of the procedure	

PRSPEARMAN procedure

Calculates probabilities for Spearman's rank correlation statistic (D.B. Baird).

No options **Parameters** Numbers of pairs of observations N = scalarsValues of the signed rank statistic CORRELATION = scalars Cumulative lower probability of CORRELATION CLPROBABILITY = *scalars* Cumulative upper probability of CORRELATION CUPROBABILITY = scalars PROBABILITY = scalars Probability density of CORRELATION Probability densities of CORRELATION...1 UPROBABILITIES = variates Values of CORRELATION at corresponding elements of UCORRELATION = variates UPROBABILITIES

PRWILCOXON procedure

Calculates probabilities for the Wilcoxon signed-rank statistic (D.B. Baird). No options **Parameters** N = scalarsSizes of the first groups of observations

SIGNEDRANK = scalars	Values of the signed rank statistic
CLPROBABILITY = scalars	Cumulative lower probability of SIGNEDRANK
CUPROBABILITY = scalars	Cumulative upper probability of SIGNEDRANK
PROBABILITY = scalars	Probability density of SIGNEDRANK
LPROBABILITIES = variates	Probability densities of 0SIGNEDRANK

PSPLINE procedure

Calculates design matrices to fit a P-spline as a linear mixed model (S.J. Welham).

Specifies the number of segments between boundaries; default * obtains a value automatically
Degree of polynomial used to form the underlying spline basis functions; default 3
Differencing order for penalty; default 2
Specifies the lower boundary; default takes the minimum value in X
Specifies the upper boundary; default takes the maximum value in X
Variate to use to get an orthogonalized basis; default $*$ i.e. orthogonalization with respect to X
Scaling of the XRANDOM terms; (automatic, none); default auto
The explanatory variate for which the basis functions are required
Saves the design matrix to define the fixed terms (excluding the constant) for fitting the P-spline
Saves the design matrix to define the random terms for fitting the P-spline
Saves the internal knots and boundaries used to form the basis functions
Specifies x-values at which predictions are required
Saves the design matrix for the fixed terms (excluding the constant) for the spline at the prediction points
Saves the design matrix for the random terms for the spline at the prediction points

PTAREAPOLYGON procedure

Calculates the area of a polygon (M.A. Mugglestone, S.A. Harding, B.Y.Y. Lee, P.J. Diggle & B.S. Rowlingson).

Option	
PRINT = string token	What to print (summary); default summ
Parameters	
YPOLYGON = variates	Vertical coordinates of each polygon; no default - this
	parameter must be set
XPOLYGON = variates	Horizontal coordinates of each polygon; no default - this
	parameter must be set
AREA = scalars	Scalars to receive the areas of the polygons

PTBOX procedure

Generates a bounding or surrounding box for a spatial point pattern (M.A. Mugglestone, S.A. Harding, B.Y.Y. Lee, P.J. Diggle & B.S. Rowlingson).

Options

PRINT = string token	What to print (summary); default summ
METHOD = string token	Type of box to form (bounding, surrounding); default
	boun

Parameters	
Y = variates	Vertical coordinates of each spatial point pattern; no default – this parameter must be set
X = variates	Horizontal coordinates of each spatial point pattern; no default - this parameter must be set
YBOX = variates	Variates to receive the vertical coordinates of the bounding or surrounding boxes
XBOX = variates	Variates to receive the horizontal coordinates of the bounding or surrounding boxes
YFRACTION = <i>scalars</i>	How much to extend the extremes of the vertical coordinates of each surrounding box as a fraction of the range of the vertical coordinates; default 0.1
XFRACTION = scalars	How much to extend the extremes of the horizontal coordinates of each surrounding box as a fraction of the range of the horizontal coordinates; default 0.1

PTCLOSEPOLYGON procedure

Closes open polygons (M.A. Mugglestone, S.A. Harding, B.Y.Y. Lee, P.J. Diggle & B.S. Rowlingson).

Option	
PRINT = string token	What to print (summary); default summ
Parameters	
OLDYPOLYGON = variates	Vertical coordinates of each polygon; no default – this parameter must be set
OLDXPOLYGON = variates	Horizontal coordinates of each polygon; no default – this parameter must be set
NEWYPOLYGON = variates NEWXPOLYGON = variates	Vertical coordinates of the closed polygons Horizontal coordinates of the closed polygons

PTDESCRIBE procedure

Gives summary and second order statistics for a point process (R.P. Littlejohn & R.C. Butler).

Options

PRINT = string token	Whether to print (statistics); default stat
SELECTION = string tokens	What to print (interval, trend, poisson, icorrelation,
	<pre>ispectrum, cspectrum, cintensity, vtcurve, all);</pre>
	default inte
REPRESENTATION = <i>string token</i>	How the point process is represented in the DATA variate
	(time, interval, zeroone); default time
GRAPHICS = <i>string token</i>	Style of graphical output, or GRAPHICS=* to avoid any graphs
	(lineprinter, highresolution); default high
Parameters	
DATA = variates	Variate containing point process to be analysed
START = scalars	Initial time (if REPRESENTATION=time); default 0
LENGTH = scalars	Length of time over which process is observed; default takes
	the time of the last event
CITAU = scalars	Window width for calculating count intensity; default 0.5 \times
	mean interval length
VTTAU = scalars	Window width for calculating variance-time curve; default 0.5
	× mean interval length
SAVE = pointers	Pointer to save calculated values

PTGRID procedure

Generates a grid of points in a polygon (M.A. Mugglestone, S.A. Harding, B.Y.Y. Lee, P.J. Diggle & B.S. Rowlingson).

Option

PRINT = *string token*

What to print (summary); default summ

Parameters	
YPOLYGON = variates	Vertical coordinates of each polygon; no default – this parameter must be set
XPOLYGON = variates	Horizontal coordinates of each polygon; no default – this parameter must be set
NPOINTS = scalars	How many points to generate
YSTEP = scalars	Spacings to use between columns of the grid
XSTEP = scalars	Spacings to use between rows of the grid
YGRID = variates	Variates to receive the vertical coordinates of the points in the grid
XGRID = variates	Variates to receive the horizontal coordinates of the points in the grid

PTINTENSITY procedure

Calculates the overall density for a spatial point pattern (M.A. Mugglestone, S.A. Harding, B.Y.Y. Lee, P.J. Diggle & B.S. Rowlingson). **Option**

Option	
PRINT = string token	What to print (summary); default summ
Parameters	
Y = variates	Vertical coordinates of each spatial point pattern; no default – this parameter must be set
X = variates	Horizontal coordinates of each spatial point pattern; no default – this parameter must be set
YPOLYGON = variates	Vertical coordinates of each polygon; no default – this parameter must be set
XPOLYGON = variates	Horizontal coordinates of each polygon; no default – this parameter must be set
DENSITY = scalars	Scalars to receive the density of the spatial point patterns, i.e. the number of points per unit area

PTKERNEL2D procedure

Performs kernel smoothing of a spatial point pattern (M.A. Mugglestone, S.A. Harding, B.Y.Y. Lee, P.J. Diggle & B.S. Rowlingson). **Ontion**

Option	
PRINT = string tokens	What to print (grid, monitoring); default grid, moni
Parameters	
Y = variates	Vertical coordinates of each spatial point pattern; no default -
	this parameter must be set
X = variates	Horizontal coordinates of each spatial point pattern; no default – this parameter must be set
YPOLYGON = variates	Vertical coordinates of each polygon; no default - this
	parameter must be set
XPOLYGON = variates	Horizontal coordinates of each polygon; no default - this
	parameter must be set
HZERO = scalars	What kernel width to use for each pattern; no default - this
	parameter must be set
NY = scalars	Numbers of rows to use in the grid of kernel density estimates;
	default 20
NX = scalars	Numbers of columns to use in the grid of kernel density
	estimates; default 20
YGRID = variates	Variates to receive the vertical coordinates at which each
	kernel function has been evaluated
XGRID = variates	Variates to receive the horizontal coordinates at which each
	kernel function has been evaluated
ZGRID = <i>matrices</i>	Matrices of dimension NY by NX to receive the grid of
	density estimates

PTK3D procedure

Performs kernel smoothing of space-time data (D.A. Murray, P.J. Diggle & B.S. Rowlingson).

Option	
PRINT = string token	Controls printed output (grid, monitoring); default grid
Parameters	
Y = variates	Vertical coordinates of the spatial point pattern
X = variates	Horizontal coordinates of the spatial point pattern
TIMES = variates	Times for each event
XGRID = variates	The values of x to compute kernel function
YGRID = variates	The values of y to compute kernel function
ZGRID = variates	The values of z, or time dimension, to compute kernel function
HXY = scalars	What quartic kernel width to use in the XY direction
HZ = scalars	What quartic kernel width to use in the Z or time direction
GRID = pointers	Pointer to matrices containing the kernel smoothed values

PTREMOVE procedure

Removes points interactively from a spatial point pattern (M.A. Mugglestone, S.A. Harding, B.Y.Y. Lee, P.J. Diggle & B.S. Rowlingson).

Options

Options	
PRINT = string token	What to print (summary, monitoring); default summ, moni
WINDOW = scalar	Which graphics window to use for the plot; default 1
Parameters	
OLDY = variates	Vertical coordinates of each spatial point pattern; no default -
	this parameter must be set
OLDX = variates	Horizontal coordinates of each spatial point pattern; no default
	- this parameter must be set
NEWY = variates	Variates to receive the vertical coordinates of the original
	points minus the deleted points of each pattern
NEWX = variates	Variates to receive the horizontal coordinates of the original
	points minus the deleted points of each pattern

PTROTATE procedure

Rotates a point pattern (W. van den Berg).

Options	
ANGLE = scalar	Angle, in degrees over which the point pattern is to be rotated;
	no default – must be set
HUB = string token	Whether the point pattern is to be rotated around the origin or
	around the centroid (origin, centroid); default orig
Parameters	
OLDY = variates	Vertical coordinates of each spatial point pattern
OLDX = variates	Horizontal coordinates of each spatial point pattern
NEWY = variates	Save the vertical coordinates of the rotated point patterns; if
	this unset, these replace the original values in OLDY
NEWX = variates	Save the horizontal coordinates of the rotated point patterns; if
	this unset, these replace the original values in OLDX
ROTATION = <i>matrices</i>	Save the rotation matrices

PTSINPOLYGON procedure

Returns points inside or outside a polygon (M.A. Mugglestone, S.A. Harding, B.Y.Y. Lee, P.J. Diggle & B.S. Rowlingson).

Optio	ns
-------	----

PRINT = string token	What to print (summary); default summ
METHOD = string token	Whether to select points inside or outside the polygon
	(inside, outside); default insi

Parameters	
OLDY = variates	Vertical coordinates of each spatial point pattern; no default – this parameter must be set
OLDX = variates	Horizontal coordinates of each spatial point pattern; no default - this parameter must be set
YPOLYGON = variates	Vertical coordinates of each polygon; no default – this parameter must be set
XPOLYGON = variates	Horizontal coordinates of each polygon; no default – this parameter must be set
NEWY = variates	Variates to receive the vertical coordinates of points inside (or outside) the polygons
NEWX = variates	Variates to receive the horizontal coordinates of points inside (or outside) the polygons

QBESTGENOTYPES procedure

Sorts individuals of a segregating population by their genetic similarity with a defined target genotype, using the identity by descent (IBD) information at QTL positions for one or more traits (M. Malosetti & F.A. van Eeuwijk).

Options	
PRINT = string tokens	What to print (summary); default summ
PLOT = string tokens	What to plot (haplotypes); default hapl
POPULATIONTYPE = <i>string token</i>	Type of population (BC1, DH1, F2, RIL); default F2
IBDWINDOW = scalar	Size of the window around the QTL position to use to
	construct the haplotypes; default 10
TRAITS = $text$	Names of the traits whose QTL information is to be used;
	default is to use all the traits
SELECTION = variate	Indicator variate with values defining whether each trait should
	be maximized (1), minimized (-1) or remain unchanged (0); if
	unset, the default is to maximize every trait
<pre>%BESTGENOTYPES = scalar</pre>	Specifies the percentage of the best genotypes to display in the
	output and plots; default 10
Parameters	
GENFILENAME = $texts$	Name of a Flapjack genotype file
MAPFILENAME = texts	Name of a Flapjack map file
FJQTLFILENAME = texts	Name of a file to supply the QTL results
QTRAITS = texts	Names of the traits affected by each QTL
QCHROMOSOMES = $factors$	Factor defining the linkage group of each QTL
QPOSITIONS = variates	Position of each QTL within the linkage group
QNAMES = $texts$	Name of each QTL
QEFFECTS = variates	Individual QTL effects
QBESTSAVE = pointers	Saves similarities with the target genotype, and their ranks,
	across and per trait

QCANDIDATES procedure

Selects QTLs on the basis of a test statistic profile along the genome (M.P. Boer & J.T.N.M. Thissen).

Options

PRINT = string token THRESHOLD = scalar QTLWINDOW = scalar

Parameters

STATISTICS = variates CHROMOSOMES = factors POSITIONS = variates IDLOCI = texts What to print (summary); default summ Threshold for the test statistic; default 0 Minimum distance in cM between two peaks to be selected as two QTLs; default 10

Test statistic along the genome; must be set Chromosome for each locus; must be set Position on the chromosome for each locus; must be set Labels for the loci

QTLCANDIDATES = variates	Saves the index numbers of the selected QTLs
QCOCHRAN procedure Performs Cochran's <i>Q</i> test for differences between related samples (D.A. Murray).	

Options PRINT = *string token* Controls printed output (test); default test Form of the test (exact, chisquare); default exac for small METHOD = *string token* samples, otherwise chis GROUPS = factor Defines the groups if there only one variable supplied for the DATA STATISTIC = scalar Scalar to save the Q value Scalar to save the probability for the Q Test PROBABILITY = scalar Defines a limit for the maximum time for calculating the exact MAXTIME = scalar test; default * i.e. no limit. Parameter DATA = variates List of related samples, or variate containing all the samples (the GROUPS option must then be set to indicate the variable

recorded in each unit belongs)

QDESCRIBE procedure

Calculates descriptive statistics of molecular markers (M.P. Boer & J.T.N.M. Thissen).

Options

PRINT = string tokens	What to print (chromosomes, genome); default chro
DISTANCE = scalar	Distance between chromosomes (for plotting purposes);
	default 10

Parameters

1 al ameter 5	
CHROMOSOMES = factors	Chromosome for each locus; must be set
POSITIONS = variates	Position on the chromosome for each locus; must be set
IDLOCI = texts	Labels for the loci
CUMPOSITIONS = variates	Saves the cumulative positions of the loci along the genome
NLOCI = variates	Saves the number of loci on each chromosome
FIRST = variates	Saves the index number of the first locus of each chromosome
LAST = variates	Saves the index number of the last locus of each chromosome
LENGTHS = variates	Saves the lengths of the chromosomes
MIDDLEPOSITIONS = variates	Saves the middle positions of the chromosomes (as cumulative positions)
SEPARATION = variates	Saves the positions of the gaps between chromosomes (as cumulative positions)
GENOMELENGTH = scalars	Saves the length of the genome
TOTLENGTH = scalars	Saves the total length of the genome, including added gaps between chomosomes

QDIALOG procedure

Produces a modal dialog box to obtain a response from the user.

Options	
DIALOG = string token	Type of dialog box (checkbox, pushbutton, radiobutton,
	text, integer, real, variable, query, message); no
	default, must be specified
TITLE = text	Title for the dialog box; default * i.e. none
PREAMBLE = text	Informative text that appears above any controls on the dialog;
	default * i.e. none
LABEL = text	Label for the data entry field; default * i.e. none
RESPONSE = <i>identifier</i>	Structure to store the response
STATUS = scalar	Stores the exit status as 1 for OK, 2 for cancel, 3 for no, or 4
	for yes
DEFAULT = <i>identifier</i>	Default setting or settings to appear in the menu; default * i.e.

none LIST = *string token* Whether an interger, real or variable entry field can contain a list of settings (yes, no); default no Help on the menu, to be displayed in a pop-up window; default HELP = texts* i.e. none ICON = *string token* Type of icon to display in the dialog box (information, warning, error, query); default * i.e. none TIMEOUT = scalar Permits the dialog to continue and return a default value after a specified period (in seconds); default * i.e. no timeout MINIMUM = scalar Minimum value for numerical input fields; default * i.e. none Minimum value for numerical input fields; default * i.e. none MAXIMUM = scalar **Parameters** Label for each checkbox or radio button BOXLABEL = textsIndicates the selection status of each checkbox or radio button BOXRESPONSE = scalars

4 Syntax summary

QDISCRIMINATE procedure

-	tween groups i.e. allowing for different variance-covariance
matrices (D.B. Baird).	
Options	
PRINT = string tokens	Printed output from the analysis (allocation, counts,
	distance, probabilities, specificity, summary,
	table, validation, vcovariance); default spec, summ, vali
VALIDATIONMETHOD = <i>string token</i>	Validation method to use to calculate error rates (bootstrap, crossvalidation, jackknife, prediction); default cros
NSIMULATIONS = $scalar$	Number of bootstraps or cross-validation sets; default 50
NCROSSVALIDATIONGROUPS = scalar	Number of groups for cross-validation, default 10
Parameters	
DATA = <i>pointers</i>	Each pointer contains a training set of variates to be used to
	form a quadratic discrimination
GROUPS = factors	Define groupings for the units in each training set
PRIORPROBABILITIES = variates	Prior probabilities of group membership; default * i.e. equal
SEED = scalars	Seed for the random numbers used in bootstrapping or cross-
	validation; default 0 continues from the previous generation or
	(if none) initializes the seed automatically
ERRORRATE = scalars	Saves the validation error rate
SPECIFICITY = matrices	Saves the specificity table
ALLOCATION = factors	Saves the groups allocated by the discriminant rule
PROBABILITIES = matrices or pointer	S
	Save posterior probabilities of membership of the groups (in
	the columns of a matrix or the variates in a pointer) for the
	units in the training set (in the rows)

QEIGENANALYSIS procedure

Uses principal components analysis and the Tracy-Widom statistic to find the number of significant principal components to represent a set of variables (M. Malosetti & J.T.N.M. Thissen).

Options	
PRINT = string tokens	What to print (summary, scores); default summ
NROOTS = $scalar$	Number of principal components to retain; default saves the
	significant components
PLOT = string tokens	What to plot (eigenvalues, %variance); default eige,
-	%var
PROBABILITY = scalar	Specifies the significance level; default 0.05
SCALING = string token	Whether to scale the principal component scores by the square
	roots of their singular values (singularvalues, none);
	default none

STANDARDIZE = <i>string token</i>	How to standardize the DATA variates (frequency, none);
	default freq
TITLE = text	General title for the plots
Parameters	-
DATA = <i>pointers</i>	Data variates; must be set
SCORES = pointers	Pointer of variates to store the scores of the significant axes for
	each set of DATA variates
EVALUES = variates	Saves the eigenvalues of the significant principal components
NEFFECTIVE = scalars	Saves the effective number of columns of the marker data
	matrix
%VARIANCE = variates	Saves the percentage variances explained by the significant
	principal components
CUM%VARIANCE = variates	Saves the cumulative percentage variances explained by the
	significant principal components

QEXPORT procedure

Exports genotypic and phenotypic data for QTL analysis (D.A. Murray). **Options**

Options	
OUTFILENAME = text	Name of the file to receive the data
MAPFILENAME = text	Name of the associated map file for Flapjack or MapQTL ^(R)
POPULATIONTYPE = string token	Type of population (BC1, DH1, F2, RIL, BCxSy, CP, AMP); must be set
NGENERATIONS = $scalar$	Number of generations for a RIL population
NAME = $text$	Name for the header in a .loc file
MISSING = text	Character to represent a missing genotype in Flapjack or
	R/QTL format; default '-'
SEPARATOR = <i>text</i>	Character to separate data values in Flapjack format; default separates them by tabs
ASEPARATOR = text	Character to separate allele values in Flapjack format; default
FJROWS = string token	Specifies whether the genotypes or markers are to be stored on the rows in Flapjack format (genotypes, markers); default geno
Parameters	

MKSCORES = <i>pointers</i>	Genotype codes for each marker
CHROMOSOMES= factors	Linkage groups for the markers
POSITIONS = variates	Positions within the linkage groups of markers
MKNAMES = $texts$	Marker names
MKSETS = factors	Marker sets
IDMGENOTYPES = texts	Labels for genotypes
PARENTS = <i>pointers</i>	Parent information
IDPARENTS = texts	Labels used to identify the parents

QFACTOR procedure

Allows the user to decide to convert texts or variates to factors (R.W. Payne).

Options	
PRINT = string tokens	Controls printed output (replication, summary); default summ
MAXCATEGORY = scalar	Maximum number of distinct values that a VECTOR may contain if it is to be converted; default 10
QUERY = <i>string token</i>	Whether to ask the user if each VECTOR with no more than MAXCATEGORY distinct values is to be converted
Parameter	
VECTOR = variates or texts	Vectors to be converted into factors

QFLAPJACK procedure

Creates a Flapjack project file from genotypic and phenotypic data (D.A. Murray). **Options**

Options	
WORKDIRECTORY = text	Working directory to use for files; default current Genstat working directory
FJPATH = text	Path specifying the location of Flapjack; by default
	QFLAPJACK searches for a version of Flapjack installed within
	C:\program files (x86)\Flapjack or C:\program files\Flapjack
DECIMALSYMBOL = string token	Controls whether to use the locale (automatic) or English
	(dot) representation of decimal marks (automatic, dot);
	default auto
Parameters	
FJFILENAME = texts	Name of the Flapjack project file to create
TRAITS = <i>pointers</i>	Pointer to variates containing the phenotypic trait data
GENOTYPES = factors	Genotype factor associated with the traits
ENVIRONMENTS = $factors$	Environment factor
GENFILENAME = $texts$	Name of a Flapjack genotype file
MAPFILENAME = texts	Name of a Flapjack map file
FJTRAITFILENAME = <i>texts</i>	Name of a file to supply the trait data, or to save them if the
	TRAITS and GENOTYPES parameters are also set
FJQTLFILENAME = texts	Name of a file to supply the QTL results, or to save them if the
	QSAVE parameter is also set
QSAVE = pointers	Information and results saved from an earlier QTL analysis

QGSELECT procedure

Obtains a representative selection of genotypes by means of genetic distance sampling or genetic distance optimization (J. Jansen & J.T.N.M. Thissen).

Options

PRINT = string tokens	What to print (summary, monitoring); default summ
NCLUSTERS = scalar	The number of genotypes to be selected; must be set
METHOD = string token	Method to be used (sampling, optimization); default samp
Parameters	
GENOTYPES = factors	Genotype factor; must be set
SIMILARITY = <i>symmetric matices</i>	
	Input similarity matrix for each selection; must be set
PRIORGROUPS = factors	Defines prior groupings of the genotypes
SELECTED = variates	Logical variate indicating whether a genotype is selected (1) as cluster centre or not (0)
NEIGHBOURS = variates	Saves the nearest cluster centres of the genotypes
DISTANCES = variates	Saves the distances of the genotypes to the nearest cluster centre
SEED = scalars	Seed for randomization at the start; default 0

QIBDPROBABILITIES procedure

Reads molecular marker data and calculates IBD probabilities (M.P. Boer & J.T.N.M. Thissen).

Options	
PRINT = string tokens	What to print (summary, loci); default summ
STEPSIZE = scalar	Maximum stepsize along the genome; default 10 ⁶ , i.e. the IBD
	probabilities are calculated only at the marker positions
METHOD = string token	Method of calculation for IBD probabilities of RIL
	<pre>populations (approximate, exact); default appr</pre>
POPULATIONTYPE = <i>string token</i>	Type of population (BC1, DH1, F2, RIL, BCxSy, CP); must be
	set
NGENERATIONS = $scalar$	Number of generations of selfing for a RIL population
POPULATIONTYPE = string token	Method of calculation for IBD probabilities of RIL populations (approximate, exact); default appr Type of population (BC1, DH1, F2, RIL, BCxSy, CP); must be set

NBACKCROSSES = scalar	Number of backcrosses for a BCxSy population
NSELFINGS = scalar	Number of selfings for a BCxSy population
MAPPINGFUNCTION = string token	Mapping function (haldane, kosambi); default hald
Parameters	
MKSCORES = <i>pointers</i>	Genotype codes for each marker; must be set
CHROMOSOMES = factors	The chromosome where each marker is located; must be set
POSITIONS = variates	The position on the chromosome of each marker; must be set
MKNAMES = $texts$	Marker names; must be set
IDMGENOTYPES = texts	Labels for the genotypes
PARENTS = <i>pointers</i>	Parent information; must be set
IDPARENTS = texts	Labels used to identify the parents; must be set
PEDIGREE = <i>pointers</i>	Defines the parents of the offspring
ADDITIVEPREDICTORS = <i>pointers</i>	Saves the additive genetic predictors
ADD2PREDICTORS = <i>pointers</i>	Saves the second (paternal) additive genetic predictors if
	POPULATIONTYPE is CP
DOMINANCEPREDICTORS = <i>pointers</i>	Saves the dominance genetic predictors if POPULATIONTYPE
	is F2, RIL, BCxSy or CP
SCHROMOSOMES = $factors$	Saves the chromosome where each locus is located
SPOSITIONS = variates	Saves the position on the chromosome of each locus
LOCI = variates	Saves the index number of each locus
IDLOCI = texts	Saves the locus labels
MKLOCI = variates	Saves a logical variate indicating whether each locus is a
	marker
NLOCI = scalars	Saves the number of loci
NGENOTYPES = scalars	Saves the number of genotypes
APROBABILITIES = <i>pointers</i>	Saves probabilities of the genotypes being equal to parent A
BPROBABILITIES = pointers	Saves probabilities of the genotypes being equal to parent B
HPROBABILITIES = <i>pointers</i>	Saves the probabilities of the genotypes being heterozygous
ACPROBABILITIES = <i>pointers</i>	Saves the probabilities of the genotypes being AC when
	POPULATIONTYPE is CP
ADPROBABILITIES = <i>pointers</i>	Saves the probabilities of the genotypes being AD when
	POPULATIONTYPE is CP
BCPROBABILITIES = pointers	Saves the probabilities of the genotypes being BC when
	POPULATIONTYPE is CP
BDPROBABILITIES = pointers	Saves the probabilities of the genotypes being BD when
	POPULATIONTYPE is CP
OUTFILENAME = <i>texts</i>	Name of the Genstat workbook file (*.gwb) to be created

QIMPORT procedure

Imports genotypic and phenotypic data for QTL analysis (D.A. Murray).

Options	
PRINT = string token	What to print (catalogue, errorreport); default cata, erro
POPULATIONTYPE = string token	Type of population (BC1, DH1, F2, RIL, BCxSy, CP, AMP); must be set
MISSING = text	Character representing a missing genotype in Flapjack or R/QTL format; default '-'
SEPARATOR = <i>text</i>	Character separating data values in Flapjack format; default separates them by tabs
ASEPARATOR = <i>text</i>	Character separating allele values in Flapjack format; default
FJROWS = <i>string token</i>	Specifies whether the genotypes or markers are stored on the rows in Flapjack format (genotypes, markers); default geno
NPARENTS = scalar	Number of parents in Flapjack file; default 0 for population AMP, 4 for CP, and 2 otherwise

Parameters

FILENAME = textsName of the file for import Name of the map file (Flapjack or MapQTL^(R)) MAPFILENAME = textsName of the phenotypic file (MapQTL^(R)) PHEFILENAME = *texts* Saves the genotype codes for each marker MKSCORES = *pointers* Saves the trait data from the phenotypic file TRAITS = *pointers* Saves linkage groups for each marker CHROMOSOMES = factorsSaves positions of the markers within linkage groups POSITIONS = variates Saves the marker names MKNAMES = textsMKSETS = factors Saves marker sets Labels for genotypes IDMGENOTYPES = texts Saves the parent information PARENTS = *pointers* Saves the labels used to identify the parents IDPARENTS = *texts* Specifies a file containing genotype labels for MapQTL^(R) IDFILENAME = textsfiles; if unset, they are assumed to be in the .loc file

QKINSHIPMATRIX procedure

Forms a kinship matrix from molecular markers (L.C.P. Keizer & J.T.N.M. Thissen).

- F	
PRINT = string token	What to print (summary); default summ
METHOD = string token	Method to use for the calculation (correlation, dice);
	default dice
Parameters	

MKSCORES = <i>pointers</i>	Pointer with the marker scores; must be set
IDMGENOTYPES = texts	Labels for the genotypes
KMATRIX = symmetric matrices	Saves the kinship matrix
OUTFILENAME = texts	Name of the file to receive the kinship matrix

QLDDECAY procedure

Estimates linkage disequilibrium (LD) decay along a chromosome (M. Malosetti & J.T.N.M. Thissen).

Options

Options

PRINT = string token	What to print (progress); default *
PLOT = string tokens	What to plot (ldmatrix, lddecay); default ldde
RELATIONSHIPMODEL = string token	
	What model to use to account for genetic relatedness
	(eigenanalysis, subpopulations, null); default eige
SCORES = pointer	Provides the scores of significant principal components,
	obtained from an eigenvalue analysis
SUBPOPULATIONS = $factor$	Defines groupings of genotypes into subpopulations
CHRANALYSE = scalar	Defines which chromosome to analyse, using a level of the
	CHROMOSOMES factor
MAX%MISSING = scalar	Markers with more than the specified % of missing values will
	be excluded from the LD calculations; default 20
MAXDISTANCE = $scalar$	Defines the maximum distance between markers to show in
	LD plots; default 30
TITLE = text	General title for the plots
YTITLE = text	Title for the y-axis
XTITLE = text	Title for the x-axis
Parameters	
MKSCORES = <i>pointers</i>	Genotype codes for each marker; must be set
CHROMOSOMES= factors	Linkage groups for the markers; must be set
POSITIONS = variates	Positions within the linkage groups of markers; must be set
DISTANCES = symmetric matrices	Saves the distances between markers
R2 = symmetric matrices	Saves the value of r ² between markers

QLINKAGEGROUPS procedure

Forms linkage groups using marker data from experimental populations (J. Jansen, J.T.N.M. Thissen & M.P. Boer). **Ontions**

Options	
PRINT = string token	What to print (summary); default summ
POPULATIONTYPE = <i>string token</i>	Type of population (BC1, DH1, F2, RIL, CP); must be set
USEPENALTY = <i>string token</i>	Whether to increase the number of recombinations by 0.5 recombination per informative meiosis for each missing marker score (yes, no); default no
THRESHOLD = scalar or variate	Threshold for the recombination frequency at which markers are said to be linked; default 0.2
Parameters	
MKSCORES = <i>pointers</i>	Marker scores for each marker; must be set
CHROMOSOMES = factors or pointers	Saves the linkage groups of the markers
MKNAMES = $texts$	Names of the markers; must be set
PARENTS = pointers	Marker scores of the parents; must be set
SMKSCORES = <i>pointers</i>	Saves the marker scores factors according to the SMKNAMES parameter
SCHROMOSOMES = factors or pointers	Saves the sorted linkage groups
SMKNAMES = $texts$ or $pointers$	Saves the names of the markers according to the
	SCHROMOSOMES parameter
SPARENTS = <i>pointers</i>	Saves the parent information according to the SMKNAMES
	parameter when POPULATIONTYPE=CP

QLIST procedure

Gets the user to select a response interactively from a list (R.W. Payne).

Option	•
HELP = text	Help information for the QUESTION
Parameters	
ALTERNATIVES = $texts$	Alternatives from which each choice is to be made
CODES = texts	Codes to use to represent each set of alternatives
PREAMBLE = texts	Preamble for the question used to select from each set of
	alternatives
CHOICE = <i>texts</i>	Alternative chosen from each set
NCHOICE = $scalars$	Numbers of the chosen alternatives (0 if exit has been chosen
	instead)

QMAP procedure

Constructs genetic linkage maps using marker data from experimental populations (J. Jansen, J.T.N.M. Thissen & M.P. Boer).

Options	
PRINT = string token	What to print (map, monitoring, summary); default summ
PLOT = string token	What to plot (frequiencies, map); default map
POPULATIONTYPE = <i>string token</i>	Type of population (BC1, DH1, F2, RIL, CP); must be set
USEPENALTY = <i>string token</i>	Whether to increase the number of recombinations by 0.5
	recombination per informative meiosis for each missing
	marker score (yes, no); default no
SPATIALMETHOD = string token	Which method to use for clustering (sampling,
	optimization, none); default opti for population CP, samp
	otherwise
NGROUPS = scalar	Number of groups for clustering; default 10
MAPCHROMOSOMES = variate, text or sca	alar
	Allows a subset of chromosomes to be mapped; default * i.e.
	all the chromosomes
LINKAGEPHASES = <i>string token</i>	Controls estimation of linkage phases for population type CP
	(estimate, omit); default esti

TITLE = text	General title for the graph
OUTFILENAME = text	Name (without extension) of the Flapjack files to be created
Parameters	
MKSCORES = <i>pointers</i>	Marker scores for each marker; must be set
CHROMOSOMES = $factors$	Factor defining the linkage groups
POSITIONS = variates	Saves the positions of markers
MKNAMES = $texts$	Names of the markers; must be set
IDMGENOTYPES = texts	Names of the genotypes
PARENTS = <i>pointers</i>	Marker scores of the parents; must be set
IDPARENTS = <i>texts</i>	Labels to identify the parents
SMKSCORES = <i>pointers</i>	Saves the scores of the markers, sorted according to the
	markers in the SCHROMOSOMES factor (if CHROMOSOMES is set)
	and the SPOSITIONS variate
SCHROMOSOMES = factors	Saves the sorted linkage groups
SPOSITIONS = variates	Saves the sorted positions of markers (within the sorted
	linkage groups if CHROMOSOMES is set)
SMKNAMES = texts	Saves the names of the markers, sorted according to the
	SCHROMOSOMES factor (if CHROMOSOMES is set) and the
	SPOSITIONS variate
SPARENTS = <i>pointers</i>	Saves the marker scores of the parents, sorted according to the
-	markers in the SCHROMOSOMES factor (if CHROMOSOMES is set)
	and the SPOSITIONS variate
SEED = scalars	Seed for the random numbers used for spatial sampling;
	default 0

QMASSOCIATION procedure

Performs multi-environment marker-trait association analysis in a genetically diverse population using bi-allelic and multi-allelic markers (M. Malosetti & J.T.N.M. Thissen). **Options**

Options	
PRINT = string tokens	What to print (summary, progress); default summ
PLOT = string tokens	What to plot (profile, map); default prof, map
RELATIONSHIPMODEL = string token	What model to use to account for genetic relatedness
	(eigenanalysis, subpopulations, null); default eige
VCMODEL = string token	Specifies the variance-covariance model for the set of
	environments (identity, diagonal, cs, hcs, outside, fa,
	unstructured, best); default best
CRITERION = string token	Defines which criterion is used to compare the different
	covariance structures (aic, sic); default sic
MINORALLELE = scalar	Frequency of minor alleles; default 0.05
THRESHOLD = scalar	Threshold value for significant LD, on the -log10 scale;
	default 2
SUBPOPULATIONS = factor	Defines groupings of genotypes into subpopulations
MODELPART = string token	Defines which part of the model should include
	SUBPOPULATIONS if RELATIONSHIPMODEL is set to
	subpopulations, or the principal components scores if
	RELATIONSHIPMODEL is set to eigenanalysis (fixed,
	random); default rand
SCALING = string token	Whether to scale the scores by the square roots of their
8	singular values if RELEATIONSHIPMODEL is set to
	eigenanalysis (singularvalues, none); default sing
STANDARDIZE = <i>string token</i>	Whether to standardize the marker scores according to their
	frequencies (frequency, none); default freq
TITLE = text	General title for the plots
$\begin{array}{l} \text{YTITLE} = text \end{array}$	Title for the y-axis
XTITLE = text	Title for the x-axis
$\Lambda I I I I I I = l \ell \Lambda l$	

Parameters

TRAIT = variates	Phenotypic trait to analyse; must be set
GENOTYPES = factors	Genotype factor; must be set
ENVIRONMENTS = $factors$	Environment factor; must be set
MKSCORES = <i>pointers</i>	Genotype codes for each marker; must be set
CHROMOSOMES = $factors$	Linkage groups for the markers; must be set
POSITIONS = variates	Positions within the linkage groups of markers; must be set
MKNAMES = texts	Marker names
WALDSTATISTICS = variates	Saves the Wald test statistics
NDF = variates	Saves the degrees of freedom associated to the Wald test
MINLOG10P = variates	Saves the associated probability values of the Wald test
	statistics, on a -log10 scale
QSAVE = pointers	Saves a pointer with information and results for the significant
	effects
DFILENAME = texts	Name of the graphics file for the plots

QMATCH procedure

Matches different data structures to be used in QTL estimation (L.C.P. Keizer & J.T.N.M. Thissen). **Options**

PRINT = string tokens	What to print (summary, details); default summ
GEN%MISSING = scalar	Percentage of missing values allowed for a genotype; default
	50
MK%MISSING = scalar	Percentage of missing values allowed for a marker; default 50
MK%EXTREME = scalar	Extreme allele percentage allowed for a marker; default 5
GENSELECTION = variate	Logical variate containing the value one for the genotypes to
	retain and zero for those to remove (supersedes the options
	GEN%MISSING, MK%MISSING and MK%EXTREME)
MKSELECTION = variate	Logical variate containing the value one for the markers to
	retain and zero for those to remove (supersedes the options
	GEN%MISSING, MK%MISSING and MK%EXTREME)
POPULATIONTYPE = <i>string token</i>	Type of population (BC1, DH1, F2, RIL, BCxSy, CP, AMP);
	must be set
OUTFILEPREFIX = text	Prefix for the output file names; default * i.e. files not saved
Parameters	
TRAITS = pointers or variates	Quantitative traits
GENOTYPES = factors	Genotype factors corresponding to the traits
ENVIRONMENTS = $factors$	Environment factors corresponding to the traits
MKSCORES = <i>pointers</i>	Marker scores; must be set
CHROMOSOMES = $factors$	Chromosomes corresponding to the markers
POSITIONS = variates	Positions on the chromosomes corresponding to the markers
MKNAMES = texts	Names of the markers
IDMGENOTYPES = texts	Labels for the genotypes corresponding to the markers
PARENTS = pointers	Parent information
IDPARENTS = texts	Labels used to identify the parents
KMATRIX = symmetric matrices	Kinship matrices containing coefficients of coancestries
SUBPOPULATIONS = $factors$	Groups of genotypes
STRAITS = <i>pointers</i> or <i>variates</i>	Saves the sorted quantitative traits
SGENOTYPES = $factors$	Saves the sorted genotype factors
SENVIRONMENTS = $factors$	Saves the sorted environment factors
SMKSCORES = <i>pointers</i>	Saves the sorted marker scores; must be set
SCHROMOSOMES = $factors$	Saves the sorted chromosomes corresponding to the markers
SPOSITIONS = variates	Saves the sorted positions on the chromosomes corresponding
	to the markers
SMKNAMES = texts	Saves the sorted names of the markers
SIDMGENOTYPES = texts	Saves the sorted labels for the genotypes
SPARENTS = <i>pointers</i>	Saves the sorted parent information

SIDPARENTS = texts	Saves the sorted
SKMATRIX = <i>symmetric matrices</i>	Saves the sorted
SSUBPOPULATIONS = $factors$	Saves the sorted

Saves the sorted labels used to identify the parents Saves the sorted kinship matrices Saves the sorted groups of genotypes

QMBACKSELECT procedure

Performs a QTL backward selection for loci in multi-environment trials or multiple populations (M.P. Boer, M. Malosetti, S.J. Welham & J.T.N.M. Thissen).

Options	
---------	--

PRINT = string tokens	What to print (summary, model, components, effects, means, stratumvariances, monitoring, vcovariance, deviance, Waldtests, missingvalues, covariancemodels); default summ
POPULATIONTYPE = <i>string token</i>	Type of population (BC1, DH1, F2, RIL, BCxSy, CP); must be set
ALPHALEVEL = scalar	Defines a significance level; default 0.05
VCMODEL = string token	Defines the variance-covariance model for the set of
	environments (identity, diagonal, cs, hcs, outside, fa, fa2, unstructured); default cs for multi-environment trials, and diagonal for multiple populations
VCPARAMETERS = <i>string token</i>	Whether to re-estimate the variance-covariance model parameters (estimate, fix); default esti
VCSELECT = <i>string token</i>	Whether to re-select the variance-covariance model (no, yes); default no
CRITERION = <i>string token</i>	Criterion to use for model selection (aic, sic); default sic
FIXED = formula	Defines extra fixed effects
UNITFACTOR = factor	Saves the units factor required to define the random model
,	when UNITERROR is to be used
MVINCLUDE = string tokens	Whether to include units with missing values in the
	explanatory factors and variates and/or the y-variates
	(explanatory,yvariate); default expl,yvar
MAXCYCLE = scalar	Limit on the number of iterations; default 100
WORKSPACE = scalar	Number of blocks of internal memory to be set up for use by the REML algorithm; default 100
Parameters	
TRAIT = variates	Quantitative trait to be analysed; must be set
GENOTYPES = factors	Genotype factor; must be set
ENVIRONMENTS = $factors$	Environment factor; must be set for a multi-environment trial
POPULATIONS = factors	Population factor; must be set for a multiple-population analysis
UNITERROR = <i>variates</i>	Uncertainty on trait means (derived from individual unit or plot error) to be included in QTL analysis; default * i.e. omitted
VCINITIAL = pointers	Initial values for the parameters of the variance-covariance model
SELECTEDMODEL = <i>texts</i>	VCMODEL setting for the selected covariance structure
ADDITIVEPREDICTORS = <i>pointers</i>	Additive genetic predictors; must be set
ADD2PREDICTORS = <i>pointers</i>	Second (paternal) set of additive genetic predictors
DOMINANCEPREDICTORS = <i>pointers</i>	Dominance genetic predictors
CHROMOSOMES = factors	Chromosomes corresponding to the genetic predictors; must be set
POSITIONS = variates	Positions on the chromosomes corresponding to the genetic predictors; must be set
IDLOCI = texts	Labels for the loci
IDMGENOTYPES = texts	Labels for the genotypes corresponding to the genetic predictors
QTLCANDIDATES = variates	Specifies the locus index numbers from which to start the

	selection; must be set
QTLSELECTED = variates	Saves the index numbers of the selected QTLs
INTERACTIONS = variates	Saves a logical variate indicating whether each selected QTL
	showed a significant (1) or non-significant (0) QTL-by-
	environment or QTL-by-population interaction
DOMSELECTED = variates	Saves a logical variate indicating whether each selected QTL
	showed a significant (1) or non-significant (0) effect of the
	DOMINANCEPREDICTORS
DOMINTERACTIONS = variates	Saves a logical variate indicating whether each selected QTL
	showed a significant (1) or non-significant (0) dominance-by-
	environment or dominance-by-population interaction
WALDSTATISTICS = variates	Saves the Wald test statistics
PRWALD = variates	Saves the associated Wald probabilities

QMESTIMATE procedure

Calculates QTL effects in multi-environment trials or multiple populations (M.P Boer, M. Malosetti, S.J. Welham & J.T.N.M. Thissen). **Options**

PRINT = string tokens	What to print (summary, model, components, effects, means, stratumvariances, monitoring, vcovariance,
	deviance, Waldtests, missingvalues,
	covariancemodels); default summ
POPULATIONTYPE = string token	Type of population (BC1, DH1, F2, RIL, BCxSy, CP); must be
,	set
NGENERATIONS = scalar	Number of generations of selfing for a RIL population
NBACKCROSSES = $scalar$	Number of backcrosses for a BCxSy population
NSELFINGS = scalar	Number of selfings for a BCxSy population
VCMODEL = string token	Specifies the variance-covariance model for the set of
	environments or populations (identity, diagonal, cs, hcs,
	outside, fa, fa2, unstructured); default cs for multi-
	environment trials, and diagonal for multiple populations
VCPARAMETERS = <i>string token</i>	Whether to re-estimate the variance-covariance model
	parameters (estimate, fix); default esti
VCSELECT = <i>string token</i>	Whether to re-select the variance-covariance model (no, yes);
	default no
CRITERION = <i>string token</i>	Criterion to use for model selection (aic, sic); default sic
FIXED = formula	Defines extra fixed effects
UNITFACTOR = $factor$	Saves the units factor required to define the random model
	when UNITERROR is to be used
MVINCLUDE = string tokens	Whether to include units with missing values in the
0	explanatory factors and variates and/or the y-variates
	(explanatory, yvariate); default expl, yvar
MAXCYCLE = $scalar$	Limit on the number of iterations; default 100
WORKSPACE = scalar	Number of blocks of internal memory to be set up for use by
	the REML algorithm; default 100
Parameters	
TRAIT = variates	Quantitative trait to be analysed; must be set
GENOTYPES = $factors$	Genotype factor; must be set
ENVIRONMENTS = factors	Environment factor; must be set for a multi-environment trial
POPULATIONS = $factors$	Population factor; must be set for a multiple-population analysis
UNITERROR = variates	Uncertainty on trait means (derived from individual unit or plot error) to be included in QTL analysis; default * i.e. omitted
VCINITIAL = <i>pointers</i>	Initial values for the parameters of the variance-covariance

model

SELECTEDMODEL = <i>texts</i>	VCMODEL setting for the selected covariance structure
ADDITIVEPREDICTORS = <i>pointers</i>	Additive genetic predictors; must be set
ADD2PREDICTORS = <i>pointers</i>	Second (paternal) set of additive genetic predictors
DOMINANCEPREDICTORS = pointers	Dominance genetic predictors
CHROMOSOMES = factors	Chromosomes corresponding to the genetic predictors; must be
5	set
POSITIONS = variates	Positions on the chromosomes corresponding to the genetic
	predictors; must be set
IDLOCI = texts	Labels for the loci; must be set
MKLOCI = variates	Logical variate containing the value 1 if the locus is a marker,
	otherwise 0; must be set
TDMGENOTYPES = texts	Labels for the genotypes corresponding to the genetic
	predictors
IDPARENTS = texts	Labels to identify the parents
QTLSELECTED = variates	Index numbers of the selected QTLs; must be set
INTERACTIONS = variates	Logical variate indicating whether each selected QTL has a
	significant (1) or non-significant (0) QTL-by-environment or
	QTL-by-population interaction
DOMSELECTED = variates	Logical variate indicating whether the dominance predictor of
	each selected QTL must be present (1) or absent (0) in the
	model
DOMINTERACTIONS = variates	Logical variate indicating whether the dominance-by-
	environment or dominance-by-population interaction of each
	selected QTL must be present (1) or absent (0) in the model
RESIDUALS = variates	Residuals from the analysis
FITTEDVALUES = variates	Fitted values from the analysis
WALDSTATISTICS = variates	Saves the Wald test statistics
PRWALD = variates	Saves the associated Wald probabilities
DFWALD = variates	Saves the degrees of freedom for the Wald test
QEFFECTS = <i>pointers</i>	Saves the estimated QTL effects
QSE = pointers	Saves the standard errors of the QTL effects
OUTFILENAME = texts	Name of the Genstat workbook file (*.gwb) to be created
QSAVE = pointers	Saves a pointer with information and results for the significant
	effects
SAVE = REML save structures	Save the details of each REML analysis for use in subsequent
	VDISPLAY and VKEEP directives

QMKDIAGNOSTICS procedure

Generates descriptive statistics and diagnostic plots of molecular marker data (D.A. Murray, S.J. Welham, M. Malosetti, M.P. Boer, L.C.P. Keizer & J.T.N.M. Thissen).

Options	· · · · ·
PRINT = string tokens	What to print (summary, missingvalues, frequencies);
	default summ, miss, freq
PLOT = string tokens	What to plot (missingvalues, frequencies,
	probabilities, genotypes, map); default miss, geno, map
GEN%MISSING = scalar	Threshold for printing genotypes with many missing values
	(i.e. genotypes with a higher percentage of missing values than
	the specified value); default 10
MK%MISSING <i>=scalar</i>	Threshold for printing markers with many missing values (i.e.
	markers with a higher percentage of missing values than the
	specified value); default 10
MK%EXTREME = scalar	Threshold for printing markers with rare alleles (i.e. alleles
	present with a lower percentage than the specified threshold);
	default 10
POPULATIONTYPE = <i>string token</i>	Type of population (BC1, DH1, F2, RIL, BCxSy, CP, AMP);
	must be set

NGENERATIONS = scalar NBACKCROSSES = scalar NSELFINGS = scalar	Number of generations for a RIL population; default 6 Number of backcrosses; must be set for a BCxSy population Number of selfings; must be set for a BCxSy population
DCHROMOSOMES = <i>variate</i> , <i>text</i> or <i>scala</i>	<i>r</i> Specifies a subset of the linkage groups to be displayed
PDIRECTION = <i>string token</i>	How to sort the probabilities when PRINT=frequencies with BC1, DH1, F2, RIL and BCxSy populations (ascending, descending); default * i.e. no sorting
Parameters	
MKSCORES = pointers	Genotype codes for each marker; must be set
CHROMOSOMES= factors	Linkage groups for the markers; must be set
POSITIONS = variates	Positions within the linkage groups of markers; must be set
MKNAMES = $texts$	Marker name; must be sets
IDMGENOTYPES = texts	Labels for genotypes corresponding to the marker scores
PARENTS = <i>pointers</i>	Parent information
IDPARENTS = texts	Labels to identify the parents
GENCHECK = variates	Logical variates containing the value one for genotypes with missing value problems, according to the setting of the GEN%MISSING option, and zero otherwise
MKCHECK = variates	Logical variates containing the value one for markers with missing or extreme value problems, as defined by the MK%MISSING and MK%EXTREME options, and zero otherwise
SUMMARY = pointers	Saves a summary of counts and probabilities for the chi-square tests for BC1, DH1, F2, RIL and BCxSy populations

QMKRECODE procedure

Recodes marker and/or parental scores into separate alleles (L.C.P. Keizer & J.T.N.M. Thissen).

Options

options	
PRINT = string tokens	What to print (alleles, summary); default alle
POPULATIONTYPE = <i>string token</i>	Type of population (BC1, DH1, F2, RIL, BCxSy, CP, AMP); must be set
MISSING = text	Character representing a missing genotype; default '-'
USEFIRSTGENOTYPE = <i>string token</i>	Makes all the first (and second) labels of the LABALLELES
	pointer from the first genotype of the population (yes, no);
	default no
ASEPARATOR = text	Character separating allele values; default '/'
Parameters	
MKSCORES = <i>pointers</i>	Marker scores; must be set
MKALLELES = $pointers$	Saves the marker scores per allele
LABALLELES = <i>pointers</i>	Saves the allele labels
MKLABALLELES = $pointers$	Saves the allele labels per marker
NALLELES = variates	Saves the number of alleles per marker
MKNAMES = $texts$	Names of the markers

QMKSELECT procedure

Obtains a representative selection of markers by means of genetic distance sampling or genetic distance optimization (J. Jansen & J.T.N.M. Thissen). **Options**

- F	
PRINT = string tokens	What to print (summary, monitoring); default summ
NCLUSTERS = scalar	The number of markers to be selected; must be set
METHOD = string token	Method to be used (sampling, optimization); default
-	samp
Parameters	
MKNAMES = $texts$	Names of the markers; must be set
RECFREQUENCY = symmetric matices	Input recombination frequencies matrix for each selection;
	must be set

338	4 Syntax summary
PRIORGROUPS = factors	Defines prior groupings of the markers
SELECTED = variates	Logical variate indicating whether a marker is selected (1) as cluster centre or not (0)
NEIGHBOURS = variates	Saves the nearest cluster centres of the markers
DISTANCES = variates SEED = scalars	Saves the distances of the markers to the nearest cluster centre Seed for randomization at the start; default 0

QMQTLSCAN procedure

Performs a genome-wide scan for QTL effects (Simple and Composite Interval Mapping) in multienvironment trials or multiple populations (M.P. Boer, M. Malosetti, S.J. Welham & J.T.N.M. Thissen).

Options

PRINT = string tokens	What to print (summary, progress, model, components,
	effects, means, stratumvariances, monitoring,
	vcovariance, deviance, Waldtests, missingvalues,
	covariancemodels); default summ
PLOT = string token	Whether to plot the profile along the genome (profile); default prof
POPULATIONTYPE = string token	Type of population (BC1, DH1, F2, RIL, BCxSy, CP); must be
FOFULATIONTIFE String token	set
ALPHALEVEL = scalar	Defines a genome-wide significance level to calculate the
	threshold; default 0.05
VCMODEL = string token	Specifies the variance-covariance model for the set of
5	environments or populations (identity, diagonal, cs, hcs,
	outside, fa, fa2, unstructured); default cs for multi-
	environment trials, and diagonal for multiple populations
VCPARAMETERS = <i>string token</i>	Whether to re-estimate the variance-covariance model
C	parameters (estimate, fix); default esti
QTLMODEL = string token	Type of QTL model (q, qqe); default qqe
COFACTORS = variate	Index numbers of loci to be used as cofactors for the genetic
	background
COFWINDOW = scalar	Specifies a window for cofactor exclusion from the model;
	default 10 ⁶ which means that all cofactors on the same
	chromosomes are excluded
THRMETHOD = string token	Which method to use to calculate the threshold for QTL
5	detection (bonferroni, liji, given); default liji
THRESHOLD = scalar	Threshold value for test statistic when THRMETHOD=given
DISTANCE = $scalar$	Distance between loci when THRMETHOD=bonferroni;
	default 4
FIXED = formula	Formula with extra fixed terms
UNITFACTOR = factor	Saves the units factor required to define the random model
5	when UNITERROR is to be used
STATISTICTYPE = <i>string token</i>	Which test statistic to plot and save using the STATISTICS
0	parameter (wald, minlog10p); default minl
COLOURS = <i>scalar</i> , <i>variate</i> or <i>text</i>	Colours to use for the chromosomes; default * uses the colours
·	of pens 1, 2 up to the number of chromosomes
TITLE = text	General title for the plot
YLOWERTITLE = text	Title for the y-axis of the lower graph; default
	'Environments' for multi-environment trials, and
	'Populations' for multiple populations
YUPPERTITLE = <i>text</i>	Title for the y-axis of the upper graph; default uses the
	identifier of the STATISTICS variate or pointer
XTITLE = string	Title for the x-axis; default 'Chromosomes'
MVINCLUDE = string tokens	Whether to include units with missing values in the
0.0	explanatory factors and variates and/or the y-variates
	(explanatory, yvariate); default expl, yvar

MAXCYCLE = scalar	Limit on the number of iterations; default 100
WORKSPACE = $scalar$	Number of blocks of internal memory to be set up for use by the REML algorithm; default 100
Parameters	
TRAIT = variates	Quantitative trait to be analysed; must be set
GENOTYPES = $factors$	Genotype factor; must be set
ENVIRONMENTS = factors	Environment factor; must be set for a multi-environment trial
POPULATIONS = factors	Population factor; must be set for a multiple-population analysis
UNITERROR = variate	Uncertainty on trait means (derived from individual unit or plot error) to be included in QTL analysis; default * i.e. omitted
VCINITIAL = pointers	Initial values for the parameters of the variance-covariance model
ADDITIVEPREDICTORS = <i>pointers</i>	Additive genetic predictors; must be set
ADD2PREDICTORS = <i>pointers</i>	Second (paternal) set of additive genetic predictors
DOMINANCEPREDICTORS = <i>pointers</i>	Dominance genetic predictors
CHROMOSOMES = $factors$	Chromosomes corresponding to the genetic predictors; must be set
POSITIONS = variates	Positions on the chromosomes corresponding to the genetic predictors; must be set
IDLOCI = texts	Labels for the loci
IDMGENOTYPES = texts	Labels for the genotypes corresponding to the genetic predictors
IDEFFECTS = <i>texts</i>	Labels for the effects along the y-axis, in the frame below the profile plot
IDPARENTS = texts	Labels to use to identify the parents
QSTATISTICS = variates	Saves test statistics for QTL effects along the genome
QEFFECTS = <i>pointers</i>	Saves QTL effects along the genome
QSE = pointers	Saves standard errors of the QTL effects
OUTFILENAME = texts	Name of the Genstat workbook file (*.gwb) to be created
DFILENAME = $texts$	Name of the graphics file for the plots

QMTBACKSELECT procedure

Performs a QTL backward selection for loci in multi-trait trials (M.P. Boer, M. Malosetti, S.J. Welham & J.T.N.M. Thissen).

v chiani a	5.1.1.1.1.1.1.1.11100 0 11 <i>)</i> .	
Options		
PRINT = strin	g tokens	What to print (summary, model, components, effects,
		means, stratumvariances, monitoring, vcovariance,
		deviance,Waldtests,missingvalues,
		covariancemodels); default summ
POPULATION	TYPE = string token	Type of population (BC1, DH1, F2, RIL, BCxSy, CP); must be
		set
ALPHALEVEL	= scalar	Defines a significance level; default 0.05
VCMODEL = st	ring token	Defines the variance-covariance model for the set of traits
		(identity, diagonal, cs, hcs, outside, fa, fa2,
		unstructured); default cs
VCPARAMETE	RS = string token	Whether to re-estimate the variance-covariance model
		<pre>parameters (estimate, fix); default esti</pre>
VCSELECT = S	string token	Whether to re-select the variance-covariance model (no, yes);
		default no
STANDARDIZI	$E = string \ token$	How to standardize the traits (none, normalize); default
		norm
CRITERION =		Criterion to use for model selection (aic, sic); default sic
FIXED = form	nula	Defines extra fixed effects
UNITFACTOR	=factor	Saves the units factor required to define the random model

MVINCLUDE = string tokens	when UNITERROR is to be used Whether to include units with missing values in the explanatory factors and variates and/or the y-variates
MAXCYCLE = scalar	(explanatory, yvariate); default expl, yvar Limit on the number of iterations; default 100
WORKSPACE = scalar	Number of blocks of internal memory to be set up for use by the REML algorithm; default 100
Parameters	
Y = variates	Quantitative traits to be analysed; must be set
GENOTYPES = factors	Genotype factor; must be set
FTRAITS = factors	Factor indicating the trait of each y-value; must be set
UNITERROR = variates	Uncertainty on trait means (derived from individual unit or plot error) to be included in QTL analysis; default * i.e. omitted
VCINITIAL = <i>pointers</i>	Initial values for the parameters of the variance-covariance model
SELECTEDMODEL = texts	VCMODEL setting for the selected covariance structure
ADDITIVEPREDICTORS = <i>pointers</i>	Additive genetic predictors; must be set
ADD2PREDICTORS = <i>pointers</i>	Second (paternal) set of additive genetic predictors
DOMINANCEPREDICTORS = <i>pointers</i>	Dominance genetic predictors
CHROMOSOMES = $factors$	Chromosomes corresponding to the genetic predictors; must be
	set
POSITIONS = variates	Positions on the chromosomes corresponding to the genetic predictors; must be set
IDLOCI = texts	Labels for the loci
IDMGENOTYPES = texts	Labels for the genotypes corresponding to the genetic
	predictors
QTLCANDIDATES = variates	Specifies the locus index numbers from which to start the selection; must be set
QTLSELECTED = variates	Saves the index numbers of the selected QTLs
INTERACTIONS = variates	Saves a logical variate indicating whether each selected QTL showed a significant (1) or non-significant (0) QTL-by-trait
DOMSELECTED = variates	interaction Saves a logical variate indicating whether each selected QTL
	showed a significant (1) or non-significant (0) effect of the DOMINANCEPREDICTORS
DOMINTERACTIONS = variates	Saves a logical variate indicating whether each selected QTL
	showed a significant (1) or non-significant (0) dominance-by- trait interaction
WALDSTATISTICS = variates	Saves the Wald test statistics
PRWALD = variates	Saves the associated Wald probabilities
	sures the associated trait probabilities

QMTESTIMATE procedure

Calculates QTL effects in multi-trait trials (M.P Boer, M. Malosetti, S.J. Welham & J.T.N.M. Thissen).

Options

PRINT = string tokens	What to print (summary, model, components, effects,
	means, stratumvariances, monitoring, vcovariance,
	deviance,Waldtests,missingvalues,
	covariancemodels); default summ
POPULATIONTYPE = <i>string token</i>	Type of population (BC1, DH1, F2, RIL, BCxSy, CP); must be
	set
NGENERATIONS = $scalar$	Number of generations of selfing for a RIL population
NBACKCROSSES = scalar	Number of backcrosses for a BCxSy population
NSELFINGS = scalar	Number of selfings for a BCxSy population
VCMODEL = string token	Specifies the variance-covariance model for the set of traits

VCPARAMETERS = *string token*

VCSELECT = *string token*

STANDARDIZE = *string token*

CRITERION = *string token* FIXED = *formula* UNITFACTOR = *factor*

MVINCLUDE = *string tokens*

MAXCYCLE = scalar WORKSPACE = scalar

Parameters

Y = variates GENOTYPES = factors FTRAITS = factors UNITERROR = variate

VCINITIAL = *pointers*

SELECTEDMODEL = texts ADDITIVEPREDICTORS = pointers ADD2PREDICTORS = pointers DOMINANCEPREDICTORS = pointers CHROMOSOMES = factors

POSITIONS = *variates*

IDLOCI = texts MKLOCI = variates

IDMGENOTYPES = *texts*

IDPARENTS = *texts* QTLSELECTED = *variates* INTERACTIONS = *variates*

DOMSELECTED = variates

DOMINTERACTIONS = variates

RESIDUALS = variates FITTEDVALUES = variates WALDSTATISTICS = variates PRWALD = variates DFWALD = variates QEFFECTS = pointers QSE = pointers (identity, diagonal, cs, hcs, outside, fa, fa2, unstructured); default cs Whether to re-estimate the variance-covariance model parameters (estimate, fix); default esti Whether to re-select the variance-covariance model (no, yes); default no How to standardize the traits (none, normalize); default norm Criterion to use for model selection (aic, sic); default sic Defines extra fixed effects Saves the units factor required to define the random model when UNITERROR is to be used Whether to include units with missing values in the explanatory factors and variates and/or the y-variates (explanatory, yvariate); default expl, yvar Limit on the number of iterations; default 100 Number of blocks of internal memory to be set up for use by the REML algorithm; default 100

Quantitative traits to be analysed; must be set Genotype factor; must be set Factor indicating the trait of each y-value; must be set Uncertainty on trait means (derived from individual unit or plot error) to be included in QTL analysis; default * i.e. omitted Initial values for the parameters of the variance-covariance model VCMODEL setting for the selected covariance structure Additive genetic predictors; must be set Second (paternal) set of additive genetic predictors Dominance genetic predictors Chromosomes corresponding to the genetic predictors; must be set Positions on the chromosomes corresponding to the genetic predictors; must be set Labels for the loci; must be set Logical variate containing the value 1 if the locus is a marker, otherwise 0; must be set Labels for the genotypes corresponding to the genetic predictors Labels to identify the parents Index numbers of the selected QTLs; must be set Logical variate indicating whether each selected QTL has a significant (1) or non-significant (0) QTL-by-trait interaction Logical variate indicating whether the dominance predictor of each selected QTL must be present (1) or absent (0) in the model Logical variate indicating whether the dominance-by-trait interaction of each selected QTL must be present (1) or absent (0) in the model Residuals from the analysis Fitted values from the analysis Saves the Wald test statistics Saves the associated Wald probabilities Saves the degrees of freedom for the Wald test Saves the estimated QTL effects

Saves the standard errors of the QTL effects

342	4 Syntax summary
OUTFILENAME = <i>texts</i>	Name of the Genstat workbook file (*.gwb) to be created
QSAVE = pointers	Saves a pointer with information and results for the significant effects
SAVE = <i>REML</i> save structures	Save the details of each REML analysis for use in subsequent VDISPLAY and VKEEP directives

QMTQTLSCAN procedure

Performs a genome-wide scan for QTL effects (Simple and Composite Interval Mapping) in multitrait trials (M.P. Boer, M. Malosetti, S.J. Welham & J.T.N.M. Thissen).

Options

PRINT = string tokens	What to print (summary, progress, model, components, effects, means, stratumvariances, monitoring,
	vcovariance, deviance, Waldtests, missingvalues,
	covariancemodels); default summ
PLOT = string token	Whether to plot the profile along the genome (profile); default prof
POPULATIONTYPE = string token	Type of population (BC1, DH1, F2, RIL, BC×Sy, CP); must be set
ALPHALEVEL = scalar	Defines a genome-wide significance level to calculate the threshold; default 0.05
VCMODEL = string token	Specifies the variance-covariance model for the set of traits (identity, diagonal, cs, hcs, outside, fa, fa2, unstructured); default cs
VCPARAMETERS = <i>string token</i>	Whether to re-estimate the variance-covariance model parameters (estimate, fix); default esti
STANDARDIZE = <i>string token</i>	How to standardize the traits (none, normalize); default norm
COFACTORS = <i>variate</i>	Index numbers of loci to be used as cofactors for the genetic background
COFWINDOW = scalar	Specifies a window for cofactor exclusion from the model; default 10 ⁶ which means that all cofactors on the same
	chromosomes are excluded
THRMETHOD = <i>string token</i>	Which method to use to calculate the threshold for QTL
	detection (bonferroni, liji, given); default liji
THRESHOLD = scalar	Threshold value for test statistic when THRMETHOD=given
DISTANCE = scalar	Distance between loci when THRMETHOD=bonferroni; default 4
FIXED = formula	Formula with extra fixed terms
UNITFACTOR = factor	Saves the units factor required to define the random model when UNITERROR is to be used
STATISTICTYPE = string token	Which test statistic to plot and save using the STATISTICS parameter (wald, minlog10p); default minl
COLOURS = <i>scalar</i> , <i>variate</i> or <i>text</i>	Colours to use for the chromosomes; default * uses the colours of pens 1, 2 up to the number of chromosomes
TITLE = text	General title for the plot
YLOWERTITLE = text	Title for the y-axis of the lower graph(s); default 'Traits'
YUPPERTITLE = <i>text</i>	Title for the y-axis of the upper graph; default uses the
	identifier of the STATISTICS variate or pointer
XTITLE = string	Title for the x-axis; default 'Chromosomes'
MVINCLUDE = string tokens	Whether to include units with missing values in the explanatory factors and variates and/or the y-variates
MAXCYCLE = scalar	(explanatory, yvariate); default expl, yvar Limit on the number of iterations; default 100
	Number of blocks of internal memory to be set up for use by
WORKSPACE = <i>scalar</i>	the REML algorithm; default 100

Parameters	
Y = variates	Quantitative traits to be analysed; must be set
GENOTYPES = $factors$	Genotype factor; must be set
FTRAITS = factors	Factor indicating the trait of each y-value; must be set
UNITERROR = variate	Uncertainty on trait means (derived from individual unit or
	plot error) to be included in QTL analysis; default * i.e.
	omitted
VCINITIAL = pointers	Initial values for the parameters of the variance-covariance
	model
ADDITIVEPREDICTORS = pointers	Additive genetic predictors; must be set
ADD2PREDICTORS = <i>pointers</i>	Second (paternal) set of additive genetic predictors
DOMINANCEPREDICTORS = <i>pointers</i>	Dominance genetic predictors
CHROMOSOMES = factors	Chromosomes corresponding to the genetic predictors; must be
	set
POSITIONS = variates	Positions on the chromosomes corresponding to the genetic
	predictors; must be set
IDLOCI = texts	Labels for the loci
IDMGENOTYPES = texts	Labels for the genotypes corresponding to the genetic
	predictors
IDEFFECTS = texts	Labels for the effects along the y-axis, in the frame below the
	profile plot
IDPARENTS = texts	Labels to use to identify the parents
QSTATISTICS = variates	Saves test statistics for QTL effects along the genome
QEFFECTS = <i>pointers</i>	Saves QTL effects along the genome
QSE = pointers	Saves standard errors of the QTL effects
OUTFILENAME = texts	Name of the Genstat workbook file (*.gwb) to be created
DFILENAME = $texts$	Name of the graphics file for the plots

QMVAF procedure

Calculates percentage variance accounted for by QTL effects in a multi-environment analysis (S.J. Welham, M.P. Boer, M.Malosetti & J.T.N.M. Thissen).

Options

PRINT = string token
SELECTION = <i>string tokens</i>
METHOD = string tokens
VCMODEL = string token
FIXED = formula
UNITFACTOR = factor
MVINCLUDE = string tokens
MAXCYCLE = scalar
WORKSPACE = scalar
Parameters
TRAIT = variates
GENOTYPES = $factors$

ENVIRONMENTS = factors

UNITERROR = *variate*

What to print (summary); default summ What types of statistics to calculate (add, drop, cumulative); default add, drop, cumu What methods to use to calculate the percentage variance accounted for (trace, determinant); default trac, dete Specifies the variance-covariance model for the set of environments (identity, diagonal, cs, hcs, outside, fa, fa2, unstructured); default cs Defines extra fixed effects Saves the units factor required to define the random model when UNITERROR is to be used Whether to include units with missing values in the explanatory factors and variates and/or the y-variates (explanatory, yvariate); default expl, yvar Limit on the number of iterations; default 100 Number of blocks of internal memory to be set up for use by the REML algorithm; default 100

Quantitative trait to be analysed; must be set Genotype factor; must be set Environment factor; must be set Uncertainty on trait means (derived from individual unit or plot error) to be included in QTL analysis; default * i.e. omitted

VCINITIAL = <i>pointers</i>	Initial values for the parameters of the variance-covariance model
ADDITIVEPREDICTORS = <i>pointers</i>	Additive genetic predictors; must be set
CHROMOSOMES = factors	Chromosomes corresponding to the genetic predictors; must be set
POSITIONS = variates	Positions on the chromosomes corresponding to the genetic predictors; must be set
IDLOCI = texts	Labels for the loci
QTLSELECTED = variates	Index numbers of the selected QTLs; must be set
INTERACTIONS = variates	Logical variate indicating whether each selected QTL has a significant (1) or non-significant (0) QTL-by-environment interaction
OUTFILENAME = <i>texts</i>	Name of the Genstat workbook file (*.gwb) to be created

QMVESTIMATE procedure

Replaces missing molecular marker scores using conditional genotypic probabilities (D.A. Murray & M. Malosetti).

Options

\mathbf{P}	Towns of a smalleting (DO1 DU1 D0 DT1 D0 0), must be set
POPULATIONTYPE = string token	Type of population (BC1, DH1, F2, RIL, BCxSy); must be set
NGENERATIONS = $scalar$	Number of generations of selfing for a RIL population
NBACKCROSSES = $scalar$	Number of backcrosses for a BCxSy population
NSELFINGS = scalar	Number of selfings for a BCxSy population
Parameters	
MKSCORES = <i>pointers</i>	Genotype codes for each marker; must be set
CHROMOSOMES = $factors$	The chromosome where each marker is located; must be set
POSITIONS = variates	The position on the chromosome of each marker; must be set
MKNAMES = $texts$	Marker names; must be set
IDMGENOTYPES = texts	Labels for the genotypes
PARENTS = <i>pointers</i>	Parent information; must be set
IDPARENTS = <i>texts</i>	Labels used to identify the parents; must be set
NEWMKSCORES = pointers	Saves the imputed genotype codes for each marker; if this is
	not set, the imputed values overwrite those in MKSCORES

QMVREPLACE procedure

Replaces missing marker scores with the mode scores of the most similar genotypes (L.C.P. Keizer, J.T.N.M. Thissen & F.A. van Eeuwijk).

Options

PRINT = string tokens	What to print (summary, similarity, neighbours,
	details); default summ
NNEIGHBOURS = $scalar$	Number of nearest neighbours; default 5
MAXDISTANCE = $scalar$	Maximum similarity difference; default 0.1

Parameters

MKSCORES = <i>pointers</i>	Pointer with the original marker scores; must be set
MKNAMES = $texts$	Marker names
IDMGENOTYPES = texts	Labels for genotypes
NEWMKSCORES = pointers	Pointer to store the new marker scores; must be set

QNORMALIZE procedure

Performs quantile normalization (D.B. Baird).

Options

PRINT = string token	What to print (summary); default summ
PLOT = string tokens	What to plot (cdf, histogram, ncdf, nhistogram); default
METHOD = string token	hist, nhis Whether to use means, medians or geometric means for the averaged normalized distribution (means, medians,

ARRANGEMENT = <i>string token</i>	geometricmeans); default mean Whether to use trellis or single plots for PLOT=cdf or ncdf (single, trellis); default trel
DEVICE = scalar	Device number on which to plot the graphs
GRAPHICSFILE = text	What graphics filename template to use to save the graphs; default *
Parameters	
DATA = variates or pointers	Data values
GROUPS = factors or texts	Groupings of the data values
NEWDATA = variates or pointers	Saves the normalized values; if this is unset, they replace the original values in \ensuremath{DATA}
QRD directive	
Calculates QR decompositions of ma	atrices.
Option	
PRINT = string tokens	<pre>Printed output required (orthogonalmatrix, uppertriangularmatrix); default * i.e. no printing</pre>
Parameters	
INMATRIX = matrices or symmetric ma	trices

	Matrices to be decomposed
ORTHOGONALMATRIX = matrices	Orthogonal matrix of each decomposition
UPPERTRIANGULARMATRIX = matrices	Upper-triangular matrix of each decomposition

QRECOMBINATIONS procedure

Calculates the expected numbers of recombinations and the recombination frequencies between markers (J. Jansen, J.T.N.M. Thissen & M.P. Boer).

0					
О	n	tı	n	n	C
v	IJ	u	U	п	э

Options				
PRINT = string tokens	What to print (summary, positions); default summ			
PLOT = string token	What to plot (frequencies); default freq			
POPULATIONTYPE = <i>string token</i>	Type of population (F2, BC1, RIL, DH1, CP); must be set			
METHOD = string token	Which method to use (twopoint, multipoint); default twop			
USEPENALTY = <i>string token</i>	Whether to increase the number of recombinations when METHOD=twopoint by 0.5 recombination per informative meiosis for each missing marker score (yes, no); default no			
TITLE = text	General title for the plot			
Parameters				
MKSCORES = pointers	Marker scores for each marker; must be set			
CHROMOSOMES = $factors$	Factor defining the linkage groups			
POSITIONS = variates	Saves the positions of the markers when METHOD=multipoint			
MKNAMES = texts	Names of the markers; must be set			
PARENTS = <i>pointers</i>	Marker scores of the parents; must be set			
ORDER = variates	Order of the markers for METHOD=multipoint			
NRECOMBINATIONS = symmetric matrices or pointers				
	Saves the number of recombinations			
RECFREQUENCIES = symmetric matrice	es or pointers			
	Saves the recombination frequencies			
PHASESWITCHES = <i>pointers</i>	Saves the phase switches for pairs of markers when POPULATIONTYPE=CP			
INHERITANCEVECTORS = pointers	Saves the inheritance vectors when METHOD=multipoint			
GENNRECOMBINATIONS = variates	Saves the numbers of recombinations of the genotypes when METHOD=multipoint			

QREPORT procedure

Creates an HTML report from QTL linkage or association analysis results (D.A. Murray).

Options	
OUTFILEPREFIX = text	Prefix to use for the files that are generated
WORKDIRECTORY = text	Working directory to use for files; default current Genstat working directory
CHROMOSOMES = $factor$	Factor defining linkage groups for the genetic map
POSITIONS = variate	Positions of markers within the linkage groups for the genetic
HTMLHEAD = text	map Text structure containing custom content for the header of the HTML report file
Parameter	
QSAVE = pointers	Information and results saved from an earlier QTL analysis

QSASSOCIATION procedure

Performs marker-trait association analysis in a genetically diverse population using bi-allelic and multi-allelic markers (M. Malosetti & J.T.N.M. Thissen).

Options

PRINT = string tokens	What to print (summary, progress); default summ
PLOT = string tokens	What to plot (profile, qq, map); default prof, qq
RELATIONSHIPMODEL = string token	What model to use to account for genetic relatedness
	(eigenanalysis, kinship, subpopulations, null);
	default kins
SCORES = <i>pointer</i>	Provides the scores of significant principal components,
-	obtained from an eigenvalue analysis
METHOD = string token	What model to use for GWAS (exact, fast); default fast
ALPHALEVEL = scalar	Defines a genome-wide significance level to calculate the
	threshold; default 0.05
THRMETHOD = string token	Method to define the threshold for significance (neffective,
	bonferroni, given); default neff
THRESHOLD = scalar	Threshold value for significant LD, on the -log10 scale;
	default 2
DISTANCE = $scalar$	Minimum distance gap between independent tests (i.e. distance
	beyond which loci are expected to be in linkeage equilibrium)
	when THRMETHOD=bonferroni; default *
MINORALLELE = scalar	Frequency of minor alleles; default 0.05
KMATRIX = <i>symmetric matrix</i>	Kinship matrix containing coefficients of coancestries
KMETHOD = <i>string token</i>	Method to use to estimate kinship matrix if not supplied by
0	KMATRIX (correlation, dice); default dice
SUBPOPULATIONS = factor	Defines groupings of genotypes into subpopulations
MODELPART = string token	Defines which part of the model should include
	SUBPOPULATIONS if RELATIONSHIPMODEL is set to
	subpopulations, or the principal components scores if
	RELATIONSHIPMODEL is set to eigenanalysis (fixed,
	random); default rand
SCALING = string token	Whether to scale the scores by the square roots of their
	singular values (singularvalues, none); default none
STANDARDIZE = <i>string token</i>	Whether to standardize the marker scores according to their
	frequencies (frequency, none); default freq
COLOURS = scalar, variate or text	Colours to use for the chromosomes; default * uses the colours
	of pens 1, 2 up to the number of chromosomes
TITLE = text	General title for the plots
YTITLE = text	Title for the y-axis
XTITLE = text	Title for the x-axis
Parameters	
TRAIT = variates	Phenotypic trait to analyse; must be set

GENOTYPES = $factors$	Genotype factor
MKSCORES = <i>pointers</i>	Genotype codes for each marker; must be set
CHROMOSOMES= factors	Linkage groups for the markers; must be set
POSITIONS = variates	Positions within the linkage groups of markers; must be set
MKNAMES = $texts$	Marker names
IDMGENOTYPES = texts	Labels for the genotypes corresponding to the markers
GENFILENAME = texts	Name of a comma-delimited file (*.csv) containing marker
	scores (with markers in the rows and genotypes in the
	columns)
MAPFILENAME = texts	Name of a comma-delimited file (*.csv) with map
	information
WALDSTATISTICS = variates	Saves the Wald test statistics
NDF = variates	Saves the degrees of freedom associated with the Wald test
MINLOG10P = variates	Saves the associated probability values of the Wald test
	statistics, on a -log10 scale
LAMBDA = $scalars$	Saves the inflation factor i.e. slope of the QQ plot of
	-log10(P) values
QSAVE = pointers	Saves a pointer with information and results for the significant
	effects
DFILENAME = $texts$	Name of the graphics file for the plots

QSBACKSELECT procedure

Performs a QTL backward selection for loci in single-environment trials (M.P. Boer, M. Malosetti, S.J. Welham & J.T.N.M. Thissen).

Options	
PRINT = string tokens	What to print (summary, model, components, effects,
	means, stratumvariances, monitoring, vcovariance,
	deviance,Waldtests,missingvalues,
	covariancemodels); default summ
POPULATIONTYPE = <i>string token</i>	Type of population (BC1, DH1, F2, RIL, BCxSy, CP); must be
	set
ALPHALEVEL = scalar	Defines a significance level; default 0.05
FIXED = formula	Formula with extra fixed effects
UNITFACTOR = factor	Saves the units factor required to define the random model
	when UNITERROR is to be used
MVINCLUDE = string tokens	Whether to include units with missing values in the
	explanatory factors and variates and/or the y-variates
	(explanatory, yvariate); default expl, yvar
MAXCYCLE = scalar	Limit on the number of iterations; default 100
WORKSPACE = scalar	Number of blocks of internal memory to be set up for use by
	the REML algorithm; default 100
Parameters	
TRAIT = variates	Quantitative trait to be analysed; must be set
GENOTYPES = factors	Genotype factor; must be set
UNITERROR = variates	Uncertainty on trait means (derived from individual unit or
	plot error) to be included in QTL analysis; default * i.e.
	omitted
ADDITIVEPREDICTORS = <i>pointers</i>	Additive genetic predictors; must be set
ADD2PREDICTORS = <i>pointers</i>	Second (paternal) set of additive genetic predictors
DOMINANCEPREDICTORS = pointers	Dominance genetic predictors
CHROMOSOMES = $factors$	Chromosomes corresponding to the genetic predictors; must be set
POSITIONS = variates	Positions on the chromosomes corresponding to the genetic predictors; must be set
IDLOCI = texts	Labels for the loci
IDMGENOTYPES = texts	Labels for the genotypes corresponding to the genetic

QTLCANDIDATES = variates	predictors Specifies the locus index numbers from which to start the selection; must be set
QTLSELECTED = variates	Saves the index numbers of the selected QTLs; must be set
DOMSELECTED = variates	Logical indicator variable storing one where the selected QTLs show a significant effect of the dominance predictor, zero otherwise
WALDSTATISTICS = variates PRWALD = variates	Saves the Wald test statistics Saves the associated Wald probabilities

QSELECTIONINDEX procedure

Calculates (molecular) selection indexes by using phenotypic information and/or molecular scores of multiple traits (M. Malosetti & F.A. van Eeuwijk).

Options

PRINT = string tokens	What to print (summary); default summ
METHOD = string token	Defines which index to calculate (simple, smithhazel,
	landethompson); default smit
INTENSITY = scalar	Specifies the selection intensity expressed as the percentage of
	individuals of the population to select; default 10
Parameters	
TRAITS = pointers	Pointer with a variate for each trait, supplying the phenotypic
	values for the genotypes; must be set
MOLECULARSCORES = <i>pointers</i>	Pointer with a variate for each trait, supplying QTL-based
	predictions or genomic predictions
GENOTYPES = factors	Genotype factor; must be set
IDMGENOTYPES = texts	Labels of the genotypes
WEIGHTS = variates	Specifies economic weights for the traits; if unset, all traits
	have weight one
VCPHENOTYPIC = <i>symmetric matrices</i>	Specifies the phenotypic variance-covariance matrix of the
	traits
VCGENETIC = <i>symmetric matrices</i>	Specifies the genotypic variance-covariance matrix of the traits
HERITABILITY = <i>symmetric matrices</i>	Specifies the heritabilities and coheritabilities of the traits
SELECTIONINDEX = variates	Saves the selection index

QSESTIMATE procedure

Calculates QTL effects in single-environment trials (M.P. Boer, M. Malosetti, S.J. Welham & J.T.N.M. Thissen).

Options

PRINT = string tokens	What to print (summary, model, components, effects, means, stratumvariances, monitoring, vcovariance, deviance, Waldtests, missingvalues, covariancemodels); default summ
POPULATIONTYPE = string token	Type of population (BC1, DH1, F2, RIL, BCxSy, CP); must be set
NGENERATIONS = $scalar$	Number of generations of selfing for a RIL population
NBACKCROSSES = scalar	Number of backcrosses for a BCxSy population
NSELFINGS = scalar	Number of selfings for a BCxSy population
FIXED = formula	Defines extra fixed effects
UNITFACTOR = factor	Saves the units factor required to define the random model when UNITERROR is to be used
MVINCLUDE = string tokens	Whether to include units with missing values in the explanatory factors and variates and/or the y-variates (explanatory, yvariate); default expl, yvar
MAXCYCLE = scalar $WORKSPACE = scalar$	Limit on the number of iterations; default 100 Number of blocks of internal memory to be set up for use by the REML algorithm; default 100

Parameters

Quantitative trait to be analysed; must be set TRAIT = *variates* GENOTYPES = factors Genotype factor; must be set Uncertainty on trait means (derived from individual unit or UNITERROR = *variates* plot error) to be included in QTL analysis; default * i.e. omitted Additive genetic predictors; must be set ADDITIVEPREDICTORS = *pointers* ADD2PREDICTORS = *pointers* Second (paternal) set of additive genetic predictors DOMINANCEPREDICTORS = *pointers* Dominance genetic predictors Chromosomes corresponding to the additive genetic CHROMOSOMES = factors predictors; must be set POSITIONS = variates Positions on the chromosomes corresponding to the additive genetic predictors; must be set Labels for the loci IDLOCI = textsMKLOCI = variates Logical variate containing the value 1 if the locus is a marker, otherwise 0; must be set Labels for the genotypes corresponding to the the additive IDMGENOTYPES = *texts* genetic predictors Labels to identify the parents IDPARENTS = *texts* OTLSELECTED = variates Index numbers of the selected OTLs; must be set Logical variate indicating whether the dominance predictor of DOMSELECTED = variates each selected QTL must be present (1) or absent (0) in the model RESIDUALS = variates Residuals from the analysis Fitted values from the analysis FITTEDVALUES = variates WALDSTATISTICS = variates Saves the Wald test statistics Saves the associated Wald probabilities PRWALD = variates Saves the estimated QTL effects QEFFECTS = *pointers* Saves the standard errors of the QTL effects QSE = pointers Name of the Genstat workbook file (*.gwb) to be created OUTFILENAME = *texts* Saves a pointer with information and results for the significant QSAVE = pointers effects Save the details of each REML analysis for use in subsequent SAVE = REML save structures VDISPLAY and VKEEP directives

QSIMULATE procedure

Simulates marker data and QTL effects for single and multiple environment trials (M.P. Boer & J.T.N.M. Thissen).

Options

PRINT = *string token* What to print (summary); default summ POPULATIONTYPE = *string token* Type of population (BC1, DH1, F2, RIL, BCxSy, CP); must be set Number of generations for a RIL population; default 3 NGENERATIONS = scalar Number of backcrosses for a BCxSy population; default 2 NBACKCROSSES = scalar Number of selfings for a BCxSy population; default 3 NSELFINGS = scalar GENOMELENGTH = *variate* Length in cM for each chromosome Distance between the markers in cM; default 1 cM DISTANCE = scalar COMPLETE = *string token* Complete marker information, i.e. all parents have a different allele (yes, no); default no Fraction of the markers with missing values; default 0 FRACTIONMISSING = scalar Number of genotypes; must be set NGENOTYPES = scalar NCHROMOSOMES = scalar Number of chromosomes NPOSITIONS = scalar Number of positions per chromosome Labels used to identify the parents IDPARENTS = *texts* Mean of the trait for each environment; must be set if TRAIT is MEAN = *scalar* or *variate* set

350	4 Syntax summary
VARIANCE = <i>scalar</i> or <i>variate</i>	Variance of the trait for each environment; must be set if
ADDITIVEEFFECTS = variate or pointe	
	Additive effects of each QTL for each environment; must be set if TRAIT is set
ADD2PREDICTORS = <i>pointers</i>	Second (paternal) set of additive genetic predictors of each QTL for each environment if POPULATIONTYPE is CP; must be set if TRAIT is set
DOMINANCEPREDICTORS = <i>pointers</i>	Dominance genetic predictors of each QTL for each environment if POPULATIONTYPE is F2 or CP; must be set if TRAIT is set
QTLCHROMOSOMES = variate	Chromosome number for each QTL; must be set if TRAIT is set
QTLPOSITIONS = variate	Position on the QTLCHROMOSOMES for each QTL; must be set if TRAIT is set
Parameters	
TRAIT = variates	Saves the quantitative trait values
GENOTYPES = factors	Saves the genotype factor
ENVIRONMENTS = $factors$	Saves the environment factor
MKSCORES = <i>pointers</i>	Saves the marker scores for each marker
CHROMOSOMES = factors	Saves the linkage groups of the markers
POSITIONS = variates	Saves the position on the chromosome for each marker
MKNAMES = $texts$	Names of the markers
IDMGENOTYPES = texts	Labels of the genotypes
PARENTS = pointers	Saves the parent information
SEED = scalars	Specifies a seed to use for the random number generator; default 0 continues from the previous generation or (if none) initializes the seed automatically

QSQTLSCAN procedure

Performs a genome-wide scan for QTL effects (Simple and Composite Interval Mapping) in singleenvironment trials (M.P. Boer, M. Malosetti, S.J. Welham & J.T.N.M. Thissen).

Options

PRINT = string tokens	What to print (summary, progress, model, components,
	effects, means, stratumvariances, monitoring,
	vcovariance, deviance, Waldtests, missingvalues,
	covariancemodels);
PLOT = string token	Whether to plot the profile along the genome (profile);
	default prof
POPULATIONTYPE = <i>string token</i>	Type of population (BC1, DH1, F2, RIL, BCxSy, CP); must be
	set
ALPHALEVEL = scalar	Defines a genome-wide significance level to calculate the
	threshold; default 0.05
COFACTORS = variate	Index numbers of loci to be used as cofactors for the genetic
	background
COFWINDOW = scalar	Specifies a window for cofactor exclusion from the model;
	default 10 ⁶ which means that all cofactors on the same
	chromosomes are excluded
THRMETHOD = string token	Which method to use to calculate the threshold for QTL
	detection (bonferroni, liji, given); default liji
THRESHOLD = scalar	Threshold value for test statistic when THRMETHOD=given
DISTANCE = scalar	Distance between loci when THRMETHOD=bonferroni;
	default 4
FIXED = formula	Formula with extra fixed terms
UNITFACTOR = factor	Saves the units factor required to define the random model
-	when UNITERROR is to be used

General title for plot

STATISTICS variate or pointer

the REML algorithm; default 100

Genotype factor; must be set

Dominance genetic predictors

Labels to use to identify the parents

Saves standard errors of the QTL effects

Name of the graphics file for the plots

predictors; must be set Labels for the loci

omitted

set

predictors

profile plot

Which test statistic to plot and save using the STATISTICS

Colours to use for the chromosomes; default * uses the colours

parameter (wald, minlog10p); default minl

of pens 1, 2 up to the number of chromosomes

Title for the x-axis; default 'Chromosomes'

Quantitative trait to be analysed; must be set

Additive genetic predictors; must be set

Title for the y-axis; default uses the identifier of the

Whether to include units with missing values in the

explanatory factors and variates and/or the y-variates (explanatory, yvariate); default expl, yvar Limit on the number of iterations; default 100

Number of blocks of internal memory to be set up for use by

Uncertainty on trait means (derived from individual unit or

Chromosomes corresponding to the genetic predictors; must be

Positions on the chromosomes corresponding to the genetic

Labels for the effects along the y-axis, in the frame below the

Saves QTL effects along the genome (additive effects, and, if

Labels for the genotypes corresponding to the genetic

Saves test statistics for QTL effects along the genome

specified, also second additive and dominance effects)

Name of the Genstat workbook file (*.gwb) to be created

plot error) to be included in QTL analysis; default * i.e.

Second (paternal) set of additive genetic predictors

STATISTICTYPE = string token

COLOURS = *scalar*, *variate* or *text*

TITLE = *text* YTITLE = *text*

XTITLE = *text* MVINCLUDE = *string tokens*

MAXCYCLE = scalar WORKSPACE = scalar

Parameters

TRAIT = variates GENOTYPES = factors UNITERROR = variates

ADDITIVEPREDICTORS = pointers ADD2PREDICTORS = pointers DOMINANCEPREDICTORS = pointers CHROMOSOMES = factors

POSITIONS = variates

IDLOCI = texts
IDMGENOTYPES = texts

IDEFFECTS = texts

IDPARENTS = *texts* QSTATISTICS = *variates* QEFFECTS = *pointers*

QSE = *pointers* OUTFILENAME = *texts* DFILENAME = *texts*

QTHRESHOLD procedure

Calculates a threshold to identify a significant QTL (M.P. Boer & J.T.N.M. Thissen).

Options	
PRINT = string token	What to print (summary); default summ
POPULATIONTYPE = string token	Type of population (BC1, DH1, F2, RIL, BCxSy, CP); must be set
THRMETHOD = string token	Which method to use (bonferroni, liji); default liji
STATISTICTYPE = <i>string token</i>	Which type of test statistic to use (wald, minlog10p); default minl
ALPHALEVEL = scalar	Defines the genome-wide significance level; default 0.05
DISTANCE = scalar	Distance between evaluation points for
	THRMETHOD=bonferroni; default 4
DF = scalar	Degrees of freedom for the Wald test; default 1
Parameters	
CHROMOSOMES = factors	Chromosome for each locus; must be set
POSITIONS = variates	Position on the chromosome for each locus; must be set

4	Syntax	summary
---	--------	---------

ADDITIVEPREDICTORS = <i>pointers</i> ADD2PREDICTORS = <i>pointers</i>	Additive genetic predictors The second (paternal) additive genetic predictors if POPULATIONTYPE is CP
DOMINANCEPREDICTORS = <i>pointers</i>	The dominance genetic predictors if <code>POPULATIONTYPE</code> is <code>F2</code>
THRESHOLD = scalars	or CP Saves the calculated threshold

QUANTILE procedure

Calculates quantiles of the values in a variate (P.W. Lane). **Ontions**

Options	
PRINT = string token	What to print (quantiles); default quan
METHOD = string token	Type of quantile to form (population, sample); default samp
PROPORTION = variate or scalar	Proportions at which to calculate quantiles; default
	!(0,0.25,0.5,0.75,1)
Parameters	
DATA = variates	Values whose quantiles are required; this parameter must be specified
QUANTILES = variates or scalars	Identifiers of structures to store results, if required

QUESTION procedure

Obtains a response using a Genstat menu (S.A. Harding & R.W. Payne).

Options	
PREAMBLE = text	Text posing a question; (no default)
PROMPT = text	Text to be used as final prompt; the default prompt specifies the mode of response and lists the default values (if any), in brackets, followed by ">"
RESPONSE = <i>identifier</i>	Structure to store response; default * allows a menu to be saved without being executed
MODE = string token	Mode of response (p, t, v); default p
DEFAULT = <i>identifier</i>	Response to be assumed if just <return> is given; default is to repeat the prompt until a response is obtained</return>
LIST = string token	Whether a list of responses, rather than a single response, is valid (yes, no); default no
DECLARED = <i>string token</i>	Whether identifiers must already be declared (yes, no); default no
TYPE = string tokens	Allowed types for identifiers (ASAVE, datamatrix i.e. pointer to variates of equal lengths as required in multivariate analysis, diagonalmatrix, dummy, expression, factor, formula, LRV, matrix, pointer, RSAVE, scalar, SSPM, symmetricmatrix, table, text, tree, TSAVE, TSM, variate, VSAVE); default *, meaning no limitation
PRESENT = string token	Whether the identifier must have values (yes, no); default no
LOWER = scalar	Lower limit for numbers; default *, meaning no check
UPPER = scalar	Upper limit for numbers; default *, meaning no check
HELP = text	Text to be used in response to a general query for the question; default *
SAVE = pointer	Previously allowed you to save or reinput the specification of the menu, but is now no longer supported
Parameters	
VALUES = $texts$	Possible codes for MODE t; (no default for MODE t; not relevant for others)
CHOICE = texts	Text giving explanation of each letter code; (no default for MODE t; not relevant for others)
HELP = texts	Text to be used in response to a specific query for a code; default *

4.1 Commanas	4.1	Commands
--------------	-----	----------

RADIALSPLINE procedure

Calculates design matrices to fit a radial-spline surface as a linear mixed model (S.J. Welham & D.B. Baird).

Options

Options	
ORTHOGONALIZATION = <i>string token</i>	How to orthogonalize the random basis (fixed, none); default fixe
SCALING = scalar	Scaling of the XRANDOM terms (automatic, none); default auto
Parameters	
X1 = variates or factors	Coordinates in the first dimension for which spline values are required
x2 = variates or factors	Coordinates in the second dimension for which spline values are required
XFIXED = matrices	Saves the design matrix to define the fixed terms (excluding the constant) for fitting the radial spline
XRANDOM = matrices	Saves the design matrix to define the random terms for fitting the radial spline
X1KNOTS = variates	Specifies the coordinates in the first dimension of the internal knots used to form the basis for the spline
X2KNOTS = variates	Specifies the coordinates in the second dimension of the internal knots used to form the basis for the spline
PX1 = variates	Specifies the coordinates in the first dimension at which to predict
PX2 = variates	Specifies the coordinates in the second dimension at which to predict
PFIXED = matrices	Saves the design matrix for the fixed terms (excluding the constant) for the radial spline at the prediction points
PRANDOM = <i>matrices</i>	Saves the design matrix for the random terms for the radial spline at the prediction points

RANDOMIZE directive

Randomizes the units of a designed experiment or the elements of a factor or variate.

Options

BLOCKSTRUCTURE = formula	Block model according to which the randomization is to be carried out; default * i.e. as a completely-randomized design
EXCLUDE = factors	(Block) factors whose levels are not to be randomized
SEED = scalar	Seed for the random-number generator; default 0
Parameters	-
factors or variates	Structures whose units are to be randomized according to the defined block model

RANK procedure

 Produces ranks, from the values in a variate, allowing for ties (J.B. van Biezen & C.J.F. ter Braak).

 Option

 OMIT = string token
 Whether units excluded by a restriction on the DATA variate should be omitted from the RANKS variate (restricted); default *, i.e. the units are not omitted, and their values are left unchanged

 Parameters
 DATA = variates

 Variate containing values to be ranked

DATA = variates	Variate containing values to be ranked
RANKS = variates	Variate to save vector of ranks
TIESIZE = variates	Variate to save the sizes of ties

RAR1 procedure

Fits regressions with an AR1 or a power-distance correlation model (R.W. Payne).

Options

Options	
PRINT = string tokens	What to print (model, deviance, summary, estimates,
	correlations, fittedvalues, accumulated,
	monitoring, cparameter, cmonitoring, cplot); default
	mode, summ, esti, cpar
CALCULATION = <i>expression structures</i>	Calculation of explanatory variates involving nonlinear
	parameters
CONSTANT = string token	How to treat the constant (estimate, omit); default esti
FACTORIAL = scalars	Limit for expansion of model terms; default 3
POOL = string token	Whether to pool ss in accumulated summary between all terms
	fitted in a linear model (yes, no); default no
DENOMINATOR = string token	Whether to base ratios in accumulated summary on rms from
	model with smallest residual ss or smallest residual ms (ss,
	ms); default ss
NOMESSAGE = <i>string tokens</i>	Which warning messages to suppress (dispersion,
	leverage, residual, aliasing, marginality,
	vertical, df, inflation); default *
FPROBABILITY = <i>string token</i>	Printing of probabilities for variance and deviance ratios (yes,
	no); default no
TPROBABILITY = <i>string token</i>	Printing of probabilities for t-statistics (yes, no); default no
SELECTION = string tokens	Statistics to be displayed in the summary of analysis produced
0	by PRINT=summary, seobservations is relevant only for a
	Normally distributed response, and %cv only for a gamma-
	distributed response (%variance, %ss, adjustedr2, r2,
	seobservations, dispersion, %cv, %meandeviance,
	%deviance, aic, bic, sic); default %var, seob if
	DIST=normal, %cv if DIST=gamma, and disp for other
	distributions
SELINEAR = <i>string token</i>	Whether to calculate s.e.s for linear parameters when nonlinear
	parameters are also estimated (yes, no); default no
WEIGHTS = variate	Prior weights for the units
CMETHOD = string token	Estimation method (maximumlikelihood, reml); default
	maxi
CPARAMETER = scalars	Correlation parameter
CPOSITIONS = variate	Correlation positions
CGROUPS = factor	Groupings of correlation positions
MAXCYCLE = scalars	Maximum number of iterations; default 100
TOLERANCE = $scalars$	Convergence criterion; default 10^{-5}
Parameter	
TERMS = formula	Terms to be fitted

RBDISPLAY directive

Displays output from a radial basis function model fitted by ${\tt RBFIT}.$

Option	
PRINT = strings	Controls fitted output (description, estimates,
	fittedvalues, summary); default desc, esti, summ
Parameter	
pointers	Save structure with details of the fitted model
RBFIT directive	
Fits a radial basis function model.	
Options	
Options	

PRINT = string tokens	Controls fitted output (description, estimates,
	fittedvalues, summary); default desc, esti, summ

RBTYPE = string token	Type of radial basis function (linear, cubic, thinplate,
	gaussian, multiquadric, inversemultiquadric,
	cauchy); default line
METRIC = string token	How to calculate distances for the radial basis functions
	(euclidean, cityblock, manhattan, pythagorean);
	default eucl
SCALING = string token	Type of scaling used to compute distances (sd,
	mahalanobis, supplied); default sd
ALPHA = scalar	Specifies the value for the constant α , used to calculate radial
	distances for RBTPYE settings multiquadric,
	inversemultiquadric and cauchy; default 1
LAMBDA = $scalar$	Specifies the value of the penalty constant λ
TOLERANCE = $scalar$	Tolerance for setting eigenvalues equal to zero in the singular
	value decomposition; default 0.000001
Parameters	
Y = variates	Response variates
X = pointers	Independent variates
CENTRES = <i>pointers</i>	Centres of the radial basis functions for the dependent variates
RBSCALING = scalars or variates	Scaling parameters for the radial distance calculations when
	SCALING=supplied; default 1
FITTEDVALUES = variates	Fitted values generated for each y-variate by the model
ESTIMATES = variates	Saves the estimated model parameters
EXIT = scalars	Saves the exit code
SAVE = pointers	Saves details of the model and the estimated parameters for
	RBDISPLAY or RBPREDICT

RBPREDICT directive

Forms predictions from a radial basis function model fitted by RBFIT.

OptionPRINT = stringsControls fitted output (description, predictions); default
desc, predParametersX = pointersX = pointersX-values at which to predictPREDICTIONS = variatesPredictionsSAVE = pointersDetails of the fitted model

RBRADLEYTERRY procedure

Fits the Bradley-Terry model for paired-comparison preference tests (R.W. Payne).

Options	
PRINT = string tokens	What to print (model, deviance, summary, estimates,
	correlations, fittedvalues, accumulated,
	<pre>monitoring, confidence, preferenceprobabilities);</pre>
	default mode, summ, esti
GROUPS = factor	Factor representing different test circumstances
COVARIATE = variates	Other covariates to include in the model
NOMESSAGE = <i>string tokens</i>	Which warning messages to suppress (dispersion,
-	leverage, residual, aliasing, marginality,
	vertical,df,inflation); default *
FPROBABILITY = <i>string token</i>	Printing of probabilities for variance and deviance ratios (yes,
	no); default no
TPROBABILITY = <i>string token</i>	Printing of probabilities for t-statistics (yes, no); default no
SELECTION = string tokens	Statistics to be displayed in the summary of analysis produced
	by PRINT=summary(%variance,%ss,adjustedr2,r2,
	dispersion, %meandeviance, %deviance, aic, bic,
	sic); default disp
DISPERSION = scalar	Dispersion parameter to be used as estimate for variability in

PROBABILITY = scalar	s.e.s etc; default 1 Probability level for confidence intervals for parameter estimates; default 0.95
Parameters	
WINNERS = factors	Specifies the winners in the tests
LOSERS = factors	Specifies the loser in the tests
NWINS = variates or scalars	Number of wins; default 1
NBINOMIAL = variates or scalars	Number of trials; default 1
PREFERENCEPROBABILITIES = matrices or pointers	
	Saves the estimated probability that each object is preferred to other objects
LOWERPREFERENCEPROBABILITIES = matrices or pointers	
	Saves the lower values of the confidence intervals for the preference probabilities
UPPERPREFERENCEPROBABILITIES = matrices or pointers	
	Saves the upper values of the confidence intervals for the preference probabilities
SAVE = <i>identifiers</i>	To save the regression save structure

RCATENELSON procedure

Performs a Cate-Nelson graphical analysis of bivariate data (V.M. Cave). **Options**

Options	
PRINT = string tokens	Controls printed output (summary, quadrants,
	errorquadrants); default summ, quad
PLOT = string tokens	What graphs to plot (catenelson, criticalvalues);
	default cate
DIRECTION = string token	Direction of the association between the y and x values
	(ascending, descending); default asce i.e. a positive trend
YCRITICAL = scalar	Pre-specified critical value of y; default * i.e. the critical value
	of y is estimated)
XCRITICAL = scalar	Pre-specified critical value of x; default * i.e. the critical value
	of x is estimated
TITLE = text	Title for the Cate-Nelson plot; if unset, the title is generated
	automatically
YTITLE = text	Y-axis title for the Cate-Nelson plot; if unset, the title is
	generated automatically
XTITLE = text	X-axis title for the Cate-Nelson plot; if unset, the title is
	generated automatically
WINDOW = scalar	Window to use for the graphs; default 3
SAVE = <i>identifier</i>	Specifies the save structure of regression model holding the y-
	values, distribution, link function and weights; default * i.e.
	that from last regression fitted
Parameters	
X = variates	Supplies the x-values for each analysis
RESULTS = <i>pointers</i>	Saves the critical value of x, the critical value of y and the
	quadrant allocations for each x variate

RCHECK procedure

Checks the fit of a linear, generalized linear or nonlinear regression (P.W. Lane, R. Cunningham & C. Donnelly).	
Options	
PRINT = string tokens	What to print (index, y, residuals, leverages, Cook); default *
RMETHOD = <i>string token</i>	Type of residual to use (deviance, Pearson, simple, deletion); default * i.e. as set in MODEL
INDEX = variate or factor	Which variable to use as index; default ! (1n)

ENVELOPE = <i>string token</i>	Type of envelope with Normal and half-Normal plots (none, rough, smooth, asymptotic); default none
PROBABILITY = scalar	Approximate probability level for envelope; default 0.95
NSIMULATIONS = scalar	How many simulations to generate for rough or smooth
	envelopes; default (1+PROB)/(1-PROB)
SHADE = <i>string token</i>	Whether to show shaded envelope rather than boundaries (no, yes); default no
RESIDUALS = variate	To store chosen type of residuals; default *
LEVERAGES = variate	To store leverages; default *
COOK = <i>variate</i>	To store modified Cook's statistics; default *
GRAPHICS = string token	Type of graphics to use (lineprinter, highresolution);
	default high
TITLE = text	Title for graph; default identifier of response
WINDOW = numbers	Window or series of windows in which to display graphs;
	default 4, or 58 for composite
SCREEN = <i>string token</i>	Treatment of previous graphics screen (clear, keep); default clea
SAVE = regression save structure	Specifies which model to check; default *
Parameters	
YSTATISTIC = <i>string tokens</i>	What to display in the graph (residuals, Cook, leverages, absresiduals); default resi
XMETHOD = string tokens	What type of graph (fittedvalues, index, normal, halfnormal, histogram, composite); default comp

RCIRCULAR procedure

Does circular regression of mean direction for an angular response (P.W. Goedhart). **Options**

Options	
PRINT = string tokens	What to print (model, summary, estimates,
	fittedvalues, monitoring); default mode, summ, esti
FACTORIAL = scalar	Limit for expansion of model terms; default 3
RESIDUALS = variate	To save the residuals
FITTEDVALUES = variate	To save the fitted values, i.e. the fitted mean directions
LEVERAGES = variate	To save the leverages
ESTIMATES = variate	To save estimates of linear parameters
SE = variate	To save standard errors of the estimates
VCOVARIANCE = symmetric matrix	To save the variance-covariance matrix of the estimates
MU0 = scalar	To save the estimate of the mean parameter μ_0
SEMU0 = scalar	To save the standard error of the estimated mea parameter μ_0
KAPPA = scalar	To save the estimate of the concentration parameter κ of the
	von Mises distribution
SEKAPPA = scalar	To save the standard error of the estimated concentration
	parameter κ
_2LOGLIKELIHOOD = scalar	To save the value of minus twice the maximized log likelihood
DF = scalar	To save the residual degrees of freedom
ITERATIVEWEIGHTS = variate	To save the iterative weights
LINEARPREDICTOR = variate	To save the linear predictor
YADJUSTED = variate	To save the adjusted dependent variate
I_2LOGLIKELIHOOD = variate	To save the contribution of each unit to the value of minus
	twice the maximized log likelihood
MAXCYCLE = scalar	Maximum number of iterations for see-saw algorithm; default
	30
TOLERANCE = scalar	Convergence criterion; default 10 ⁻⁵
Parameter	
TERMS = formula	List of explanatory variates and factors, or model formula

RCOMPARISONS procedure

Calculates comparison contrasts amongst regression means (R.W. Payne). **Options**

Options	
PRINT = string tokens	Controls printed output (aov, contrasts); default aov, cont
COMBINATIONS = <i>string token</i>	Factor combinations for which to form the predicted means
	(present,estimable); default esti
ADJUSTMENT = string token	Type of adjustment to be made when forming the predicted
indeed indice strong token	
/ / /	means (marginal, equal, observed); default marg
PSE = string tokens	Types of standard errors to be printed with the contrasts
	(contrasts, differences, lsd); default cont
WEIGHTS = table	Weights classified by some or all of the factors in the model;
	default *
OFFSET = scalar	Value of offset on which to base predictions; default mean of
OFFSET Scalar	· · · · · · · · · · · · · · · · · · ·
	offset variate
METHOD = string token	Method of forming margin (mean, total); default mean
ALIASING = string token	How to deal with aliased parameters (fault, ignore); default
	faul
BACKTRANSFORM = <i>string token</i>	What back-transformation to apply to the values on the linear
	scale, before calculating the predicted means (link, none);
	default link
CCODE - string taken	
SCOPE = string token	Controls whether the variance of predictions is calculated on
	the basis of forecasting new observations rather than
	summarizing the data to which the model has been fitted
	(data, new); default data
NOMESSAGE = <i>string tokens</i>	Which warning messages to suppress (dispersion,
0	nonlinear); default *
DISPERSION = scalar	Value of dispersion parameter in calculation of s.e.s; default is
DISPERSION – scalar	
_	as set in the MODEL statement
DMETHOD = string token	Basis of estimate of dispersion, if not fixed by DISPERSION
	option (deviance, Pearson); default is as set in the MODEL
	statement
NBINOMIAL = $scalar$	Supplies the total number of trials to be used for prediction
NDINOITIN Scata	with a binomial distribution (providing a value <i>n</i> greater than
	one allows predictions to be made of the number of
	"successes" out of <i>n</i> , whereas the value one predicts the
	proportion of successes); default 1
LSDLEVEL = scalar	Significance level (%) for least significant differences; default
	5
SAVE = <i>identifier</i>	Regression save structure for the analysis from which the
SAVE Memilier	•
	comparison contrasts are to be calculated
Parameters	
FACTOR = factors	Factor whose levels are compared
CONTRASTS = matrices	Defines the comparisons to be estimated
ORDER = <i>scalars</i>	Number of comparisons to estimate; default is the number of
	rows of the CONTRASTS matrix
GROUPS = factors or pointers	Set if comparisons are to be made at different combinations of
GROUPS – Juciors of pointers	
	another factor or factors
ESTIMATES = variates or pointers	Saves the estimated contrasts in a variate if GROUPS is unset,
	or in a pointer to a set of tables
SE = variates or pointers	Saves standard errors of the contrasts in a variate if GROUPS is
*	unset, or in a pointer to a set of tables
SED = <i>pointers</i>	Pointer to a set of symmetric matrices to save standard errors
bed pointers	for differences between the contrasts estimated for different
	levels of the GROUPS factor(s)
LSD = pointers	Pointer to a set of symmetric matrices to save least significant
	differences for the contrasts estimated for different levels of

4.1 Commands

	the GROUPS factor(s)
DF = variates	Saves degrees of freedom for the contrasts
SS = variates	Saves sums of squares of the contrasts

†RCURVECOMMONNONLINEAR procedure

Refits a standard curve with common nonlinear parameters across groups to provide s.e.'s for linear parameters (R.W. Payne).

1	
Options	
PRINT = string tokens	Printed output from the analysis (model, deviance,
	summary, estimates, correlations, fittedvalues,
	accumulated, monitoring); default mode, summ, esti
MAXCYCLE = variate	Maximum number of iterations; default 30
METHOD = string token	Algorithm for fitting nonlinear model (gaussnewton,
	newtonraphson, fletcherpowell); default newt
STEPLENGTHS = <i>scalar</i> or <i>variate</i>	Initial step lengths for the parameters
SAVE = regression save structure	Save structure from this analysis
INSAVE = regression save structure	Save structure for the curve fitted by FITCURVE, default takes
-	the most recent regression analysis

No parameters

RCYCLE directive

NORMALIZE = *string tokens*

Controls iterative fitting of generalized linear, generalized additive, and nonlinear models, and specifies parameters, bounds etc for nonlinear models. **Options**

Options	
MAXCYCLE = scalars	Maximum number of iterations for Fisher-scoring algorithm (used in generalized linear models), back-fitting algorithm (used in additive models) and nonlinear algorithms; single setting implies the same limit for all; default 15, 15, 30
TOLERANCE = <i>scalar</i> or <i>variate</i>	Scalar or first unit of a variate defines the convergence criterion for the relative change in deviance and, if required, the second element of a variate defines the criterion for
	convergence to a zero deviance; default ! (0.0001, 1.0E-11)
FITTEDVALUES = variate	Initial fitted values for generalized linear model; default *
METHOD = <i>string token</i>	Algorithm for fitting nonlinear model (GaussNewton, NewtonRaphson, FletcherPowell); default Gaus, but Newt for
	scalar minimization
LINEARPARAMETERS = <i>scalars</i>	Scalars to hold current values of linear parameters used in nonlinear model, for reference within model calculations
Parameters	
PARAMETER = scalars	Nonlinear parameters in the model
LOWER = scalars	Lower bound for each parameter
UPPER = scalars	Upper bound for each parameter
STEPLENGTH = scalars	Initial step length for each parameter
INITIAL = scalars	Initial value for each parameter
RDA procedure	
Performs redundancy analysis (A.I.	Glaser).
Options	
PRINT = string tokens	What to print (variance, loadings, roots, evalues,
0	evectors, speciesscores, sitescores,
	fitsitescores, correlations, fitcorrelations,
	weights); default vari, root
NROOTS = $scalar$	Number of eigenvalues and eigenvectors to include in output;
	default * takes all the non-zero eigenvalues

Whether to normalize the ${\tt Y}, {\tt X}$ and/or ${\tt Z}$ variates to have unit

SCALING = string token TOLERANCE = scalar	sums-of-squares before the analysis (x, y, z); default x, z Scaling for species and site scores (none, both); default none
Parameters	Tolerance for detecting non-zero eigenvalues; default 10 ⁻⁵
Y = pointers	Each pointer defines a set of response variates to be modelled
X = pointers	Explanatory variates or factors to use for for each pointer of y- variates
Z = pointers	Conditioning variates or factors to remove ("partial out")
1	before the analysis
LRV = LRVs	LRV structure from each analysis, storing the eigenvectors,
	eigenvalues and total variance
SPECIESSCORES = <i>matrices</i>	Saves the "species scores" from each analysis
SITESCORES = <i>matrices</i>	Save the "site scores" from each analysis
FITSITESCORES = <i>matrices</i>	Save the fitted "site scores" from each analysis
CORRELATIONS = matrices	Saves the correlations between the site scores and the x- variates
FITCORRELATIONS = <i>matrices</i>	Saves the correlations between the fitted site scores and the x-variates
WEIGHTS = matrices	Save the weights of the x-variates in the formation of the site
	scores
SAVE = pointers	Save structure which provides information for use in CRBIPLOT and CRTRIPLOT

RDESTIMATES procedure

Plots one- or two-way tables of regression estimates (R.W. Payne).

Options	
GRAPHICS = <i>string token</i>	Type of graph (highresolution, lineprinter); default high
METHOD = string token	What to plot (estimates, lines); default esti
XFREPRESENTATION = <i>string token</i>	How to label the x-axis (levels, labels); default labels uses the XFACTOR labels, if available
PSE = string token	What s.e. to plot to represent variation (average,
	individual); default aver
SAVE = regression save structure	Save structure of the analysis to display; default * shows the most recently fitted regression
Parameters	
XFACTOR = <i>factors</i>	Factor providing the x-values for each plot
GROUPS = <i>factors</i>	Factor identifying the different sets of points from a two-way
	table of estimates
XVARIATES = variates	X-variates for regression coefficients or pointer
NEWXLEVELS = variates	Values to be used for XFACTOR instead of its existing levels
TITLE = texts	Title for the graph; default defines a title automatically
YTITLE = texts	Title for the y-axis; default ' '
XTITLE = texts	Title for the x-axis; default is to use the identifier of the XFACTOR

RDISPLAY directive

Displays the fit of a linear, generalized linear, generalized additive or nonlinear model.

What to print (model, deviance, summary, estimates, correlations, fittedvalues,
accumulated, confidence); default mode, summ, esti
Channel number of file, or identifier of a text to store output;
default current output file
Whether to base ratios in accumulated summary on rms from model with smallest residual ss or smallest residual ms (ss, ms); default ss

NOMESSAGE = <i>string tokens</i>	Which warning messages to suppress (dispersion, leverage, residual, vertical, df, inflation); default *
FPROBABILITY = <i>string token</i>	Printing of probabilities for variance and deviance ratios (yes, no); default no
TPROBABILITY = string token SELECTION = string tokens	Printing of probabilities for t-statistics (yes, no); default no Statistics to be displayed in the summary of analysis produced by PRINT=summary, seobservations is relevant only for a Normally distributed response, and %cv only for a gamma- distributed response (%variance, %ss, adjustedr2, r2, seobservations, dispersion, %cv, %meandeviance, %deviance, aic, bic, sic); default %var, seob if DIST=normal, %cv if DIST=gamma, and disp for other distributions
DISPERSION = scalar	Dispersion parameter to be used as estimate for variability in s.e.s; default is as set in the MODEL statement
RMETHOD = string token	Type of residuals to display (deviance, Pearson, simple); default is as set in the MODEL statement
DMETHOD = string token	Basis of estimate of dispersion, if not fixed by DISPERSION option (deviance, Pearson); default is as set in the MODEL statement
PROBABILITY = scalar	Probability level for confidence intervals for parameter estimates; default 0.95
DFDISPERSION = scalar	Allows you to specify the number of degrees of freedom for a dispersion parameter specified by the DISPERSION option; default is as set in the MODEL statement
SAVE = <i>identifier</i>	Specifies save structure of model to display; default * i.e. that from latest model fitted
No parameters	

rio parameters

READ directive

Reads data from an input file, an unformatted file or a text.

Options

PRINT = string tokens	What to print (data, errors, summary); default erro, summ
CHANNEL = <i>identifier</i>	Channel number of file, or text structure from which to read
·	data; default current file
SERIAL = string token	Whether structures are in serial order, i.e. all values of the first
	structure, then all of the second, and so on (yes, no); default
	no, i.e. values in parallel
SETNVALUES = <i>string token</i>	Whether to set number of values of vectors from the number of
	values read (yes, no); default no causes the number of values
	to be set only for structures whose lengths are not defined
	already (e.g. by declaration or by UNITS)
LAYOUT = string token	How values are presented (separated, fixedfield);
	default sepa
END = text	What string terminates data (* means there is no terminator);
	default ':'
SEQUENTIAL = scalar	To store the number of units read (negative if terminator is
	met); default *
ADD = string token	Whether to add values to existing values (yes, no); default no
	(available only in serial read)
MISSING = text	What character represents missing values; default '*'
SKIP = scalar	Number of characters (LAYOUT=fixe) or values
	(LAYOUT=sepa) to be skipped between units (* means skip to
	next record); default 0 (available only in parallel read)
BLANK = string token	Interpretation of blank fields with LAYOUT=fixe (missing,

362	4 Syntax summary
	zero, error); default miss
JUSTIFIED = <i>string tokens</i>	How values are to be assumed justified with LAYOUT=fixe (left, right); default righ
ERRORS = scalar	How many errors to allow in the data before reporting a fault rather than a warning, a negative setting, <i>-n</i> , causes reading of data to stop after the <i>n</i> th error; default 0
FORMAT = <i>variate</i>	Allows a format to be specified for situations where the layout varies for different units, option SKIP and parameters FIELDWIDTH and SKIP are then ignored (in the variate: 0 switches to fixed format; 0.1, 0.2, 0.3 or 0.4 to free format with space, comma, colon or semi-colon respectively as separators; * skips to the beginning of the next line; in fixed format, a positive integer <i>n</i> indicates an item in a field width of n , $-n$ skips <i>n</i> characters; in free format, <i>n</i> indicates <i>n</i> items, $-n$ skips <i>n</i> items); default *
QUIT = scalar	Channel number of file to return to after a fatal error; default * i.e. current input file
UNFORMATTED = string token	Whether file is unformatted (yes, no); default no
REWIND = string token	Whether to rewind the file before reading (yes, no); default no
SEPARATOR = <i>text</i>	Text containing the (single) character to be used in free format; default '
SETLEVELS = <i>string token</i>	Whether to define factor levels or labels (according to the setting of FREPRESENTATION) automatically from those that occur in the data (yes, no); default no causes them to be set only when they are not defined already
TRUNCATE = <i>string tokens</i>	Truncation of leading or trailing spaces of strings read in fixed format (leading, trailing); default * i.e. none
CASE = string token	Whether the case of letters (small and capital) should be regarded as significant or ignored when forming factor labels automatically (significant, ignored); default sign
LDIRECTION = string token	How to define the ordering of levels or labels when these are formed automatically (ascending, given); default asce
Parameters	
STRUCTURE = <i>identifiers</i>	Structures into which to read the data
FIELDWIDTH = scalars	Field width from which to read values of each structure (LAYOUT=fixe only)
DECIMALS = scalars	Number of decimal places for numerical data containing no decimal points
SKIP = scalars	Number of values (LAYOUT=sepa) or characters (LAYOUT=fixe) to skip before reading a value
FREPRESENTATION = <i>string tokens</i>	How factor values are represented (labels, levels, ordinals); default leve

RECORD directive

 Dumps a job so that it can later be restarted by a RESUME statement.

 Option

 CHANNEL = scalar

 Channel number of the backing

Channel number of the backing-store file where information is to be dumped; default 1

No parameters

REDUCE directive

Forms a reduced similarity matrix (referring to the GROUPS instead of the original units). This directive was replaced in Release 14 by the directive HREDUCE (with exactly the same options and parameters). It is currently retained as a synonym of HREDUCE, but may be removed in a future release.

REFORMULATE directive

Modifies a formula or an expression to operate on a different set of data structures.

Options

OLDFORMULA = *formula* or *expression structure*

	Original formula or expression
NEWFORMULA = formula or expression	structure
	New formula or expression, modified to operate on the new
	structures
Parameters	
OLDSTRUCTURE = <i>identifiers</i>	Data structures in the OLDFORMULA to be replaced in the NEWFORMULA
NEWSTRUCTURE = <i>identifiers</i>	Identifier of the new data structure to replace each OLDSTRUCTURE

RELATE directive

Relates the observed values on a set of variates or factors to the results of a principal coordinates analysis.

This directive was replaced in Release 14 by the directive PCORELATE (with exactly the same options and parameters). It is currently retained as a synonym of PCORELATE, but may be removed in a future release.

REML directive

Fits a variance-components model by residual (or restricted) maximum likelihood.

Options

PRINT = string tokens	What output to present (model, components, effects,
	means, stratumvariances, monitoring, vcovariance,
	deviance,Waldtests,missingvalues,
	covariancemodels); default mode, comp, Wald, cova
PTERMS = formula	Terms (fixed or random) for which effects or means are to be printed; default * implies all the fixed terms
PSE = string token	Standard errors to be printed with tables of effects and means
C C	(differences, estimates, alldifferences,
	allestimates, none); default diff
WEIGHTS = variate	Weights for the analysis; default * implies all weights 1
MVINCLUDE = string tokens	Whether to include units with missing values in the
	explanatory factors and variates and/or the y-variates
	(explanatory, yvariate); default * i.e. omit units with missing values in either explanatory factors or variates or y- variates
SUBMODEL = formula	Defines a submodel of the fixed model to be assessed against
SOBMODEL – Jormana	the full model (for METHOD=Fisher only)
RECYCLE = <i>string token</i>	Whether to reuse the results from the estimation when printing or assessing a submodel (yes, no); default no
RMETHOD = string token	Which random terms to use when calculating RESIDUALS
	(final, all, notspline); default fina
METHOD = string token	Indicates whether to use the standard Fisher-scoring algorithm or the new AI algorithm with sparse matrix methods (Fisher, AI); default AI
MAXCYCLE = $scalar$	Limit on the number of iterations; default 30
TOLERANCES = variate	Tolerances for matrix inversion; default * i.e. appropriate
IULERANCES - VUITULE	default values
	ueraun values

364	4 Syntax summary
PARAMETERIZATION = <i>string token</i>	Parameterization to use for the variance component estimation (gammas, sigmas); default * i.e. use whichever is most
	appropriate for the model
CFORMAT = <i>string token</i>	Whether printed output for covariance models gives the
	variance matrices or the parameters (variancematrices,
	parameters); default vari
FMETHOD = string token	Controls whether and how to calculate F-statistics for fixed
	terms (automatic, none, algebraic, numerical); default
	auto
WORKSPACE = $scalar$	Number of blocks of internal memory to be allocated for use
	by the estimation algorithm when METHOD=AI; default 1
Parameters	
Y = variates	Variates to be analysed
RESIDUALS = variates	Residuals from each analysis
FITTEDVALUES = variates	Fitted values from each analysis
EXIT = scalar	Exit status of the fit (0 if successful)
SAVE = <i>REML save structures</i>	Saves the details of each analysis for use in subsequent
	VDISPLAY and VKEEP directives

RENAME directive

Assigns new identifiers to data structures. No options Parameters OLDIDENTIFIER = identifiers Spec NEWIDENTIFIER = identifiers Spec

Specifies the data structures to rename Specifies a new identifier for each data structure

REPPERIODOGRAM procedure

Gives periodogram-based analyses for replicated time series (R.P. Littlejohn).

Options	
PRINT = string token	What to print (pair, randomization, glm); default * i.e.
	none
PLOT = string token	What graphs to plot (group, mean, logmean, cumulative,
	cv, pair); default mean, logm
TITLE = text	Title for each page of graphs
REPRESENTATION = <i>string token</i>	Form of data in SERIES (timeseries, meanperiodogram);
	default time
LENGTH = scalar or variate	Scalar specifying that the first N units of the series are to be
	used, or a variate specifying the first and last units of the series
	to be used
SEED = scalar	Seed for randomization; default 0
NRANDOMIZATIONS = $scalar$	Number of randomizations; default 99
TREATMENTS = $factor$	Contains ordered classification of SERIES
PAIR = variates	Treatment pair levels for pairwise comparisons
COLOUR = <i>text</i> or <i>variate</i>	Colours for each level of TREATMENTS; default * sets suitable
	colours automatically
MEANPERIODOGRAM = $pointer$	Saves mean periodograms according if
	REPRESENTATION=timeseries
REPLICATION = scalar or variate	Inputs or saves number of replicate series if
	REPRESENTATION=timeseries; scalar can be used for equal
	replication
Parameter	
SERIES = variates	Specify the time series to be analysed

†RESHAPE procedure

Reshapes a data set with classifying factors for rows and columns, into a reorganized data set with new identifying factors (D.B. Baird).

Options

PRINT = string token	What to print (results); default *, i.e. none
ROWCLASSIFICATION = factors, texts, 1	variates or pointer
	Factors classifying the rows in the data; default a factor called
	Rows with a level for each row
COLCLASSIFICATION = factors, texts,	
	Factors or texts classifying the columns in the data; default a factor called Columns with labels formed from the column identifiers in DATA
MEANFACTORS = factors, texts, variates	•
	Row or column factors whose groups are averaged in the output data set
TOTALFACTORS = factors, texts, variate	s or <i>pointer</i>
	Row or column factors whose groups are totalled in the output
	data set
FIRSTSUMMARY = <i>string token</i>	Which summaries to form first (means, totals) default means
NEWROWFACTORS = $factors$	Factors to index the new rows
NEWCOLUMNFACTORS = <i>factors</i> , <i>texts</i> or	variates
u	Factors to indexing the columns in the new data set
REDEFINE = string token	Whether to redefine the NEWROWFACTORS factors and DATA columns, if NEWROWFACTORS or NEWDATA are not set or use
	names used in the input data (yes, no); default no
MVINCLUDE = string token	Whether to include factor combinations with no observations
	in the output data set (*,rows, columns); default *; i.e. remove missing rows and columns
Parameters	-
DATA = <i>pointers</i>	Pointer containing data to be reshaped
NEWDATA = pointers	Pointer containing the reshaped data columns

RESTRICT directive

Defines a restricted set of units of vectors for subsequent statements.

No options Parameters

1 al ameter 5	
VECTOR = vectors	Vectors to be restricted
CONDITION = expression	Logical expression defining the restriction for each vector; a
	zero (false) value indicates that the unit concerned is not in the
	set
SAVESET = variates	List of the units in each restricted set
NULL = scalars	Indicator for each restricted set, set to 1 or 0 according to whether or not it contains no units
	whether of not it contains no units

Whether to close the file afterwards (yes, no); default no

RESUME directive

 Restarts a recorded job.

 Options

 CHANNEL = scalar

 Channel number of the backing-store file where the information was dumped; default 1

CLOSE = *string token* **No parameters**

RETRIEVE directive

Retrieves structures from a subfile.

Options	
CHANNEL = scalar	Specifies the channel number of the backing-store or
	procedure-library file containing the subfile (FILETYPE
	settings 'back' or 'proc'); default 0 (i.e. the workfile) for
	FILETYPE=back, no default for FILETYPE=proc, not
	relevant with other FILETYPE settings
SUBFILE = <i>identifier</i>	Identifier of the subfile; default SUBFILE
LIST = string token	How to interpret the list of structures (inclusive,
	exclusive, all); default incl
MERGE = <i>string token</i>	Whether to merge structures with those already in the job
	(yes, no); default no, i.e. a structure whose identifier is
	already in the job overwrites the existing one, unless it has a
	different type
FILETYPE = string token	Indicates the type of file from which the information is to be
	retrieved (backingstore, procedurelibrary,
	siteprocedurelibrary, Genstatprocedurelibrary);
	default back
Parameters	
IDENTIFIER = <i>identifiers</i>	Identifiers to be used for the structures after they have been retrieved
STOREDIDENTIFIER = <i>identifiers</i>	Identifier under which each structure was stored

RETURN directive

Returns to a previous input stream (text vector or input channel). **Ontions**

Options	
NTIMES = scalar	Number of streams to ascend; default 1
CLOSE = <i>string token</i>	Whether to close the channel (or text) after the return (yes, no); default no
DELETE = string token	Whether to delete the text or the file to which the channel was attached (only relevant if CLOSE=yes) after the return (yes, no); default no
Parameter	
expression	Logical expression controlling whether or not to return to the previous input stream; default 1 (i.e. true)

†RFFAMOUNT procedure

Fits harmonic models to mean rainfall amounts for a Markov model (J.O. Ong'ala & D.B. Baird). **Options**

- L	
PRINT = string tokens	Controls printed output for each fitted model (model,
	deviance, summary, estimates, correlations,
	fittedvalues, accumulated, monitoring,
	confidence); default mode, summ, esti, accu
PLOT = string token	What plots to display (results); default resu
NHARMONICS = $scalar$	Defines the number of harmonics to fit (14) ; default 2
SPREADSHEET = <i>string tokens</i>	What to save in a spreadsheet (results); default *
Parameters	
COUNTS = table	Supplies the table of counts by Markov class and day number within the year (1366)
AMOUNTS = $tables$	Supplies the table of mean rainfall by wet Markov class and day
WINDOW = scalars	Window for the graph; default 3 for a single class and 1 otherwise
TITLE = texts	Title for the graph; default forms an automatic description
RESULTS = <i>pointers</i>	Saves a pointer to the variates of fitted rainfall means by day

4.1 Commands

	for each wet class
OUTFILE = texts	File(with extension .gwb, or .xlsx) to save the spreadsheet
	of results

†RFFPROBABILITY procedure

Fits harmonic models to rainfall probabilities for a Markov model (J.O. Ong'ala & D.B. Baird). **Options**

options	
PRINT = string tokens	Controls printed output for each fitted model (model,
	deviance, summary, estimates, correlations,
	fittedvalues, accumulated, monitoring,
	confidence); default mode, summ, esti, accu
PLOT = string token	What plots to display (results); default resu
NHARMONICS = scalar	Defines the number of harmonics to fit (14) ; default 2
SPREADSHEET = <i>string tokens</i>	What to save in a spreadsheet (results); default *
Parameters	
COUNTS = table	Supplies the table of counts by Markov class and day within
	the year (1366)
WINDOW = scalars	Window to plot the graph; default 3 for a single class and 1
	otherwise
TITLE = $texts$	The title for the plot; default forms an automatic description
RESULTS = <i>pointers</i>	Saves a pointer to variates of fitted rainfall probabilities by day
	for each wet state
OUTFILE = texts	File (with extension .gwb, or .xlsx) to save the selected
	spreadsheet components

RFINLAYWILKINSON procedure

Performs Finlay and Wilkinson's joint regression analysis of genotype-by-environment data (P.W. Lane & K. Ryder).

Options

PRINT = string tokens	What to print (model, summary, estimates,
-	sortedsensitivities, monitoring); default mode, summ
	esti, sort
PLOT = string tokens	What graphs to plot (lines, trellislines,
0	<pre>sensitivities); default *</pre>
NBEST = $scalar$	Number of best genotypes to print in table of sorted
	sensitivities; default * i.e. print all of them
DIRECTION = string token	Direction to sort table of sorted sensitivities (ascending,
8	descending); default asce
TOLERANCE = $scalar$	Convergence criterion; default 0.001
MAXCYCLE = scalar	Maximum number of cycles; default 15
SAVE = regression save structure	Save structure from MODEL statement defining the model;
6	default is to use the structure from the latest MODEL statement
Parameters	
GENOTYPES = factors	The genotype factor; no default
ENVIRONMENTS = factors	The environment factor; no default
SENSITIVITIES = tables	Saves the estimates of sensitivities; default *
GENMEANS = $tables$	Saves the estimates of genotype means; default *
ENVMEANS = tables	Saves the estimates of environment means; default *
ENVEFFECTS = $tables$	Saves the estimates of environment effects; default *
SESENSITIVITIES = tables	Saves the s.e.s of sensitivities; default *
SEGENMEANS = $tables$	Saves the s.e.s of genotype means; default *
SEENVEFFECTS = tables	Saves the s.e.s of environment effects; default *
MSDEVIATIONS = tables	Saves the mean square deviations about the line fitted to each
	genotype; default *
DEVIANCE = $scalar$	Saves the residual deviance

Saves the residual d.f

DF = scalar

TITLE = $text$	Overall title for the graphs
YTITLE = text	Y-axis title for the graph of the lines
XTITLE = text	X-axis title for the graph of the lines
EXIT = scalar	Exit status: set to 0 if the analysis converged, 1 otherwise

[†]RFSUMMARY procedure

Forms summaries for a Markov model from rainfall data (J.O. Ong'ala & D.B. Baird).

Options	
PRINT = string token.	S

PLOT = string token DAY = variate or factor LIMITS = scalar or variate ORDER = scalar HIGHORDER = scalar

INITIAL = scalar or variate
SPREADSHEET = string tokens

Parameters

DATA = variates WINDOW = scalars

TITLE = texts COUNTS = tables AMOUNTS = tables PROBABILITIES = pointers

CATEGORIES = factors STATECOUNTS = pointers OUTFILE = texts probabilities); default * What plots to display (probabilities); default prob Day as a date or a day number within the year Values to define the daily rainfall states; default 0.85 Defines the order of the Markov chain (0...5); default 1 Whether to use a high-order Markov chain; (no, yes); default no The amounts of rainfall prior to the first day; default * What to save in a spreadsheet (counts, amounts, probabilities); default *

Controls printed output (counts, amounts,

The daily rainfall amounts Window to plot the graph; default 3 for ORDER=0 and 1 otherwise The title for the plot; default uses an automatic description Saves the counts by Markov state and day Saves the mean rainfall by Markov wet states and day Saves a pointer to variates of probabilities of a wet day by class Saves the Markov class for each day Saves a pointer to tables of counts for each state File (with extension .gwb, or .xlsx) to save selected spreadsheet components

RFUNCTION directive

Estimates functions of parameters of a linear, generalized linear, generalized additive or nonlinear model.

Options

- F	
PRINT = string tokens	What to print (estimates, se, correlations); default
	esti,se
CHANNEL = <i>identifier</i>	Channel number of file, or identifier of a text to store output;
	default current output file
CALCULATION = <i>expression structures</i>	Calculation of functions involving nonlinear and/or linear
	parameters; no default
SE = variate	To save approximate standard errors; default *
VCOVARIANCE = <i>symmetric matrix</i>	To save approximate variance-covariance matrix; default *
SAVE = <i>identifier</i>	Specifies save structure of regression model; default * i.e. that
5	from last model fitted
Parameter	
scalars	Identifiers of scalars assigned values of the functions by the calculations

RGRAPH procedure

Ontions

Draws a graph to display the fit of a regression model (P.W. Lane).

Options	
GRAPHICS = <i>string token</i>	Type of graphics to produce (lineprinter,
	highresolution); default high

TTTTF = text	Title for the graph; default 'Fitted and observed
	relationship'
WINDOW = number	Which high-resolution graphics window to use; default 4
	(redefined if necessary to fill the frame)
SCREEN = string token	Whether to clear the graphics screen before plotting (clear,
	keep); default clea
CIPLOT = string token	Whether to plot confidence intervals (no, yes); default no
CIPROBABILITY = scalar	Probability for confidence interval; default 0.95
BACKTRANSFORM = <i>string token</i>	What back-transformation to make (link, none, axis);
	default link
SAVE = regression save structure	Save structure of the model to display; default * uses the most recently fitted regression model
Parameters	
INDEX = variate	Which explanatory variate to display; default * if GROUPS is
	set, otherwise INDEX is set to the first variate in the fitted
	model (must be set for nonlinear models other than standard
	curves)
GROUPS = factor	Which explanatory factor to display; default * if INDEX is set, otherwise GROUPS is set to the first factor in the fitted model
	(ignored for nonlinear models)

RIDGE procedure

Produces ridge regression and principal component regression analyses (A.J. Rook & M.S. Dhanoa).

Options

Options	
PRINT = string token	What to print (correlation, pcp, ridge); default corr
PLOT = string token	Graphical output required (ridgetrace); default *
Parameters	
Y = variates	Response variate in regression model
X = pointers	Containing explanatory variates in regression model

RJOINT procedure

PRINT = string tokens

Does modified joint regression analysis for variety-by-environment data (P.W. Lane & K. Ryder). **Options** What to print (model, summary, estimates, monitoring,

	graph); default mode, summ, esti
TITLE = text	Overall title for graph
YTITLE = text	Y-axis title for graph
XTITLE = text	X-axis title for graph
TOLERANCE = $scalar$	Convergence criterion; default 0.001
MAXCYCLE = scalar	Maximum number of cycles; default 15
SAVE = regression save structure	Save structure from MODEL statement defining the model;

Parameters

ENVIRONMENT = factors	The environment factor; no default
VARIETY = factors	The variety factor; no default
SENSITIVITIES = variates	To store estimates of sensitivities; default *
VARMEANS = variates	To store estimates of variety means; default *
ENVEFFECTS = variates	To store estimates of environment effects; default *
ENVMEANS = variates	To store estimates of environment means; default *
SESENSITIVITIES = variates	To store s.e.s of sensitivities; default *
SEVARMEANS = variates	To store s.e.s of variety means; default *
SEENVEFFECTS = variates	To store s.e.s of environment effects; default *
DEVIANCE = scalar	To store the residual deviance
DF = scalar	To store the residual d.f
EXIT = scalar	Exit status - set to 0 if the analysis converged, 1 otherwise

default is to use the structure from the latest ${\tt MODEL}$ statement

RKEEP directive

Stores results from a linear, generalized linear, generalized additive or nonlinear model.

Options	
EXPAND = string token	Whether to put estimates in the order defined by the maximal model for linear or generalized linear models (yes, no); default no
DISPERSION = scalar	Dispersion parameter to be used as estimate for variability in
DMERILOD - string to how	s.e.s; default as set in the MODEL directive
RMETHOD = string token	Type of residuals to form if parameter RESIDUALS is set
	(deviance, Pearson, simple); default as set in MODEL
DMETHOD = string token	Basis of estimate of dispersion, if not fixed by DISPERSION
	option (deviance, Pearson); default as set in MODEL
PROBABILITY = scalar	Probability level for confidence limits; default 0.95
OMODEL = pointer	Pointer to settings of options of the current MODEL statement,
	given unit labels corresponding to the option names of MODEL
	(starting with 'distribution')
PMODEL = pointer	Pointer to settings of parameters of the current MODEL
	statement, given unit labels corresponding to the parameter
	names of MODEL (starting with $'y'$), only refers to the first
····	setting of Y, FITTEDVALUES and RESIDUAL
STATISTICS = variates	Saves all the statistics that could be displayed for the first Y
	variate by the 'summary' setting of the PRINT option of the
	fitting directives FIT, ADD etc
CIMETHOD = string token	Method to use to calculate confidence intervals for nonlinear
/ .	models (exact, quadratic); default quad
IGNOREFAILURE = string	Whether to ignore failure to fit a generalized linear model
	(yes, no); default no
MAXIMALMODEL = formula structure	Saves the maximal model (as defined by TERMS)
FITMODEL = formula structure	Saves the currently-fitted model (including any contrast functions)
FITCONSTANT = scalar	Saves a scalar containing the value one if the constant is included in the fitted model, or zero otherwise
FITTYPE = scalar	Saves a scalar to indicate the type of model that has been fitted
SAVE = <i>identifier</i>	Specifies save structure of model; default * i.e. that from latest model fitted
Parameters	
Y = variates	Response variates for which results are to be saved; default is
	the list of response variates in the most recent MODEL statement
RESIDUALS = variates	Residuals for each Y variate, as specified by the RMETHOD
	option
FITTEDVALUES = variates	Fitted values for each Y variate
LEVERAGES = variate	Leverages of the units for each Y variate
ESTIMATES = variates	Estimates of parameters for each Y variate
SE = variates	Standard errors of the estimates
INVERSE = <i>symmetric matrix</i>	Inverse matrix from a linear or generalized linear model,
	inverse of second derivative matrix from a nonlinear model
VCOVARIANCE = <i>symmetric matrix</i>	Variance-covariance matrix of the estimates
DEVIANCE = $scalars$	Residual ss or deviance
DF = scalar	Residual degrees of freedom
TERMS = <i>pointer</i> or <i>formula structure</i>	Fitted terms (excluding constant)
ITERATIVEWEIGHTS = variate	Iterative weights from a generalized linear model
LINEARPREDICTOR = variate	Linear predictor from a generalized linear model
YADJUSTED = variate	Adjusted response of a generalized linear model
EXIT = scalar	Exit status from a generalized linear or nonlinear model
GRADIENTS = pointer	Derivatives of fitted values with respect to parameters in a
	nonlinear model

4.1 Commands

GRID = variate	Grid of function or deviance values from a nonlinear model
DESIGNMATRIX = matrix	Design matrix whose columns are explanatory variates and dummy variates
PEARSONCHISQUARE = scalar	Pearson chi-square statistic from a generalized linear model
STERMS = pointer	Saves the identifiers of the variates that have been smoothed in
	the current model
SCOMPONENTS = <i>pointer</i>	Saves a pointer to variates holding the nonlinear components of the variates that have been smoothed
NOBSERVATIONS = scalar	Number of units used in regression, excluding missing data and zero weights and taking account of restrictions
SEFITTEDVALUES = variate	Saves standard errors of the fitted values
SELINEARPREDICTOR = variate	Saves standard errors of the linear predictor
INFLATION = variate	Saves the variance inflation factors of the parameter estimates
UPPER = variates	Saves upper confidence limits for the parameter estimates
LOWER = variates	Saves lower confidence limits for the parameter estimates
MEANDEVIANCE = $scalars$	Saves the residual mean deviance (or mean square)
TDEVIANCE = $scalars$	Saves the total deviance (or sum of squares)
TDF = scalars	Saves the total degrees of freedom (corrected for the mean or uncorrected as displayed by the fitting directives)
TMEANDEVIANCE = $scalars$	Saves the total mean deviance (or mean square)
SUMMARY = pointer	Saves the summary analysis-of-variance (or deviance) table as a pointer with a variate or text for each column (source, d.f. etc)
ACCUMULATED = pointer	Saves the accumulated analysis-of-variance (or deviance) table as a pointer with a variate or text for each column (source, d.f. etc)
STATISTICS = variates	Saves all the statistics that could be displayed for the Y variate by the 'summary' setting of the PRINT option of the fitting directives FIT, ADD etc

RKESTIMATES directive

Saves estimates and other information about terms in a regression analysis. **Options**

opions	
FACTORIAL = scalar	Limit on number of factors and variates in a model term; default 3
Y = variate	Response variate for which results are to be saved; default is the last response variate in the save structure
SAVE = <i>identifier</i>	Provides the regression save structure for the analysis from which the estimates are to be saved; default * takes the save structure from the most recent regression
Parameters	
TERMS = formula	Model terms for which information is required
ESTIMATES = <i>tables</i> or <i>scalars</i>	Table or scalar to store the estimated regression coefficients for each term
SE = tables or scalars	Table or scalar to store the standard errors of the estimated regression coefficients
VCOVARIANCE = <i>symmetric matrices</i>	Symmetric matrix or scalar to store the variances and covariances between the estimates of each term
DF = scalars	Number of degrees of freedom for each term
POSITIONS = <i>tables</i> or <i>scalars</i>	Positions of the estimates in the variate of estimates as saved from RKEEP when option EXPAND=yes

RLASSO procedure

Performs lasso using iteratively reweighted least-squares (D.A. Murray & P.H.C. Eilers). **Options**

	PRINT = string token	What output to print	(correlation, crossva.	lidation
--	----------------------	----------------------	------------------------	----------

	estimates, best); default best
PLOT = string tokens	What graphs to plot (correlation, coefficients); default
	* i.e. none
TERMS = formula	Explanatory model
FACTORIAL = scalar	Limit on number of factors/covariates in a model term; default
	3
LAMBDA = variate or scalar	Values for the parameter lambda; must be set
VALIDATIONMETHOD = string token	Which cross-validation method to use (crossvalidation,
0	gcv); default gcv
NCROSSVALIDATIONGROUPS = scalar	Number of groups for k-fold cross-validation; default 10
NBOOT = $scalar$	Number of times to bootstrap data to estimate standard errors
	and confidence limits for fitted values; default 100
SEED = scalar	Seed for random numbers to use in cross-validation and then
SEED Source	in bootstrapping; default 0
CIPROBABILITY = scalar	Probability level for confidence interval for fitted values;
ciiiobhbiliii scala	default 0.95
MAXCYCLE = $scalar$	Maximum number of iterations for the iterative process
TOLERANCE = $variate$	Contains two values to define the convergence criterion for
IOLENANCE Vurture	iterative least-squares and the adjustment to avoid division by
	zero in the penalty term; default ! (0.0001, 1e-08)
Parameters	zero in the penalty term, default ! (0.0001, 1e-08)
Y = variates	Desmonse veriete
	Response variate
BESTLAMBDA = scalars	Saves the optimal lambda value from cross-validation
CVSTATISTICS = matrices	Saves the cross-validation statistics
RESIDUALS = variates	Saves residuals for the optimal LAMBDA
FITTEDVALUES = variates	Saves fitted values for the optimal LAMBDA
ESTIMATES = variates	Saves parameter estimates for the optimal LAMBDA
SE = variates	Saves standard errors of the parameter estimates for the
	optimal LAMBDA
SEFITTED = variates	Saves standard errors of the fitted values, from bootstrapping,
	for the optimal LAMBDA
LOWER = variates	Saves lower confidence limits for the fitted values, from
	bootstrapping, for the optimal LAMBDA
UPPER = variates	Saves upper confidence limits for the fitted values, from
	bootstrapping, for the optimal LAMBDA
	-

RLFUNCTIONAL procedure Fits a linear functional relationship model (M.S. Dhanoa & D.B. Baird).

i iis a iiitear raiterenar renariensinp i	
Options	
PRINT = string token	Controls printed output (summary, estimates,
	fittedvalues, confidencelimits, grouptests); default
	summ, esti, conf, grou
METHOD = string tokens	Specifies what methods to use to fit the regression (bartlett,
	majoraxis, errorsinvariables, yonx, xony,
	reducedmajoraxis, standardmajoraxis,
	rangedmajoraxis, geometricmean, bisector, medyonx,
	medxony, qgeometricmean, qbisector); default bart
PLOT = string tokens	Controls what to plot (fitted, residuals,
	bootestimates, confidencelimits); default fitt
TITLE = text	The title for the analysis; default title uses the Y and X
	identifiers
NBOOT = $scalar$	The number of samples to take for the bootstrap confidence
	limits; default 200
SEED = scalar	Seed for bootstrap randomization; default 0
CIPROBABILITY = scalar	Defines the size of the confidence interval; default 0.95 i.e.
	95%

CIMETHOD = string token	Method for confidence limits (parametric, bootstrap); default boot
GMETHOD = string token	Method for comparing slopes, elevations and locations
8	between groups (majoraxis, standardmajoraxis); default
	uses standardmajoraxis for METHOD settings
	standardmajoraxis, reducedmajoraxis,
	rangedmajoraxis, geometricmean or bisector, and
	majoraxis otherwise
VRATIO = scalar	Ratio between variance of Y and X variables for
	METHOD=errorsinvariables; default 1
YRANGEMETHOD = string token	Type of range used for Y when METHOD=rangedmajoraxis
	(relative, interval); default rela
XRANGEMETHOD = string token	Type of range used for X when METHOD=rangedmajoraxis
	(relative, interval); default rela
WINDOW = scalar	Graphics window to use for fitted-value plots; default 1
KEYWINDOW = scalar	Graphics window to use for key; default 2
Parameters	
Y = variates	Y-variate for each model
X = variates	X-variate for each model
SLOPE = <i>scalars</i> , <i>variates</i> or <i>matrices</i>	Saves the estimated slopes
INTERCEPT = <i>scalars</i> , <i>variates</i> or <i>matrix</i>	ces
	Saves the estimated intercepts
GROUPS = factors	Defines groups of units
RESIDUALS = variates, matrices or point	
	Saves the residuals from the fitted models
FITTEDVALUES = <i>variates</i> , <i>matrices</i> or	•
	Saves the fitted values
ESTIMATES = variates, matrices or point	
	Saves the estimates
SE = variates, matrices or pointers	Saves the standard errors of the estimates
LOWER = variates, matrices or pointers	Saves lower values of confidence intervals for the estimates
UPPER = variates, matrices or pointers	Saves upper values of confidence intervals for the estimates
LOWFITTEDVALUES = variates, matrice	•
	Saves the lower confidence limits from a bootstrap analysis of
	fitted values
UPPFITTEDVALUES = variates, matrice	•
	Saves the upper confidence limits from a bootstrap analysis of
·	fitted values
TESTPROBABILITIES = <i>pointers</i>	Saves the between-group test probabilities (in a symmetric matrix) for differences in slopes, elevations and locations
RLIFETABLE procedure	
Calculates the life-table estimate of the	ne survivor function (D.A.Murray).
Options	· · · ·
PRINT = string tokens	Controls printed output (lifetable): default life

RLIFETABLE procedure	
Calculates the life-table estimate of the	he survivor function (D.A.Murray).
Options	
PRINT = string tokens	Controls printed output (lifetable); default life
PLOT = string tokens	Type of graph to be plotted (survivor, hazard, pdf);
	default surv, haza, pdf
INTERVAL = scalar or variate	A scalar defining the width of the intervals or a variate
	containing the boundaries of the intervals
Parameters	
TIMES = variates	Observed timepoints
CENSORED = variates	Variate specifying whether the corresponding element of each
	TIMES variate is censored (1) or represents failures (0)
FREQUENCY = variates	Variate containing frequencies for the elements of TIMES; by
	default these are all assumed to be 1

374	4 Syntax summary
GROUPS = factors	Factor specifying the different groups for which to estimate life tables
LIFETABLE = <i>pointers</i>	Pointer to variates to save the information from each life table

RMGLM procedure

Fits a model where different units follow different generalized linear models (R.W. Payne).

Options	
PRINT = string tokens	Controls printed output (model, deviance, summary,
	estimates, correlations, fittedvalues,
	accumulated, monitoring); default mode, summ, esti
Y = variate	Response variate
TERMS = formula	Terms in the model
NBINOMIAL = variate	Binomial totals
DISPERSION = <i>scalar</i>	Dispersion parameter; default * for DIST=norm, gamm, inve or calc, and 1 for DIST=pois, bino, mult, nega, geom, expo or bern
WEIGHTS = variate	Prior weights; default 1
OFFSET = variate	Offset variate to be included in model; default * i.e. none
CONSTANT = <i>string token</i>	How to treat the constant (estimate, omit, ignore); default esti
FACTORIAL = scalar	Limit for expansion of model terms; default 3
FULL = <i>string token</i>	Whether to assign all possible parameters to factors and
	interactions (no, yes); default no
DATASET = factor	Indicates which generalized linear model to apply to each unit;
	default defined from NVALUES
LINEARPREDICTOR = variate	Initial values for linear predictor
MAXCYCLE = scalar	Maximum number of iterations; default 30
MVINCLUDE = string token	Whether to include units with missing values in the
	explanatory factors and variates (explanatory); default *
	i.e. omit these
SAVE = <i>identifier</i>	To name the regression save structure; default *
Parameters	
NVALUES = scalars	Number of units for each generalized linear model
DISTRIBUTION = <i>string tokens</i>	Error distributions (normal, poisson, binomial, gamma, inversenormal, multinomial, calculated,
	negativebinomial, geometric, exponential,
_	bernoulli); default norm
LINK = string tokens	Link functions (canonical, identity, logarithm, logit,
	reciprocal, power, squareroot, probit,
	complementaryloglog, calculated, logratio); default
	cano (i.e. iden for DIST=norm or calc; loga for
	DIST=pois; logi for DIST=bino, bern or mult; reci for
	DIST=gamm or expo; powe for DIST=inve; logr for
	DIST=nega or geom)
EXPONENT = scalars	Exponent for power links

RMULTIVARIATE procedure

Performs multivariate linear regression with accumulated tests; synonym FITMULTIVARIATE (H. van der Voet).

Options

Options	
PRINT = string tokens	Controls printed output (model, summary, accumulated);
	default mode, summ, accu
RPRINT = string tokens	Controls printed output from the univariate regression analyses
	(model, deviance, summary, estimates, correlations,
	fittedvalues, accumulated, monitoring); default *
FACTORIAL = scalar	Limit for expansion of model terms; default 3

	4.1 Commands	37
NOMESSAGE = <i>string tokens</i>	Which warning messages to suppress when fitting the complete model – messages are always suppressed when	
	<pre>fitting models for individual tests (aliasing, marginality); default *</pre>	
RESULTS = <i>pointer</i>	To save results from accumulated and summary tests in a pointer containing terms, degrees of freedom of terms, Wi Lambda, Rao's F-statistic, degrees of freedom for numeral and denominator of Rao's F and P-value of Rao's F	
Parameter	and denominator of Rao's f' and f -value of Rao's f	
TERMS = formula	List of explanatory variates and factors, or model formula	

RNEGBINOMIAL procedure

Fits a negative binomial generalized linear model estimating the aggregation parameter (R.M. Harbord & R.W. Payne).

Options

[†] PRINT = string tokens	Printed output from the analysis (model, deviance, summary, estimates, correlations, fittedvalues, accumulated, monitoring, confidence, aggregation, loglikelihood); default mode, summ, esti, aggr
AGGREGATION = scalar	Saves the estimate of the aggregation parameter
2LOGLIKELIHOOD = scalar	Saves the value of $-2 \times \log$ -likelihood
_ CONSTANT = <i>string token</i>	How to treat the constant (estimate, omit); default esti
FACTORIAL = $scalar$	Limit on number of factors in a treatment term; default 3
[†] POOL = string token	Whether to pool the deviance for the terms in the accumulated
	<pre>summary (yes, no); default no</pre>
NOMESSAGE = <i>string tokens</i>	Warnings to suppress from FIT (dispersion, leverage,
	residual, aliasing, marginality, vertical, df,
	inflation); default *
FPROBABILITY = <i>string token</i>	Printing of probabilities for variance ratios (yes, no); default no
TPROBABILITY = <i>string token</i>	Printing of probabilities for t-statistics (yes, no); default no
SELECTION = string tokens	Statistics to be displayed in the summary of analysis produced
	by PRINT=summary (%variance, %ss, adjustedr2, r2,
	dispersion, %meandeviance, %deviance, aic, bic, sic);
[†] PROBABILITY = scalar	Probability level for confidence intervals for parameter
	estimates; default 0.95
SEAGGREGATION = scalar	Saves the standard error of the estimated aggregation
	parameter
MAXCYCLE = variate	Maximum number of iteration for main and Newton-Raphson
	estimations; default ! (15, 15)
TOLERANCE = variate	Convergence criteria for deviance and <i>k</i> ; default ! (1E-4, 1E-4)
Parameter	
TERMS = formula	List of explanatory variates and factors, or model formula (as for FIT) $\$

RNONNEGATIVE procedure

Fits a generalized linear model with nonnegativity constraints; synonym FITNONNEGATIVE (P.W.	
Goedhart & C.J.F. ter Braak).	

Options

Options	
PRINT = string tokens	Printed output required (model, deviance, summary,
	estimates, correlations, fittedvalues,
	accumulated, monitoring); default mode, summ, esti
CONSTANT = <i>string token</i>	How to treat the constant (estimate, omit); default esti
POOL = string token	Whether to pool ss in accumulated summary between all terms

376	4 Syntax summary
DENOMINATOR = <i>string token</i>	fitted in a linear model (yes, no); default no Whether to base ratios in accumulated summary on rms from model with smallest residual ss or smallest residual ms (ss, ms); default ss
NOMESSAGE = <i>string tokens</i>	Which warning messages to suppress (dispersion, leverage, residual, aliasing, marginality); default *
FPROBABILITY = string token	Printing of probabilities for variance ratios (yes, no); default no
TPROBABILITY = <i>string token</i>	Printing of probabilities for t-statistics (yes, no); default no
MAXCYCLE = $scalar$	Maximum number of iterations; default 100
TOLERANCE = $scalar$	Value against which the Kuhn-Tucker values are tested; default 10 ⁻⁸
INITIALMODEL = string token	Initial model from which to start the iterative procedure (null, full, positive, own); default null
OWNINITIAL = variates	Specifies the variates that compose your own initial model; this option must be set when INITIALMODEL=own; default *
FORCED = <i>formula</i>	Model formula which is fitted irrespective of nonnegativity constraints; default *
Parameter	
X = variates	List of predictors which are subject to nonnegativity constraints

ROBSSPM procedure

Forms robust estimates of sum-of-squares-and-products matrices (P.G.N. Digby).

Options	
PRINT = string tokens	Controls printed output (sspm, distances, weights,
	vcovariance, means, correlations, outliers); default
	* i.e. no output
B1 = scalar	The value from which the threshold distance is derived (see
	the Method Section); default 2
B2 = scalar	The value indicating the decline in weight as the distance of a
	unit above the threshold increases, (see the Method Section);
	default 1.25
MAXCYCLE = scalar	Maximum number of iterations; default 100
TOLERANCE = scalar	The minimum change in the average squared-weight that has
	to be achieved for the iterative process to converge; default
	1.0^{-8}
Parameters	
DATA = pointers	Supplies the set of variates in each datamatrix
SSPM = SSPMs	SSPM structure to contain the robust estimates of the sums of
SSPM = SSPMs	squares and products, the robust estimates of the means, and
sspm = <i>SSPMs</i>	squares and products, the robust estimates of the means, and the sum of the weights for each datamatrix
SSPM = SSPMs DISTANCES = variates	squares and products, the robust estimates of the means, and
	squares and products, the robust estimates of the means, and the sum of the weights for each datamatrix To contain the Mahalanobis distances of the units from the mean
	squares and products, the robust estimates of the means, and the sum of the weights for each datamatrix To contain the Mahalanobis distances of the units from the mean To contain the weights used for each unit when forming the
DISTANCES = variates	squares and products, the robust estimates of the means, and the sum of the weights for each datamatrix To contain the Mahalanobis distances of the units from the mean
DISTANCES = variates	squares and products, the robust estimates of the means, and the sum of the weights for each datamatrix To contain the Mahalanobis distances of the units from the mean To contain the weights used for each unit when forming the
DISTANCES = variates WEIGHTS = variates	squares and products, the robust estimates of the means, and the sum of the weights for each datamatrix To contain the Mahalanobis distances of the units from the mean To contain the weights used for each unit when forming the robust estimates To contain the robust estimates of the matrices of variances and covariances
DISTANCES = variates WEIGHTS = variates	squares and products, the robust estimates of the means, and the sum of the weights for each datamatrix To contain the Mahalanobis distances of the units from the mean To contain the weights used for each unit when forming the robust estimates To contain the robust estimates of the matrices of variances

ROTATE directive

Does a Procrustes rotation of one configuration of points to fit another.

Options	
PRINT = string tokens	Printed output required (rotations, coordinates,
	residuals, sums); default * i.e. no printing

4.1 Commands

SCALING = string token	Whether or not isotropic scaling is allowed (yes, no); default
STANDARDIZE = <i>string tokens</i>	Whether to centre the configurations (at the origin), and/or to normalize them (to unit sum of squares) prior to rotation (centre, normalize); default cent, norm
SUPPRESSREFLECTION = string token	Whether to suppress reflection (yes, no); default no
Parameters	
XINPUT = matrices	Inputs the fixed configuration
YINPUT = matrices	Inputs the configuration to be fitted
XOUTPUT = matrices	To store the (standardized) fixed configuration
YOUTPUT = matrices	To store the fitted configuration
ROTATION = matrices	To store the rotation matrix
RESIDUALS = <i>matrices</i> or <i>variates</i>	To store distances between the (standardized) fixed and fitted configurations
RSS = scalars	To store the residual sum of squares

RPAIR procedure

Gives t-tests for all pairwise differences of means from a regression or generalized linear model (J.T.N.M. Thissen & P.W. Goedhart). Options

PRINT = string tokens	What to print (differences, sed, tvalues, tprobabilities); default diff, sed, tval
SORT = string token	Whether to sort the means into ascending order (no, yes);
COMBINATIONS = <i>string token</i>	default no Which combinations of factors in the current model to include (full, present, estimable); default esti (similar to the
ADJUSTMENT = <i>string token</i>	PREDICT directive) Type of adjustment with linear regression models (marginal, equal); default marg (similar to the PREDICT directive)
WEIGHTS = table	Weights classified by some or all standardizing factors; default * (similar to the PREDICT directive)
METHOD = string token	Method of forming margin (mean, total); default mean (similar to the PREDICT directive)
ALIASING = string token	How to deal with aliased parameters (fault, ignore); default faul (similar to the PREDICT directive)
SAVE = <i>identifier</i>	Specifies save structure of model to display; default * (i.e. that of the latest model fitted)
Parameters	
TREATFACTORS = <i>pointers</i>	Each pointer contains a list of treatment factors classifying the table of means to be compared (the right-most factor changes fastest, then the second from the right, etc.); this parameter must be set
LABELS = <i>texts</i>	Structures containing strings to label rows (and columns) of the symmetric matrices of pairwise differences etc; the length of the text must equal the product of the numbers of factor levels as implied by the factor list in the TREATFACTORS pointer
NEWLABELS = texts	To save the row labels of the DIFFERENCES, SED, TVALUES and TPROBABILITIES matrices
DIFFERENCES = <i>symmetric matrices</i>	To save pairwise differences (treatment means on the diagonal)
SED = symmetric matrices	To save standard errors of the pairwise differences (missing values on the diagonal)
TVALUES = <i>symmetric matrices</i>	To save t-values (missing values on the diagonal)
TPROBABILITIES = symmetric matric	es

sy.

To save t-probabilities (missing values on the diagonal)

RPARALLEL procedure

Carries out analysis of parallelism for nonlinear functions; synonym FITPARALLEL (R.C. Butler).

Options	
PRINT = string tokens	What to print (model, summary, accumulated, estimates,
	correlations, fittedvalues, monitoring); default
	mode, summ, accu, esti
CALCULATION = <i>expression structures</i>	Calculation(s) involving explanatory variate; no default (must
	be set)
METHOD = string token	Which models to fit (singleline, constantsseparate,
	linearseparate, nonlinearseparate); default nonl
CONSTANT = <i>string token</i>	How to treat constant (estimate, omit); default esti
Parameters	
X = variates	Explanatory variate; must be set
GROUPS = factors	Grouping factor for data; must be set
RESULTS = <i>pointers</i>	To save results from model nonlinearseparate, if fitted;
	should be set only if METHOD=nonl

RPERMTEST procedure

Does random permutation tests for regression or generalized linear model analyses (R.W. Payne). **Options**

- F	
PRINT = string tokens	Controls printed output (probability, accumulated, summary, critical); default prob
CONSTANT = <i>string token</i>	How to treat the constant (estimate, omit); default esti
FACTORIAL = scalar	Limit on the number of variates and/or factors in the terms to be fitted; default 3
NTIMES = scalar	Number of permutations to make; default 999
BLOCKSTRUCTURE = <i>formula</i>	Model formula defining any blocking to consider during the randomization; default none
EXCLUDE = factors	Factors in the block formula whose levels are not to be randomized
SEED = scalar	Seed for the random number generator used to make the permutations; default 0 continues from the previous generation or (if none) initializes the seed automatically
[†] SUMMARY = <i>pointer</i>	Saves the summary analysis-of-variance (or deviance) table with permutation probabilities and critical values
[†] ACCUMULATED = <i>pointer</i>	Saves the accumulated analysis-of-variance (or deviance) table with permutation probabilities and critical values
[†] BINMETHOD = <i>string token</i>	How to permute binomial data (individuals, units; default indi
Parameter	
TERMS = formula	List of explanatory variates and factors, or model formula, defining the model to fit

RPHCHANGE procedure

Modifies a proportional hazards model fitted by RPHFIT (R.W. Payne).

Options	• • • • •
PRINT = string tokens	Controls printed output (model, deviance, summary,
	estimates, correlations, fittedvalues,
	accumulated, monitoring, loglikelihood); default
	mode, summ, esti
METHOD = string token	How to change the model (add, drop, switch); default add
POOL = string token	Whether to pool terms in the accumulated summary generated
	by the fit
Parameter	
TERMS = formula	Model specifying the change

4.1 Ca	ommands
--------	---------

RPHDISPLAY procedure

Prints output for a proportional hazards model fitted by RPHFIT (R.W. Payne).

Option PRINT

)11	
$T = string \ tokens$	Controls printed output (model, deviance, summary,
	estimates, correlations, fittedvalues,
	accumulated, loglikelihood); default mode, summ, esti

No parameters

RPHFIT procedure

Fits a proportional hazards model to survival data as a generalized linear model (R.W. Payne). **Options**

PRINT = string tokens	Controls printed output (model, deviance, summary,
-	estimates, correlations, fittedvalues,
	accumulated, monitoring, loglikelihood); default
	mode, summ, esti
MAXIMALMODEL = formula	Defines the full model to explore (using RPHCHANGE); default
	uses the model defined by the TERMS parameter
SUBJECTS = factor	Subject corresponding to each observation
TIMES = <i>factor</i> or <i>variate</i>	Time of each observation
CENSORED = variate	Contains the value 1 for censored observations, otherwise 0; if
	unset it is assumed that there is no censoring
OFFSET = variate	Offset to include in the model
POOL = string token	Whether to pool terms in the accumulated summary generated
-	by the fit
Parameter	
TERMS = formula	Model to fit

TERMS = formula

RPHKEEP procedure

Saves information from a proportional hazards model fitted by RPHFIT (R.W. Payne).

Options

Saves the standardized residuals
Saves the fitted values
Saves estimates of the parameters
Saves standard errors of the estimates
Saves the response variate defined for the generalized linear model
Saves the offset variate defined for the generalized linear model
Index variate used to produce the expanded covariates and factors
Saves the expanded time factor
Saves $-2 \times log-likelihood$ for the fitted model
-

RPHVECTORS procedure

Forms vectors for fitting a proportional hazards model as a generalized linear model (R.W. Payne).

Options		
SUBJECTS = factor		Subject corresponding to each observation
TIMES = factor or vari	ate	Time of each observation
CENSORED = variate		Contains the value 1 for censored observations, otherwise 0; if unset it is assumed that there is no censoring
RESPONSE = variate		Response variate for the generalized linear model
OFFSET = variate		Offset variate
INDEX = variate		Mapping variate used to produce the expanded variables
NEWSUBJECTS = factor	r	Expanded subjects factor

NEWTIMES = factor or variate NEWOFFSET = variate Parameters	Expanded times factor Offset variate for fitting the proportional hazards model
X = variates or factors NEWX = variates or factors	Lists the x-variables that are to be expanded Identifiers to store the expanded x-variables; if no NEWX is specified, the expanded values overwrite the original values of X

RPOWER procedure

Calculates the power (probability of detection) for regression models (R.W. Payne). **Options**

PRINT = string token	Prints the power (power); default powe
TERMS = $formula$	Specifies the terms (x-variates, factors or model terms) to be
	fitted in the analysis when the responses to be detected are
	specified by the RESPONSE parameter
FACTORIAL = scalar	Limit on the number of factors or variates in a model term
	generated from TERMS; default 3
PROBABILITY = scalar	Significance level at which the response is required to be
	detected (assuming a one-sided test); default 0.05
TMETHOD = string token	Type of test to be made (onesided, twosided,
	equivalence, noninferiority, fratio, chisquare);
	default ones
SAVE = $rsave$	Regression save structure to provide the information about the
	regression model
Parameters	
RESPONSE = variates	Variate of fitted values calculated using regression parameters
	of the size to be detected; default * implies that the
	information is to be taken from a regression save structure
RDF = scalars	Number of residual degrees of freedom; if unset, this is
	obtained from the analysis of RESPONSE or from the
	regression save structure
RSS = scalars	Anticipated residual sum of squares; if unset, this is obtained
	from the analysis of RESPONSE or from the regression save
	structure
POWER = scalars or variates	Saves the power

RPROPORTIONAL procedure

Fits the Cox proportional hazards model to survival data (A.I. Glaser & R.W. Payne).

Options	
PRINT = string tokens	Controls printed output (estimates, vcovariance,
	residuals, survivor, _2loglikelihood); default esti, _2lo
FACTORIAL = scalar	Sets a limit on the number of factors in the terms formed from
	the TERMS formula
TIMES = <i>factor</i> or <i>variate</i>	Time of each observation
CENSORED = variate	Contains the value 1 for censored observations, otherwise 0; if
	unset it is assumed that there is no censoring
OFFSET = variate	Offset to include in the model
BLOCKS = factor	Blocking factor defining groups of observations with different
	baseline hazard functions
INITIAL = scalar or variate	Initial values for the parameters in the model
RESIDUALS = variate	Saves the Cox-Snell residuals
ESTIMATES = variate	Saves the parameter estimates
SE = variate	Saves standard errors of the estimates
VCOVARIANCE = <i>symmetric matrix</i>	Saves the variance-covariance matrix of the estimates
_2LOGLIKELIHOOD = scalar	Saves $-2 \times log-likelihood$ for the fitted model

DFTERMS = <i>scalar</i> SURVIVOR = <i>variate</i> or <i>matrix</i>	Saves the number of d.f. in the model specified by TERMS Saves estimates of the survivor function, in a variate if BLOCKS is unset, otherwise in a matrix with a column for each block
EXIT = scalar	Exit code, set to zero if the fit was successful
MAXCYCLE = scalar	Maximum number of iterations to use; default 50
TOLERANCE = $scalar$	Defines the convergence criterion; default 0.000001
Parameter	
TERMS = formula	Defines the model to fit
RQLINEAR procedure	
Fits and plots quantile regressions for Options	linear models (D.B. Baird).
PRINT = string tokens	What to print (model, estimates, summary,
	fittedvalues, correlations, wald, jointqtest,
	separateqtest); default mode, esti, summ, wald
PLOT = string tokens	What to plot (rhistogram, phistograms, fittedvalues,
	estimates, bootestimates); default rhis, phis, fitt
TERMS = formula	Terms to be fitted
WEIGHTS = variate	Weights for data values; default equally weighted
CONSTANT = string token	Whether to include a constant in the model (omit,
concerning to any concern	estimate); default esti
FACTORIAL = scalar	Limit on number of factors or variates in a term; default 3.
FITINDIVIDUALLY = <i>string token</i>	Whether to fit the regression model one term at a time (yes, no); default no
FULL = <i>string token</i>	Whether to assign all possible parameters to factors and interactions (yes, no); default no
BMETHOD = string token	Bootstrap method (xy, weightedxy); default xy
NBOOT = $scalar$	Number of times to bootstrap data to estimate confidence
NEOOT Source	limits; default 200
SEED = scalar	Seed for bootstrap randomization; default 0
CIPROBABILITY = scalar	Probability level for confidence interval; default 0.95
XPLOT = variate	Variate to plot fitted values against; default 1st variate in
Parameters	model
Y = variates	Response variate
PRQUANTILES = <i>scalars</i> or <i>variates</i>	Proportions at which to calculate quantiles; default 0.5
RESIDUALS = variates or pointers	Residuals from regression for each quantile
FITTEDVALUES = variates of pointers	Fitted values from regression for each quantile
ESTIMATES = variates or pointers	Estimated coefficients of model terms for each quantile
SE = variates or pointers	Standard errors of the estimated coefficients for each quantile
VCOVARIANCE = <i>symmetric matrices</i> or	-
VCOVARIANCE - symmetric matrices of	Variance-covariance matrix of estimates for each quantile
DF = scalars or variates	Numbers of degrees of freedom fitted by the model
LOWER = variates or pointers	Lower confidence limit of coefficients for each quantile
UPPER = variates or pointers	Upper confidence limit of coefficients for each quantile
LOWFITTEDVALUES = variates or pointed	
LOWF ITTED VALUES - Variates of pointe	Lower confidence limit of fitted values for each quantile
UPPFITTEDVALUES = variates or pointe	*
I · · · · ·	Upper confidence limit of fitted values for each quantile
OBJECTIVE = scalars or variates	Optimal values of the objective function
EXIT = <i>scalars</i> or <i>variates</i>	Exit codes indicating whether the estimation was successful

RQNONLINEAR procedure

Fits and plots quantile regressions for nonlinear models (D.B. Baird). **Options**

PRINT = string tokens	What to print (model, estimates, summary,
-----------------------	---

<pre>bde, esti, summ that to plot (rhistogram, phistograms, fittedvalues, onfidencelimits); default phis, fitt, conf ariates to fit in the model ata to bootstrap in parallel with Y; default takes the variates ad factors of the same length as Y involved in the ALCULATION expressions thether to include a constant in the model (omit, stimate); default esti alculation of explanatory variates involving nonlinear arameters binter to scalars representing the nonlinear parameters to be otimized in the expressions itial values for parameters pper bound for parameters pper bound for parameters pper bound for parameters pointer to scalars representing the linear parameters in the odel (including the constant) thich optimization method to use (gaussnewton,</pre>
<pre>onfidencelimits); default phis, fitt, conf ariates to fit in the model ata to bootstrap in parallel with Y; default takes the variates of factors of the same length as Y involved in the ALCULATION expressions Thether to include a constant in the model (omit, stimate); default esti alculation of explanatory variates involving nonlinear arameters binter to scalars representing the nonlinear parameters to be otimized in the expressions itial values for parameters over bound for parameters pper bound for parameters pinter to scalars representing the linear parameters in the odel (including the constant) Thich optimization method to use (gaussnewton,</pre>
ariates to fit in the model ata to bootstrap in parallel with Y; default takes the variates of factors of the same length as Y involved in the ALCULATION expressions Thether to include a constant in the model (omit, stimate); default esti alculation of explanatory variates involving nonlinear arameters binter to scalars representing the nonlinear parameters to be otimized in the expressions itial values for parameters over bound for parameters per bound for parameters ep sizes for parameters binter to scalars representing the linear parameters in the odel (including the constant) Thich optimization method to use (gaussnewton,
ata to bootstrap in parallel with Y; default takes the variates ad factors of the same length as Y involved in the ALCULATION expressions Thether to include a constant in the model (omit, stimate); defaultesti alculation of explanatory variates involving nonlinear trameters binter to scalars representing the nonlinear parameters to be otimized in the expressions itial values for parameters over bound for parameters per bound for parameters ep sizes for parameters obinter to scalars representing the linear parameters in the odel (including the constant) Thich optimization method to use (gaussnewton,
d factors of the same length as Y involved in the ALCULATION expressions Thether to include a constant in the model (omit, stimate); default esti alculation of explanatory variates involving nonlinear arameters binter to scalars representing the nonlinear parameters to be otimized in the expressions itial values for parameters ower bound for parameters per bound for parameters ep sizes for parameters obinter to scalars representing the linear parameters in the odel (including the constant) Thich optimization method to use (gaussnewton,
ALCULATION expressions Thether to include a constant in the model (omit, stimate); default esti alculation of explanatory variates involving nonlinear arameters binter to scalars representing the nonlinear parameters to be otimized in the expressions itial values for parameters ower bound for parameters pper bound for parameters ep sizes for parameters binter to scalars representing the linear parameters in the odel (including the constant) Thich optimization method to use (gaussnewton,
Thether to include a constant in the model (omit, stimate); default esti alculation of explanatory variates involving nonlinear arameters binter to scalars representing the nonlinear parameters to be otimized in the expressions itial values for parameters ower bound for parameters pper bound for parameters ep sizes for parameters binter to scalars representing the linear parameters in the odel (including the constant) Thich optimization method to use (gaussnewton,
stimate); default esti alculation of explanatory variates involving nonlinear arameters binter to scalars representing the nonlinear parameters to be otimized in the expressions itial values for parameters ower bound for parameters pper bound for parameters ep sizes for parameters binter to scalars representing the linear parameters in the odel (including the constant) Thich optimization method to use (gaussnewton,
alculation of explanatory variates involving nonlinear arameters binter to scalars representing the nonlinear parameters to be bitimized in the expressions itial values for parameters ower bound for parameters puer bound for parameters ep sizes for parameters binter to scalars representing the linear parameters in the odel (including the constant) Thich optimization method to use (gaussnewton,
arameters binter to scalars representing the nonlinear parameters to be bitmized in the expressions itial values for parameters ower bound for parameters pper bound for parameters ep sizes for parameters binter to scalars representing the linear parameters in the odel (including the constant) Thich optimization method to use (gaussnewton,
binter to scalars representing the nonlinear parameters to be otimized in the expressions itial values for parameters ower bound for parameters pper bound for parameters ep sizes for parameters binter to scalars representing the linear parameters in the odel (including the constant) Thich optimization method to use (gaussnewton,
otimized in the expressions itial values for parameters ower bound for parameters pper bound for parameters ep sizes for parameters ointer to scalars representing the linear parameters in the odel (including the constant) 'hich optimization method to use (gaussnewton,
itial values for parameters ower bound for parameters pper bound for parameters ep sizes for parameters binter to scalars representing the linear parameters in the odel (including the constant) 'hich optimization method to use (gaussnewton,
ower bound for parameters pper bound for parameters ep sizes for parameters binter to scalars representing the linear parameters in the odel (including the constant) Thich optimization method to use (gaussnewton,
pper bound for parameters ep sizes for parameters binter to scalars representing the linear parameters in the odel (including the constant) 'hich optimization method to use (gaussnewton,
ep sizes for parameters pinter to scalars representing the linear parameters in the odel (including the constant) 'hich optimization method to use (gaussnewton,
binter to scalars representing the linear parameters in the odel (including the constant) 'hich optimization method to use (gaussnewton,
odel (including the constant) Thich optimization method to use (gaussnewton,
hich optimization method to use (gaussnewton,
ewtonraphson, fletcherpowell, simplex); default
aus
umber of times to bootstrap data to estimate confidence
nits; default 100
eed for bootstrap randomization; default 0
obability level for confidence interval; default 0.95
aximum number of iterations for optimization; default 200
ariate to plot fitted values against; default is the first variate
n the right-hand side of the CALCULATION expressions
• .
esponse variates
oportion at which to calculate the quantile for each response triate; default 0.5
esiduals from the nonlinear model
tted values from the nonlinear model
stimates of the parameters in the model (nonlinear, linear and onstant)
andard errors of the parameters
ariance-covariance matrix for the parameters
ower confidence limits for the parameters
pper confidence limits for the parameters
ower confidence limits for the fitted values
pper confidence limits for the fitted values
ptimal values of the objective function
itles for fitted value graphs

ower bound for parameters pper bound for parameters ep sizes for parameters pointer to scalars representing the linear parameters in the odel (including the constant) hich optimization method to use (gaussnewton, ewtonraphson, fletcherpowell, simplex); default ານຮ umber of times to bootstrap data to estimate confidence nits; default 100 eed for bootstrap randomization; default 0 obability level for confidence interval; default 0.95 aximum number of iterations for optimization; default 200 ariate to plot fitted values against; default is the first variate n the right-hand side of the CALCULATION expressions esponse variates coportion at which to calculate the quantile for each response riate; default 0.5 esiduals from the nonlinear model tted values from the nonlinear model stimates of the parameters in the model (nonlinear, linear and onstant) andard errors of the parameters ariance-covariance matrix for the parameters ower confidence limits for the parameters pper confidence limits for the parameters ower confidence limits for the fitted values pper confidence limits for the fitted values ptimal values of the objective function itles for fitted value graphs ess or spline models (D.B. Baird). What to print (model, summary, fittedvalues); default mode, summ What to plot (rhistogram, fittedvalues); default fitt Smoothing method (loess, spline); default spli

Spline Degrees of Freedom (3-40); default 4

Knot points for smoothing splines; default * uses equally

PLOT = *string tokens* METHOD = *string token* DF = scalarKNOTS = variate

PRINT = *string tokens*

Options

4.1 Commands

	spaced percentiles of the x variate
KERNEL = <i>string token</i>	What Kernel to use for Loess (normal, epanechnikov,
	quadratic, triweight, tukeybiweight, quartic,
	linear, uniform); default norm
LMETHOD = string token	Span method for Loess (constant, adaptive); default adap
BANDWIDTH = $scalar$	Bandwidth for smoothing between 0 and 1; default 0.4
ORDER = scalar	Order of local polynomial; default 1
NGRIDPOINTS = $scalar$	Number of points on smooth curve; default 100
NBOOT = $scalar$	Number of times to bootstrap data to estimate confidence
	limits; default 0 i.e. no bootstrapping
SEED = scalar	Seed for bootstrap randomization; default 0
CIPROBABILITY = scalar	Probability level for confidence interval; default 0.95
TITLE = text	Title for plots; default * generates titles from the structure
	names
ARRANGEMENT = <i>string token</i>	Whether to plot fitted regressions by the GROUPS parameter in
	a trellis plot (single, trellis); default sing
Parameters	
Y = variates	Response variate
X = variates	Explanatory variate
PRQUANTILES = <i>scalars</i> or <i>variates</i>	Proportions at which to calculate quantiles; default 0.5
GROUPS = <i>factors</i>	Groups for which independent curves are fitted
GRID = variates	Grid of equidistant points at which the smooth is calculated
OUTGROUPS = <i>factors</i>	Groups for the fitted smoothed values saved by the SMOOTH
	parameter
SMOOTH = variates or pointers	Fitted smooth estimated at the NGRIDPOINTS points given in
	GRID
SLOPE = variates or pointers	Fitted slope from model for the same points as SMOOTH
RESIDUALS = variates or pointers	Residuals from regression for each quantile
FITTEDVALUES = variates or pointers	Fitted values from regression for each quantile
LOWSMOOTH = variates or pointers	Lower confidence limit of smooth for each quantile
UPPSMOOTH = variates or pointers	Upper confidence limit of smooth for each quantile
SESMOOTH = variates or pointers	Standard error of coefficients for each quantile

RQUADRATIC procedure

Fits a quadratic surface and estimates its stationary point (R.W. Payne).

Options	
PRINT = string tokens	What to print (model, deviance, summary, estimates,
	correlations, fittedvalues, accumulated,
	monitoring, confidence, stationary); default mode,
	summ, esti
CONSTANT = string token	How to treat the constant (estimate, omit); default esti
FACTORIAL = scalars	Limit for expansion of model terms; default 3
POOL = string token	Whether to pool ss in accumulated summary between all terms
5	fitted in a linear model (yes, no); default no
DENOMINATOR = <i>string token</i>	Whether to base ratios in accumulated summary on rms from
	model with smallest residual ss or smallest residual ms (ss,
	ms); default ss
NOMESSAGE = <i>string tokens</i>	Which warning messages to suppress (dispersion,
	leverage, residual, aliasing, marginality,
	vertical, df, inflation); default *
FPROBABILITY = <i>string token</i>	Printing of probabilities for variance and deviance ratios (yes,
	no); default no
TPROBABILITY = <i>string token</i>	Printing of probabilities for t-statistics (yes, no); default no
SELECTION = string tokens	Statistics to be displayed in the summary of analysis produced
C C	by PRINT=summary, seobservations is relevant only for a
	Normally distributed response, and %cv only for a gamma-

	distributed response (%variance, %ss, adjustedr2, r2,
	<pre>seobservations, dispersion, %cv, %meandeviance, %deviance, aic, bic, sic); default %var, seob if</pre>
	DIST=normal, %cv if DIST=gamma, and disp for other
	distributions
PROBABILITY = scalar	Probability level for confidence intervals for parameter estimates; default 0.95
STATIONARY = scalars	Saves the estimated value of y at the stationary point
SESTATIONARY = scalars	Saves the standard error of the estimated value of y at the stationary point
TYPESTATIONARY = <i>scalars</i>	Identifies the type of stationary point (2 for maximum, 1 for maximum on a ridge, -2 for minimum, -1 for minimum on a ridge, or 0 for saddle point)
PREDICTIONS = matrix	Saves predictions
PLOT = string tokens	What to plot (contour, surface); default * i.e. nothing
COLOURS = <i>text</i> or <i>variate</i>	Colours for the plots
Parameters	
X = variates	X-variates whose linear, quadratic and product terms define the quadratic surface
ESTIMATE = scalars	Estimated value of each x-variate at the stationary point
SE = scalars	Standard error of the estimated value of each x-variate at the stationary point
LEVELS = variates	Values at which to evaluate each x for plots and predictions

RRETRIEVE procedure

Retrieves a regression save structure from an external file (R.W. Payne).

No options Parameters

Name of the file storing the save structure
Scalar that contains the value one if the save structure could
not be retrieved successfully, otherwise zero
Save structure that has been retrieved

RSCHNUTE procedure

Fits a general 4 parameter growth model to a non-decreasing Y-variate; synonym FITSCHNUTE (A. Keen). Options

- F	
PRINT = string tokens	What to print (model, summary, estimates,
	correlations, fittedvalues, accumulated,
	monitoring); default mode, summ, esti
Tl = scalar	Timepoint defining y_1 ; default the first timepoint with $\mu > 0.4$
	$\times y_2$ (µ and y_2 are obtained by an approximating model)
T2 = scalar	Timepoint defining y_2 ; default * takes the last observed
	timepoint
NGRID = scalar	The number of points for a grid search with parameters a
	and/or b; default 7
PLUS = scalar	The constant added to the observed and fitted values, in order
	to obtain a suitable variance function in case of other than
	normal error distribution; default * takes the smallest possible
	value for the response given the rounding off
A = scalar	Fixed value for parameter <i>a</i> of the growth model, defining a
	submodel; only 0 is appropriate; default *
B = scalar	Fixed value for parameter b of the growth model; default *
ALOWER = scalar	Lower bound for parameter <i>a</i> of the growth model; default
	$-40/(t_2-t_1)$
AUPPER = scalar	Upper bound for parameter a of the growth model; default

41	Commands	
7.1	Communus	

	$40/(t_2 - t_1)$
BLOWER = scalar	Lower bound for parameter b of the growth model; default -20
BUPPER = scalar	Upper bound for parameter b of the growth model; default 20
MAXCYCLE = scalar	Maximum number of iterations; default 20
TOLERANCE = $scalar$	Convergence criterion; default 0.0004
Parameters	
T = variates	Observed timepoints for each fit
MGRID = matrices	Deviances from the gridsearch in a and/or b
RT = pointers	Pointer of two variates: the fitted growth rates and relative
	growth rates at the observed timepoints
OWNT = variates	A variate of arbitrary timepoints to be specified by the user
	e.g. for obtaining a smooth plot of fitted values
ROWNT = pointers	Pointer of three variates: the fitted values, growth rates and
	relative growth rates at the timepoints specified in OWNT
EXTRA = <i>pointers</i>	Pointer of eight scalars, with: 1) the starting point of the curve
	below which the response equals 0, 2) the endpoint of the
	curve where the reponse is infinite, 3) the lower asymptote of
	the curve, 4) the upper asymptote of the curve, 5) the inflexion
	point, 6) the fitted value at the point of inflexion, 7) the growth
	rate at the point of inflexion, 8) the relative growth rate at the
	point of inflexion; if no finite value for a scalar exists, the
	value is set to be missing

RSCREEN procedure

Performs screening tests for generalized or multivariate linear models (H. van der Voet).

Options	
PRINT = string tokens	Printed output required (model, pool, starscheme, tests, pvalues); default mode, pool, star
CONSTANT = string token	How to treat the constant (estimate, omit); default esti
FACTORIAL = scalar	Limit for expansion of model terms; default 3
NOMESSAGE = <i>string tokens</i>	Which warning messages to suppress when fitting the complete model (aliasing, marginality): warning messages are always suppressed when fitting models for individual tests; default *
EXCLUDEHIGHER = <i>string token</i>	Whether to exclude higher-order interactions in the conditional regression model for each tested term (yes, no); default no
FORCED = formula	Terms always included in the model (no tests on these terms); default *
TESTED = text	To save the names of individual terms which are tested
NELEMENTS = variate	To save the number of identifiers composing each individual term
MARGINAL = pointer	To save results from marginal tests for each tested term in a pointer containing the test statistic, corresponding degrees of freedom and the calculated probability
CONDITIONAL = <i>pointer</i>	To save results from conditional tests for each tested term in a pointer containing the test statistic, corresponding degrees of freedom and the calculated probability
MVINCLUDE = string token	Whether to include units with missing values in non-relevant explanatory variates or factors when calculating conditional and marginal tests (yes, no); default no
Parameter	
FREE = formula	List of explanatory variates and factors, or model formula; each term from the expanded FREE formula is tested in a marginal and in a conditional test, unless the term is also part of the FORCED formula

RSEARCH procedure

Helps search through models for a regression or generalized linear model (P.W. Goedhart).

Options PRINT = *string token* Printed output required (model, results); default mode, resu Model selection method to employ (allpossible, forward, METHOD = *string tokens* backward, fstepwise, bstepwise, accumulated, pooled); default allp Model formula to include in every model; default * FORCED = *formula* CONSTANT = *string token* How to treat the constant (estimate, omit); default esti Limit for expansion of all model terms; default 3 FACTORIAL = scalar DENOMINATOR = *string token* Whether to base ratios in accumulated summaries on rms from model with smallest residual ss or smallest residual ms (ss, ms): default ss Criterion for inclusion of terms for forward selection, INRATIO = scalar backward elimination and stepwise regression; default 1.0 OUTRATIO = scalar Criterion for exclusion of terms for forward selection, backward elimination and stepwise regression; default 1.0 Limit on number of times to repeat stepwise selection MAXCYCLE = scalarmethods, unless no change is made; default 50 CRITERION = *string token* Criterion for selecting best models among all possible models (r2, adjusted, cp, ep, aic, bic, sic, meandeviance, deviance); default adju Criterion which is also printed for the selected best models EXTRA = *string token* (r2, adjusted, cp, ep, aic, bic, sic, meandeviance, deviance); default cp when DISPERSION=*, and mean otherwise AFACTORIAL = scalarLimit for expansion of FREE model terms for the fitting of all possible models; default 3 PENALTY = scalar Penalty for Mallows Cp and Akaike's information criterion AIC: default 2 Limit on the number of terms to be fitted when fitting all NTERMS = scalar possible models; default 16 Number of best models printed for each subset size; default 8 NBESTMODELS = scalar PPROBABILITY = scalar When METHOD=allpossible, only models with all probabilities less than PPROBABILITY are printed; default 1 i.e. all models are printed Pointer to save the final models for forward, backward, FINALMODELS = pointer fstepwise and bstepwise regression methods Pointer to save formulae for all possible regression models ALLMODELS = pointer containing the fitted terms of all the models; every formula includes the FORCED formula if set Pointer to save variates for all possible regression models ESTIMATES = pointer containing the parameter estimates Pointer to save variates for all possible regression models SE = pointer containing standard errors of the parameter estimates Pointer to save variates for all possible regression models **RESULTS** = *pointer* containing the criteria (r2, adjusted, cp, ep, aic, sic or bic, deviance, meandeviance), degrees of freedom for residual and the total number of fitted parameters pPointer to save variates for all possible regression models STATISTICS = pointer containing the test statistics. These are F-to-delete statistics (i.e. deviance ratios) when the DISPERSION option of the MODEL directive is set to *, and Chi-square-to-delete statistics (i.e. deviance differences scaled by the dispersion parameter)

4.1 Commands

DF = <i>pointer</i>	for a fixed dispersion parameter Pointer to save variates for all possible regression models containing the degrees of freedom for the numerator of the test
PROBABILITIES = <i>pointer</i>	statistics Pointer to save variates for all possible regression models
-	containing the probabilities of the test statistics
MARGINALTERMS = <i>string token</i>	How to treat terms that are marginal to other terms in the FREE formula (forced, free); default forc
Parameter	
FREE = formula	Model formula specifying the candidate model terms

RSPREADSHEET procedure

Puts results from a regression, generalized linear or nonlinear model into a spreadsheet (R.W. Payne). **Options**

Options	
DISPERSION = scalar	Dispersion parameter to be used as estimate for variability in s.e.s; default as set in MODEL
RMETHOD = string token	Type of residual to use (deviance, Pearson, simple, deletion); default * i.e. as set in MODEL
DMETHOD = string token	basis of estimate of dispersion, if not fixed by DISPERSION option (deviance, Pearson); default * i.e. as set in MODEL
SPREADSHEET = <i>string tokens</i>	Which spreadsheets to form (summary, estimates, fittedvalues, accumulated); default summary, estimates, fittedvalues
SPESTIMATES = <i>string tokens</i>	What to include in the estimates spreadsheet (estimates, se, testimates, prestimates); default esti, se, test, pres
SPFITTEDVALUES = <i>string tokens</i>	What to include in the fitted-values spreadsheet (y, fittedvalues, residuals, leverages, sefittedvalues); default y, fitt, resi, leve
SAVE = regression save structure	Specifies which analysis to save; default * i.e. most recent regression
Parameters	
Y = variates	Y-variate of the analysis to be saved
RESIDUALS = variates	Identifier of variate to save the residuals from each analysis; default residuals
FITTEDVALUES = variates	Identifier of variate to save the fitted values from each analysis; default fittedvalues
LEVERAGES = variates	Identifier of variate to save the leverages from each analysis; default leverages
ESTIMATES = variates	Identifier of variate to save the estimates from each analysis; default estimates
SE = variates	Identifier of variate to save s.e.'s of the estimates from each analysis; default se
TESTIMATES = variates	Identifier of variate to save the t-statistics of the estimates from each analysis; default t statistics
PRESTIMATES = variates	Identifier of variate to save the t-probabilities of the estimates from each analysis; default t probabilities
SEFITTEDVALUES = variates	Identifier of variate to save s.e.'s of the fitted values from each analysis; default sefittedvalues
SUMMARY = pointers	Identifier of pointer to save the summary analysis-of-variance (or deviance) from each analysis; default summary
ACCUMULATED = pointers	Identifier of pointer to save the accumulated analysis-of- variance (or deviance) from each analysis; default accumulated
OUTFILENAME = texts	Name of Genstat workbook file (.gwb) or Excel (.xls or .xlsx) file to create

RSTEST procedure

Compares groups of right-censored survival data by nonparametric tests (D.A. Murray).

Options	
PRINT = string token	Controls printed output (test); default test
METHOD = string tokens	Types of test required (logrank, breslow, petoprentice,
	taroneware); default logr, bres, peto, taro
BLOCKS = $factor$	Factor specifying groupings for a stratified test; default * i.e.
	none
Parameters	
TIMES = variates	Observed timepoints
CENSORED = variates	Variate specifying whether the corresponding element of
	TIMES is censored (1) or not (0)
GROUPS = <i>factors</i>	Factor specifying the different groups
TESTS = <i>pointers</i>	Pointer to variates (length 3) to save test statistic, d.f. and
-	probability value for each chosen method

RSTORE procedure

Stores a regression save structure in an external file (R.W. Payne).

No options Parameters FILENAME = texts Name of the file to store the save structure EXIT = scalars Scalar that contains the value one if the save structure could not be stored successfully, otherwise zero SAVE = regression save structures Save structure to be stored; default stores the save structure from the most recent regression analysis

RSURVIVAL procedure

Models survival times of exponential, Weibull, extreme-value, log-logistic or lognormal distributions (R.W. Payne & D.A. Murray).

Options	
PRINT = string tokens	Controls printed output (model, deviance, summary,
	estimates, correlations, fittedvalues,
	accumulated, loglikelihood); default mode, summ, esti
TIMES = variate	Time of each observation
DISTRIBUTION = <i>string token</i>	Distribution of the survival times (exponential, weibull, extremevalue, loglogistic, lognormal); default expo
CENSORED = variate	Indicator for censored observations: 0 if uncensored, 1 if right censored (subject survived the whole trial), -1 if left censored (log-logistic distribution only); default assumes no censored observations
GRAPHICS = string token	Controls the plotting of diagnostic graphs of the empirical survivor function against the estimate produced by the model (lineprinter, highresolution) default * i.e. none
ALPHA = scalar	Saves the estimated value of the parameter α of the Weibull and extreme-value distributions, if the scalar is input with a non-missing value this provides the initial estimate for α (which will also be the final estimate if MAXCYCLE=1)
2LOGLIKELIHOOD = scalar	Saves -2 multiplied by the log-likelihood
$\overline{SIGMA} = scalar$	Saves the estimated value of the shape parameter sigma of the log-logistic and lognormal distributions
SURVIVOR = variate	Saves estimates of the survivor function
PARAMETERIZATION = <i>string token</i>	Controls the parameterization used when saving the survivor function for the Weibull distribution (ph, aft); default ph
MAXCYCLE = scalar	Maximum number of iterations to use to estimate α ; default 20
TOLERANCE = $scalar$	Convergence limit for α ; default 10^{-5}

	4.1 Commands	389
Parameter		
TERMS = formula	Defines the model to fit	
RTCOMPARISONS procedure		
	nin a multi-way table of means (R.W. Payne)	·•
Options		
PRINT = string token	Controls printed output (contrasts); defa	
COMBINATIONS = <i>string token</i>	Factor combinations for which to form the (full, present, estimable); default es	
ADJUSTMENT = <i>string token</i>	Type of adjustment to be made when form means (marginal, equal, observed); de	ing the predicted
WEIGHTS = table	Weights classified by some or all of the fac default *	
OFFSET = scalar	Value of offset on which to base prediction offset variate	s; default mean of
METHOD = string token	Method of forming margin (mean, total	.); default mean
ALIASING = string token	How to deal with aliased parameters (faul faul	
BACKTRANSFORM = <i>string token</i>	What back-transformation to apply to the v scale, before calculating the predicted mea default link	
SCOPE = string token	Controls whether the variance of prediction the basis of forecasting new observations re- summarizing the data to which the model h (data, new); default data	ather than
NOMESSAGE = string tokens	Which warning messages to suppress (dis nonlinear); default *	persion,
DISPERSION = scalar	Value of dispersion parameter in calculation as set in the MODEL statement	on of s.e.s; default is
DMETHOD = string token	Basis of estimate of dispersion, if not fixed option (deviance, Pearson); default is statement	
NBINOMIAL = scalar	Supplies the total number of trials to be use with a binomial distribution (providing a va one allows predictions to be made of the nu "successes" out of n , whereas the value one proportion of successes); default 1	alue <i>n</i> greater than umber of e predicts the
SAVE = <i>identifier</i>	Regression or ANOVA save structure for the which the comparisons are to be calculated	
Parameters		

CONTRAST = tablesDefines the comparisons to be estimatedESTIMATES = scalarsSaves the estimated contrastsSE = scalarsSaves standard errors of the contrasts

RUGPLOT procedure

Draws "rugplots" to display the distribution of one or more samples (P.W. Lane).

Options	
GRAPHICS = string token	What type of graphics to use (highresolution,
	lineprinter); default high
TITLE = text	Title for diagram; default *
AXISTITLE = $text$	Title for axis; default *
WINDOW = scalar	Window in which to draw high-resolution plot; default *,
	taken as 11 if SCREEN=clear, or 1 if SCREEN=keep
SCREEN = string token	Whether to clear screen before high-resolution plot (clear,
	keep); default clea
ORIENTATION = string token	Orientation of plots (down, across); default down

390	4 Syntax summary
JITTER = <i>number</i>	Ratio of jitter width to range of data in high-resolution plot; default 0.01
SEED = number	Seed for generating random numbers used in jittering; default 0, i.e. continue from last generation, or initialize from system clock
Parameters	
DATA = variates	Data to be summarized; no default
GROUPS = factor	Factor to divide values of a single variate into groups; default *
RUGLABELS = <i>texts</i>	Labels for individual rugs; default *, i.e. identifiers of variates or labels or levels of factor
POSITION = <i>scalar</i> or <i>variate</i>	Position on x-axis (or on y-axis if ORIENTATION=across) at which to plot each rug; if GROUPS is set, positions for each level of the factor are taken from a variate; default is to draw a single rug on the axis, and to spread multiple rugs across the window

RUNTEST procedure

Performs a test of randomness of a sequence of observations (P.W. Goedhart).

Options	
PRINT = string token	Controls printed output (results); default resu
NULL = scalar	Defines the boundary between the two types; default 0
Parameters	
DATA = variates	Sequences of observations
SAVE = pointers	To save the number of runs, the number of positive and negative observations and the lower and upper tail
	probabilities of the test

RWALD procedure

Calculates Wald and F tests for dropping terms from a regression (R.W. Payne).

Options	
PRINT = string token	Controls printed output (waldtests); default wald
FACTORIAL = scalar	Limit on number of factors in the model terms generated from
	the TERMS parameter; default 3
Y = variate	Y-variate from whose analysis to calculate the statistics;
	default is the last y-variate in SAVE
RDF = scalar	Saves the residual d.f. used to calculate F probabilities when
	the dispersion is not fixed
SAVE = regression save structure	Specifies the save structure (from MODEL) containing the
	analysis for which to calculate the tests; default is the save
	structure from the most recent regression
Parameters	
TERMS = $formula$	Model terms for which tests are required
WALDSTATISTIC = <i>scalar</i> or <i>pointer</i> to	scalars
	Saves Wald statistics
DF = scalar or pointer to scalars	Saves d.f. of Wald statistics
PROBABILITY = scalar or pointer to sca	alars
	Saves the probabilities for the Wald statistics if the dispersion
	is fixed, or the corresponding F statistics if it is estimated

RXGENSTAT procedure

Submits a set of commands externally to R and reads the output (M.F. D'Antuono & D.A. Murray).OptionsPRINT = string tokensControls printed output (summary, output); default outpRPATH = textPath specifying the location of the R executable; by default

Genstat searches for a version of R installed within

4.1 Commands

	C:\program files (x86) \R or C:\program files\R
REXE = text	Name of the R executable to run; default 'Rterm.exe'
RARGS = $text$	Command line arguments to be used with the R executable;
	default 'no-restoreno-save'
SCRIPT = text	A set of R commands to run within R
SFILE = $text$	A file containing a set of R commands to run within R
RGEN = text	Name of a file to save the full set of commands used within R
ROUT = text	Name of a file to save the output from R
Parameters	
WORKDIRECTORY = texts	Working directory to use within R; default current Genstat working directory
IDATA = pointers	Pointer to data structures to export to R (the data are exported into the file specified by the IRDAFILE parameter)
IRDAFILE = texts	Name of an R data (rda) file to import into R
ISAVE = texts	Pointer to data structures to import from R (the data are imported from the file specified by the ORDAFILE parameter)
ORDAFILE = text	Name of an R data (rda) file used to export data from R

RYPARALLEL procedure

Fits the same regression model to several response variates, and collates the output (P. Brain, R.W. Payne & D.B. Baird). **Options**

PRINT = string tokens	Controls printed output (model, summary); default * i.e. none
TERMS = formula	Defines the regression model to fit on each variate
WEIGHTS = variate or symmetric matrix	Weights for the regression; default 1
OFFSET = variate	Offset; default * i.e. none
CONSTANT = <i>string token</i>	How to treat the constant (estimate, omit); default esti
FACTORIAL = scalar	Limit for expansion of model terms; default 3
FULL = <i>string token</i>	Whether to assign all possible parameters to factors and
	interactions (yes, no); default no
POOL = string token	Whether to pool the information on each term in the analysis
	of variance (yes, no); default no
RMETHOD = string token	Type of residuals to form (deviance, Pearson, simple);
	default devi
SPREADSHEET = <i>string tokens</i>	What results to save in a book of spreadsheets (aov,
	residuals, fittedvalues, estimates, se, testimates,
	prestimates); default * i.e. none
Parameters	
Y = variates or pointers	Y-values for each set of analyses
RESIDUALS = matrices	Saves residuals from each set of analyses
FITTEDVALUES = matrices	Saves fitted values from each set of analyses
ESTIMATES = matrices	Saves estimates from each set of analyses
SE = matrices	Saves s.e.'s of estimates
TESTIMATES = <i>matrices</i>	Saves t-statistics of estimates
PRESTIMATES = matrices	Saves t-probabilities of estimates
DF = pointers	Saves degrees of freedom for the model terms or variates in
	each analysis of variance
SS = <i>pointers</i> or <i>variates</i>	Saves sums of squares for the model terms in each analysis of
	variance
MS = pointers or variates	Saves mean squares for the model terms in each analysis of
	variance
RDF = variates	Saves degrees of freedom from the "residual" lines in each
	analysis of variance
RSS = variates	Saves sums of squares from the "residual" lines
RMS = variates	Saves mean squares from the "residual" lines
TDF = variates	Saves degrees of freedom from the "total" lines in each

analysis of variance
Saves sums of squares from the "total" lines
Saves mean squares from the "total" lines
Saves variance ratios for the model terms in each analysis of
variance
Saves probabilities of the variance ratios
Name of Genstat workbook file (.gwb) or Excel (.xls or .xlsx)
file to create

ROINFLATED procedure

Fits zero-inflated regression models to count data with excess zeros (D.A. Murray).

Options	
PRINT = string token	Controls printed output (model, summary, estimates,
	fittedvalues, monitoring); default mode, summ, esti
DISTRIBUTION = string token	Distribution of response variable (poisson,
	negativebinomial); default pois
METHOD = string token	Method used for model fitting (em, conditional); default em
CONSTANT = <i>string token</i>	How to treat constant for count state (estimate, omit);
	default esti
ZCONSTANT = <i>string token</i>	How to treat constant for zero-inflation state (estimate,
	omit); default esti
XTERMS = formula	List of explanatory variates and factors, or model formula for
	count state of model
ZTERMS = formula	List of explanatory variates and factors, or model formula for
	zero-inflation state of model
WEIGHTS = variate	Variate of weights for weighted zero-inflated regression
	(Lambert model only)
OFFSET = variate	Offset variate to be used in the model (Lambert model only)
MAXCYCLE = scalar	Maximum number of iterations for EM algorithm; default 100
TOLERANCE = <i>scalar</i> or <i>variate</i>	Convergence criteria for EM algorithm, k and in the
	generalized linear models; default ! (1.E-4, 1.E-4,
	1.E-4)
Parameters	
Y = variates	Response variate

Y = variates	Response variate
RESIDUALS = variates	Saves the simple residuals
FITTEDVALUES = variates	Saves the fitted values
ESTIMATES = variates	Saves the estimates of the parameters
SE = variates	Saves the standard errors of the estimates
RSAVE = <i>identifiers</i>	Saves the regression structure for the final generalized model
	fitted for the count model
ZSAVE = <i>identifiers</i>	Saves the regression structure for the final binomial regression
	fitted for the zero-inflation model

ROKEEP procedure

Saves information from a zero-inflated regression model for count data with excess zeros fitted by ROINFLATED (D.A. Murray).

Options	
RESIDUALS = variate	Saves the simple residuals
FITTEDVALUES = variate	Saves the fitted values
ESTIMATE = variate	Saves the parameter estimates
SE = variate	Saves the standard errors of the parameter estimates
VCOVARIANCE = <i>symmetric matrix</i>	Saves the variance-covariance matrix of estimates for the ZIP and ZINB models
XFITTEDVALUES = variate	Saves the fitted values for the count model
XSEFITTEDVALUES = variate	Saves the standard errors of the fitted values for the fitted
	values of the count model

Saves the fitted values for the zero model
Saves the standard errors of the fitted values for the fitted
values of the zero model
Saves -2 times the log-likelihood

No parameters

R2LINES procedure

Fits two-straight-line (broken-stick) models to data (A.W.A. Murray & J.T. Wood).

Options	
PRINT = string token	What to print (model, summary, estimates,
	fittedvalues, intercepts); default mode, summ, esti
PLOT = string tokens	What to plot (breakpoint, lines, residuals); default *
	i.e. nothing
HORIZONTAL = <i>string token</i>	Forces either the left- the or right-hand line to be horizontal
	(left, right); default * i.e. neither
CIPROBABILITY = scalar	Sets the probability level of the confidence interval about the X
	value at the intersection; default 0.95
[†] NGRIDLINES = scalar	Controls the number of points used in the initial search for the
	intersection of the lines; default 100
TERMS = variates	Additional x-variates to include in the model; default none
[†] METHOD = <i>string token</i>	Optimization method (gaussnewton, newtonraphson,
	fletcherpowell); default newt
Parameters	
Y = variates	Response variates to be modelled
X = variates	Explanatory variable for each response variate
TITLE = texts	Title to use on the graphs for each response variate
FITTEDVALUES = variates	Saves fitted values
RESIDUALS = variates	Saves standardized residuals
ESTIMATES = variates	Saves estimates from each model (i.e. intersection coordinates
	and slopes of the fitted lines)
SE = variates	Saves standard errors of the estimates
INTERCEPTS = variates	Saves the intercepts
LOWER = scalars	Saves the lower bound of the confidence interval about the x-
	value at the intersection
UPPER = scalars	Saves the upper bound of the confidence interval about the x-
	value at the intersection
PARTIALLIKELIHOOD = pointers	Saves the partial likelihood and grid values for partial
	likelihood plots

SAGRAPES procedure

Produces statistics and graphs for checking sensory panel performance (D.I. Hedderley).

Options	
PRINT = string tokens	Controls printed output (aovtables, graphs,
	summarystatistics, tables); default grap, tabl
TREATMENTS = $factor$	Factor defining the different treatments that are being assessed
SESSIONS = factor	Factor defining the sessions on which the assessments were
	done
ASSESSORS = factor	Factor defining the individual assessors
SCALING = string token	Equal scaling for x and y axes on Drift-Unreliability and
	Discrimination-Disagreement graphs (equal, nome); default
	none
DESCRIPTION = text	Extra information to print on graphs
Parameter	
DATA = variates	Variate for each attribute, containing the recorded score

SAMPLE procedure

Samples from a set of units, possibly stratified by factors (P.W. Lane).

SEED = scalar	Seed for the random number generator; default 0 i.e. continue
NVALUES = scalar	from previous generation Number of units from which a simple sample is to be taken;
Parameters	default * i.e. as defined by UNITS statement
NSAMPLE = <i>scalars</i> or <i>tables</i>	Number of values in simple sample, or table of numbers of values at each combination of levels of its classifying factors; no default
SAMPLE = <i>identifiers</i>	Structure to store the result; no default

SBNTEST procedure

Calculates the sample size for binomial tests (R.W. Payne & D.A. Murray).

Options

Options	
PRINT = string token	What to print (replication, power); default repl, powe
PRMETHOD = string token	Method to be used to calculate the probabilities for the
	<pre>binomial test (angular, normalapproximation, exact);</pre>
	default norm
PROBABILITY = scalar	Significance level for the test; default 0.05
POWER = scalar	The required power (i.e. probability of detection) of the test;
	default 0.9
TMETHOD = string token	Type of test to be done (onesided, twosided); default ones
NULL = scalar	Probability under the null hypothesis for the one-sample test;
	default 0.5
RATIOREPLICATION = scalar	Ratio of replication sample2:sample1 (i.e. the size of sample 2
	should be RATIOREPLICATION times the size of sample 1);
	default 1
REPLICATION = variate	Replication values for which to calculate and print or save the
	power; default * takes 11 replication values centred around the
	required number of replicates
Parameters	
P1 = scalars	Probability to detect in sample 1
P2 = scalars	Probability to detect in sample 2
NREPLICATES = scalars	Saves the required number of replicates
VREPLICATION = variates	Numbers of replicates for which powers have been calculated
VPOWER = variates	Power (i.e. probability of detection) for the various numbers of
	replicates

SCALAR directive

MAXIMUM = scalars

Declares one or more scalar data structures.

Options	
VALUE = scalar	Value for all the scalars; default is a missing value
MODIFY = string token	Whether to modify (instead of redefining) existing structures (yes, no); default no
IPRINT = string tokens	Information to be used to identify the scalars in output
-	(identifier, extra); if this is not set, they will be identified
	in the standard way for each type of output
Parameters	
IDENTIFIER = <i>identifiers</i>	Identifiers of the scalars
VALUE = scalars	Value for each scalar
DECIMALS = scalars	Number of decimal places for printing
EXTRA = $texts$	Extra text associated with each identifier
MINIMUM = scalars	Minimum value for the contents of each structure

Maximum value for the contents of each structure

DREPRESENTATION = *scalars* or *texts*

Default format to use when the contents represents a date and time

SCORRELATION procedure

Calculates the sample size to detect specified correlations (R.W. Payne). **Ontions**

Options	
PRINT = string token	What to print (replication, power); default repl, powe
PROBABILITY = scalar	Significance level at which the correlation or difference
	between correlations is to be tested; default 0.05
POWER = scalar	The required power (i.e. probability of detection) of the test;
	default 0.9
TMETHOD = string token	Whether to a one- or two-sided test is to be made (onesided,
U U	twosided); default ones
RATIOREPLICATION = <i>scalar</i>	Ratio of replication sample2:sample1 (i.e. the size of sample
	for group 2 should be RATIOREPLICATION times the size of
	sample for group 1); default 1
REPLICATION = variate	Replication values for which to calculate and print or save the
	power; default * takes 11 replication values centred around the
	required number of replicates
Parameters	
COR1 = scalars	Anticipated correlation in group 1
COR2 = scalars	Anticipated correlation in group 2
NREPLICATES = scalars	Saves the required number of replicates
VREPLICATION = variates	Numbers of replicates for which powers have been calculated
VPOWER = variates	Power (i.e. probability of detection) for the various numbers of
	replicates

SDISCRIMINATE procedure

Selects the best set of variates to discriminate between groups (D.B. Baird, L.H. Schmitt & J.W. McNicol).

Options	
PRINT = string tokens	Printed output from the analysis (summary, steps,
	validation, specificity, discrimination,
	monitoring); default summ, vali, spec, disc
PLOT = string tokens	What plots to produce (errorrate, steps, specificity,
	discriminant); default erro, steps, spec, disc
DDISCRIMINANT = string tokens	What to display on the discriminant plot (means, mlabels,
	scores, polygons, confidencecircle); default means,
	mlabels, scores, conf
METHOD = string token	The variable selection method to use (forward, backward);
	default forw
NSELECT = scalar	Number of variates to select; default 4
CRITERION = string token	Criterion to use to select variables (wilkslambda,
	crossvalidation, bootstrap, jackknife); default wilk
MODELCHOICE = string token	Which model to save (optimal, nselect); default opti
VALIDATIONMETHOD = string token	Validation method to use to calculate error rates (bootstrap,
	crossvalidation, jackknife, prediction); default
	cros
NSIMULATIONS = variate	Number of bootstraps or cross-validation sets to use for
	selection and for validation; default ! (10, 50)
NCROSSVALIDATIONGROUPS = scalar	Number of groups for cross-validation, default 10
seed = scalar	Seed for random number generation; default 0
YROOT = scalar	Specifies the root for plotting on the y-axis
XROOT = scalar	Specifies the root for plotting on the x-axis
Parameters	
DATA = pointers	Each pointer contains a set of variates that are available to be

	selected
GROUPS = factors	Define groupings for the units in each training set
FORCED = <i>pointers</i>	Variates that must be included in the model
SELECTED = <i>pointers</i>	Saves the variates in the final model
STEPS = pointers	Saves the criterion values for each step in the model selection
ERRORRATE = scalars	Saves the validation error rate for the final model
SPECIFICITY = <i>matrices</i>	Saves the specificity table for the final model
ALLOCATION = $factors$	Saves the groups allocated by the final model
LRV = LRVs	Saves the LRVs from the final discriminant analysis
SCORES= matrices or pointers	Save discriminant scores for unit from the final model

SEDLSI procedure

Calculates least significant intervals (M.C. Hannah).

Options **PRINT** = *string tokens* What to print (delta, lsi, fittedsed, discrepancy, maxdiscrepancy, %discrepancy); default delta, 1si, maxd METHOD = *string token* Selects the method for computing the deltas (leastsquares, max, maxpse); default leas What to plot (sed, lsi); default sed, lsi **PLOT** = *string tokens* CHECKFIT = string token Which pairwise contrasts to use in printed output or plots involving the fitted SEDs (specified, all); default spec Significance level for the least significent intervals; default PROBABILITY = scalar 0.05. DF = scalarDegrees of freedom for the t-distribution use in calculation of the least significent intervals; default * assumes an infinite number of degrees of freedom (i.e. a Normal rather than a tdistribution) Window in which to plot the graphs WINDOW = scalarTitle for the graphs; default 'Estimates with LSIs by TITLE = textTreatment YTITLE = textTitle for the y-axis; default 'Estimates' **Parameters** Parameter estimates; if these are not supplied SEDLSI can ESTIMATES = *tables* or *variates* calculate the parameters $\{\delta_i\}$ but not the LSIs Matrix containing standard errors of (pairwise) differences SED = *symmetric matrices* between estimates Matrix containing variances and covariances of estimates VCOVARIANCE = *symmetric matrices* Weight (or importance) to be used for each pairwise WEIGHTS = *symmetric matrices* difference; default is a matrix of ones (i.e. all pairwise differences of equal interest) LABELS = textsText vector (e.g. treatment labels) for labelling output; default takes the labels of levels of the factor classifying an ESTIMATES table or (if ESTIMATES is a variate or unset) row labels from SED or VCOVARIANCE DELTA = variates Saves the estimated parameters $\{\delta_i\}$ Saves details of the least significant intervals LSI = pointers Saves the fitted SED matrices FITTEDSED = *symmetric matrices*

SED2ESE procedure

Calculates effective standard errors that give good approximate standard errors of differences (R.W. Payne).

Option

PRINT = string token	Controls printed output (ese, discrepancy,
	<pre>maxdiscrepancy, %discrepancy, %accounted); default *</pre>
	i.e. none

Parameters

SED = symmetric matrices	Standard errors of differences to be approximated
ESE = variates or tables	Saves the effective standard errors
DISCREPANCY = <i>symmetric matrices</i>	Saves the discrepancies between the standard errors of
	differences and the approximate values calculated from the
	effective standard errors
%ACCOUNTED = scalars	Percentage of variation amongst the standard errors of
	differences accounted for by the approximate values calculated
	from the effective standard errors
TEMPLATE = $tables$	Table that can be duplicated to provide a table to store the
	effective standard errors

SET directive

Sets details of the "environment" of a Genstat job.

Options	5
INPRINT = string tokens	Printing of input as in PRINT option of INPUT (statements, macros, procedures, unchanged); default unch
OUTPRINT = string tokens	Additions to output as in PRINT option of OUTPUT (dots, page, unchanged); default unch
DIAGNOSTIC = <i>string tokens</i>	Defines the least serious class of Genstat diagnostic which should still be generated (messages, warnings, faults, extra, unchanged); default unch
ERRORS = <i>scalar</i>	Number of errors that a job may contain before it is abandoned (0 implies no limit); default is to leave unchanged
FAULT = $text$	Sets the Genstat fault indicator (for example, FAULT=* clears the last fault); default is to leave the indicator unchanged
PAUSE = scalar	Number of lines to output before pausing (interactive use only; 0 implies no pausing); default is no change
PROMPT = text	Characters to be printed for the input prompt; default is to leave unchanged
NEWLINE = <i>string token</i>	How to treat a new line ((significant, ignored);); default is no change
CASE = string token	Whether lower- and upper-case (small and capital) letters are to be regarded as identical in identifiers (significant, ignored); default is no change
FIELDWIDTH = scalar	Fieldwidth to be used as a default minimum by PRINT and other output commands
SIGNIFICANTFIGURES = scalar	Minimum number of significant figures to be supplied in the default formats determined by PRINT and other output commands
SEEDS = <i>pointer</i> or <i>scalar</i>	Defines the current default seeds to be used for random numbers in various parts of Genstat
RUN = string token	Whether or not the run is interactive (interactive, batch); by default the current setting is left unchanged
UNITS = <i>identifier</i>	To (re)set the current units structure; default is to leave unchanged
BLOCKSTRUCTURE = <i>identifier</i>	To (re)set the internal record of the most recent BLOCKSTRUCTURE statement; default is to leave unchanged
TREATMENTSTRUCTURE = <i>identifier</i>	To (re)set the internal record of the most recent TREATMENTSTRUCTURE statement; default is to leave unchanged
COVARIATE = <i>identifier</i>	To (re)set the internal record of the most recent COVARIATE statement; default is to leave unchanged
ASAVE = <i>identifier</i>	To (re)set the current ANOVA save structure; default is to leave unchanged
DSAVE = <i>identifier</i>	To (re)set the current save structure for the high-resolution

398	4 Syntax summary
MSAVE = <i>identifier</i>	graphics environment; default is to leave unchanged To (re)set the current save structure for multivariate analysis; default is to leave unchanged
RSAVE = <i>identifier</i>	To (re)set the current regression save structure; default is to leave unchanged
TSAVE = <i>identifier</i>	To (re)set the current time-series save structure; default is to leave unchanged
VSAVE = <i>identifier</i>	To (re)set the current REML save structure; default is to leave unchanged
VCOMPONENTS = <i>identifier</i>	To (re)set the current REML model definitions, as specified by VCOMPONENTS and VSTRUCTURE; default is to leave
WORDLENGTH = string token	unchanged Length of word (8 or 32 characters) to check in identifiers, directives, options, parameters and procedures (long, short); default * i.e. no change
CAPTIONS = <i>string tokens</i>	Controls which captions are displayed (minor, major, meta, unchanged); default unch
TYPESET = string tokens	Controls when typesetting commands within textual strings are used (output, graphics); if unset, the existing setting is left unchanged
CMETHOD = string token	Controls whether number settings for colour options and parameters are interpreted as RGB values or as numbers of standard colours (rgb, standard); if unset, the existing setting is left unchanged
DATASPACE = <i>scalar</i> or <i>variate</i>	Updates the current data space allocations; if unset, the existing allocations are left unchanged
WORKINGDIRECTORY = text	Sets the working directory; default is to leave this unchanged
ALGORITHMS = string token	Controls the use of enhanced computing algorithms (standard, mkl); if unset, the existing setting is left unchanged
ACTIONAFTERFAULT = string token	Controls what happens after a fault (continue, stop); if unset, the existing setting is left unchanged
UNSETDUMMY = string token	Controls what happens if you specify an unset dummy as the setting of an option or parameter that expects another type of data structure (fault, ignore, warn); if unset, the existing setting is left unchanged
LANGUAGE = $text$	Text with either one or two values to specify a preferred language for output and (optionally) a second choice in case the preferred language is unavailable
YEAR2DIGITBREAK = scalar [†] TIMEWITHSECONDS = string token	Controls how 2 digits can be used to specify years Controls whether seconds are included with the time12 and time24 date representations; (absent, present, unchanged); default unch
No parameters	

SETALLOCATIONS directive

Runs through all ways of allocating a set of objects to subsets.

Options	
NREQUIRED = scalar	Number of allocations that are required; default 1
UNIQUE = string token	Whether only unique allocations are to be formed, allowing
	the reordering of the subsets (yes, no); default no
NFOUND = scalar	Number of allocations that has been found
NPOSSIBLE = scalar	Saves the total of allocations that can be formed
GROUPS = factor or pointer	Saves the allocations, in a single factor if NREQUIRED = 1,
	otherwise in a pointer to NFOUND factors
UNITS = variate	Supplies numbers for the objects; if unset, the positive integers

START = factor	1, 2 are used Previous allocation; if unset the allocations start as a partitioning of the objects in the ordering in the UNITS variate
Parameters	Number of objects in each subset
SETSIZE = scalars	Saves the objects allocated to each subset, in a single variate if
ELEMENTS = variates or pointers	NREQUIRED = 1, otherwise in a pointer to NFOUND variates

SETCALCULATE directive

Performs Boolean set calculations on the contents of vectors or pointers.

Options	
NULL = scalar	Returns either 1 or 0 according to whether or not the result is a
	null (i.e. empty) set
FREPRESENTATION = string token	How to represent factors in a calculation that contains only
	factors (levels, labels); default leve
TOLERANCE = $scalar$	Tolerance to use when comparing numerical values; default
	10 ⁻⁶
SUBSTITUTE = <i>string token</i>	Whether to substitute dummies within pointers in the
C C	expression (yes, no); default no
NOMESSAGE = <i>string tokens</i>	Which warning messages to suppress (novalues); default *
	i.e. none
Parameter	
expression	Expression defining the calculation to be performed

SETDEVICE procedure

Opens a graphical file and specifies the device number on basis of its extension (M.P. Boer & J.T.N.M. Thissen).

No options

Name of the graphical file including one of the possible
<pre>extensions .bmp, .emf, .eps, .gmf, .jpg, .jpeg, .pdf,</pre>
.png, .tif or .tiff; must be set
Saves the device number corresponding to the graphical
format specified by parameter FILENAME
How to create graphs for file types such as .emf, .jpg, .tif
or .png (asynchronous, synchronous); default asyn

SETOPTION directive

Sets or modifies defaults of options of Genstat directives or procedures.

Option	Ĩ
DIRECTIVE = string token	Directive (or procedure) to be modified
Parameters	
NAME = <i>string tokens</i>	Option names
DEFAULT = <i>identifiers</i>	New default values

SETPARAMETER directive

Sets or modifies defaults of parameters of Genstat directives or procedures.

Option	-
DIRECTIVE = string token	Directive (or procedure) to be modified
Parameters	
NAME = <i>string tokens</i>	Parameter names
DEFAULT = <i>identifiers</i>	New default values

SETRELATE directive

Compares the distinct values contained in two data structures.

Obtions	O	ptions	
---------	---	--------	--

options	
FREPRESENTATION = <i>string token</i>	How to represent factors in a comparison between two factors
	(levels, labels, ordinals); default leve
LFACTORIAL = scalar	Limit on number of factors or variates in the terms formed
	from a LEFT formula; default * i.e. none
RFACTORIAL = scalar	Limit on number of factors or variates in the terms formed
	from a RIGHT formula; default * i.e. none
TOLERANCE = $scalar$	Tolerance to use when comparing numerical values; default
	10 ⁻⁶
SUBSTITUTE = <i>string token</i>	Whether to substitute dummies within LEFT or RIGHT pointers
	and formulae (yes, no); default no
	and formulae (yes, no), default no
Parameters	
LEFT = <i>identifiers</i>	First structures in each comparison
RIGHT = <i>identifiers</i>	Second structures in each comparison
CONTAINS = scalars	Returns 1 or 0 according to whether or not LEFT contains
	RIGHT
EQUALS = scalars	Returns 1 or 0 according to whether or LEFT and RIGHT
-	contain exactly the same distinct set of items
INCLUDEDIN = scalars	Returns 1 or 0 according to whether or not LEFT is included in
INCLODEDIN – scatars	RIGHT
DISTINCT = scalars	Returns 1 or 0 according to whether or not LEFT and RIGHT
	are distinct

SET2FORMULA directive

Forms a model formula using a set of structures supplied in a pointer.

Option	
•	
METHOD = string token	Relationship of the structures within the formula (combined,
	crossed, nested); default comb
Parameters	
POINTER = pointers	Sets of structures to be used to form the formulae
FORMULA = formula structures	Formulae constructed from the sets

SHELLEXECUTE directive

Launch executables or open files in another application using their file extension, PC Windows only.

No options Parameters

FILE = text	Name of the file to execute
STATUS = scalar	Indicates whether the execution of the file was successful (0)
	or not (1)
MESSAGE = text	Saves the error message associated with a failure to execute
	the file

SIGNTEST procedure

Performs a one or two sample sign test (E. Stephens & P.W. Goedhart).

Options	
PRINT = string token	Whether to print the test statistic with the associated
	probability and sample size (test); default test
METHOD = string token	Type of test (twosided, greaterthan, lessthan); default twos
GROUPS = factor	Defines the groups for a two-sample test if only the Y1 parameter is specified
NULL = scalar	Median value or difference in medians under the null hypothesis; default 0

	4.1 Commands	401
Parameters		
Y1 = variates	Data values for a one-sample sign test (neither Y specified), or for the first sample of a two-sampl specified) or the values in both samples of a two (GROUPS specified but not Y2)	le test (Y2 also
Y2 = variates	Data values for the second sample of a two-sample	ple test
STATISTIC = scalars	To save the sign test statistic	
NBINOMIAL = $scalars$	To save the effective sample size	
PROBABILITY = scalars	To save the probability level of the test	

SIMPLEX procedure

Searches for the minimum of a function using the Nelder-Mead simplex algorithm (J.A. Nelder & W. van den Berg).

Options

- F	
PRINT = string tokens	Controls printed output (results, monitoring); default resu
CALCULATION = <i>expression structures</i>	Expressions to calculate the target function
FUNCTIONVALUE = scalar	Identifier of the scalar, calculated by CALCULATION, whose
	value is to be minimized
DATA = any type	Data to be used with procedure _SIMPLEXFUNCTION
POINTS = pointer	Saves the points of the final simplex
FVALUES = <i>pointer</i>	Saves the function values at the points
MAXCYCLE = scalar	Maximum number of iterations; default 500
TOLERANCE = $scalar$	Convergence criterion; when standard deviation of function
	values is lower than TOLERANCE convergence is assumed to be
	reached; default 1.E-9
Parameters	
PARAMETER = <i>scalars</i>	Parameters to be estimated

PARAMETER = scalars	Parameters to be estimated
LOWERINITIAL = scalars	Lower starting values for the parameters
UPPERINITIAL = scalars	Upper starting values for the parameters

SKEWSYMMETRY procedure

Provides an analysis of skew-symmetry for an asymmetric matrix (P.G.N. Digby).

Printed output from the analysis (roots, scores); default *
i.e. no output
Asymmetric (square) matrices to be analysed
Stores the squared singular values from the analysis; the
structure has one value for each plane fitted in the analysis
(e.g. if the DATA matrix has 11 rows and columns, the ROOTS
diagonal matrix will have 5 values)
Stores the coordinates of the points from the analysis; each
matrix has the same number of rows as the corresponding
DATA matrix, and has 2 columns for each plane fitted in the
analysis (e.g. if the DATA matrix has 11 rows and columns, the
SCORES matrix will have 11 rows and 10 columns)

SKIP directive

Skips lines in input or output files.	
Options	
CHANNEL = scalar	Channel number of file; default current channel of the specified type
FILETYPE = string token	Type of the file concerned (input, output); default inpu
STYLE = string token	Style to use when skipping output (plaintext, formatted); default * uses the current style of the channel

Parameter

identifiers

How many lines to skip; for input files, a text means skip until the contents of the text have been found, further input is then taken from the following line

SLCONCORDANCE procedure

Calculates the sample size for Lin's concordance correlation coefficient (R.W. Payne).

Options	
PRINT = string token	What to print (replication, power); default repl, powe
PROBABILITY = scalar	Significance level at which the non-reproducibility is to be tested; default 0.05
POWER = scalar	The required power (i.e. probability of detection) of the test; default 0.9
REPLICATION = variate	Replication values for which to calculate and print or save the power; default * takes 11 replication values centred around the required number of replicates
Parameters	
CORRELATION = scalars	Correlation for two samples with the smallest amount of non- reproducibility required to be detected
CONCORDANCE = scalars	Value of Lin's concordance for two samples with the smallest amount of non-reproducibility required to be detected
MEANSHIFT = $scalars$	Value of the shift in means (divided by the harmonic mean of the standard deviations) for two samples with the smallest amount of non-reproducibility required to be detected
SDRATIO = scalars	Value of the ratio of the standard deviations for two samples with the smallest amount of non-reproducibility required to be detected
NREPLICATES = $scalars$	Saves the required number of replicates
VREPLICATION = variates	Numbers of replicates for which powers have been calculated
VPOWER = variates	Power (i.e. probability of detection) for the various numbers of replicates

SMANNWHITNEY procedure

Calculates the sample sizes for the Mann-Whitney test (R.W. Payne).

Options	
PRINT = string token	What to print (replication, power); default repl, powe
PROBABILITY = scalar	Significance level at which the test is to be made; default 0.05
POWER = scalar	The required power (i.e. probability of detection) of the test; default 0.9
TMETHOD = string token	Whether to a one- or two-sided test is to be made (onesided, twosided); default twos
RATIOREPLICATION = scalar	Ratio of replication sample2:sample1 (i.e. the size of sample 2 should be RATIOREPLICATION times the size of sample 1); default 1
REPLICATION = variate	Sample sizes for which to calculate and print or save the power; default * takes 11 replication values centred around the required number of replicates
Parameters	
NULLPROBABILITIES = variates	Probabilities under null hypothesis
ODDSRATIO = scalars	Odds ratio for test group vs. control
NREPLICATES = $scalars$	Saves the required sample size
VREPLICATION = variates	Sample sizes for which powers have been calculated
VPOWER = variates	Power (i.e. probability of detection) for the various numbers of replicates

SMCNEMAR procedure

Calculates sample sizes for McNemar's test (R.W. Payne).

Ontions	
Options	
PRINT = string token	What to print (replication, power); default repl, powe
PRMETHOD = <i>string token</i>	Method to be used to calculate the power of the McNemar test
	(normalapproximation, exact); default exac
PROBABILITY = $scalar$	Significance level at which the test is to be made; default 0.05
POWER = scalar	The required power (i.e. probability of detection) of the test;
	default 0.9
TMETHOD = string token	Whether a one- or two-sided test is to be made (onesided,
	twosided); default twos
REPLICATION = variate	Sample sizes for which to calculate and print or save the
	power; default * takes 11 replication values centred around the
	required number of replicates
Parameters	
CHANGEPROBABILITY = scalars	Probability of any sort of change
RATIOPROBABILITIES = scalars	Ratio of the two probabilities of change
NREPLICATES = $scalars$	Saves the required sample size
VREPLICATION = variates	Sample sizes for which powers have been calculated
VPOWER = variates	Power (i.e. probability of detection) for the various numbers of
	replicates
	F

SMOOTHSPECTRUM procedure

Forms smoothed spectrum estimates for univariate time series (G. Tunnicliffe Wilson & S.J. Welham).

Options	

Options	
PRINT = string token	Controls printed output (description); default desc
METHOD = string token	Method to be used for smoothing (lagwindow, direct,
	YuleWalker, exactautoregressive); default lagw
BANDWIDTH = $scalar$	Frequency domain bandwidth for the smoothing window; must
	be set if METHOD=dire
MAXLAG = scalar	Specifies the cut-off lag (i.e. the maximum lag of
	autocovariance used in the spectrum calculation) for
	METHOD=lagw, or the order of the autoregression for
	METHOD=Yule or exac; if this option is not set then
	BANDWIDTH must be set, and will be used to determine an
	appropriate value of MAXLAG
DIVISIONS = scalar	Determines the number of frequency divisions into which the
	range [0.0, 0.5] is divided for calculating the spectrum; the
	default is chosen so that the bandwidth covers about four
	intervals
PROBABILITY = scalar	Probability value used for confidence limits; default 0.9
TAPER = scalar	The proportion of data to be tapered (applied for all settings of
	METHOD except exac); default 0.0
SHAPE = $scalar$	The shape of the trapezium window (a value of 1.0 specifies a
	rectangular, and 0.0 a triangular window); default 0.5
YLOG = string token	Whether to plot with a log-transformed Y-axis (yes, no);
_	default no
XLOG = string token	Whether to plot with a log-transformed X-axis (yes, no);
	default no
GRAPHICS = <i>string token</i>	What sort of graphics to use (lineprinter,
	highresolution); default high
WINDOW = scalar	Window to be used for plotting; default 1
PENS = variate	The two pens to be used (after being defined appropriately) for
	drawing the plots; default ! (1, 2)

4 Syntax summary **Parameters** SERIES = variates The series for which the spectrum is to be calculated Scalar specifying that the first N units of the series are to be LENGTH = *scalars* or *variates* used, or a variate specifying the first and last units of the series to be used Saves the smoothed spectrum; need not be declared in SPECTRUM = variates advance, but will be set up as a variate of the appropriate length within the procedure LOWER = *scalars* or *variates* Scalar to save the multiplier of the spectrum used to calculate the lower limit, or a variate to save the values of the lower limit UPPER = *scalars* or *variates* Scalar to save the multiplier of the spectrum used to calculate the upper limit, or a variate to save the values of the upper limit FREQUENCY = variates Saves the frequency values at which the spectrum is calculated

SOM procedure

Declares a self-organizing map (R.W. Payne).

No options Daramatara

Identifiers of the SOMs
Names of variables corresponding to the weights of each SOM
Number of rows or row coordinates for the map
Number of columns or column coordinates for the map
Method for calculating the distances of data points from the
modes (euclidean, cityblock); default eucl
Method for calculating the contribution of a data point to each
node when revising the weights (gaussian, neighbour);
default gaus

SOMADJUST procedure

Performs adjustments to the weights of a self-organizing map (R.W. Payne).

Options	
SOM = pointer	Self-organizing map
DATA = matrix or pointer	Data values for training the map
DMETHOD = string token	Method for calculating the distances of data points from the
	modes (euclidean, cityblock); default eucl
WMETHOD = string token	Method for calculating the contribution of a data point to each
	node when revising the weights (gaussian, neighbour);
	default gaus
Parameters	
ALPHA = scalars	Alpha value for each iteration
SIGMA = scalars	Sigma value for each iteration when WMETHOD=gaussian
THRESHOLD = scalars	Threshold for each iteration when WMETHOD=neighbour
ERRORS = <i>matrices</i>	Saves the reconstruction errors at the nodes of the map after
	each iteration
TOTALERROR = <i>scalars</i>	Saves the total reconstruction error after each iteration
FITNODES = $factors$	Saves the nodes allocated to the data points after each iteration

SOMDESCRIBE procedure

Summarizes values of variables at nodes of a self-organizing map (R.W. Payne). Ontions

Options	
PRINT = string token	Controls whether or not the summaries are printed
	(summaries); default summ
DATA = matrix or pointer	Data values to identify the positions of the samples on the map
SOM = pointer	Specifies the map
$I \rightarrow I$	T T T T T T T

NEWSOM = pointer Parameters	Saves the map, augmented by the summary information
Y = variates or factors METHOD = string tokens	Data values to be summarized How to summarize each Y (mean, mode, median, minimum, maximum, sd, variance); default mode for factors, mean for variates

SOMESTIMATE procedure

Estimates the weights for self-organizing maps (R.W. Payne).

Options

PRINT = string tokens	Controls output (weights, errors, monitoring, report);
	default weig, repo
PLOT = string token	Controls what to plot (fit, totalerror); default fit
DMETHOD = string token	Method for calculating the distances of data points from the
	modes (euclidean, cityblock); default eucl
WMETHOD = string token	Method for calculating the contribution of a data point to each
	node when revising the weights (gaussian, neighbour);
	default gaus
ALPHA = scalar or variate	Initial alpha value for each set of iterations; default ! (1, 0.1)
SIGMA = scalar or variate	Initial sigma value for each set of iterations when
	WMETHOD=gaussian; default ! (1, 0.01) multiplied by the
	maximum distance between nodes
THRESHOLD = scalar or variate	Initial distance threshold for each set of iterations when
	WMETHOD=neighbour; default ! (0.5, 0.1) multiplied by
	the maximum distance between nodes
NCYCLE = scalar or variate	Number of cycles in each set of iterations; default 500
NSTOP = scalar	Number of consecutive cycles with no changes required for
	convergence; default 10
Parameters	
SOM = pointers	Save the information about each map
DATA = matrices or pointers	Data values for training each map
ERRORS = <i>matrices</i>	Reconstruction errors at the nodes of each map
FITROWS = factors	Save the positions of the rows allocated to the data points
FITCOLUMNS = factors	Save the positions of the columns allocated to the data points
Y = variates	Save y-values used to plot the data points
X = variates	Save x-values used to plot the data points
PEN = scalars, variates or factors	Pens used to plot the maps
SEED = scalars	Seed for the random numbers used to initialize the weights in
	each map

SOMIDENTIFY procedure

Allocates samples to nodes of a self-organizing map (R.W. Payne).

No options Parameters

DATA = matrices or pointers	Data values used to allocate the samples to the nodes of the
	map
SOM = pointers	Save the information about each map
FITNODES = $factors$	Save nodes allocated to the data points
FITROWS = factors	Save the positions of the rows allocated to the data points
FITCOLUMNS = factors	Save the positions of the columns allocated to the data points

SOMPREDICT procedure

Makes predictions using a self-organizing map (R.W. Payne).

Options

PRINT = *string token*

Controls whether or not the predictions are printed (predictions); default pred

406	4 Syntax summary
SOM = pointer	Specifies the map
YNAMES = text	Names of variables to predict; default * gives predictions for all the variables
METHODS = string tokens	Types of predictions to give (mean, mode, median, minimum, maximum, sd, variance); default mean, mode, medi, mini, maxi, sd, vari
YSAVE = text	Saves a text with a unit for each set of predictions giving the name of the corresponding y-variable
MSAVE = text	Saves a text with a unit for each set of predictions giving the name of the corresponding method
Parameters	1 0
DATA = matrices or pointers	Data values to identify the positions of the new samples on the map
UNITLABELS = <i>variates</i> or <i>texts</i>	Labels for the predictions (to identify the samples); default takes the row labels if DATA is a matrix or any unit labels if DATA is a pointer to a set of variates
PREDICTIONS = variates or pointers	Save the predictions

SORT directive

Sorts units of vectors according to an index vector.

Options	
INDEX = vectors	Variates, texts or factors whose values are to define the ordering; default is to use the first vector in the OLDVECTOR list
DIRECTION = string token	Order in which to sort (ascending, descending); default asce
DECIMALS = scalar	Number of decimal places to which to round before sorting numbers; default * i.e. no rounding
Parameters	
OLDVECTOR = vectors or pointers	Factors, pointers, texts, or variates whose values are to be sorted
NEWVECTOR = <i>vectors</i> or <i>pointers</i>	Structure to receive each set of sorted values; if any are omitted, the values are placed in the corresponding OLDVECTOR

SPCAPABILITY procedure

Calculates capability statistics (R.W. Payne).

Option	5 /
PRINT = string tokens	Controls output (cpk, ppk, histogram); default cpk, ppk
Parameters	
DATA = variates or pointers	Data measurements
SAMPLES = factors or scalars	Factor identifying samples or scalar indicating the size of each sample
LOWERLIMIT = scalars	Specifies the lower specification limit for each set of data
UPPERLIMIT = scalars	Specifies the upper specification limit for each set of data
CPK = scalars	Saves the index C_{pk}
PPK = scalars	Saves the index P_{pk}

SPCCHART procedure

Plots *c* or *u* charts representing numbers of defective items (A.F. Kane & R.W. Payne). **Options**

What to print (warnings); default * i.e. nothing
Type of chart to plot (c, u); default c
Method to use to obtain the control limits (given,
loglinear, untransformed); default untr
Multiplier to use to test whether to use mean sample size for

control limits; default 1

WINDOW = scalar SCREEN = string token Which high-resolution graphics window to use; default 3

Whether or not to clear the graphics screen before plotting

	(clear, keep); default clea
Parameters	
NDEFECTIVE = variates	Number of defective items
NTESTED = scalars or variates	Number of items tested
CENTRELINE = scalars	Sets or saves centre line
LOWERCONTROLLIMIT = scalars or	variates
	Sets or saves lower control limit
UPPERCONTROLLIMIT = scalars or	variates
	Sets or saves upper control limit
SPCOMBINE procedure	
Combines spreadsheet and data fi	les, without reading them into Genstat (D.B. Baird).
Options	
OUTFILENAME = text	Name of the output file
METHOD = string token	How to add the new data from the files specified by the
	FILENAME parameter (add, append, concatenate, merge); default appe
COIMA TOLL - string taken	
COLMATCH = <i>string token</i>	How to match columns when appending (name, position);
$c_{\rm D} c_{\rm MD} c_{\rm D} = f_{\rm matrix}$	default posi
GROUPS = factor	Factor to identify sections of appended files
OLDGLABEL = texts	Label to use in the GROUPS factor for the original data if GROUPS has not already been defined
MATCH = <i>text</i> or <i>pointer</i>	Up to four columns in the files specified by the FILENAME
	parameter to use as keys when merging files; default * uses the
	first column in the file
WITH = text or pointer	Columns in the OUTFILENAME file to use as keys when
	merging files; default * uses as many columns of the initial
	columns in OUTFILENAME as are needed to give a column for
	each MATCH column
UPDATE = string token	Whether to use columns with matching names to replace
	existing columns when concatenating or merging files (yes,
	no); default no changes the names of columns with the same
	name as existing columns so that they become unique
UPDATE = string token	Whether to use columns with matching names to replace
or bin ing to tell	existing columns when concatenating or merging files (yes,
	no); default no changes the names of columns with the same
	name as existing columns so that they become unique
Parameters	name as existing columns so that they become unique
FILENAME = $texts$	Names of files containing new data to be combined with the
	data in the OUTFILENAME file
SHEETNAME = $texts$	Name of a worksheet or a named range within an Excel,
SHEETNAME ICANS	Quattro, 123 or Open Office spreadsheet file; default takes the
	first sheet
CELLDANCE $= tarts$	Cell range giving the top left and bottom right cells within a
CELLRANGE = texts	worksheet; default takes all the data that it contains
DOMORT ROWTON - warrington	Row numbers of the units of data to be included into the
ROWSELECTION = variates	
	OUTFILENAME file; default takes all the rows
COLSELECTION = variates	Numbers of the columns of data to be combined with the
	OUTFILENAME file; default takes all the columns
PAGENAME = texts	Page name for each new sheet when METHOD=add; default
	'SHEET $< n >$ ' where n is the number of the sheet in the
	OUTFILENAME file, unless the sheet is already named in the
	FILENAME file

GLABEL = *texts* Label to use in the GROUPS factor to identify the data from each FILENAME file; if this is unset, GROUPS is defined with only levels

SPCUSUM procedure

Prints CUSUM tables for controlling a process mean (A.F. Kane & R.W. Payne).

Options	
REFERENCEVALUE = <i>scalars</i>	Specifies the upper and then the lower reference values, or just one of these if they are both the same; default 0.5
THRESHOLD = scalars	Detection thresholds, upper and then the lower, or just one of these if they are both the same; default 5
HEADSTART = $scalars$	Headstart values, upper and then the lower, or just one of these if they are both the same; default 0
Parameters	
DATA = variates or pointers	Data measurements
SAMPLES = <i>factors</i> or <i>scalars</i>	Factor identifying samples or scalar indicating the size of each sample
MEANTARGET = scalars	Specifies the target value for the sample means
SIGMA = scalars	Specifies or saves the standard deviation of the observations

SPEARMAN procedure

Calculates Spearman's Rank Correlat Simpson).	ion Coefficient (S.J. Welham, N.M. Maclaren & H.R.
Options	
PRINT = string tokens	Output required (test, correlations, ranks): test produces the correlation coefficient/matrix and relevant test statistics, correlations prints out just the correlation coefficients for each pair of variates; ranks produces the vectors of ranks for each sample; default test
GROUPS = factor	Defines the sample membership if only one variate is specified by DATA
CORRELATION = <i>scalar</i> or <i>symmetric</i> m	•
T = scalar or symmetric matrix	Scalar to save the rank correlation coefficient if there are two samples, or symmetric matrix to save the coefficients between all pairs of samples if there are several Scalar to save the Student's t approximation to the correlation coefficient if there are two samples, or symmetric matrix to save the t approximations for all pairs of samples if there are several (calculated only if the sample size is 8 or more)
DF = scalars	Scalar to save the degrees of freedom for each t-statistic
Parameters	
DATA = variates	List of variates containing the data for each sample, or a single variate containing the data from all the samples (the GROUPS option must then be set to indicate the sample to which each unit belongs)
RANKS = variates	Saves the ranks

SPEWMA procedure

Plots exponentially weighted moving-average control charts (A.F. Kane & R.W. Payne).

Options	
PRINT = string token	What to print (warnings); default * i.e. nothing
TOLERANCEMULTIPLIER = scalar	Multiplier to use to test whether to use mean sample size for
	control limits; default 1
WEIGHT = scalar	Weight parameter used in the calculation of the exponentially
	weighted moving-average statistic; default 0.25
NSIGMA = scalar	Number of multiples of sigma to use for control limits; default

3

	5
WINDOW = scalar	Which high-resolution graphics window to use; default 3
SCREEN = string token	Whether or not to clear the graphics screen before plotting
	(clear, keep); default clea
Parameters	
DATA = variates or pointers	Data measurements
SAMPLES = factors or scalars	Factor identifying samples or scalar indicating the size of each sample
MEAN = scalars	Sets or saves the sample mean value
SIGMA = scalars	Sets or saves the sample standard deviation
SPLINE procedure	
Calculates a set of basis function	ons for M-, B- or I-splines (P.W. Goedhart).
Options	
KNOTS = scalar or variate	Defines the interior knot values; no default i.e. this option must
	be set
ORDER = scalar	Defines the order of the piecewise polynomial; default 3
TYPE = string token	Controls which spline basis is calculated (m, b, i); default m
LOWER = scalar	Left-hand limit L of the interval $[L, U)$; default * i.e. the
	minimum of the X parameter is used
UPPER = scalar	Right-hand limit U of the interval $[L, U)$; default * i.e. a value
	slightly larger than the maximum of the X parameter is used
NOMESSAGE = <i>string token</i>	Which warning messages to suppress (warning); default *
Parameters	
X = variates	Values for which the basis spline functions are calculated
BASIS = pointers	Pointer to save variates containing the values of the basis
	spline functions
	spinie functions
DBASIS = pointers	Pointer to save variates containing the values of the first order

SPLOAD directive

Loads Genstat spreadsheet files.	
Options	
[†] PRINT = string token	What to print (catalogue, directory, summary); default cata
SCOPE = string token	When SPLOAD is used within a procedure, this allows the data structures to be created in program that called the procedure (SCOPE=external) or in the main program itself (SCOPE=global) rather than within the procedure (local, external, global); default loca
REDEFINE = string token	Whether to allow existing structures to have their type redefined (no, yes); default no
SYSTEM = string token	Whether to include Genstat system structures in the catalogue (yes, no); default no
UNNAMED = string token	Whether to include unnamed structures in the catalogue (yes, no); default no
TEMPMISSING = string token	Whether to read temporarily missing values as missing (yes, no); default no
Parameters	
FILENAME = $texts$	Names of spreadsheet files
SHEETNAME = <i>texts</i> , <i>variates</i> or <i>scalars</i>	Names or numbers of the sheets to read from each file; default * reads them all
ISAVE = pointers	Stores the identifiers of the structures loaded from each file

SPNTEST procedure

Calculates the sample size for a Poisson test (R.W. Payne & D.A. Murray).

Options	
PRINT = string token	What to print (replication, power); default repl, powe
PRMETHOD = string token	Method to be used to calculate the probabilities for the test
	(normalapproximation, exact); default norm
PROBABILITY = scalar	Significance level for the test; default 0.05
POWER = scalar	The required power (i.e. probability of detection) of the test; default 0.9
TMETHOD = string token	Type of test to be done (onesided, twosided); default ones
NULL = scalar	Mean under the null hypothesis for the one-sample test; must
	be set when MU2 is unset
RATIOREPLICATION = scalar	Ratio of replication sample2:sample1 (i.e. the size of sample 2
	should be RATIOREPLICATION times the size of sample 1); default 1
REPLICATION = variate	Replication values for which to calculate and print or save the power; default * takes 11 replication values centred around the required number of replicates
Parameters	
MU1 = scalars	Mean to detect in sample 1
MU2 = scalars	Mean to detect in sample 2
NREPLICATES = $scalars$	Saves the required number of replicates
VREPLICATION = variates	Numbers of replicates for which powers have been calculated
VPOWER = variates	Power (i.e. probability of detection) for the various numbers of replicates

SPPCHART procedure

Plots p or np charts for binomial testing for defective items (A.F. Kane & R.W. Payne).

Options	
PRINT = string token	What to print (warnings); default * i.e. nothing
PLOT = string token	Type of chart to plot (p, np); default p
METHOD = string token	Method to use to obtain the control limits
	(complementaryloglog, given, logit, probit,
	untransformed); default untr
TOLERANCEMULTIPLIER = scalar	Multiplier to use to test whether to use mean sample size for
	control limits; default 1
WINDOW = scalar	Which high-resolution graphics window to use; default 3
SCREEN = string token	Whether or not to clear the graphics screen before plotting
	(clear, keep); default clea
Parameters	
NDEFECTIVE = variates	Number of defective items
NTESTED = <i>scalars</i> or <i>variates</i>	Number of items tested
CENTRELINE = scalars	Sets or saves centre line
LOWERCONTROLLIMIT = scalars or va	ariates
	Sets or saves lower control limit
_	

UPPERCONTROLLIMIT = *scalars* or *variates*

Sets or saves upper control limit

SPRECISION procedure

Calculates the sample size to obtain a specified precision (R.W. Payne). **Options**

PRINT = string token	What to print (replication, precision); default repl,
	prec
NSAMPLES = $scalar$	Number of samples (1 or 2); default 2
CIPROBABILITY = scalar	Probability level for the confidence interval to indicate the
	precision; default 0.95

	4.1 Commands	411
RATIOREPLICATION = scalar	Ratio of replication sample2:sample1 (i.e. the size of samp should have be RATIOREPLICATION times the size of sam 1); default 1	
REPLICATION = variate	Replication values for which to calculate and print or save precision; default * takes 11 replication values centred are the required number of replicates	
Parameters		
PRECISION = scalars	Required precision	
VAR1 = scalars	Anticipated variance of sample 1	
VAR2 = scalars	Anticipated variance of sample 2; default * assumes the sa variance as sample 1	ame
NREPLICATES = scalars	Saves the required number of replicates	
VREPLICATION = variates	Numbers of replicates for which precisions have been calculated	
VPRDETECTION = variates	Precision for the various numbers of replicates	

SPSHEWHART procedure

Plots control charts for mean and standard deviation or range (A.F. Kane & R.W. Payne).

Options	
PRINT = string token	What to print (warnings); default * i.e. nothing
PLOT = string token	Type of chart to plot to accompany the chart of sample means
	(range, standarddeviation); default stan
METHOD = string token	Type of control limits (probability, sigma); default sigm
TOLERANCEMULTIPLIER = scalar	Multiplier to use to test whether to use mean sample size for control limits; default 1
PROBABILITY = scalars	Probability value(s) to use to calculate control limits when
	METHOD=probability; default 0.01, 0.025
WINDOWS = scalar	Which high-resolution graphics windows to use; if unset
	SPSHEWHART automatically sets up two windows containing
	the upper and lower halves of the screen
SCREEN = string token	Whether or not to clear the graphics screen before plotting
	(clear, keep); default clea
Parameters	
DATA = variates or pointers	Data measurements
SAMPLES = factors or scalars	Factor identifying samples or scalar indicating the size of each sample
MEAN = scalars	Sets or saves the sample mean value
SIGMA = scalars	Sets or saves the sample standard deviation

SPSYNTAX procedure

Puts details about the syntax of commands into a spreadsheet (R.W. Payne). **Option**

option	
OUTFILENAME = $texts$	Name of Genstat file (.gsh or .gwb) or Excel (.xls or .xlsx) file
	to create
Parameter	
COMMAND = texts	Single-line texts specifying the commands

SSIGNTEST procedure Calculates the sample size for a sign test (R.W. Payne).

options	
PRINT = string token	What to print (replication, power); default repl, powe
PROBABILITY = scalar	Significance level at which the response is to be tested; default
	0.05
POWER = scalar	The required power (i.e. probability of detection) of the test;
	default 0.9
TMETHOD = string token	Whether to a one- or two-sided test is to be made (onesided,

412	4 Syntax summary
REPLICATION = <i>variate</i>	twosided); default twos Replication values for which to calculate and print or save the power; default * takes 11 replication values centred around the required number of replicates
Parameters	
RESPONSE = scalars	Probability of response (i.e. the probability that an observation in one sample will be greater than the equivalent observation in the other sample) that should be detectable
NREPLICATES = scalars	Saves the required number of replicates
VREPLICATION = variates	Numbers of replicates for which powers have been calculated
VPOWER = variates	Power (i.e. probability of detection) for the various numbers of replicates

SSPM directive

Declares one or more SSPM data structures.

Options

TERMS = $formula$	Terms for which sums of squares and products are to be
	calculated; default *
FACTORIAL = scalar	Maximum number of vectors in a term; default 3
FULL = string token	Full factor parameterization (yes, no); default no
GROUPS = factor	Groups for within-group SSPMs; default *
DF = scalar	Number of degrees of freedom for sums of squares; default *
Parameters	
IDENTIFIER = <i>identifiers</i>	Identifiers of the SSPMs
SSP = symmetric matrices	Symmetric matrix to contain the sums of squares and products
	for each SSPM
MEANS = variates	Variate to contain the means for each SSPM
NUNITS = scalars	Number of units or sum of weights for each SSPM
WMEANS = pointers	Pointers to variates of group means for each SSPM

STACK procedure

Combines several data sets by "stacking" the corresponding vectors (R.W. Payne).

	-	0	1	0	<pre></pre>	• /	
Option							
DATASET = factor		Factor belong		e the dat	a set to wl	nich each u	nit originally

Parameters

STACKEDVECTOR = variates, factors or	texts
	New vectors combining the corresponding members of the
	data sets specified by parameter V1, or parameters V1-V100
V1 = pointers, variates, factors, texts of	r scalars
	Pointers defining (all) the components to be stacked into each
	STACKEDVECTOR, or contents of the first data set
V2 - V100 = variates, factors, texts or s	scalars
	Data sets 2 - 100
FREPRESENTATION = <i>string token</i>	How to match the values of factors (levels, labels,
	ordinals, renumbered); default leve

STANDARDIZE procedure

Standardizes columns of a data matrix to have mean zero and variance one (S.A. Harding & D.A. Murray).

No options Parameters

1 al ametel 5	
OLD = variates or matrices	Structures containing data to be standardized
NEW = variates or matrices	Structures to contain output; by default the OLD structures are
	overwritten

STEEL procedure

Performs Steel's many-one rank test (R.W. Payne).

Options PRINT = *string token* Controls printed output (description, sumranks, critical, permutationtest); default desc, sumr, crit METHOD = *string token* Form of the alternative hypothesis (twosided, greaterthan, lessthan); default twos TREATMENTS = factor Defines the treatments Treatment level corresponding to the control; default takes the CONTROL = *scalar* or *text* reference level of TREATMENTS Number of permutations for the permutation test; default 999 NTIMES = scalar SEED = scalar Seed to use to generate the random numbers for the permutation test; default 0 **Parameters**

DATA = variatesData values for the testsSUMRANKS = tablesSaves the sum of the ranks within the treatments from each testRANKS = variatesSaves the ranks of the data values for each test

STEM procedure

Produces a simple stem-and-leaf chart (J. Ollerton & S.A. Harding).No optionsParametersDATA = variatesData values for each plotNDIGITS = scalarsNumber of digits in the leaves of each plotSTEMUNITS = scalarsScale units for the stem values in each plot

STEP directive

Selects terms to include in or exclude from a linear, generalized linear or generalized additive model according to the ratio of residual mean squares.

PRINT = string tokens	What to print (model, deviance, summary, estimates, correlations, fittedvalues,	
	accumulated, monitoring, changes, confidence);	
	default mode, summ, esti, chan	
FACTORIAL = scalar	Limit for expansion of model terms; default * i.e. that in	
	previous TERMS statement	
POOL = string token	Whether to pool ss in accumulated summary between all term	
	fitted in a linear model (yes, no); default no	
DENOMINATOR = string token	Whether to base ratios in accumulated summary on rms from	
	model with smallest residual ss or smallest residual ms (ss,	
	ms); default ss	
NOMESSAGE = <i>string tokens</i>	Which warning messages to suppress (dispersion,	
	leverage, residual, aliasing, marginality,	
	vertical, df, inflation); default *	
FPROBABILITY = <i>string token</i>	Printing of probabilities for variance and deviance ratios (yes,	
	no); default no	
TPROBABILITY = <i>string token</i>	Printing of probabilities for t-statistics (yes, no); default no	
SELECTION = string tokens	Statistics to be displayed in the summary of analysis produced	
0	by PRINT=summary, seobservations is relevant only for a	
	Normally distributed response, and %cv only for a gamma-	
	distributed response (%variance, %ss, adjustedr2, r2,	
	seobservations, dispersion, %cv, %meandeviance,	
	%deviance, aic, bic, sic); default %var, seob if	
	DIST=normal, %cv if DIST=gamma, and disp for other	
	distributions	
INRATIO = scalar	Criterion for inclusion of terms; default 1.0	

414	4 Syntax summary
OUTRATIO = scalar	Criterion for exclusion of terms; default 1.0
MAXCYCLE = scalar	Limit on number of times to repeat stepwise selection, unless no change is made; default 1
PROBABILITY = scalar	Probability level for confidence intervals for parameter estimates; default 0.95
Parameter	
formula	List of explanatory variates and factors, or model formula

STOP directive

Ends a Genstat program. **No options or parameters**

STORE directive

To store structures in a subfile of a backing-store file.

Options	-
PRINT = string token	What to print (catalogue); default *
CHANNEL = scalar	Channel number of the backing-store file where the subfile is
	to be stored; default 0, i.e. the workfile
SUBFILE = <i>identifier</i>	Identifier of the subfile; default SUBFILE
LIST = string token	How to interpret the list of structures (inclusive, exclusive,
	all); default incl
METHOD = string token	How to append the subfile to the file (add, overwrite,
	replace, update); default add, i.e. clashes in subfile
	identifiers cause a fault (note: replace overwrites the complete
	file)
PASSWORD = text	Password to be stored with the file; default *
PROCEDURE = <i>string token</i>	Whether subfile contains procedures only (yes, no); default
u u	no
UNNAMED = string token	Whether to list unnamed structures (yes, no); default no
MERGE = string token	Whether or not to merge the structures with the existing
	contents of the subfile (yes, no); default no
Parameters	
IDENTIFIER = <i>identifiers</i>	Identifiers of the structures to be stored
STOREDIDENTIFIER = <i>identifiers</i>	Identifier to be used for each structure when it is stored
STRUCTURE directive	
Defines a compound data structure.	
Options	
NAME = $text$	Single-valued text defining a name for the type of structure,
	which must not clash with the name of any existing type of
	structure
STRUCTURELIST = <i>string token</i>	Whether or not the structure consists of a list (of any length) of
	structures of the same type or types (yes, no); default no
Parameters	
LABEL = texts	Single-valued texts defining the labels of the elements of the
	structure
SUFFIX = scalars	Suffix numbers for the elements; default assumes the numbers
	1, 2
TYPE = texts	Texts defining the allowed types for each element
COMPATIBLE = texts	Defines aspects to check for compatibility with the first
	element

STTEST procedure

Calculates the sample size for t-tests, including equivalence tests (R.W. Payne).

PRINT = string token	What to print (replication,	, power); default repl, powe
----------------------	-----------------------------	------------------------------

NSAMPLES = $scalar$	Number of samples for the t-test (1 or 2); default 2
PROBABILITY = scalar	Significance level at which the response is to be tested; default 0.05
POWER = scalar	The required power (i.e. probability of detection) of the test; default 0.9
TMETHOD = string token	Type of test to be done (onesided, twosided,
	equivalance, noninferiority); default ones
RATIOREPLICATION = scalar	Ratio of replication sample2:sample1 (i.e. the size of sample 2 should be RATIOREPLICATION times the size of sample 1);
	default 1
REPLICATION = variate	Replication values for which to calculate and print or save the power; default * takes 11 replication values centred around the required number of replicates
Parameters	
RESPONSE = <i>scalars</i>	Response to be detected
VAR1 = <i>scalars</i>	Anticipated variance of sample 1
VAR2 = scalars	Anticipated variance of sample 2; default * assumes the same variance as sample 1
NREPLICATES = $scalars$	Saves the required number of replicates
VREPLICATION = variates	Numbers of replicates for which powers have been calculated
VPOWER = variates	Power (i.e. probability of detection) for the various numbers of replicates

SUBSET procedure

Forms vectors containing subsets of the values in other vectors (R.W. Payne).

Options	
CONDITION = expression	Logical expression to define which units are to be included; no default – this option must be set
SETLEVELS = <i>string token</i>	Whether to reform the levels (and labels) of factors to exclude those that do not occur in the subset (yes, no); default no
Parameters	
OLDVECTOR = vectors	Vector from which the subset is to be formed
NEWVECTOR = vectors	Vector to store the subsets if none is specified, the OLDVECTOR is redefined to store the subset

SUSPEND directive

Suspends execution of Genstat to carry out commands in the operating system; this directive may not be available on some computers.

Options TEM = tort

Commands for the operating system; default: prompt for
commands (interactive mode only)
Whether to continue execution of Genstat without waiting for
commands to complete (yes, no); default no
Whether to minimize the console window (yes, no); default
no

SVBOOT procedure

Bootstraps data from random surveys (S.D. Langton).

PRINT = string token	Controls printed output (summary); default * i.e. none
SEED = scalar	Seed for random numbers; default 0
STRATUMFACTOR = $factor$	Stratification factor
SAMPLINGUNITS = $factor$	Sampling units (default single stage design)
WEIGHTS = variates	Weights variates (not required for simple bootstrap)
METHOD = string token	Method (simple, sarndal); default simp

POPULATION = pointers	Units in the population
SAVEUNITS = variate	Units in the bootstrapped sample
BSTRATUMFACTOR = factor	Bootstrapped stratification factor
BSAMPLINGUNITS = factor	Bootstrapped sampling units
Parameters DATA = variates or factors BOOT = variates or factors	Data to bootstrap Saves bootstrap sampling units

SVCALIBRATE procedure

Performs generalized calibration of survey data (S.D. Langton). **Ontions**

Options	
PRINT = string token	Controls printed output (summary, totals, monitoring);
	default summ, tota
PLOT = string token	Controls which high-resolution graphs are plotted (weights);
	default * i.e. none
STRATUMFACTOR = $factor$	Stratification factor; default * i.e. unstratified
SAMPLINGUNITS = factor	Factors indicating the sampling units in a two-stage design;
	default *, i.e. single-stage design
TCONSTRAINTS = scalars	Constraint totals or tables
X = variates	Variates corresponding to TCONSTRAINTS; * implies the
	equivalent constraint relates to a count
WEIGHTS = variate	Initial weights
OUTWEIGHTS = variate	Final (calibration) weights
METHOD = string token	Method to use (linear, truncatedlinear, logistic,
	fittedvalues); default line
LOWER = scalar	Lower bound for g-weights; default 0.1
UPPER = scalar	Upper bound for g-weights; default 10
MAXCYCLE = scalar	Maximum number of iterations; default 50
TOLERENCE = $scalar$	Tolerence for convergence; default 0.0001
Parameters	-
Y = variates	Response data for analysis
TOTALS = scalars	Saves estimated totals
SETOTALS = scalars	Saves standard errors of totals
FITTEDVALUES = variates	Saves fitted values from the regression

SVD directive

Calculates singular value decompositions of matrices.

Option	
PRINT = string tokens	7

Printed output required (left, singular, right); default
* i.e. no printing

Parameters INMATRIX = matrices

LEFT = matrices SINGULAR = diagonal matrices RIGHT = matrices Matrices to be decomposed Left-hand matrix of each decomposition Singular values (middle) matrix Right-hand matrix of each decomposition

SVGLM procedure

Fits generalized linear models to survey data (S.D. Langton).

Options	
PRINT = string token	What output to display (model, summary, estimates, wald,
	predictions, monitor); default mode, esti, wald, pred
DISTRIBUTION = string token	Error distribution (binomial, poisson, normal, gamma);
	default norm
LINK = <i>string token</i>	Link function (identity, logarithm, logit, reciprocal,
	probit, complementaryloglog, canonical); default
	cano

DISPERSION = scalar	Value at which to fix the residual variance, if missing the variance is estimated; default 1 for binomial or Poisson, otherwise *
TERMS = formula	Explanatory model
CONSTANT = string token	Whether to estimate or omit constant term in fixed model
CONSTANT – string loken	(omit, estimate); default esti
FACTORIAL = scalar	Limit on number of factors/covariates in a model term; default
	3
PFACTORS = <i>factors</i> or <i>variates</i>	Variables for which predictions are to be formed; default *, or as specified in PTERMS
PLEVELS = variates or scalars	Levels or values at which predictions are to be made corresponding to PFACTORS; default (weighted) mean for
	variates, all levels for factors
PTERMS = formula	Formula specifying fixed terms for which predicted means are
FIERMS – Jormula	to be printed; default *, unless PFACTORS is set, in which case
	it is all main effects of and interactions between PFACTORS
STRATUMFACTOR = factor	Stratification factor; default *, i.e. unstratified
NUNITS = variate or table	Number of primary sampling units in each stratum
SAMPLINGUNITS = $factor$	Factor indicating the primary sampling units; default *, i.e.
Juni Dini Contino Junio	single stage design
WEIGHTS = variates	Survey weights
METHOD = string token	Bootstrapping method (simple, csimple, sarndal); default
0	simp
NBOOT = $scalar$	Number of bootstrap samples to use; default 0 uses a Taylor
	series approximation
SEED = scalar	Seed for random number generator for bootstrap; default 0
CIPROBABILITY = scalars	The probability level for the confidence intervals; default 0.95
CIMETHOD = string token	Method for forming confidence intervals (automatic,
	tdistribution, percentile); default auto
Parameters	Description inter-
Y = variates	Dependent variates
NBINOMIAL = <i>scalars</i> or <i>variates</i>	Number of binomial trials for each unit (must be set if DISTRIBUTION=binomial)
RESIDUALS = variates	Variates to save residuals
FITTEDVALUES = variates	Variates to save fitted values
ESTIMATES = variates	Estimates of parameters for each Y variate
SE = variates	Standard errors of the estimates
VCOVARIANCE = <i>symmetric matrices</i>	Variance-covariance matrix for the estimates
LOWER = variates	Lower confidence limits for estimates
UPPER = variates	Upper confidence limits for estimates
WALD = pointers	Pointers to save Wald statistics for each term (pointer contains
	name of term, Wald statistic, F statistic, degrees of freedom, and P-value)
PREDICTIONS = <i>pointers</i>	Pointers to tables of predictions
SEPREDICTIONS = <i>pointers</i>	Pointers to tables of standard errors of predictions
LOWPREDICTIONS = variates	Lower confidence limits for predictions
UPPREDICTIONS = variates	Upper confidence limits for predictions
VCPREDICTIONS = <i>symmetric matrices</i>	Variance-covariance matrix for the predictions

SVHOTDECK procedure

Performs hot-deck and model-based imputation for survey data (S.D. Langton). **Options**

PRINT = string token	Controls printed output (summary, monitoring, check,
	list, regression); default summ
METHOD = string token	Imputation method (hotdeck, modelbased); default hotd
DMETHOD = string token	Method for calculating distances (mean, minimax,

	regression); defaule mini
%THRESHOLD = scalar	Percentage threshold for matches
THRESHOLD = scalar	Absolute threshold for matches
DVARIABLES = variates or factors	Variables to use for distance calculation or factors
DRANGES = scalars	Ranges to use for distance calculations with each of the
	DVARIABLES; default * uses the observed range
LABELS = variate, factor or text	Provides labels for the cases
SEED = scalar	Seed for random numbers; default 0
IMPUTE = variate or scalar	The variate provides logical (0 or 1) values to indicate whether each unit is to be imputed, alternatively the scalar specifies a
	number of rows to be selected at random to be imputed to
	allow the effectiveness of the imputation process to be studied;
	default * imputes values for any units where an
	OLDSTRUCTURE contains a missing value
DONORS = variate	Logical variate indicating whether each unit can be used as a
	donor; default * implies that all units are used with complete
	data for each OLDSTRUCTURE
RSAVE = rsave	Regression analysis to use for METHOD=model or
	DMETHOD=regression
URECEPTORS = <i>variate</i>	Saves unit numbers of receptor (imputed) cases
UDONORS = variate	Saves unit numbers of donor cases
DISTANCES = variate	Saves the distances for the chosen receptor-donor pairs
Parameters	
OLDSTRUCTURES = variates or factors	Structure containing missing values
NEWSTRUCTURES = variates or factors	New structures with imputed values
OVERWRITE = string tokens	Whether to overwrite any existing data for imputed cases
	(yes, no); default no

SVMERGE procedure

Merges strata prior to survey analysis (S.D. Langton).

Options	
---------	--

PRINT = string token	Controls printed output (summary, intable, outtable,
	twowaytable); default summ
OLDFACTOR = factor	Factor defining the original strata
NEWFACTOR = $factor$	Factor to save the merged strata
Parameters	
MERGELABELS = $texts$	Labels of strata to merge
NEWLABEL = $texts$	Label for merged stratum

SVMFIT procedure

proceante		
Fits a support vector machine (D. B. Baird).		
Options		
PRINT = string tokens	Printed output from the analysis (summary, predictions,	
	allocations, debug); default summ, alloc	
SVMTYPE = string token	Type of support vector machine to fit (svc, svr, nusvc,	
-	nusvr, lsvc, lsvr, lcs, svm1); default svc	
KERNEL = <i>string token</i>	Type of kernel to use (linear, polynomial, radialbasis,	
	sigmoid); default radi	
PENALTY = scalar or variate	Penalty or cost for points on the wrong side of the boundary;	
	default 1	
GAMMA = scalar or variate	Gamma parameter for types with non-linear kernels; default 1	
NU = scalar or variate	Nu parameter for types nusve, nusve, and svm1; default 0.5	
EPSILON = scalar or variate	Epsilon parameter for types svr and lsvr; default 0.1	
BIAS = scalar	Bias for allocations to groups for types lsvc and lsvr;	
	default -1 i.e. no bias	
DEGREE = scalar	Degree for polynomial kernel; default 3	

CONSTANTVALUE = $scalar$ LOWER = $scalar$ or $variate$	Constant for polynomial or sigmoid kernel; default 0 Lower limit for scaling data variates when SCALING = given; default -1
UPPER = <i>scalar</i> or <i>variate</i>	Upper limit for scaling data variates when SCALING = given; default 1
SCALING = string token	Type of scaling to use (none, uniform, given); default unif
NOSHRINK =string token	Whether to suppress the shrinkage of attributes to exclude
	unused ones (no, yes); default no
OPTMETHOD =string token	Whether to optimize probabilities or allocations
	(allocations, probabilities); default allo
REGULARIZATIONMETHOD = string toke	
	Regularization method for SMVTYPE = lsvc or lsvr (11, 12); default 12
LOSSMETHOD = string token	Loss method for SMVTYPE = lsvc or lsvr (logistic, l1,
	12); default logi
DUALMETHOD = string token	Whether to use the dual algorithm for SMVTYPE = lsvc or
	lsvr (yes, no); default no
NCROSSVALIDATIONGROUPS = scalar	Number of groups for cross-validation; default 10
seed = scalar	Seed for random number generation; default 0
TOLERANCE = $scalar$	Tolerance for termination criterion; default 0.001
WORKSPACE = scalar	Size of workspace needed for data; default is to calculate this
	from the number of observations and variates
Parameters	
Y = factors or variates	Define groupings for the units in each training set, or missing values for the units to be allocated; or y-variate to be predicted via regression
x = pointers	Each pointer contains a set of explanatory variates or factors
WEIGHTS = variates	Weights to multiply penalties for each group when SMVTYPE =
	svc, nusvc, lsvc 0r lcs
PREDICTIONS = factors or variates	Saves allocations to groups or predictions from regression
ERRORRATE = scalars, variates or matri	• • • •
	Saves the error rate for the combinations of parameters
	specified for the support vector machine
OPTPENALTY = scalars	Saves the optimal value of penalty parameter
optgamma = <i>scalars</i>	Saves the optimal value of gamma parameter
OPTNU = scalars	Saves the optimal value of nu parameter
OPTEPSILON = scalars	Saves the optimal value of epsilon parameter
OPTERRORRATE = <i>scalars</i>	Saves the minimum error rate
SCALE = <i>texts</i> or <i>pointers</i>	Saves the scaling used for the x variates, in a file if a text is
	given, or otherwise in a pointer to a pair of variates
SAVEFILE = $texts$	File in which to save the model, for use by SVMPREDICT

SVMPREDICT procedure

Forms the predictions using a support vector machine (D. B. Baird). Options SCALE = *texts* or *pointers* Gives scaling used for the x variates SAVEFILE = *texts* Gives support vector machine model file; default is to use the model from the last support vector machine Parameters Each pointer contains a set of variates defining the attributes X = pointersfor the predictions Saves the classification groupings or predicted values for each PREDICTIONS = factors or variates observation in \boldsymbol{X} GROUPDEFINITIONS = factors Supplies levels and labels for predicted groups; default uses ordinal levels

SVREWEIGHT procedure

Modifies survey weights for particular observations, adjusting other weights in the sampling unit or stratum to ensure that the overall sum of the weights remains unchanged (S.D. Langton).

Options

Options	
PRINT = string tokens	Controls printed output (summary); default summ
METHOD = string tokens	What to reweight over (all, stratum, samplingunits,
	lowest); default lowe
WEIGHTS = variate	Initial weights
OUTWEIGHTS = variate	Final weights
STRATUMFACTOR = $factor$	Stratification factor; default * i.e. unstratified
OUTSTRATUMFACTOR = factor	Saves a modified stratification factor with the reweighted
	observations in their own stratum
SAMPLINGUNITS = factor	Factor indicating the primary sampling units; default *, i.e.
	single stage design
LABELS = <i>variate</i> , <i>text</i> or <i>factor</i>	Labels for each unit
Parameters	
OBSERVATIONS = scalars, variates of	or <i>texts</i>

NEWWEIGHTS = scalars or variates	Observation to reweight New weight (default inserts a missing value, indicating that the observation should be removed)
----------------------------------	---

SVSAMPLE procedure

Constructs stratified random samples (S.D. Langton).

Options	
PRINT = string token	Controls printed output (list, summary); default summ
SAMPLE = variate	Saves the sample, as unit numbers of sampled units when METHOD=sample, or as a logical (1 or 0) variable indicating
	sampled or unsampled units when METHOD=population
STRATUMFACTOR = $factor$	Saves the stratification factor
CLUSTERS = factor	Specifies a factor indicating groupings of units for a cluster sample; default * i.e. sample individual rows
NUNITS = table, scalar or variate	Numbers of units in the full data set for each level of the STRATUMFACTOR
NSAMPLE = <i>table</i> , <i>scalar</i> or <i>variate</i>	Numbers, or proportions, of units to sample for each level of the STRATUMFACTOR
SFLEVELS = <i>variate</i>	Levels for the stratum factor, if it has not already been declared
SFLABELS = <i>text</i>	Labels for the stratum factor, if it has not already been declared
METHOD = string token	Whether SAMPLE should contain the numbers of the units sampled from the population, or be a variate with a value for every unit of the full population containing 0 or 1 for unsampled and sampled units respectively (population, sample); default samp
NUMBERING = string token	Whether to number units within each stratum, or across the whole population (withinstratum, population); default with
SEED = scalar	Seed for the random number generator; default 0 i.e. continue from previous generation
Parameters	
OLDVECTOR = variates, factors or texts	Data from the full survey

NEWVECTOR = *variates*, *factors* or *texts* Data for the sample

SVSTRATIFIED procedure

Analyses stratified random surveys by expansion or ratio raising (S.D. Langton).

Options <pre>PRINT = string token</pre>	Controls printed output (summary, totals, means,
C C	influence, ratios, extra); default summ, tota, infl
PLOT = string token	Controls which high-resolution graphs are plotted (single, separate); default * i.e. none
XMISSING = string token	Action if x-variable contains missing values (estimate,
RESTRICTED = string token	<pre>fault); default esti Action with restricted (or filtered) observations (omit, add);</pre>
<i>(</i>	default omit
STRATUMFACTOR = factor	Stratification factor; default * i.e. unstratified
NINFLUENCE = $scalar$	Number of influential points to print; default 10
METHOD = string token	Method for ratio analysis (separate, combined,
	classicalcombined); default sepa
SAVESUMMARY = string token	Whether to save just the overall summaries instead of those for
1	each stratum (yes, no); default no
COMBINEDSTRATUM = scalar	Stratum for which the ratio should be set to the combined ratio estimate; default *
ROWS = scalars	Number of rows of plot-matrix; default * i.e. set automatically
	depending on number of levels of STRATUMFACTOR
COLUMNS = scalars	Number of columns of plot-matrix; default * i.e. set
	automatically depending on number of levels of STRATUMFACTOR
NBOOT = $scalar$	Number of bootstrap samples to use; default 0
SEED = scalar	Seed for random number generator for bootstrap; default 0
CIPROBABILITY = scalars	The probability level for the confidence intervals; default 0.95
CIMETHOD = string token	Method for forming confidence intervals (automatic,
5	tdistribution, percentile); default auto
COMPACT = string token	Whether to produce output in a compact (plaintext) format
	(yes, no); default no
Parameters	
Y = variates	Response data
X = variates	Base data; if unset expansion raising is used
LABELS = variates, factors or texts	Structure for labelling influential points
NUNITS = tables, scalars or variates	Numbers of units in each stratum in the population
XTOTALS = <i>tables</i> , <i>scalars</i> or <i>variates</i>	Population totals of the base data in each stratum
TOTALS = <i>tables</i> or <i>scalars</i>	Saves total estimates
SETOTALS = <i>tables</i> or <i>scalars</i>	Saves standard errors of estimates
MEANS = tables or scalars	Saves mean estimates
SEMEANS = <i>tables</i> or <i>scalars</i>	Saves standard errors of mean estimates
	Saves estimates of ratios
RATIOS = $tables$	
	Saves fitted values for the observations
FITTEDVALUES = variates	Saves fitted values for the observations Saves influence statistics
FITTEDVALUES = variates INFLUENCE = variates	
FITTEDVALUES = variates INFLUENCE = variates LTOTALS = tables or scalars	Saves influence statistics
RATIOS = tables FITTEDVALUES = variates INFLUENCE = variates LTOTALS = tables or scalars UTOTALS = tables or scalars LMEANS = tables or scalars	Saves influence statistics Saves lower confidence limit for total
FITTEDVALUES = variates INFLUENCE = variates LTOTALS = tables or scalars UTOTALS = tables or scalars	Saves influence statistics Saves lower confidence limit for total Saves upper confidence limit for total

SVTABULATE procedure

Tabulates data from random surveys, including multistage surveys and surveys with unequal probabilities of selection (S.D. Langton).

Options

Controls printed output (summary, stratumsummary, psusummary, totals, means, ratios, influence, wald,

	mantiles manitar); defeult summ tate infl
$DI \cap T = string to kan$	<pre>quantiles, monitor); default summ, tota, infl Controls which high-resolution graphs are plotted (single,</pre>
PLOT = string token	separate, weights, influence); default * i.e. none
STRATUMFACTOR = factor	Stratification factor; default *, i.e. unstratified
NUNITS = table, scalar or variate	Numbers of units in each STRATUMFACTOR level (for a
NON115 – luble, scalar of variate	multistage design these will be the number of primary
	sampling units)
SAMPLINGUNITS = factor	Factor indicating the primary sampling units; default *, i.e.
Shall BINGON I'S Jucion	single stage design
NSECONDARYUNITS = <i>table</i> , <i>scalar</i> or	
	Numbers of secondary sampling units for the levels of the
	SAMPLINGUNITS factor
CLASSIFICATION = factors	Domains for which separate estimates are required
NINFLUENCE = $scalar$	Number of influential points to print; default 10
MRFACTOR = <i>identifiers</i>	Identifier of factors to index the sets of multiple responses in
	the tables
WEIGHTS = variate	Survey weights
FPCOMIT = string token	Whether to omit the finite population correction from
	calculation of variances (yes, no); default no
METHOD = string token	Method of bootstrapping (simple, sarndal); default simp
NBOOT = $scalar$	Number of bootstrap samples to use; default 0 uses a Taylor
	series approximation
SEED = scalar	Seed for random number generator for bootstrap; default 0
CIPROBABILITY = scalar	The probability level for the confidence intervals; default 0.95
CIMETHOD = string token	Method for forming confidence intervals (automatic,
	tdistribution, percentile); default auto
PERCENTQUANTILES = scalar or varia	
	Percentage points for which quantiles are required; default 50
	(i.e. median)
	(i.e. meanin)
Parameters	(i.e. median)
Parameters Y = variates	Response data
Y = variates	Response data
Y = variates X = variates	Response data Base data for ratio estimation
Y = variates X = variates LABELS = variates or texts	Response data Base data for ratio estimation Labels for influential points Saves weights Saves total estimates
Y = variates X = variates LABELS = variates or texts OUTWEIGHTS = tables TOTALS = tables or scalars SETOTALS = tables or scalars	Response data Base data for ratio estimation Labels for influential points Saves weights Saves total estimates Saves standard errors of estimates
Y = variates X = variates LABELS = variates or texts OUTWEIGHTS = tables TOTALS = tables or scalars SETOTALS = tables or scalars VCTOTALS = symmetric matrices	Response data Base data for ratio estimation Labels for influential points Saves weights Saves total estimates Saves standard errors of estimates Saves variance-covariance matrix of total estimates
Y = variates X = variates LABELS = variates or texts OUTWEIGHTS = tables TOTALS = tables or scalars SETOTALS = tables or scalars	Response data Base data for ratio estimation Labels for influential points Saves weights Saves total estimates Saves standard errors of estimates
Y = variates X = variates LABELS = variates or texts OUTWEIGHTS = tables TOTALS = tables or scalars SETOTALS = tables or scalars VCTOTALS = symmetric matrices MEANS = tables or scalars SEMEANS = table or scalars	Response data Base data for ratio estimation Labels for influential points Saves weights Saves total estimates Saves standard errors of estimates Saves variance-covariance matrix of total estimates or scalars Saves mean estimates Saves standard errors of mean estimates
Y = variates X = variates LABELS = variates or texts OUTWEIGHTS = tables TOTALS = tables or scalars SETOTALS = tables or scalars VCTOTALS = symmetric matrices MEANS = tables or scalars SEMEANS = table or scalars VCMEANS = symmetric matrices	Response data Base data for ratio estimation Labels for influential points Saves weights Saves total estimates Saves standard errors of estimates Saves variance-covariance matrix of total estimates or scalars Saves mean estimates Saves standard errors of mean estimates Saves variance-covariance matrix of mean estimates
Y = variates X = variates LABELS = variates or texts OUTWEIGHTS = tables TOTALS = tables or scalars SETOTALS = tables or scalars VCTOTALS = symmetric matrices MEANS = tables or scalars SEMEANS = table or scalars VCMEANS = symmetric matrices RATIOS = tables or scalars	Response data Base data for ratio estimation Labels for influential points Saves weights Saves total estimates Saves standard errors of estimates Saves variance-covariance matrix of total estimates or scalars Saves mean estimates Saves standard errors of mean estimates Saves variance-covariance matrix of mean estimates Saves variance-covariance matrix of mean estimates Saves estimates of ratios
Y = variates X = variates LABELS = variates or texts OUTWEIGHTS = tables TOTALS = tables or scalars SETOTALS = tables or scalars VCTOTALS = symmetric matrices MEANS = tables or scalars SEMEANS = table or scalars VCMEANS = symmetric matrices RATIOS = tables or scalars SERATIOS = tables or scalars	Response data Base data for ratio estimation Labels for influential points Saves weights Saves total estimates Saves standard errors of estimates Saves variance-covariance matrix of total estimates or scalars Saves mean estimates Saves standard errors of mean estimates Saves variance-covariance matrix of mean estimates Saves variance-covariance matrix of mean estimates Saves estimates of ratios Saves standard errors of ratios
Y = variates X = variates LABELS = variates or texts OUTWEIGHTS = tables TOTALS = tables or scalars SETOTALS = tables or scalars VCTOTALS = symmetric matrices MEANS = tables or scalars VCMEANS = symmetric matrices RATIOS = tables or scalars SERATIOS = tables or scalars VCRATIOS = symmetric matrices	Response data Base data for ratio estimation Labels for influential points Saves weights Saves total estimates Saves standard errors of estimates Saves variance-covariance matrix of total estimates or scalars Saves mean estimates Saves standard errors of mean estimates Saves variance-covariance matrix of mean estimates Saves estimates of ratios Saves standard errors of ratios Saves variance-covariance matrix of ratio estimates
Y = variates X = variates LABELS = variates or texts OUTWEIGHTS = tables TOTALS = tables or scalars SETOTALS = tables or scalars VCTOTALS = symmetric matrices MEANS = tables or scalars SEMEANS = table or scalars VCMEANS = symmetric matrices RATIOS = tables or scalars SERATIOS = tables or scalars VCRATIOS = symmetric matrices NOBSERVATIONS = tables or scalars	Response data Base data for ratio estimation Labels for influential points Saves weights Saves total estimates Saves standard errors of estimates Saves variance-covariance matrix of total estimates or scalars Saves mean estimates Saves standard errors of mean estimates Saves variance-covariance matrix of mean estimates Saves variance-covariance matrix of mean estimates Saves estimates of ratios Saves standard errors of ratios Saves variance-covariance matrix of ratio estimates Saves variance-covariance matrix of ratio estimates Saves numbers of (non-missing) observations
Y = variates X = variates LABELS = variates or texts OUTWEIGHTS = tables TOTALS = tables or scalars SETOTALS = tables or scalars VCTOTALS = symmetric matrices MEANS = tables or scalars SEMEANS = table or scalars VCMEANS = symmetric matrices RATIOS = tables or scalars SERATIOS = tables or scalars VCRATIOS = symmetric matrices NOBSERVATIONS = tables or scalars SUMWEIGHTS = tables or scalars	Response data Base data for ratio estimation Labels for influential points Saves weights Saves total estimates Saves standard errors of estimates Saves variance-covariance matrix of total estimates or scalars Saves mean estimates Saves standard errors of mean estimates Saves variance-covariance matrix of mean estimates Saves variance-covariance matrix of mean estimates Saves estimates of ratios Saves standard errors of ratios Saves variance-covariance matrix of ratio estimates Saves numbers of (non-missing) observations Saves sums of weights
Y = variates X = variates LABELS = variates or texts OUTWEIGHTS = tables TOTALS = tables or scalars SETOTALS = tables or scalars VCTOTALS = symmetric matrices MEANS = tables or scalars SEMEANS = table or scalars VCMEANS = symmetric matrices RATIOS = tables or scalars SERATIOS = tables or scalars VCRATIOS = symmetric matrices NOBSERVATIONS = tables or scalars SUMWEIGHTS = tables or scalars FITTEDVALUES = variates	Response data Base data for ratio estimation Labels for influential points Saves weights Saves total estimates Saves standard errors of estimates Saves variance-covariance matrix of total estimates or scalars Saves mean estimates Saves standard errors of mean estimates Saves variance-covariance matrix of mean estimates Saves variance-covariance matrix of mean estimates Saves estimates of ratios Saves standard errors of ratios Saves variance-covariance matrix of ratio estimates Saves variance-covariance matrix of ratio estimates Saves numbers of (non-missing) observations Saves sums of weights Supplies fitted values for each observation
Y = variates X = variates LABELS = variates or texts OUTWEIGHTS = tables TOTALS = tables or scalars SETOTALS = tables or scalars VCTOTALS = symmetric matrices MEANS = tables or scalars SEMEANS = table or scalars VCMEANS = symmetric matrices RATIOS = tables or scalars SERATIOS = tables or scalars VCRATIOS = symmetric matrices NOBSERVATIONS = tables or scalars SUMWEIGHTS = tables or scalars	Response data Base data for ratio estimation Labels for influential points Saves weights Saves total estimates Saves standard errors of estimates Saves variance-covariance matrix of total estimates or scalars Saves mean estimates Saves standard errors of mean estimates Saves variance-covariance matrix of mean estimates Saves variance-covariance matrix of mean estimates Saves estimates of ratios Saves standard errors of ratios Saves variance-covariance matrix of ratio estimates Saves variance-covariance matrix of ratio estimates Saves numbers of (non-missing) observations Saves sums of weights Supplies fitted values for each observation Saves influence statistics
Y = variates X = variates LABELS = variates or texts OUTWEIGHTS = tables TOTALS = tables or scalars SETOTALS = tables or scalars VCTOTALS = symmetric matrices MEANS = tables or scalars SEMEANS = table or scalars VCMEANS = symmetric matrices RATIOS = tables or scalars SERATIOS = tables or scalars VCRATIOS = symmetric matrices NOBSERVATIONS = tables or scalars SUMWEIGHTS = tables or scalars FITTEDVALUES = variates INFLUENCE = variates WALD = variates	Response data Base data for ratio estimation Labels for influential points Saves weights Saves total estimates Saves standard errors of estimates Saves variance-covariance matrix of total estimates or scalars Saves mean estimates Saves standard errors of mean estimates Saves variance-covariance matrix of mean estimates Saves variance-covariance matrix of mean estimates Saves estimates of ratios Saves estimates of ratios Saves standard errors of ratios Saves variance-covariance matrix of ratio estimates Saves variance-covariance matrix of ratio estimates Saves numbers of (non-missing) observations Saves sums of weights Supplies fitted values for each observation Saves influence statistics Saves Wald statistics
Y = variates X = variates LABELS = variates or texts OUTWEIGHTS = tables TOTALS = tables or scalars SETOTALS = tables or scalars VCTOTALS = symmetric matrices MEANS = tables or scalars VCMEANS = table or scalars VCMEANS = tables or scalars SERATIOS = tables or scalars VCRATIOS = symmetric matrices NOBSERVATIONS = tables or scalars SUMWEIGHTS = tables or scalars FITTEDVALUES = variates INFLUENCE = variates	Response data Base data for ratio estimation Labels for influential points Saves weights Saves total estimates Saves standard errors of estimates Saves variance-covariance matrix of total estimates or scalars Saves mean estimates Saves standard errors of mean estimates Saves variance-covariance matrix of mean estimates Saves variance-covariance matrix of mean estimates Saves standard errors of ratios Saves estimates of ratios Saves standard errors of ratios Saves variance-covariance matrix of ratio estimates Saves variance-covariance matrix of ratio estimates Saves variance-covariance matrix of ratio estimates Saves sums of (non-missing) observations Saves sums of weights Supplies fitted values for each observation Saves influence statistics Saves Wald statistics Table to contain quantiles at a single PERCENTQUANTILE or
Y = variates X = variates LABELS = variates or texts OUTWEIGHTS = tables TOTALS = tables or scalars SETOTALS = tables or scalars VCTOTALS = symmetric matrices MEANS = tables or scalars VCMEANS = symmetric matrices RATIOS = tables or scalars SERATIOS = tables or scalars VCRATIOS = symmetric matrices NOBSERVATIONS = tables or scalars SUMWEIGHTS = tables or scalars FITTEDVALUES = variates INFLUENCE = variates WALD = variates QUANTILES = tables or pointers	Response data Base data for ratio estimation Labels for influential points Saves weights Saves total estimates Saves total estimates Saves standard errors of estimates Saves variance-covariance matrix of total estimates or scalars Saves mean estimates Saves standard errors of mean estimates Saves variance-covariance matrix of mean estimates Saves estimates of ratios Saves estimates of ratios Saves standard errors of ratios Saves variance-covariance matrix of ratio estimates Saves variance-covariance matrix of ratio estimates Saves variance-covariance matrix of ratio estimates Saves sumates of (non-missing) observations Saves sums of weights Supplies fitted values for each observation Saves influence statistics Saves Wald statistics Table to contain quantiles at a single PERCENTQUANTILE or pointer of tables for several PERCENTQUANTILES
Y = variates X = variates LABELS = variates or texts OUTWEIGHTS = tables TOTALS = tables or scalars SETOTALS = tables or scalars VCTOTALS = symmetric matrices MEANS = tables or scalars VCMEANS = table or scalars VCMEANS = tables or scalars VCMEANS = tables or scalars SERATIOS = tables or scalars VCRATIOS = symmetric matrices NOBSERVATIONS = tables or scalars SUMWEIGHTS = tables or scalars FITTEDVALUES = variates INFLUENCE = variates WALD = variates QUANTILES = tables or pointers	Response data Base data for ratio estimation Labels for influential points Saves weights Saves total estimates Saves standard errors of estimates Saves variance-covariance matrix of total estimates or scalars Saves mean estimates Saves standard errors of mean estimates Saves variance-covariance matrix of mean estimates Saves variance-covariance matrix of mean estimates Saves estimates of ratios Saves estimates of ratios Saves variance-covariance matrix of ratio estimates Saves variance-covariance matrix of ratio estimates Saves variance-covariance matrix of ratio estimates Saves sumbers of (non-missing) observations Saves sums of weights Supplies fitted values for each observation Saves influence statistics Saves Wald statistics Table to contain quantiles at a single PERCENTQUANTILE or pointer of tables for several PERCENTQUANTILES Saves standard errors of quantiles
Y = variates X = variates LABELS = variates or texts OUTWEIGHTS = tables TOTALS = tables or scalars SETOTALS = tables or scalars VCTOTALS = symmetric matrices MEANS = tables or scalars VCMEANS = table or scalars VCMEANS = tables or scalars VCRATIOS = tables or scalars VCRATIOS = tables or scalars NOBSERVATIONS = tables or scalars SUMWEIGHTS = tables or scalars FITTEDVALUES = variates INFLUENCE = variates WALD = variates QUANTILES = tables or pointers VCQUANTILES = tables or pointers	Response data Base data for ratio estimation Labels for influential points Saves weights Saves total estimates Saves standard errors of estimates Saves variance-covariance matrix of total estimates or scalars Saves mean estimates Saves standard errors of mean estimates Saves variance-covariance matrix of mean estimates Saves variance-covariance matrix of mean estimates Saves estimates of ratios Saves estimates of ratios Saves variance-covariance matrix of ratio estimates Saves variance-covariance matrix of ratio estimates Saves variance-covariance matrix of ratio estimates Saves sums of (non-missing) observations Saves sums of weights Supplies fitted values for each observation Saves influence statistics Saves Wald statistics Table to contain quantiles at a single PERCENTQUANTILE or pointer of tables for several PERCENTQUANTILES Saves standard errors of quantiles Saves variance-covariance matrix of quantiles
Y = variates X = variates LABELS = variates or texts OUTWEIGHTS = tables TOTALS = tables or scalars SETOTALS = tables or scalars VCTOTALS = symmetric matrices MEANS = tables or scalars SEMEANS = table or scalars VCMEANS = symmetric matrices RATIOS = tables or scalars VCRATIOS = tables or scalars VCRATIOS = tables or scalars SUMWEIGHTS = tables or scalars FITTEDVALUES = variates INFLUENCE = variates MALD = variates QUANTILES = tables or pointers VCQUANTILES = tables or pointers LQUANTILES = tables or pointers	Response data Base data for ratio estimation Labels for influential points Saves weights Saves total estimates Saves standard errors of estimates Saves variance-covariance matrix of total estimates or scalars Saves mean estimates Saves standard errors of mean estimates Saves variance-covariance matrix of mean estimates Saves variance-covariance matrix of mean estimates Saves estimates of ratios Saves estimates of ratios Saves variance-covariance matrix of ratio estimates Saves variance-covariance matrix of ratio estimates Saves variance-covariance matrix of ratio estimates Saves sums of (non-missing) observations Saves sums of weights Supplies fitted values for each observation Saves influence statistics Saves Wald statistics Table to contain quantiles at a single PERCENTQUANTILE or pointer of tables for several PERCENTQUANTILES Saves standard errors of quantiles Saves variance-covariance matrix of quantiles Saves lower confidence limits of quantiles
Y = variates X = variates LABELS = variates or texts OUTWEIGHTS = tables TOTALS = tables or scalars SETOTALS = tables or scalars VCTOTALS = symmetric matrices MEANS = tables or scalars VCMEANS = table or scalars VCMEANS = tables or scalars VCMEANS = tables or scalars VCRATIOS = tables or scalars VCRATIOS = tables or scalars VCRATIOS = tables or scalars SUMWEIGHTS = tables or scalars FITTEDVALUES = variates INFLUENCE = variates WALD = variates QUANTILES = tables or pointers VCQUANTILES = tables or pointers LQUANTILES = tables or pointers UQUANTILES = tables or pointers	Response data Base data for ratio estimation Labels for influential points Saves weights Saves total estimates Saves standard errors of estimates Saves variance-covariance matrix of total estimates or scalars Saves mean estimates Saves standard errors of mean estimates Saves variance-covariance matrix of mean estimates Saves variance-covariance matrix of mean estimates Saves estimates of ratios Saves estimates of ratios Saves standard errors of ratios Saves variance-covariance matrix of ratio estimates Saves variance-covariance matrix of ratio estimates Saves sumbers of (non-missing) observations Saves sums of weights Supplies fitted values for each observation Saves influence statistics Saves Wald statistics Table to contain quantiles at a single PERCENTQUANTILE or pointer of tables for several PERCENTQUANTILES Saves standard errors of quantiles Saves variance-covariance matrix of quantiles Saves lower confidence limits of quantiles Saves upper confidence limits of quantiles
Y = variates X = variates LABELS = variates or texts OUTWEIGHTS = tables TOTALS = tables or scalars SETOTALS = tables or scalars VCTOTALS = symmetric matrices MEANS = tables or scalars SEMEANS = table or scalars VCMEANS = symmetric matrices RATIOS = tables or scalars SERATIOS = tables or scalars VCRATIOS = symmetric matrices NOBSERVATIONS = tables or scalars SUMWEIGHTS = tables or scalars FITTEDVALUES = variates INFLUENCE = variates WALD = variates QUANTILES = tables or pointers LQUANTILES = tables or pointers LQUANTILES = tables or pointers LTOTALS = tables	Response data Base data for ratio estimation Labels for influential points Saves weights Saves total estimates Saves standard errors of estimates Saves variance-covariance matrix of total estimates or scalars Saves mean estimates Saves variance-covariance matrix of mean estimates Saves standard errors of mean estimates Saves variance-covariance matrix of mean estimates Saves estimates of ratios Saves estimates of ratios Saves standard errors of ratios Saves variance-covariance matrix of ratio estimates Saves standard errors of ratios Saves sumates of (non-missing) observations Saves sums of weights Supplies fitted values for each observation Saves influence statistics Saves Wald statistics Table to contain quantiles at a single PERCENTQUANTILE or pointer of tables for several PERCENTQUANTILES Saves standard errors of quantiles Saves variance-covariance matrix of quantiles Saves lower confidence limits of quantiles Saves lower confidence limits of quantiles Saves lower confidence limits of totals
Y = variates X = variates LABELS = variates or texts OUTWEIGHTS = tables TOTALS = tables or scalars SETOTALS = tables or scalars VCTOTALS = symmetric matrices MEANS = tables or scalars VCMEANS = table or scalars VCMEANS = tables or scalars VCMEANS = tables or scalars VCRATIOS = tables or scalars VCRATIOS = tables or scalars VCRATIOS = tables or scalars SUMWEIGHTS = tables or scalars FITTEDVALUES = variates INFLUENCE = variates WALD = variates QUANTILES = tables or pointers VCQUANTILES = tables or pointers LQUANTILES = tables or pointers UQUANTILES = tables or pointers	Response data Base data for ratio estimation Labels for influential points Saves weights Saves total estimates Saves standard errors of estimates Saves variance-covariance matrix of total estimates or scalars Saves mean estimates Saves standard errors of mean estimates Saves variance-covariance matrix of mean estimates Saves variance-covariance matrix of mean estimates Saves estimates of ratios Saves estimates of ratios Saves standard errors of ratios Saves variance-covariance matrix of ratio estimates Saves variance-covariance matrix of ratio estimates Saves sumbers of (non-missing) observations Saves sums of weights Supplies fitted values for each observation Saves influence statistics Saves Wald statistics Table to contain quantiles at a single PERCENTQUANTILE or pointer of tables for several PERCENTQUANTILES Saves standard errors of quantiles Saves variance-covariance matrix of quantiles Saves lower confidence limits of quantiles Saves upper confidence limits of quantiles

LMEANS = tables	Saves lower confidence limits of means
UMEANS = $tables$	Saves upper confidence limits of means
LRATIOS = tables	Saves lower confidence limits of ratios
URATIOS = tables	Saves upper confidence limits of ratios
CELLINFLUENCE = variates	Saves influence statistics for individual cells
SVWEIGHT procedure	
Forms survey weights (S.D. Langtor	ı).
Options	
PRINT = string token	Controls printed output (summary, stratumsummary,
C C	psusummary); default summ, stra, psus
PLOT = string token	Controls which high-resolution graphs are plotted (weights);
	default * i.e. none
STRATUMFACTOR = $factor$	Stratification factor; default *, i.e. unstratified
NUNITS = tables, scalars or variates	Numbers of units in each STRATUMFACTOR (for a multistage
	design these will be the number of primary sampling units)
SAMPLINGUNITS = $factor$	Factor indicating the primary sampling units; default *, i.e.
	single stage design.
NSECONDARYUNITS = tables, scalars of	r variates
	Numbers of secondary sampling units for each level of the
	SAMPLINGUNITS factor
Parameters	
Y = variates of scalars	Response data or a scalar indicating the number of sampled
	units
OUTWEIGHTS = variates	Saves weights

SWITCH directive

Adds terms to, or drops them from a linear, generalized linear, generalized additive or nonlinear model.

PRINT = string tokens	What to print (model, deviance, summary, estimates, correlations, fittedvalues,
	accumulated, monitoring, confidence); default mode, summ, esti
NONLINEAR = string token	How to treat nonlinear parameters between groups (common, separate, unchanged); default unch
CONSTANT = <i>string token</i>	How to treat the constant (estimate, omit, unchanged, ignore); default unch
FACTORIAL = scalar	Limit for expansion of model terms; default * i.e. that in previous TERMS statement
POOL = <i>string token</i>	Whether to pool ss in accumulated summary between all terms fitted in a linear model (yes, no); default no
DENOMINATOR = <i>string token</i>	Whether to base ratios in accumulated summary on rms from model with smallest residual ss or smallest residual ms (ss, ms); default ss
NOMESSAGE = <i>string tokens</i>	Which warning messages to suppress (dispersion, leverage, residual, aliasing, marginality, vertical, df, inflation); default *
FPROBABILITY = <i>string token</i>	Printing of probabilities for variance and deviance ratios (yes, no); default no
TPROBABILITY = <i>string token</i>	Printing of probabilities for t-statistics (yes, no); default no
SELECTION = string tokens	Statistics to be displayed in the summary of analysis produced by PRINT=summary, seobservations is relevant only for a Normally distributed response, and %cv only for a gamma- distributed response (%variance, %ss, adjustedr2, r2,
	seobservations, dispersion, %cv, %meandeviance,

424	4 Syntax summary
	%deviance, aic, bic, sic); default %var, seob if DIST=normal, %cv if DIST=gamma, and disp for other distributions
PROBABILITY = scalar	Probability level for confidence intervals for parameter estimates; default 0.95
AOVDESCRIPTION = text	Description for line in accumulated analysis of variance (or deviance) table when POOL=yes
Parameter formula	List of explanatory variates and factors, or model formula

SYMMETRICMATRIX directive

Declares one or more symmetric matrix data structures.

Options

ROWS = scalar, vector, pointer or text

ROWS = scalar, vector, pointer or text	
	Number of rows, or labels for rows (and columns); default *
VALUES = <i>numbers</i>	Values for all the symmetric matrices; default *
MODIFY = string token	Whether to modify (instead of redefining) existing structures
	(yes, no); default no
IPRINT = string tokens	Information to be used by default to identify the symmetric
	matrices in output (identifier, extra); if this is not set,
	they will be identified in the standard way for each type of
	output
Parameters	
IDENTIFIER = <i>identifiers</i>	Identifiers of the symmetric matrices
VALUES = <i>identifiers</i>	Values for each symmetric matrix
DECIMALS = scalars	Number of decimal places for printing
EXTRA = texts	Extra text associated with each identifier
MINIMUM = scalars	Minimum value for the contents of each structure
MAXIMUM = scalars	Maximum value for the contents of each structure
DREPRESENTATION = <i>scalars</i> or <i>texts</i>	Default format to use when the contents represent dates and
	times

SYNTAX directive

Obtains details of the syntax of a command and the source code of a procedure.

No options

Parameters	
COMMAND = texts	Single-line texts specifying the commands
NOPTIONS = $scalars$	Number of options for each command
NPARAMETERS = $scalars$	Number of parameters for each command
NAME = texts	Names of the options, and then the parameters, of each command
MODE = texts	Modes of the options and parameters
NVALUES = pointers	Number of values allowed for the options and parameters
VALUES = pointers	Allowed values for the options and parameters
DEFAULT = pointers	Default values for the options and parameters
SET = texts	Whether the options and parameters must be set
DECLARED = texts	Whether the options and parameters must have been declared
TYPE = pointers	Allowed types for the options and parameters
COMPATIBLE = pointers	Aspects of the options and parameters that must be compatible with the first parameter
PRESENT = texts	Whether the options and parameters must have values
LIST = texts	Whether the options have more than one setting (not relevant
	for the parameters
INPUT = texts	Whether the options and parameters only supply input information
DEFINITION = $texts$	
DEFINITION = $texts$	Saves statements to define the syntax

	4.1 Commands	425
SOURCE = $texts$	Saves the source code of a procedure	
TABINSERT procedure	e b-table into a table (R.W. Payne).	
Options	- ····································	

OLDTABLE = tables SUBTABLE = tables NEWTABLE = tables	Table containing the original values Sub-table to insert into the original table Tables to store the new values; if this is not set, these replace those in the original table
Parameters	-
OLDFACTOR = factors	Factors classifying the dimensions of the old table that are smaller in the sub-table
SUBFACTOR = factors	Specifies the factors classifying the corresponding dimensions of the sub-table
FREPRESENTATION = <i>string token</i>	How to match the values of each OLDFACTOR and SUBFACTOR (levels, labels); default leve

TABLE directive

Declares one or more table data structures.

Options	
CLASSIFICATION = factors	Factors classifying the tables; default *
MARGINS = string token	Whether to add margins (yes, no); default no
VALUES = <i>numbers</i>	Values for all the tables; default *
MODIFY = string token	Whether to modify (instead of redefining) existing structures
IPRINT = string tokens	(yes, no); default no Information to be used by default to identify the tables in output (identifier, extra, associatedidentifier); if this is not set, they will be identified in the standard way for
	each type of output
Parameters	
IDENTIFIER = <i>identifiers</i>	Identifiers of the tables
VALUES = <i>identifiers</i>	Values for each table
DECIMALS = scalars	Number of decimal places for printing
EXTRA = texts	Extra text associated with each identifier
UNKNOWN = <i>identifiers</i>	Identifier for scalar to hold summary of unclassified data associated with each table
MINIMUM = scalars	Minimum value for the contents of each structure
MAXIMUM = scalars	Maximum value for the contents of each structure
DREPRESENTATION = <i>scalars</i> or <i>texts</i>	Default format to use when the contents represent dates and times
DATAVARIATE = variates	Records the identifier of the variate whose summaries are in the table
SUMMARYTYPE = string tokens	Records the type of summary that the table contains (counts, totals, nobservations, means, minima, maxima,
	<pre>variances, quantiles, sds, skewness, kurtosis, semeans, seskewness, sekurtosis); default * i.e. not recorded</pre>
PERCENTQUANTILE = scalars	Records the percentage points for which quantiles have been formed; default * i.e. not recorded
%MARGIN = pointers	Records the factors defining the margin over which the table has been converted to percentages

TABMODE procedure

Forms summary tables of modes of values (R.W. Payne).

Options PRINT = string token

Controls whether or not the modes are printed (mode); default

CLASSIFICATION = factors	* i.e. no printing Factors classifying the tables; if unset, the overall mode is formed for all the values in each DATA vector
Parameters	
DATA = variates or factors	Data values whose modes are to be formed
MODES = tables or scalars	Save the modes for each DATA vector

TABSORT procedure

Sorts tables so their margins are in ascending or descending order (R.W. Payne).

Options	
PRINT = string tokens	Controls output (tables, histograms); default * i.e. none
DIRECTION = string token	Direction of sorting (ascending, descending); default asce
METHOD = string token	Method to use to construct a marginal table for the sorting of a factor when there is no one-way table classified by the factor in the TABLE list, and the first table in the TABLE list classified by the factor has no margins (totals, means, minima, maxima, variances, medians); default tota
FACTORS = <i>pointer</i>	Specifies or saves a list of classifying factors of the tables in the TABLE list
NEWFACTORS = pointer	Specifies or saves a list of classifying factors of the new tables, corresponding to those in the FACTORS pointer
EXCLUDE = <i>pointer</i>	Factors to exclude from sorting
NBEST = string tokens	Number of (best) levels to include from each sorted factor; default * i.e. all of them
Parameters	
TABLE = $tables$	Tables to be sorted

TABLE = $tables$	Tables to be sorted
NEWTABLE= tables	Allows the new sorted tables to be saved
TITLE = $texts$	Title to be used when displaying each table
FIELDWIDTH = scalars	Field width for printing each table
DECIMALS = scalars	Decimal places for each table

TABTABLE procedure

Opens a tabbed-table spreadsheet in the Genstat client, PC Windows only (D.B. Baird).

Options	
IDENTIFIER = <i>identifier</i>	Identifier for the combined table when several tables are specified by TABLE
PAGEFACTOR = factor	Specifies the the classifying factor to go across the tabs in the spreadsheet when TABLE is set to a single table, or gives the identifier of the factor to be created to index the tables when
	TABLE supplies several tables
Parameter	
TABLE = $tables$	Tables to be placed into a tabbed-table spreadsheet

TABULATE directive

Forms summary tables of variate values.

Options	
PRINT = string tokens	Printed output required (counts, totals, nobservations,
	means, minima, maxima, variances, quantiles, sds,
	skewness, kurtosis, semeans, seskewness,
	sekurtosis); default * i.e. no printing
CLASSIFICATION = factors	Factors classifying the tables; default * i.e. these are taken
	from the tables in the parameter lists
COUNTS = table	Saves a table counting the number of units with each factor
	combination; default *
SEQUENTIAL = scalar	Used for sequential formation of tables; a positive value

	indicates that formation is not yet complete (see READ); default *
MARGINS = <i>string token</i>	Whether the tables should be given margins if not already
MARGINS String token	declared (yes, no); default no
IPRINT = string token	Whether to print the identifier of the table or the identifier of
	the (associated) variate that was used to form it (identifier,
	extra, associatedidentifier); default iden
WEIGHTS = variate	Weights to be used in the tabulations; default * indicates that
	all units have weight 1
PERCENTQUANTILES = scalar or variate	e
	Percentage points for which quantiles are required; default 50
	(i.e. median)
OWN = scalar or variate	Specifies option settings for the OWNTAB subroutine and
	indicates that this is to supply the data values instead of the
	variates in the DATA list; default *
OWNFACTORS = factors	Factors whose values are to be read by OWNTAB (must include
	the factors of the classification set); default *
OWNVARIATES = variates	Variates whose values are to be read by OWNTAB (must include
	the DATA variates); default *
INCHANNEL = scalar	Channel number of the file from which the OWNTAB subroutine
	is to read the data (previously opened by an OPEN statement)
INFILETYPE = string token	Type of the OWN data file (input, unformatted); default inpu
Parameters	Tilþú
DATA = variates	Data values to be tabulated
TOTALS = $tables$	Tables to contain totals
NOBSERVATIONS = $tables$	Tables containing the numbers of non-missing values in each
	cell
MEANS = $tables$	Tables of means
MINIMA = tables	Tables of minimum values in each cell
MAXIMA = $tables$	Tables of maximum values in each cell
VARIANCES = $tables$	Tables of cell variances
QUANTILES = <i>tables</i> or <i>pointers</i>	Table to contain quantiles at a single PERCENTQUANTILE or
	pointer of tables for several PERCENTQUANTILES (not
	available for sequential or OWN tabulation)
SDS = tables	Tables of standard deviations
SKEWNESS = tables	Tables of skewness coefficients
KURTOSIS = tables	Tables of kurtosis coefficients
SEMEANS = $tables$	Tables of standard errors of means
SESKEWNESS = tables	Tables of standard errors of skewness coefficients
SEKURTOSIS = tables	Tables of standard errors of kurtosis coefficients
TALLY procedure	
Forms a simple tally table of the distin	nct values in a vector (D.B. Baird & R.D. Stern).
Options	
PRINT = string tokens	What to print out for each vector (frequencies,

Options	
PRINT = string tokens	What to print out for each vector (frequencies,
	percentages, cumfrequencies, cumpercentages,
	cumgraph, all); default freq, perc
GRAPH = string tokens	What to display as graphs (cumulative, %cumulative);
	default * i.e. no graphs
NGROUPS = scalar	Number of groups to form from a DATA variate or factor
	(ignored for texts); default * forms a group for each distinct
	value allowing for rounding (see DECIMALS)
DECIMALS = scalar	Number of decimal places to which to round the DATA before
	forming the groups; default * i.e. no rounding
BOUNDARIES = <i>string token</i>	Whether to interpret the LIMITS as upper or lower boundaries

	(upper, lower); default lowe
DIRECTION = string token	Order in which to sort (ascending, descending); default asce
OMITEMPTY = string token	Whether empty groups are omitted (yes, no); default no
WEIGHTS = variate	Weights to be used in the tabulations; default * indicates that
	all units have weight 1
PQUANTILES = string token	Whether to include quantiles on the plot (yes, no); default no
WINDOW = scalar	Window in which to plot the graphs; default 1 if GROUPS is
	set, or 3 otherwise
KEYWINDOW = scalar	Window in which to display the key when GROUPS is set;
	default 2
SCREEN = string token	Whether to clear screen before the plot (clear, keep); default
	clea
Parameters	
DATA = variates, factors or texts	Data to be tallied
GROUPS = factors	Defines groupings of the data, to be tallied into separate tables;
	default * i.e. none
LIMITS = variates or texts	Limits to define the groups within the tally tables
FREPRESENTATION = <i>string tokens</i>	Specifies the representation used to define the sort order of a
	DATA factor (ordinals, levels, labels); default leve
VALUES = variates, texts or pointers	Saves the distinct groups formed for the tally tables
FREQUENCIES = variates or pointers	Saves the frequencies of the groups in the tally tables
PERCENTAGES = variates or pointers	Saves the percentage occurrences of the groups
CUMFREQUENCIES = variates or pointe	rs
	Saves the cumulative frequencies of the groups
CUMPERCENTAGES = variates or pointe	rs
	Saves the cumulative percentages of the groups
TITLE = texts	Title for plot; default automatically forms a title containing the
	identifiers of the DATA vector and any GROUPS factor
XTITLE = texts	Title for the axis representing data values; default uses the
	identifier of the DATA vector

TDISPLAY directive

Displays further output after an analysis by ESTIMATE. **Options**

Options	
PRINT = string tokens	What to print (model, summary, estimates,
	correlations); default mode, summ, esti
CHANNEL = scalar	Channel number for output; default * i.e. current output
	channel
SAVE = <i>identifier</i>	Save structure to supply fitted model; default * i.e. that from
	the last model fitted
No parameters	

TENSORSPLINE procedure

Calculates design matrices to fit a tensor-spline surface as a linear mixed model (S.J. Welham & P.H.C. Eilers).

Options	
METHOD = string token	Type of spline to use to construct the basis (pspline,
	penalizedspline); default pspl
PENALTYMETHOD = string token	Which tensor-spline penalty to use (isotropic,
	semiconstrained, unconstrained); default unco
NX1SEGMENTS = scalar	Specifies the number of segments between boundaries in the
	X1 dimension; default * obtains a value automatically
NX2SEGMENTS = scalar	Specifies the number of segments between boundaries in the
	X2 dimension; default * obtains a value automatically
DEGREE = scalar	Degree of polynomial used to form the underlying spline basis

	functions; default 1 for METHOD=pena and 3 for METHOD=pspl
DIFFORDER = scalar	Differencing order for P-spline penalty; default 2
X1LOWER = scalar	Specifies the lower boundary in the X1 dimension; default
	takes the minimum value of X1
X1UPPER = scalar	Specifies the upper boundary in the X1 dimension; default
	takes the maximum value of X1
X2LOWER = scalar	Specifies the lower boundary in the X2 dimension; default
	takes the minimum value of X2
X2UPPER = scalar	Specifies the upper boundary in the X2 dimension; default
	takes the maximum value of X2
ORTHOGONALIZATION = string token	How to orthogonalize the random basis (fixed, none); default fixe
SCALING = scalar	Scaling of the XRANDOM terms (automatic, none); default
SCALING – scalar	auto
Parameters	
X1 = variates or factors	Coordinates in the first dimension for which spline values are
Ai variates of jucions	required
$x^2 = variates$ or factors	Coordinates in the second dimension for which spline values
x2 variates of juctors	are required
XFIXED = <i>matrices</i>	Saves the design matrix to define the fixed terms (excluding
	the constant) for fitting the tensor spline
XRANDOM = <i>pointers</i>	Saves the design matrices to define the random terms for
Finally of Pointers	fitting the tensor spline
X1KNOTS = variates	Saves the coordinates in the first dimension of the internal
XIMOIS Variates	knots used to form the basis for the spline
X2KNOTS = variates	Saves the coordinates in the second dimension of the internal
AZIMOIS Variates	knots used to form the basis for the spline
PX1 = variates	Specifies the coordinates in the first dimension at which to
rAL vurtures	predict
PX2 = variates	Specifies the coordinates in the second dimension at which to
PX2 – variates	predict
DELVED - matrices	-
PFIXED = matrices	Saves the design matrix for the fixed terms (excluding the
	constant) for the tensor spline at the prediction points
PRANDOM = <i>pointers</i>	Saves the design matrices for the random terms for the tensor
	spline at the prediction points

[†]**TEQUIVALENCE** procedure

Performs equivalence, non-inferiority and non-superiority tests (R.W. Payne).

Options	
PRINT = string tokens	Controls printed output (confidence, description, test);
	default desc, test
PLOT = string token	Controls plotting of the confidence intervals (confidence);
	default *
CLASSIFICATION = pointer	Specifies the factors classifying the table of means; must be
	supplied for a multi-way table
METHOD = string token	Type of test required (equivalence, noninferiority,
	nonsuperiority); default equi
CIPROBABILITY = scalar	The probability level for the confidence interval; default 0.95
EQLIMITS = <i>scalar</i> or <i>variate</i>	Limits for equivalence, non-inferiority or non-superiority
TITLE = text	Title for the graph of confidence intervals; default
	'Confidence plot'
WINDOW = scalar	Window for the graph of confidence intervals; default uses a
	window defined to fill the screen
SCREEN = string token	Whether to clear the screen before plotting the confidence
	intervals (clear, keep); default clea

Parameters
1 al ametel s

MEANS = tables or variates CONTROL = scalars, texts or pointers SED = symmetric matrix or scalar DF = symmetric matrix or scalar TSTATISTICS = tables or variates PROBABILITIES = tables or variates DIFFERENCES = tables or variates SEDCONTROL = tables or variates DFCONTROL = tables or variates

LOWER = *tables* or *variates* UPPER = *tables* or *variates* Means to be compared Specifies the control treatment Standard errors of differences of the means Degrees of freedom for the standard errors of differences Saves the t-statistics for the tests Saves the probabilities from the tests Saves the differences from the control Saves the standard errors for the differences from the control Saves the degrees of freedom for the differences from the control Saves the lower limits of the confidence intervals Saves the upper limits of the confidence intervals

TERMS directive

Specifies a maximal model, containing all terms to be used in subsequent linear, generalized linear, generalized additive, and nonlinear models.

Options

PRINT = string tokens	What to print (correlations, wmeans, SSPM,
	<pre>monitoring); default *</pre>
FACTORIAL = scalar	Limit for expansion of model terms; default 3
FULL = string token	Whether to assign all possible parameters to factors and
	interactions (yes, no); default no
SSPM = SSPM	Gives sums of squares and products on which to base
	calculations; default *
TOLERANCE = $scalar$	Criterion for testing for linear dependence; default is $10^7 \epsilon$,
	where ε is the smallest real value such that $1+\varepsilon$ is greater than
	1 on the computer
DESIGNMATRIX = matrix	Saves the design matrix for the maximal model
MVINCLUDE = string token	Whether to include units with missing values in the
	explanatory factors and variates (explanatory); default * i.e.
	omit these
RIDGE = scalar or variate	Supplies values to add to the diagonal of the sums-of-squares-
	and-products matrix, to enable ridge methods to be used;
	default 0
CLDESIGNMATRIX = text	Saves the column labels of the design matrix for the maximal
	model i.e. the names of the parameters estimated in the
	maximal model
CLSSP = text	Saves the labels of the sum-of-squares-and-products matrix
Parameter	* *
formula	List of explanatory variates and factors, or model formula

TEXT directive

Declares one or more text data structures.

Options	
NVALUES = scalar or vector	Number of strings, or vector of labels; default * takes the
	setting from the preceding UNITS statement, if any
VALUES = strings	Values for all the texts; default *
MODIFY = string token	Whether to modify (instead of redefining) existing structures
	(yes, no); default no
IPRINT = string tokens	Information to be used by default to identify the texts in output
	(identifier, extra); if this is not set, they will be identified
	in the standard way for each type of output
Parameters	
IDENTIFIER = <i>identifiers</i>	Identifiers of the texts
VALUES = $texts$	Values for each text

EXTRA = texts

Numbers of characters of the lines of each text to be printed by default

Extra text associated with each identifier

TFILTER directive

Filters time series by time-series models. **Option**

Option	
PRINT = string tokens	What to print (series); default *
Parameters	
OLDSERIES = variates	Time series to be filtered
NEWSERIES = variates	To save filtered series
FILTER = TSMs	Models to filter with respect to
ARIMA = TSMs	ARIMA models for time series

TFIT directive

Estimates parameters in Box-Jenkins models for time series.

Options	
PRINT = string tokens	What to print (model, summary, estimates,
	correlations, monitoring); default mode, summ, esti
LIKELIHOOD = string token	Method of likelihood calculation (exact, leastsquares,
	marginal); default exac
CONSTANT = <i>string token</i>	How to treat the constant (estimate, fix); default esti
RECYCLE = <i>string token</i>	Whether to continue from previous estimation (yes, no); default no
WEIGHTS = variate	Weights; default *
MVREPLACE = <i>string token</i>	Whether to replace missing values by their estimates (yes,
	no); default no
FIX = variate	Defines constraints on parameters (ordered as in each model, tf
	models first): zeros fix parameters, parameters with equal
	numbers are constrained to be equal; default *
METHOD = string token	Whether to carry out full iterative estimation, to carry out just
	one iterative step, to perform no steps but still give parameter
	standard deviations, or only to initialize for forecasting by
	regenerating residuals (full, onestep, zerostep,
	initialize); default full
MAXCYCLE = scalar	Maximum number of iterations; default 15
TOLERANCE = scalar	Criterion for convergence; default 0.0004
SAVE = <i>identifier</i>	To name save structure, or supply save structure with
	transfer-functions; default * i.e. transfer-functions taken from
_	the latest model
Parameters	
SERIES = variate	Time series to be modelled (output series)
TSM = TSM	Model for output series
BOXCOXMETHOD = <i>string token</i>	How to treat transformation parameter in output series (fix,
	estimate); default fix
RESIDUALS = variate	To save residual series

TFORECAST directive

Forecasts future values of a time series.

Options

PRINT = string tokens	What to print (forecasts, limits, setransform, sfe);
	default fore, limi
CHANNEL = scalar	Channel number for output; default * i.e. current output
	channel
ORIGIN = scalar	Number of known values to be incorporated; default 0
UPDATE = string token	Whether to update the forecast origin to the end of the new

432	4 Syntax summary
	observations (yes, no); default no
NEWOBSERVATIONS = variate	Variate of length \geq ORIGIN providing new values of the time series to be incorporated (must be set if ORIGIN > 0)
SFE = variate	Saves standardized forecast errors; default *
MAXLEAD = scalar	Maximum lead time i.e number of forecasts to be made; default * defines the number as the length of FORECAST variate
FORECAST = <i>variate</i>	Variate of length MAXLEAD to save forecasts of output series; default *
SETRANSFORM = variate	Saves standard errors of the forecasts (on transformed scale, if defined); default *
LOWER = variate	Saves lower confidence limits; default *
UPPER = variate	Saves upper confidence limits; default *
PROBABILITY = scalar	Probability level for confidence limits; default 0.9
COMPONENTS = pointer	Contains variates (of length ORIGIN + MAXLEAD) to save components of the forecast
SAVE = <i>identifier</i>	Save structure to supply fitted model; default * i.e. that from last model fitted
Parameters	
FUTURE = variates	Variates (of length ORIGIN + MAXLEAD) containing future values of input series
METHOD = string tokens	How to treat future values of input series (observations, forecasts); default obse

THINPLATE procedure

Calculates the basis functions for thin-plate splines (D.B. Baird).

No options Parameters

Y = variates or factors	Y-coordinates of the data points
X = variates or factors	X-coordinates of the data points
YKNOTS = variates or factors	Y-coordinates of the knots
XKNOTS = variates or factors	X-coordinates of the knots
TPSPLINE = variates or matrices	Thin-plate spline basis, as either a pointer of variates (default
	if not already declared) or a matrix

last model fitted

TKEEP directive

Saves results after an analysis by ESTIMATE.

Option

SAVE = *identifier*

Parameters

OUTPUTSERIES = variate	Output series to which model was fitted
RESIDUALS = variate	Residual series
ESTIMATES = variate	Estimates of parameters
SE = variate	Standard errors of estimates
INVERSE = <i>symmetric matrix</i>	Inverse matrix
VCOVARIANCE = <i>symmetric matrix</i>	Variance-covariance matrix of parameters
DEVIANCE = scalar	Residual deviance
DF = scalar	Residual degrees of freedom
MVESTIMATES = variate	Estimates of missing values in series
SEMV = variate	Standard errors of estimates of missing values
COMPONENTS = pointer	Variates to save components of output series
SCORES = variate	To save scores (derivatives of the log-likelihood with respect
	to the parameters)

Save structure to supply fitted model; default * i.e. that from

†TOBIT procedure

Performs a Tobit linear mixed model analysis on data with fixed-threshold censoring (M.C. Hannah & V.M. Cave).

Options

PRINT = string token	Controls printed output (summary); default summ
VPRINT = string tokens	Controls printed output from the REML analysis of the data
C	with censored observations replaced by their estimates
	(model, components, effects, means,
	stratumvariances, monitoring, vcovariance,
	deviance, Waldtests, missingvalues); default mode,
	comp, Wald
PSE = string token	Standard errors to be printed with tables of effects and means
C	from the REML analysis (differences, estimates,
	alldifferences, allestimates, none); default diff
PLOT = string token	To display a scatter plot of the data with censored observations
C	replaced by their estimates against the observed
	<pre>data(scatterplot); default *</pre>
MAXCYCLE = scalar	Sets a limit on the number of iterations performed by the E-M
	algorithm; default 30
TOLERANCE = variate	Sets tolerance limits for convergence of the E-M algorithm on
	the treatment means and the variance components; default 0.1
	and 0.05 for the treatment means and variance components,
	respectively
RMETHOD = string token	Which random terms to use when calculating the residuals
	during the E-step of the E-M algorithm (final, all); default
	final
DIRECTION = string token	The direction of the censoring (left, right); default left
	(i.e., the true values for the censored observations are less than
_	or equal to the BOUND)
Parameters	
Y = variate	Response variate to be analysed; no default, must be set
BOUND = scalar	Censoring threshold; no default, must be set
CENSORED = variate	Indicator variable for censored observations, with values of
1	one where the response values are censored and zero otherwise
INITIAL = scalar or variate	Scalar or a variate providing starting values for the censored
·····	observations in the E-M algorithm
NEWY = variate	Saves a copy of the response variate with the censored
	observations replaced by their estimates
YCENSORED = variate	Saves a logical variate indicating which Y values are censored
SAVE = <i>REML save structure</i>	REML save structure from the analysis of the data with
	censored observations replaced by their estimates

TRANSFERFUNCTION directive

Specifies input series and transfer-function models for subsequent estimation of a model for an output series.

Option		
SAVE = <i>identifier</i>	To name time-series save structure; default *	
Parameters		
SERIES = variates	Input time series	
TRANSFERFUNCTION = $TSMs$	Transfer-function models; if omitted, model with 1 moving-average parameter, lag 0	
BOXCOXMETHOD = string tokens	How to treat transformation parameters (fix, estimate); default fix	
PRIORMETHOD = string tokens ARIMA = TSMs	How to treat prior values (fix, estimate); default fix ARIMA models for input series	

4	Syntax	summary
---	--------	---------

TREATMENTSTRUCTURE directive

Specifies the treatment terms to be fitted by subsequent ANOVA statements.

No options

Parameter

formula

Treatment formula, specifies the treatment model terms to be fitted by subsequent ANOVAS

TREE directive

Declares one or more tree data structures and initializes each one to have a single node known as its root.

No options Parameter

IDENTIFIER = *identifiers*

Identifiers of the trees

TRELLIS procedure

Does a trellis plot (S.J. Welham & S.A. Harding).

Options	
GROUPS = factors or variate	Factors or variate defining the classification for the plots
GMETHOD = string token	Determines the method used to partition the range when
	GROUPS is set to a variate (equalspacing, quantiles,
	distinct, limits); default equal
NGROUPS = scalar	Determines the number of plots to be formed when GROUPS is
	set to a variate and GMETHOD is set to quantiles or
	equalspacing
LIMITS = variate	Limits to use to form groups from a GROUPS variate when
	GMETHOD=limits
OVERLAP = scalar	Proportion by which a GROUPS variate should overlap between
	plots (scalar in range 0 - 0.5); default 0
OMITEMPTY = string token	Whether to omit all empty plots from the array (all), or omit
	levels of a GROUPS factor where all plots are empty (levels),
	or keep all plots in the array (none); default level
PENGROUP = factors	Defines factor combinations to be plotted in different colours,
	note that the number of colours available may differ between
	devices
NROWS = $scalar$	Specifies number of rows of plots to appear on one page;
	default determined automatically from GROUPS
NCOLUMNS = scalar	Specifies number of columns of plots to appear on one page;
	default determined automatically from GROUPS
TITLE = text	Supplies a title for the plot
FIRSTPICTURE = string token	Whether to put the first picture at bottom or top left of the grid
	(bottomleft, topleft); default topl
TMETHOD = string token	Whether to give plot titles as factor names with labels or just
	labels (names, labels); default names
YTITLE = text	Supplies an overall y-axis title
XTITLE = text	Supplies an overall x-axis title
YMARGIN = scalar	Relative size of margins for the y-axis labels on individual
	plots; default 0.04
XMARGIN = scalar	Relative size of margins for the x-axis labels on individual
	plots; default 0.04
TMARGIN = scalar	Relative size of margin for titles of individual plots; default
	0.04
PENSIZE = scalar	Proportionate adjustment to the pen size for individual plot
	titles and axis labels; default 1
USEPENS = string token	Whether to use current pen definitions in the procedure (no,
č	yes); default no
USEAXES = <i>string token</i>	Which aspects of the current axis definitions of window 1 to

	use (none, limits, style, marks, mpositions,
	nsubticks, transform); default none
NRMAX = $scalar$	Maximum number of rows on page; default 8 for a square
	frame, 7 for a landscape frame and 10 for a portrait frame
NCMAX = scalar	Maximum number of columns on page; default 8 for a square
	frame, 10 for a landscape frame and 7 for a portrait frame
KEYHEIGHT = scalar	Space in y-direction to use for key (0 to suppress key); default
	* i.e. determined automatically
YPENMETHOD = string token	Whether to use the same or different pens for each y-variate
	(different, same); default diff
FRAMESHAPE = <i>string token</i>	Shape of the plotting frame (landscape, portrait,
-	square); default squa
Parameters	
Y = variates	Y-values of the data to be plotted
X = variates or factors	X-values of the data to be plotted
METHOD = string tokens	Type of plot (point, line, mean, median, histogram,
	boxplot, spline, schematicboxplot); default poin
DESCRIPTION = texts	Annotation for key

TRY directive

Displays results of single-term changes to a linear, generalized linear or generalized additive model. **Options**

What to print (model, deviance, summary, estimates,
correlations, fittedvalues, accumulated,
monitoring, changes, confidence); default chan
Limit for expansion of model terms; default * i.e. that in
previous TERMS statement
Whether to pool ss in accumulated summary between all terms
fitted in a linear model (yes, no); default no
Whether to base ratios in accumulated summary on rms from
model with smallest residual ss or smallest residual ms (ss,
ms); default ss
Which warning messages to suppress (dispersion,
leverage, residual, aliasing, marginality,
vertical, df, inflation); default *
Printing of probabilities for variance and deviance ratios (yes,
no); default no
Printing of probabilities for t-statistics (yes, no); default no
Statistics to be displayed in the summary of analysis produced
by PRINT=summary, seobservations is relevant only for a
Normally distributed response, and %cv only for a gamma-
distributed response (%variance, %ss, adjustedr2, r2,
seobservations, dispersion, %cv, %meandeviance,
%deviance, aic, bic, sic); default %var, seob if
DIST=normal, %cv if DIST=gamma, and disp for other
distributions
Probability level for confidence intervals for parameter
estimates; default 0.95
List of explanatory variates and factors, or model formula

TSM directive

Declares one or more TSM data structures.

Option MODELTYPE = string token

Type of model (arima, transfer); default arim

Identifiers of the TSMs

parts of each TSM Parameters of each TSM

Lags, if not default

Parameters IDENTIFIER = *identifiers* ORDERS = *variates*

PARAMETERS = variates LAGS = variates

TSUMMARIZE directive

Displays characteristics of time series models.

Options

What to print (autocorrelations, expansion, impulse, piweight, psiweight); default * What to display with graphs (autocorrelations, impulse, piweight, psiweight); default *

Maximum lag for results; default 30

To save theoretical autocorrelations

To save impulse-response function

To save step function from impulse

Models to be displayed

To save pi-weights

To save psi-weights

To save expanded models

To save variance of each TSM

Orders of the autoregressive, integrated, and moving-average

MAXLAG = scalar

PRINT = *string tokens*

GRAPH = *string tokens*

Parameters

TSM = TSMs AUTOCORRELATIONS = variates IMPULSERESPONSE = variates STEPFUNCTION = variates PIWEIGHTS = variates PSIWEIGHTS = variates EXPANSION = TSMs VARIANCE = scalars

TTEST procedure

Performs a one- or two-sample t-test (S.J. Welham).

Options

PRINT = string tokens	Controls printed output (confidence, summary, test,
	variance, permutationtest);
[†] METHOD = <i>string token</i>	Type of test required (twosided, greaterthan, lessthan,
	equivalence, noninferiority, nonsuperiority);
	default twos
GROUPS = factor	Defines the groups for a two-sample test if only the Y1 parameter is specified
CIPROBABILITY = scalar	The probability level for the confidence interval; for a one-
	sided test this will be for the mean and for a two-sided test for
	the difference in means; default *, i.e. no confidence interval is produced
NULL = scalar	The value of the mean under the null hypothesis; default 0
VMETHOD = string token	Selects between the standard two-sample t-test, with a pooled
	estimate of the variances of the samples, and the use of
	separate estimates for the sample variances (automatic,
	pooled, separate); default auto uses a pooled estimate
	unless there is evidence of unequal variances
NTIMES = scalar	Number of random allocations to make when PRINT=perm;
	default 999
SEED = scalar	Seed for the random number generator used to make the
	allocations; default 0 continues from the previous generation
	or (if none) initializes the seed automatically
[†] EQLIMITS = scalar or variate	Limits for equivalence, non-inferiority or non-superiority
Parameters	
Y1 = variates	Identifier of the variate holding the first sample
Y2 = variates	Identifier of the variate holding the second sample
TESTRESULTS = variates	Identifier of variate (length 3) to save test statistic, d.f. and

ence
ence
all 1
all 1

TUKEYBIWEIGHT procedure

Estimates means using the Tukey biweight algorithm (D.B. Baird).

Options

options	
CUTPOINT = scalar	Cut point after which weight is set to zero; default 5
TOLERANCE = $scalar$	Tolerance to avoid division by zero; default 0.00001
Parameters	
DATA = variates or pointers	Data values
GROUPS = <i>factors</i>	Groupings of the data values
MEANS = variates	Saves the means
SE = variates	Saves standard errors

TVARMA procedure

Fits a vector autoregressive moving average (VARMA) model (A.I. Glaser).

Options	
PRINT = string tokens	What to print (model, summary, estimates,
	correlations); default mode, summ, esti
LIKELIHOOD = <i>string token</i>	Method of likelihood calculation (exact, conditional); default exac
CONSTANT = string token	How to treat the constant (estimate, fixtozero); default esti
ARMA = variate	Variate of length two, containing the number of AR and MA parameters respectively
ARFIXED = pointer	Specifies fixed values of the AR parameters
MAFIXED = pointer	Specifies fixed values of the MA parameters
MUFIXED = variate	Specifies fixed values of the constant parameters
NDIFFERENCING = variate or scalar	Specifies the order of differencing for each series; default 0
NCROSSRESIDUAL = scalar	Number of residual cross-correlation matrices to be computed
	for calculating the modified portmanteau statistic; default 20
MAXCYCLE = scalar	Maximum number of iterations; if this is not set, an
	appropriate default is determined automatically according to the number of parameters
TOLERANCE = $scalar$	Convergence criterion; default 0.0001
Parameters	
SERIES = pointers	Time series to be modelled (output series)
RESIDUALS = <i>pointers</i>	Saves the residual series
ESTIMATES = pointers	Saves estimates of parameters for each SERIES variate
SEESTIMATES = pointers	Saves standard errors of the estimates
VCRESIDUALS = <i>symmetric matrices</i>	Variance-covariance matrix of the residuals
DEVIANCE = scalars	Saves the residual sum of squares or deviance
CORRELATIONS = <i>symmetric matrices</i>	Saves the correlation matrix of the estimates
GRADIENTS = variates	Saves the first derivative of the loglikelihood function
SAVE = $pointers$	Saves information for use with TVGRAPH or TVFORECAST

TVFORECAST procedure

Forecasts future values from a vector autoregressive moving average (VARMA) model (A.I. Glaser).

Options	
PRINT = string tokens	What to print (forecasts, se); default fore, se
MAXLEAD = scalar	Maximum lead time i.e. number of forecasts to be made;

default 1

Parameter	°S
-----------	----

FORECASTS = matrices SE = matrices SAVE = pointers Saves the forecasts Saves standard errors of the forecasts Save structure from a previous TVARMA

TVGRAPH procedure

Plots a vector autoregressive moving average (VARMA) model (A.I. Glaser).

Options	
TIMEPOINTS = variate	X-coordinates for the graphs; default uses the integers 1, 2
TITLE = $texts$	Overall title for the graphs
YTITLE = texts	Titles for the y-axes; default * forms titles automatically from
	the identifiers or labels of the y-variables
XTITLE = texts	Title for the x-axis in each set of graphs; default * uses the
	identifier of TIMEPOINTS (if set)
NROWS = scalar	Specifies the number of rows of graphs to appear on the
	graphics screen; default * takes the number of y-variables
NCOLUMNS = scalar	Specifies the number of columns of graphs to appear on the
	graphics screen; default 1
Parameter	
SAVE = pointers	Save structure from TVARMA with information about the
	analysis; default plots information from the most recent
	TVARMA analysis

TXBREAK directive

Breaks up a text structure into individual words. **Option**

Option		
SEPARATOR = <i>text</i>	Defines the characters separating the words in the original text;	
	default ' , ; : . '	
Parameters		
TEXT = texts	Text to break into words	
WORDS = $texts$	Saves the words contained in each text (in the order in which	
	they occur)	
COLUMNS = variates	Saves the number of the column in the TEXT where each word	
	began	
LINES = variates	Saves the number of the line where each word was found	
PLACESINLINES = variates	Saves the place of each word (first, second &c) within the line	
	where it was found	

TXCONSTRUCT directive

Forms a text structure by appending or concatenating values of scalars, variates, texts, factors, pointers or formulae; allows the case of letters to be changed or values to be truncated and reversed.

Options	
TEXT = text	Stores the text that is formed
CASE = string token	Case to use for letters (given, lower, upper, changed, sentence, title); default give leaves the case of each letter as given in the original texts
METHOD = string token	Whether to append or concatenate the values of the structures (append, concatenate) default conc
SEPARATOR = <i>string</i>	Characters to separate all except last two strings in each line when concatenating; default ' ' (i.e. none)
LASTSEPARATOR = <i>string</i>	Characters to separate last two strings in each line when concatenating; default uses the charactors defined by SEPARATOR
PREFIX = <i>string</i>	Characters to put at the start of each line when concatenating; default ' ' (i.e. none)

END = string	Characters to put at the end of each line when concatenating;
	default ' ' (i.e. none)
SIGNIFICANTFIGURES = scalar	Specifies the number of significant figures to include for
	numerical data; default 4
Parameters	
STRUCTURE = scalars, variates, factors	, texts, pointers or formulae
	Structures whose values are to be appended or concatenated
WIDTH = scalars or variates	Number of characters to take from the strings formed from the
	units of each STRUCTURE, a negative value takes all the
	(unskipped) characters other than trailing spaces; if omitted or
	set to a missing value, all the (unskipped) characters are taken
DECIMALS = scalars or variates	Number of decimal places to use for numerical structures; if
	omitted or set to a missing value, a default is used which aims
	to print the value to the precision defined by the
	SIGNIFICANTFIGURES option
SKIP = scalars or variates	Number of characters to skip at the left-hand side of the strings
	formed from the units of each STRUCTURE, a negative value
	skips all initial spaces; if omitted or set to a missing value, no
_	characters are skipped
FREPRESENTATION = <i>string tokens</i>	How to represent factor values (labels, levels,
	ordinals); default is to use labels if available, otherwise
DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD	levels
DREPRESENTATION = <i>scalars</i> or <i>texts</i>	Format to use for dates and times (stored in numerical
DEVEDGE = atring to house	structures)
REVERSE = <i>string tokens</i>	Whether to reverse the strings of characters formed from the units of each structure (use, po)) default po
MTCCTNC = torta	units of each structure (yes, no); default no
MISSING = texts	String to use to represent missing values of numerical structures; default '*'
	suuciuies, ueidult

439

TXFIND directive

Finds a subtext within a text structure.

Options	
CASE = string token	Whether to treat the case of letters (small or capital) as significant when searching for the SUBTEXT within the TEXT (significant, ignored); default sign
REVERSE = <i>string token</i>	Whether to reverse the search to work from the end of the TEXT (yes, no); default no
MULTISPACES = string token	Whether to treat differences between multiple spaces and single spaces as significant, or to treat them all like a single space (significant, ignored); default sign
DISTINCT = <i>string tokens</i>	Whether to require the SUBTEXT to have one or more separators to its left or right within the TEXT (left, right; default *
SEPARATOR = <i>string</i>	Characters to use as separators; default ', ; : . '
SAMELINE = string token	Whether to ignore matches in the TEXT where the SUBTEXT is not all on the same line (yes, no); default no
Parameters	
TEXT = texts	Texts to be searched
SUBTEXT = <i>texts</i>	Text to look for in each TEXT
COLUMN = scalars	Position of the column within TEXT where the first character of SUBTEXT has been found
LINE = scalars	Number of the line within TEXT where the first character of SUBTEXT has been found
ICOLUMN = scalars	Column within TEXT at which to start the search
ILINE = scalars	Line within TEXT at which to start the search
ENDCOLUMN = scalars	Position of the column within TEXT where the last character of

	SUBTEXT has been found
ENDLINE = scalars	Number of the line within TEXT where the last character of
	SUBTEXT has been found

TXINTEGERCODES directive

Converts textual characters to and from their corresponding integer codes. **Options**

Options	
CONVERTTO = string token	Whether to convert from text characters to integer codes or
	integer codes to text characters (codes, text); default code
REPRESENT = string token	How to treat code values 128-255 (extendedascii, utf8);
	default exte if CODES defines no characters that can be
	represented only in UTF-8, otherwise utf8
Parameters	
TEXT = texts	Text structures (each with a single line only)
CODES = variates or scalars	Integer codes corresponding to the characters in each text

TXPAD procedure

Pads strings of a text structure with extra characters so that their lengths are equal (J.T.N.M. Thissen).

Options

PADDINGCHARACTERS = <i>string token</i>	Character(s) used for padding; default uses the dot character
METHOD = string token	Whether the character(s) of PADDINGCHARACTERS should be
	placed before or after the strings of OLDTEXT (before,
	after); default afte
REMOVESPACES = <i>string tokens</i>	Whether to remove initial and/or trailing spaces in the strings
	of OLDTEXT (leading, trailing); default * i.e. none
Parameters	
OLDTEXT = texts	Texts to be padded; must be set
NEWTEXT = $texts$	Saves the padded texts
WIDTH = scalars	Sets a limit on the length of the strings in the padded texts; default is the width of the largest string in OLDTEXT

TXPOSITION directive

Locates strings within the lines of a text structure. **Ontions**

Options		
CASE = string token	Whether to treat the case of letters as significant when searching for lines of the SUBTEXT within the TEXT (significant, ignored); default sign	
REVERSE = <i>string tokens</i>	Whether to reverse the search to work from the end of the lines of the TEXT (yes, no); default no	
MULTISPACES = <i>string token</i>	Whether to treat differences between multiple spaces and single spaces as significant, or to treat them all like a single	
DISTINCT = string tokens	<pre>space (significant, ignored); default sign Whether to require the SUBTEXT to have one or more separators to its left or right within the TEXT (left, right; default *</pre>	
SEPARATOR = $text$	Characters to use as separators; default ', ; : . '	
Parameters		
TEXT = texts	Texts whose strings are to be searched	
SUBTEXT = texts	Specifies a string or strings to find in each TEXT	
POSITION = variates	Position of the SUBTEXT strings within the TEXT	
WIDTH = scalars or variates	Right-most character(s) to search in the lines of each TEXT; default * searches up to the end of each line	
SKIP = scalars or variates	Number of characters to skip at the left-hand side of the lines of each TEXT; default 0	

TXPROGRESSION procedure

Forms a text containing a progression of strings (R.W. Payne). **Options**

INCLUDECHARACTERS = <i>string tokens</i>	Defines the set of characters to include in the progression
	(lower,upper,digits,_,%,space);
DIRECTION = string token	Direction of the progression (ascending, descending);
	default asce
FIRSTLETTERS = <i>string token</i>	Controls which letters come first (alllower, allupper,
	lower, upper); default uppe
OWNCHARACTERSET = text	Can supply an alternative set of characters
Parameters	
FIRST = texts	Single-valued text specifying the first string in each
	progression
SECOND = <i>texts</i>	Single-valued text specifying the second string in each
	progression
LAST = texts	Single-valued text defining the end of each progression
PROGRESSION = texts	Saves the progression
	· ·

TXREPLACE directive

Replaces a subtext within a text structure.

Options		
NTIMES = scalar	Number of times to search for the OLDSUBTEXT and replace it; default 1	
CASE = string token	Whether to treat the case of letters (small or capital) as	
-	significant when searching for the OLDSUBTEXT within the	
	OLDTEXT (significant, ignored); default sign	
MULTISPACES = <i>string token</i>	Whether to treat differences between multiple spaces and	
	single spaces as significant when locating the OLDSUBTEXT	
	within the OLDTEXT, or to treat them all like a single space	
	(significant, ignored); default sign	
DISTINCT = string tokens	Whether to require the OLDSUBTEXT to have one or more	
	separators to its left or right within the OLDTEXT (left,	
	right); default *	
SEPARATOR = <i>string</i>	Characters to use as separators; default ', ; : . '	
SAMELINE = <i>string token</i>	Whether to ignore matches in the OLDTEXT where the	
	OLDSUBTEXT is not all on the same line (yes, no); default no	
Parameters		
OLDTEXT = texts	Texts to be edited	
NEWTEXT = $texts$	Texts with OLDSUBTEXT replaced by NEWSUBTEXT; if no	
	NEWTEXT is supplied, the new values replace those in the	
	corresponding OLDTEXT	
OLDSUBTEXT = <i>texts</i>	Text to look for in each OLDTEXT	
NEWSUBTEXT = texts	Text to replace OLDSUBTEXT	
COLUMN = scalars	Position of the column within OLDTEXT where the first	
	character of NEWSUBTEXT has been placed	
LINE = scalars	Number of the line within OLDTEXT where the first character	
	of NEWSUBTEXT has been placed	
ICOLUMN = scalars	Column within OLDTEXT at which to start the search	
ILINE = scalars	Line within OLDTEXT at which to start the search	
ENDCOLUMN = scalars	Position of the column within OLDTEXT where the last	
	character of NEWSUBTEXT has been placed	
ENDLINE = scalars	Number of the line within OLDTEXT where the last character of	
	NEWSUBTEXT has been placed	
NREPLACED = scalars	Number of subtexts replaced	

	4 Syntax summary	
SPLIT procedure		

TXSPLIT procedure

Splits a text into individual texts, at positions on each line marked by separator character(s) (R.W. Payne).

Options

SEPARATOR = $text$	Defines the character(s) that indicate where to split each line; default ', '
INCLUDE = <i>string tokens</i>	Whether to retain the separator at the end of a split text, or any spaces at its start and end (separators, spaces); default * i.e. include neither
Parameters	
TEXT = texts	Text to split

Saves the texts into which TEXT is split

TX2VARIATE directive

SPLITTEXTS = *texts*

Converts text structures to variates. Options

Options	
PRINT = string token	Controls printed output (conversions); default * (i.e. none)
NONNUMERIC = <i>string token</i>	How to treat non-numeric values (bestmatch, missing) default miss
YEAR = scalar	Year to use when calculating the day within year for the date formats that specify only months and days; default is to assume that this is any year that is not a leap year
REDEFINE = string token	Whether to allow a structure in the VARIATE list that has already been declared (e.g. as a text) to be redefined (yes, no); default no
Parameters	
TEXT = texts	Text structures to convert
VARIATE = variates	Variate for each text, containing the numbers in each of its lines
DREPRESENTATION = scalars	Format to use for dates and times (stored in numerical structures)
MISSING = texts	Strings used to represent missing values in each text; default
STATUS = variates	Code to indicate whether the number in each unit was read successfully (1), or with conversions (2), or unsuccessfully (0)

T%CONTROL procedure

Expresses tables as percentages of control cells (R.W. Payne).

F S S	
Option	
PRINT = string token	Controls printed output (percentages); default perc
Parameters	
OLDTABLE = tables	Tables containing the original values
NEWTABLE = $tables$	Tables to store the percentage values
FACTOR = <i>factors</i> or <i>pointers</i>	Factor, or pointer of factors, with control levels
CONTROL = scalars, vaiates, texts or po	inters
	Identifies the control level or levels of each FACTOR (if more
	than one is specified for a factor, their mean is used); default
	uses the reference level

UNITS directive

Defines an auxiliary vector of labels and/or the length of any vector whose length is not defined when a statement needing it is executed.

Option	
NVALUES = scalar	Default length for vectors
Parameter	
variate or text	Vector of labels

UNSTACK procedure

Splits vectors into individual vectors according to levels of a factor (R.W. Payne).

Options

tor identifying the unstacked data sets
tors identifying how the units of the unstacked data sets
uld be matched
tors defined to identify these units in the unstacked vectors
ich missing values to include (datasets, idstacked);
ault * i.e. none
;

Parameters

STACKEDVECTOR = variates, factors or texts

	Vectors to be unstacked
DATASETINDEX = <i>scalars</i> or <i>texts</i>	Level or label of the DATASET factor indicating the group
	whose units are to be stored in the UNSTACKEDVECTOR;
	default takes the levels of DATASET one at a time (and then
	recycling this list to match the other parameters)
UNSTACKEDVECTOR = variates, factors	or <i>texts</i>

Unstacked vectors

UTMCONVERSION procedure

Converts between geographical latitude and longitude coordinates and UTM eastings and northings (D.B. Baird).

```
Options
```

CONVERTTO = string token	Whether to convert to UTM eastings and northings from geographical latitude and longitude coordinates, or to
	<pre>geographical coordinates from UTM (geographical, utm); default utm</pre>
DATUM = <i>string token</i>	The datum to use when constructing the grid for eastings and
6	northings (WGS84, NAD83, GRS80, OSGB36, WGS72,
	AUSTRALIAN1965, KRASOVSKY1940, NORTHAMERICAN1927, INTERNATIONAL1924, HAYFORD1909, CLARKE1880,
	CLARKE1866, AIRY1830, BESSEL1841, EVEREST1830);
	default WGS8
CENTRALMERIDIAN = $scalar$	Central meridian in degrees for the UTM coordinates
SINGLEZONE = <i>string token</i>	Whether to convert to easting and /northings in a single zone
5	(yes, no); default no
EORIGIN = string token	False origin for easting; default 500000
NORIGIN = string token	False origin for northing; default 0
Parameters	
LATITUDE = <i>scalars</i> or <i>variates</i>	Latitudes
LONGITUDE = scalars or variates	Longitudes
DIRECTION = <i>scalars</i> or <i>variates</i>	Directions of the angles of latitude and longitude coordinates
	(NE, NW, SE, SW); default NE
EASTING = scalars or variates	UTM easting grid references
NORTHING = <i>scalars</i> or <i>variates</i>	UTM northing grid references
ZONE = <i>scalars</i> or <i>variates</i>	UTM zones

VABLOCKDESIGN procedure

Analyses an incomplete-block design by REML, allowing automatic selection of random and spatial correlation models (R.W. Payne).

Options

PRINT = string tokens	Controls what summary output is produced about the models
	(deviance, aic, bic, sic, dffixed, dfrandom, change,
	exit, best, description; default best, desc
PBEST = string tokens	Controls the output from the REML analysis with the best

PTRY = string tokens	<pre>model (model, components, effects, means, stratumvariances, monitoring, vcovariance, deviance, Waldtests, missingvalues, covariancemodels, aic, sic, bic); default * i.e. none Controls the output to present from the REML analysis used to try each model (model, components, effects, means, stratumvariances, monitoring, vcovariance, deviance, Waldtests, missingvalues,</pre>
FIXED = formula	covariancemodels, aic, sic, bic); default * i.e. none Fixed model terms; default * i.e. none
RANDOM = formula	Additional random model terms; default * i.e. none
CONSTANT = string token	How to treat the constant term (estimate, omit); default esti
FACTORIAL = scalar	Limit on the number of factors or covariates in each fixed term; default 3
REPLICATES = factor	Replicate factor
BLOCKS = $factor$	Block factor; no default (must be specified)
ROWS = factor	Row factor for spatial analysis
COLUMNS = factor	Column factor for spatial analysis
ROWCOORDINATES = variate or factor	Row coordinates for fitting trends and spatial models if the design is irregular; if unset, these are defined from the levels of the ROWS factor
COLCOORDINATES = variate or factor	Column coordinates for fitting trends and spatial models if the design is irregular; if unset, these are defined from the levels of the COLUMNS factor
PLOTFACTOR = factor	Factor numbering the plots in the design; if unset, a local factor is defined automatically
PTERMS = formula	Terms (fixed or random) for which effects or means are to be printed; default * implies all the fixed terms
PSE = string token	Standard errors to be printed with tables of effects and means (differences, estimates, alldifferences, allestimates, none); default diff
MVINCLUDE = string tokens	Whether to include units with missing values in the explanatory factors and variates and/or the y-variates (explanatory, yvariate); default * i.e. omit units with missing values in either explanatory factors or variates or y- variates
VCONSTRAINTS = <i>string token</i>	Whether to constrain variance components to be positive (none, positive); default none
RSTRATEGY = <i>string token</i>	Strategy for selecting the random model (all, allfeasible, optimal, automatic, full); default allf
METHOD = string token	Criterion to choose the best random model (aic, sic, bic); default sic
TRYSPATIAL = string token	Whether to try spatial models (always, ifregular); default * i.e. no spatial models
TRYTRENDS = string token	Whether to see whether row and column trends are needed in the fixed model (yes, no); default no
SPATIALFACTOR = factor	Factor to use to define the term for a 2-dimensional power- distance model; if unset, a local factor is defined automatically
Parameters	· · · ·
Y = variates	Response variates
BESTMODEL = pointers	Saves a model-definition structure for the best model for each y-variate
EXIT = scalars	Exit status of the best model for each y-variate
SAVE = <i>REML save structures</i>	Save structure from the analysis of the best model for each y-variate

VAIC procedure

Calculates the Akaike and Schwarz (Bayesian) information coefficients for REML (R.W. Payne & V.M. Cave).

Options

PRINT = string tokens	Controls printed output (deviance, aic, bic, sic, dffixed,
	dfrandom, changes); default aic
INCLUDE = string tokens	When LMETHOD=residual, which constants to include that
	depend only on the fixed model (determinant, pi); default
	pi
DMETHOD = string token	Method to use to calculate log(determinant(X'X)) (choleski,
	lrv); default chol
LMETHOD = string token	Whether the residual or full log-likelihood is used to calculate
	the information coefficients (residual, full); default resi
REPEAT = string token	Whether to repeat output from the previous VAIC (yes, no);
	default no
Parameters	
DEVIANCE = scalars	Saves the deviance
AIC = scalars	Saves the Akaike information coefficient
SIC = scalars	Saves the Schwarz (Bayesian) information coefficient
DFFIXED = scalars	Saves the number of parameters fitted in the fixed model
DFRANDOM = scalars	saves the number of parameters fitted in the random model
	(and any covariance models)
CHANGES = variates	Saves changes since the previous VAIC; the units of the
	variates are labelled by the names of the coefficients
	(deviance, aic, sic, dffixed and dfrandom)
SAVE = <i>REML save structures</i>	Save structure for which to calculate the coefficients; default
	uses the save structure from the most recent REML

VALLSUBSETS procedure

Fits all subsets of the fixed terms in a REML analysis (R.W. Payne).

Options	
PRINT = string tokens	Controls printed output (results); default resu
FORCED = formula	Terms to include in every model
FACTORIAL = scalar	Limit for expansion of FORCED terms; default 3
SELECTION = string tokens	One or two criteria to be printed with the models (r2,
-	adjusted, cp, ep, aic, sic, bic, rss, rms); default aic, sic
NBESTMODELS = $scalar$	Number of models to print; default * i.e. all
BESTMODEL = pointer	Saves the best model according to the selected criteria
RESULTS = <i>pointer</i>	Pointer to save variates containing the criteria for the sets, and F and Wald statistics for the terms that they contain
MARGINALTERMS = <i>string token</i>	How to treat terms that are marginal to other terms (forced, free); default forc
SAVE = REML save structure	Specifies the analysis whose fixed terms are to be tested; by default this will be the most recent REML

No parameters

VALINEBYTESTER procedure

Provides combinabilities and deviances for a line-by-tester trial analysed by VABLOCKDESIGN or VAROWCOLUMNDESIGN (R.W. Payne).

Options

PRINT = string tokens	Controls what summary output is produced about the models
-	(combinability, tests); default comb, test
LINES = factor	Specifies the line (usually female parent); no default (must be
	specified)
TESTERS = factor	Specifies the tester (usually male parent); no default (must be

	specified)
CONTROLS = factor	Distinguishes between control and test (line × tester)
	genotypes; default is that there are no controls
PCOMBINABILITYTERMS = formula	Terms whose combinability effects are to be printed (LINES
	and/or LINES.TESTERS; default is to print both of them
MVINCLUDE = string tokens	When the SAVE parameter is unset, this specifies whether to
	include units with missing values in the explanatory factors
	and variates and/or the y-variates in the analyses
	(explanatory, yvariate); default * i.e. omit units with
	missing values in either explanatory factors or variates or y- variates
Parameters	
Y = variates	Response variates
MODELSTRUCTURE = <i>pointers</i>	Model-definition structure used for the analysis of each y- variate
COMBINABILITY = pointers	Pointer to tables of combinability effects for each y-variate
SECOMBINABILITY = pointers	Pointer to tables of standard errors of combinability effects for each y-variate
DEVIANCES = variates	Saves deviances for LINES and LINES. TESTERS
SAVE = <i>REML save structures</i>	Save structure from the analysis of each y-variate

VAMETA procedure

Performs a REML meta analysis of a series of trials, , previously analysed by <code>VASERIES</code> (R.W. Payne).

Options

PRINT = string tokens	Controls printed output (model, components, effects,
	means, stratumvariances, monitoring, vcovariance,
	deviance,Waldtests,missingvalues,
	covariancemodels, aic, sic, bic); default mode, comp, Wald
PTRY = string tokens	Controls the output to present from the ${\tt REML}$ analysis used to
	try each model (model, components, effects, means,
	stratumvariances, monitoring, vcovariance,
	deviance,Waldtests,missingvalues,
	covariancemodels, aic, sic, bic); default * i.e. none
PRECOVERY = <i>string tokens</i>	Controls what summary output is produced about the models
	that are tried during recovery (deviance, aic, bic, sic,
	dffixed, dfrandom, change, exit, best); default devi,
	aic, sic, dfra, best
FIXED = formula	Fixed model terms; if unset, these are taken from the MODELSTRUCTURES
RANDOM = formula	Additional random model terms; default * i.e. none
CONSTANT = string token	How to treat the constant term (estimate, omit); default esti
FACTORIAL = scalar	Limit on the number of factors or covariates in each fixed
	term; default 3
PTERMS = formula	Terms (fixed or random) for which effects or means are to be
	printed; default * implies all the fixed terms
PSE = string token	Standard errors to be printed with tables of effects and means
	(differences, estimates, alldifferences,
	allestimates, none); default diff
RECOVER = <i>string token</i>	Whether to try to recover with a simpler random model if
	REML cannot fit the model (yes, no); default no
METHOD = string token	How to choose the best model during recovery (aic, sic,
	bic); default sic
Parameters	
Y = variates	Response variates

4.1 Commands

MODELDEFINITIONS = <i>pointers</i>	Descriptions of the models for each y-variate, saved from VASERIES
EXIT = scalars	Exit status for the fit (zero if successful)
SAVE = $vsaves$	REML save structure from the analysis of each y-variate

VAOPTIONS procedure

Defines options for the fitting of models by VARANDOM and associated procedures (R.W. Payne). **Options**

Options	
MAXCYCLE = scalar	Limit on the number of iterations in REML analyses; default
	100
WORKSPACE = scalar	Number of blocks of internal memory to be set up for use by
	the REML algorithm
MINSPATIALCOORDINATES = scalar	Minimum number of different coordinates in a direction for a
	spatial model to be fitted by VAROWCOLUMNDESIGN; default 4
LIMPRTREND = scalar	Critical value for the probability of a row or column trend in
	the initial basic REML analysis (with replicates but no other
	random terms) for this to be included in the later analyses) by
	VAROWCOLUMNDESIGN; default 0.01
REPORTFAILURES = <i>string token</i>	Whether the accumulated summary should include models that
	fail to fit or that have bound variance parameters (yes, no);
	default no

No parameters

VARANDOM procedure

Finds the best REML random model from a set of models defined by VFMODEL (R.W. Payne).

Options	
PRINT = string tokens	Controls what summary output is produced about the models
	(best, deviance, aic, bic, sic, dffixed, dfrandom,
	change, exit); default devi, aic, sic, dfra, best
PBEST = string tokens	Controls the output from the REML analysis with the best
	model (model, components, effects, means,
	stratumvariances, monitoring, vcovariance,
	deviance,Waldtests,missingvalues,
	covariancemodels, aic, sic, bic); default * i.e. none
PTRY = string tokens	Controls the output to present to present from the REML
	analysis used to try each model (model, components,
	effects, means, stratumvariances, monitoring,
	vcovariance, deviance, Waldtests, missingvalues,
	covariancemodels, aic, sic, bic); default * i.e. none
MODELSTRUCTURES = pointer	Model-definition structures specifying the models to try
PTERMS = formula	Terms (fixed or random) for which effects or means are to be
	printed; default * implies all the fixed terms
PSE = string token	Standard errors to be printed with tables of effects and means
	(differences, estimates, alldifferences,
	allestimates, none); default diff
MVINCLUDE = string tokens	Whether to include units with missing values in the
	explanatory factors and variates and/or the y-variates
	(explanatory, yvariate); default * i.e. omit units with
	missing values in either explanatory factors or variates or y-
	variates
METHOD = string token	How to choose the best model (aic, sic, bic); default sic
Parameters	
Y = variates	Response variates
NBESTMODEL = scalars	Saves the number of the best model for each y-variate,
	returning a missing value if no models could be fitted
	successfully

448	4 Syntax summary
SAVE = <i>REML save structures</i>	Save structure from the analysis of the best model for each y- variate
VARECOVER procedure	
	o fit a model, by simplifying the random model (R.W. Payne).
Options PRINT = string tokens	Controls what summary output is produced about the simpler random models that are tried (deviance, aic, bic, sic, dffixed, dfrandom, change, exit, best); default devi,
PBEST = string tokens	aic, sic, dfra, best Controls the output from the REML analysis with the best simpler model (model, components, effects, means, stratumvariances, monitoring, vcovariance, deviance, Waldtests, missingvalues,
	covariancemodels, aic, sic, bic); default * i.e. none
PTRY = string tokens	Controls the output to present to present from the REML analysis used to try each model (model, components, effects, means, stratumvariances, monitoring,
plotfactor = factor	vcovariance, deviance, Waldtests, missingvalues, covariancemodels, aic, sic, bic); default * i.e. none Factor numbering the plots in the design, required if VARECOVER needs to try a null random model; if unset, a local factor is defined automatically.
FORCED = formula	factor is defined automatically Specifies terms that must not be removed from the random
PTERMS = formula	model; by default any of the random terms can be removed Terms (fixed or random) for which effects or means are to be printed; default * implies all the fixed terms
PSE = string token	Standard errors to be printed with tables of effects and means (differences, estimates, alldifferences, allestimates, none); default diff
MVINCLUDE = string tokens	Whether to include units with missing values in the explanatory factors and variates and/or the y-variates (explanatory, yvariate); default * i.e. omit units with missing values in either explanatory factors or variates or y- variates
METHOD = string token	Criterion to choose the best model (aic, sic, bic); default sic
PROHIBIT = string token	Whether to exclude models where any estimated variance parameters are held at a bound (bound); default *
Parameters	parameters are nerd at a bound (bound), default ^
Y = variates	Response variates
MODELSTRUCTURE = <i>pointers</i>	Model-definition structure for the unsuccessful analysis of each y-variate
BESTMODEL = pointers	Saves a model-definition structure for the best model for each y-variate
EXIT = scalars	Exit status of the best model for each y-variate
SAVE = <i>REML save structures</i>	Save structure from the analysis of the best model for each y- variate

VARIATE directive

Declares one or more variate data structures.

Options

NVALUES = scalar or vector	Number of units, or vector of labels; default * takes the setting
	from the preceding UNITS statement, if any
VALUES = <i>numbers</i>	Values for all the variates; default *
MODIFY = string token	Whether to modify (instead of redefining) existing structures

	(yes, no); default no
IPRINT = string tokens	Information to be used by default to identify the variates in
	output (identifier, extra); if this is not set, they will be
	identified in the standard way for each type of output
Parameters	
IDENTIFIER = <i>identifiers</i>	Identifiers of the variates
VALUES = <i>identifiers</i>	Values for each variate
DECIMALS = scalars	Number of decimal places for output
EXTRA = $texts$	Extra text associated with each identifier
MINIMUM = scalars	Minimum value for the contents of each structure
MAXIMUM = scalars	Maximum value for the contents of each structure
DREPRESENTATION = <i>scalars</i> or <i>texts</i>	Default format to use when the contents represent dates and
	times

VAROWCOLUMNDESIGN procedure

Analyses a row-and-column design by REML, with automatic selection of the best random and spatial covariance model (R.W. Payne).

Options	
PRINT = string tokens	Controls what summary output is produced about the models (best, description, deviance, aic, bic, sic, dffixed,
	dfrandom, change, exit); default best, desc
PBEST = string tokens	Controls the output from the REML analysis with the best
	model (model, components, effects, means,
	stratumvariances, monitoring, vcovariance,
	deviance,Waldtests,missingvalues,
	covariancemodels, aic, sic, bic); default * i.e. none
PTRY = string tokens	Controls the output to present from the REML analysis used to
	try each model (model, components, effects, means,
	stratumvariances, monitoring, vcovariance,
	deviance, Waldtests, missingvalues,
	covariancemodels, aic, sic, bic); default * i.e. none
FIXED = formula	Fixed model terms; default * i.e. none
RANDOM = formula	Additional random model terms; default * i.e. none
CONSTANT = string token	How to treat the constant term (estimate, omit); default esti
FACTORIAL = scalar	Limit on the number of factors or covariates in each fixed
	term; default 3
REPLICATES = $factor$	Replicate factor, if relevant
ROWS = factor	Row factor; default * i.e. must be specified
COLUMNS = factor	Column factor; default * i.e. must be specified
ROWCOORDINATES = variate or factor	Row coordinates for fitting trends and spatial models if the
· · · · · · · · · · · · · · · · · · ·	design is irregular; if unset, these are defined from the levels of the ROWS factor
COLCOORDINATES = variate or factor	Column coordinates for fitting trends and spatial models if the
·	design is irregular; if unset, these are defined from the levels of
	the COLUMNS factor
PLOTFACTOR = factor	Factor numbering the plots in the design; if unset, a local
5	factor is defined automatically
PTERMS = formula	Terms (fixed or random) for which effects or means are to be
-)	printed; default * implies all the fixed terms
PSE = string token	Standard errors to be printed with tables of effects and means
0	(differences, estimates, alldifferences,
	allestimates, none); default diff
MVINCLUDE = <i>string tokens</i>	Whether to include units with missing values in the
	explanatory factors and variates and/or the y-variates
	(explanatory, yvariate); default * i.e. omit units with
	(interview

450	4 Syntax summary
	missing values in either explanatory factors or variates or y- variates
VCONSTRAINTS = <i>string token</i>	Whether to constrain variance components to be positive (none, positive); default none
RSTRATEGY = <i>string token</i>	Strategy for selecting the random model (all, allfeasible, set, setfeasible, fastoptimal, optimal, automatic, comprehensive, full, given); default allf
METHOD = string token	Criterion to choose the best random model (aic, sic, bic); default sic
TRYSPATIAL = <i>string token</i>	Whether to try spatial models (always, ifregular); default * i.e. no spatial models
TRYTRENDS = <i>string token</i>	Whether to see whether row and column trends are needed in the fixed model (yes, no); default no
SPATIALFACTOR = factor	Factor to use to define the term for a 2-dimensional power- distance model; if unset, a local factor is defined automatically
Parameters	
Y = variates	Response variates
BESTMODEL = <i>pointers</i>	Saves a model-definition structure for the best model for each y-variate
EXIT = scalars	Exit status of the best model for each y-variate
SAVE = <i>REML save structures</i>	Save structure from the analysis of the best model for each y- variate

VASDISPLAY procedure

Displays further output from an analysis by VASERIES (R.W. Payne).

Options	
---------	--

PRINT = string tokens	What output to present (model, components, effects,
	means, stratumvariances, vcovariance, deviance,
	Waldtests,missingvalues,covariancemodels,aic,
	sic, bic); default mode, comp, Wald, cova
PTERMS = formula	Terms (fixed or random) for which effects or means are to be
	printed; default * implies all the fixed terms
PSE = string token	Standard errors to be printed with tables of effects and means
	(differences, estimates, alldifferences,
	allestimates, none); default diff
CFORMAT = string token	Whether printed output for covariance models gives the
	variance matrices or the parameters (variancematrices,
	parameters); default vari
FMETHOD = string token	Controls whether and how to calculate F-statistics for fixed
	<pre>terms (automatic, none, algebraic, numerical); default auto</pre>
MODELDEFINITIONS = pointer	Definitions of the models used by VASERIES
SAVE = <i>pointer</i>	REML save structures from the VASERIES analysis
Parameter	
EXPERIMENT = <i>scalars</i> or <i>texts</i>	Specifies the experiment, from the series, whose output is to be displayed; no default, must be set

VASERIES procedure

Analyses a series of trials with incomplete-block or row-and-column designs by REML, automatically selecting the best random models (R.W. Payne).

Options

- I	
PRINT = string tokens	Controls what summary output is produced about the models
	(deviance, aic, bic, sic, dffixed, dfrandom, change,
	exit, best); default devi, aic, sic, dfra, best
PBEST = string tokens	Controls the output from the REML analysis with the best
	model (model, components, effects, means,

PTRY = string tokens	<pre>stratumvariances, monitoring, vcovariance, deviance, Waldtests, missingvalues, covariancemodels, aic, sic, bic); default * i.e. none Controls the output to present to present from the REML analysis used to try each model (model, components, effects, means, stratumvariances, monitoring, vcovariance, deviance, Waldtests, missingvalues, covariancemodels, aic, sic, bic); default * i.e. none</pre>
FIXED = formula	Fixed model terms; default * i.e. none
RANDOM = formula	Additional random model terms; default * i.e. none
CONSTANT = string token	How to treat the constant term (estimate, omit); default esti
FACTORIAL = scalar	Limit on the number of factors or covariates in each fixed term; default 3
EXPERIMENTS = factor	Experiment factor
REPLICATES = $factor$	Replicate factor, if required
BLOCKS = factor	Block factor, if required
ROWS = factor	Row factor, if required
COLUMNS = factor	Column factor, if required
ROWCOORDINATES = variate or factor	Row coordinates for fitting trends and spatial models if the
	design is irregular; if unset, these are defined from the levels of the ROWS factor
COLCOORDINATES = <i>variate</i> or <i>factor</i>	Column coordinates for fitting trends and spatial models if the design is irregular; if unset, these are defined from the levels of the COLUMNS factor
PLOTFACTOR = factor	Factor numbering the plots in the design; if unset, a local factor is defined automatically
PTERMS = formula	Terms (fixed or random) for which effects or means are to be printed; default * implies all the fixed terms
PSE = string token	Standard errors to be printed with tables of effects and means (differences, estimates, alldifferences,
MVINCLUDE = string tokens	allestimates, none); default diff Whether to include units with missing values in the explanatory factors and variates and/or the y-variates (explanatory, yvariate); default * i.e. omit units with missing values in either explanatory factors or variates or y- variates
VCONSTRAINTS = <i>string token</i>	Whether to constrain variance components to be positive (none, positive); default none
RSTRATEGY = <i>string token</i>	Strategy for selecting the random model (all, allfeasible, fastoptimal, optimal); default allf
METHOD = string token	How to choose the best random model (aic, sic, bic); default sic
TRYSPATIAL = string token	Whether to try spatial models (always, ifregular); default * i.e. no spatial models
TRYTRENDS = string token	Whether to see whether row and column trends are needed in the fixed model (yes, no); default no
SPATIALFACTOR = factor	Factor to use to define the term for a 2-dimensional power- distance model; if unset, a local factor is defined automatically
Parameters	, , , , , , , , , , , , , , , , , , ,
Y = variates	Response variates
MODELDEFINITIONS = pointers EXIT = variates SAVE = pointers	Saves definitions of the best models for use by VAMETA Exit status of the best models (zero if successful) REML save structures for the best analysis of each experiment
ĩ	······································

VASKEEP procedure

Copies information from an analysis by VASERIES into Genstat data structures (R.W. Payne). **Options**

Options	
EXPERIMENT = <i>scalar</i> or <i>text</i>	Specifies the experiment, from the series, whose output is to be saved; no default, must be set
FACTORIAL = scalar	Limit on the number of factors or covariates in the terms
	generated from the TERMS parameter; default 3
RESIDUALS = variate	Residuals from the analysis
FITTEDVALUES = variate	Fitted values from the analysis
DEVIANCE = scalar	Residual deviance from fitting the full fixed model
DF = scalar	Residual degrees of freedom after fitting the full fixed model
AIC = scalar	Saves the Akaike information coefficient
SIC = scalar	Saves the Schwarz (Bayesian) information coefficient
RMETHOD = string token	Which random terms to use when calculating RESIDUALS
C C	(final, all); default fina
FMETHOD = string token	Controls how to calculate F-statistics for fixed terms
C	(automatic, none, algebraic, numerical); default auto
WMETHOD = string token	Controls which Wald statistics are saved (add, drop); default
C	drop
MODELDEFINITIONS = pointer	Definitions of the models used by VASERIES
SAVE = $pointer$	REML save structures from the VASERIES analysis
Parameters	
TERMS = <i>formula</i>	Terms for which information is to be saved
COMPONENTS = scalars	Estimated variance components
MEANS = tables	Table of predicted means for each term
SEDMEANS = <i>symmetric matrices</i>	Standard errors of differences between the predicted means
VARMEANS = <i>symmetric matrices</i>	Variance-covariance matrix of the means
EFFECTS = $tables$	Table of estimated regression coefficients for each term
SEDEFFECTS = symmetric matrices	Standard errors of differences between the estimated
~	parameters of each term
VAREFFECTS = symmetric matrices	Variance-covariance matrix of the effects of a term
WALD = scalars	Wald statistic (fixed terms only)
FSTATISTIC = scalars	F statistics (fixed terms only)
NDF = scalars	Numerator d.f. (fixed terms only)
DDF = scalars	Denominator d.f. (fixed terms only)
DD1 Scalars	Denominator d.i. (fixed terms only)

VASMEANS procedure

Saves experiment \times treatment means from analysis of a series of trials by VASERIES (R.W. Payne). **Options** EXCEMPTAL = scalar Limit on the number of factors in the terms generated from the

FACTORIAL = scalar	Limit on the number of factors in the terms generated from the
	TERMS parameter; default 3
RESIDUALVARIANCES = $table$	Saves residual variances from the experiments
MODELDEFINITIONS = pointer	Definitions of the models used by VASERIES
SAVE = pointer	REML save structures from the VASERIES analysis
Parameters	
TERMS = formula	Terms for which means are to be saved
MEANS = <i>tables</i> or <i>pointers</i>	Experiment × term tables of means
SEMEANS = <i>tables</i> or <i>pointers</i>	Experiment × term tables of standard errors of means
AVESEDMEANS = <i>tables</i> or <i>pointers</i>	Average standard errors of differences for the experiments

VAYPARALLEL procedure

Does the same REML analysis for several y-variates, and collates the output (R.W. Payne).

Options	
PRINT = string tokens	Controls printed output (summary, monitoring); default *
	i.e. none
MODELDEFINITION = pointer	Defines the model for the analysis

4.1	Commands	'

FSAVETERMS = formula	Fixed terms for which to save information; if this is not set, information is saved for all the fixed terms
RSAVETERMS = formula	Random terms for which to save information; if this is not set,
RECOVER = string token	no information is saved for the random terms Whether to try to recover with a simpler random model if REML cannot fit the model for a particular y-variate (yes, no);
METHOD = string token	default no How to choose the best model during recovery (aic, sic,
	bic); default sic
SPREADSHEET = <i>string tokens</i>	What results to save in spreadsheets (components, fixedtests, means, vcmeans, effects, vceffects,
	residuals, fittedvalues); default * i.e. none
SHEETLAYOUT = <i>string token</i>	How to store the results in spreadsheets (yrows, ycolumns, onesheet); default ycol
Parameters	
Y = pointers	Y-variates for the analyses
RESIDUALS = <i>matrices</i>	Saves the residuals
FITTEDVALUES = matrices	Saves the fitted values
COMPONENTS = matrices	Saves the variance components
MEANS = <i>pointers</i>	Pointer to a matrix for each of the terms in FSAVETERMS,
	saving the predicted means
VCMEANS = pointers	Pointer to matrices saving variances and covariances for the means
EFFECTS = <i>pointers</i>	Pointer to matrices saving effects for the terms in FSAVETERMS and RSAVETERMS
VCEFFECTS = <i>pointers</i>	Pointer to matrices saving variances and covariances for the effects
WALD = matrices	Saves the Wald statistics for the terms in FSAVETERMS
FSTATISTIC = matrices	Saves the F statistics for the terms in FSAVETERMS
NDF = matrices	Saves the numerator degrees of freedom for the terms in FSAVETERMS
DDF = matrices	Saves the denominator degrees of freedom for the terms in FSAVETERMS
PRFIXED = matrices	Saves the probabilities for the F statistics if available, or otherwise the Wald statistics, for the terms in FSAVETERMS
EXIT = pointers	Pointer to scalars saving the exit codes from the initial REML analyses
OUTFILENAME = texts	Name of Genstat workbook file (.gwb) or Excel (.xls or .xlsx) file to create

VBOOTSTRAP procedure

Performs a parametric bootstrap of the fixed effects in a REML analysis (C.J. Brien & R.W. Payne).

Options	
[†] PRINT = string tokens	Controls printed output (observedteststatistics,
	pvalues, vdiagnostics, nnotconverged, monitoring,
	all, ownstatistics); default obse, pval
VPRINT = string tokens	Controls the output from the REML analysis of each sample
	(model, components, effects, means,
	stratumvariances, monitoring, vcovariance,
	deviance, Waldtests, missingvalues,
	covariancemodels); default * i.e. none
PLOT = string	What to plot (histogram); default *
NBOOT = $scalar$	Number of bootstrap samples to take; default 99
NRETRIES = $scalar$	Maximum number of extra samples to take when some REML
	analyses fail to converge; default NBOOT
SEED = scalar	Seed for random number generation; default 0 continues an
	existing sequence or, if none, selects a seed automatically

454	4 Syntax summary
METHOD = string token	Indicates whether to use the standard Fisher-scoring algorithm or the new AI algorithm with sparse matrix methods (Fisher, AI); default AI
MAXCYCLE = scalar	Sets a limit on the number of iterations in the REML analyses; default 30
FMETHOD = string token	Controls whether and how to calculate F statistics for fixed terms (automatic, none, algebraic, numerical); default none
WMETHOD = string token	Controls which Wald statistics are saved (add, drop); default add
WORKSPACE = scalar	Number of blocks of internal memory to be set up for use by the REML algorithm
[†] OWNMETHOD = string token	Type of test required for own statistics (twosided, greaterthan, lessthan); default twos
[†] CIPROBABILITY = scalar	Probability level for the confidence interval for own statistics; default 0.95
Parameters	
SAVE = <i>REML</i> save structures	Specifies the (REML) save structure of the original analysis; default * uses the SAVE structure from the most recent REML analysis
UMEANS = variates	Specifies the expected values for the units under the null hypothesis of no effects from the FIXEDTERMS
UVCOVARIANCE = <i>symmetric matrices</i>	Specifies the variances and covariances of the units under the null hypothesis of no effects from the FIXEDTERMS
FIXEDTERMS = formula	Specifies the fixed terms to test; default * tests all the fixed terms in the original analysis
FSTATISTICS = <i>pointers</i>	Saves a pointer with a variate for each of the FIXEDTERMS, containing the F statistics from the bootstrap samples
PVALUES = <i>pointers</i>	Saves a pointer with a scalar for each of the FIXEDTERMS, containing the test probability obtained from the position of its F statistic within those from the bootstrap samples
NNOTCONVERGED = scalars	Saves the number of bootstrap samples whose REML analysis failed to converge
[†] OWNDATA = <i>pointers</i>	Data required to calculate own statistics
[†] OWNOBSERVEDVALUES = <i>variates</i>	Saves observed values of the own statistics
[†] OWNPROBABILITIES = variates	Saves bootstrap probabilities for the own statistics
[†] OWNESTIMATES = variates	Saves boostrap estimates for the own statistics
[†] OWNSES = variates	Saves boostrap standard errors for the own statistics
[†] OWNLOWERCIS = variates	Saves boostrap lower values of the confidence intervals for the own statistics
[†] OWNUPPERCIS = variates	Saves boostrap upper values of the confidence intervals for the own statistics
[†] OWNSTATISTICS = <i>pointers</i>	Saves the own statistics obtained from the bootstrap samples, in a pointer with a variate for each statistic

VCHECK procedure

Checks standardized residuals from a REML analysis (R.W. Payne). **Options**

PRINT = string tokens	Controls printed output (largeresiduals, similarunits,
	stability); default larg
RMETHOD = string token	Which random terms to use when calculating the standardized
	residuals (final, all); default fina
RLIMIT = scalar	Limit for detection of large standardized residuals; if this is not
	set, the limit is set automatically according to the number of
	residual degrees of freedom
COMMONFACTORS = factors	Factors to define similar units; if this is not set, the factors in
	the fixed model are used

REPORTFACTORS = factors PROBABILITY = scalar	Additional factors to include in the table of similar units Critical value for the test probabilities to decide whether to generate warning messages from the Levine test for variance
	stability; default=0.025
NLARGERESIDUALS = scalar	Saves the number of large standardized residuals that have been detected
LARGERESIDUALUNITS = variate	Saves the unit numbers of the large standardized residuals
SIMILARINFORMATION = pointer	Saves details of large standardized residuals and residuals in similar units
STABILITYTEST = pointer	Saves the results of the Levene test for stability of the variance of the standardized residuals
SAVE = <i>REML</i> save structure	Specifies the analysis to be checked; by default this will be the most recent REML
No novomotors	

No parameters

VCOMPONENTS directive

Defines the variance-components model for REML. **Ontions**

Options	
FIXED = formula	Fixed model terms; default *
ABSORB = factor	Defines the absorbing factor (appropriate only when REML option METHOD=Fisher); default * i.e. none
CONSTANT = <i>string token</i>	How to treat the constant term (estimate, omit); default esti
FACTORIAL = scalar	Limit on the number of factors or covariates in each fixed term; default 3
CADJUST = <i>string token</i>	What adjustment to make to covariates before analysis (mean, none); default mean
RELATIONSHIP = matrix	Defines relationships constraining the values of the components; default *
SPLINE = formula	Defines random cubic spline terms to be generated: each term must contain only one variate, if there is more than one factor in a term, separate splines are calculated for each combination of levels of the factors
EXPERIMENTS = factor	Factor defining the different experiments in a multi-experiment (meta-) analysis
Parameters	
RANDOM = <i>formula</i>	Random model terms
INITIAL = scalars	Initial values for each component and the residual variance
CONSTRAINTS = <i>string tokens</i>	How to constrain each variance component and the residual
	<pre>variance (none, positive, fixrelative, fixabsolute); default none</pre>

VCRITICAL procedure

Uses a parametric bootstrap to	o estimate critical values for a fixed term in a REML analysis (R.W.
Payne & C.J. Brien).	
Options	
PRINT = string tokens	Prints the critical values (critical, fcritical,
	tcritical, wcritical, monitoring); default crit, fcri,
	tcri,wcri
VPRINT = string tokens	Controls the output from the REML analyses (model,
	components, effects, means, stratumvariances,
	monitoring,vcovariance,deviance,Waldtests,
	missingvalues, covariancemodels); default * i.e. none
TERM = formula	Fixed term to be tested
UMEANS = variate	Specifies the expected values for the units under the null
	hypothesis of no effects from the TERM; default is to use the

	constant from the SAVE structure
UVCOVARIANCE = <i>symmetric matrix</i>	Specifies the variances and covariances of the units under the
	null hypothesis of no effects from the TERM; default is to take
	this from the SAVE structure
WCRITICAL = variate	Saves the critical values of the Wald statistic
FCRITICAL = variate	Saves the critical values of the F statistic
NBOOT = $scalar$	Number of bootstrap samples to take; default 99
NRETRIES = scalar	Maximum number of extra samples to take when some REML
	analyses fail to converge; default NBOOT
SEED = scalar	Seed for random number generation; default 0 continues an
	existing sequence or, if none, selects a seed automatically
PROBABILITIES = <i>scalar</i> or <i>variate</i>	Significance levels for which critical values are required;
	default 0.05
METHOD = string token	Indicates whether to use the Fisher-scoring algorithm or the AI
0	algorithm with sparse matrix methods (Fisher, AI); default AI
MAXCYCLE = $scalar$	Sets a limit on the number of iterations in the REML analyses;
	default 30
FMETHOD = string token	Controls how to calculate estimated denominator degrees of
0	freedom when these are to be saved (automatic, none,
	algebraic, numerical); default auto
WMETHOD = string token	Controls which Wald statistics are saved (add, drop); default
0	add
TMETHOD = string token	Type of test to be made for the contrasts (twosided,
	greaterthan, lessthan, equivalence,
	noninferiority); default twos
WALD = variate	Saves the Wald statistics from the samples
FSTATISTIC = <i>variate</i>	Saves the F statistics from the samples
NDF = scalar	Saves the numerator degrees of freedom for the Wald and F
	statistics
DDF = variate	Saves the estimated denominator degrees of freedom for the F
	statistics
NNOTCONVERGED = scalar	Saves the number of bootstrap samples whose REML analysis
	failed to converge
WORKSPACE = scalar	Number of blocks of internal memory to be set up for use by
	the REML algorithm
SAVE = $vsave$	REML save structure to provide the information about the analysis
Parameters	
XCONTRASTS = variates or tables	X-variate defining a contrast to be detected
CONTRASTTYPE = <i>string tokens</i>	Type of contrast (regression, comparison) default rege
ESTIMATE = variates	Saves the estimated values of the contrasts from the samples
SE = variates	Saves the standard errors for the estimates of the contrasts
	from the samples
CRITICAL = variates	Saves the critical values for the contrasts
TCRITICAL = variates	Saves the critical values for the t-statistics of the contrasts
VCYCLE directive	

Controls the operation of the REML algorithm.

Options	
CONVERGENCE = <i>string token</i>	Type of criterion for assessing convergence (deviance, parameter); default * uses the deviance with the average-
	information algorithm, and the variance parameter values for the Fisher scoring algorithm
CRITERIONVALUE = scalar	Sets the convergence criterion value; default * i.e. determined automatically
STEPLENGTH = scalar	Sets the default relative step size for the average-information

NDENCE - goglar	algorithm; default * i.e. determined automatically Number of equations to use as dense in the average-
NDENSE = scalar	1 6
	information algorithm; default * uses all fixed model terms as
	dense
EQORDER = string token	Method to use to reorder the mixed model equations for fitting
	(none, a, b); default b
No parameters	

VDFIELDRESIDUALS procedure

Display residuals from a REML analysis in field layout (R.W. Payne).

Options	
PRINT = string tokens	Controls printed output (table); default * i.e. none
PLOT = string tokens	Controls the graphs that are displayed (contour, shade);
	default cont
RMETHOD = string token	Which random terms to use to calculate the residuals (final,
	all, notspline, stfinal, stall); default all
GRAPHICS = string token	Type of graph (highresolution, lineprinter); default high
MARGIN = string token	Whether to include margins in printed tables (yes, no); default no
YORIENTATION = <i>string token</i>	Y-axis orientation of the plot (reverse, normal); default norm
PENCONTOUR = $scalar$	Pen number to be used for the contours; default 1
PENFILL = scalar or variate	Pen number(s) defining how to fill the areas between contours; default 3
PENSHADE = scalar or variate	Pen(s) to use for the shade plot; default 3
Parameters	
Y = variates or factors	Specifies the y-coordinates of the plots
X = variates or factors	Specifies the x-coordinates of the plots
SAVE = REML save structures	Save structure of the REML analysis from which to take the
	residuals; default is to take the most recent REML analysis
FIELDWIDTH = scalars	Field width for printing the residuals; default 12
DECIMALS = scalars	Number of decimal places to use when printing the residuals
TITLE = texts	Titles for the plots

VDISPLAY directive

Displays further output from a ${\tt REML}$ analysis.

Options	
PRINT = string tokens	What output to present (model, components, effects, means, stratumvariances, monitoring,
	vcovariance, deviance, Waldtests, missingvalues,
	covariancemodels); default mode, comp, Wald, cova
CHANNEL = <i>identifier</i>	Channel number of file, or identifier of a text to store output;
	default current output file
PTERMS = formula	Terms (fixed or random) for which effects or means are to be
	printed; default * implies all the fixed terms
PSE = string token	Standard errors to be printed with tables of effects and means
	(differences, estimates, alldifferences,
	allestimates, none); default diff
CFORMAT = <i>string token</i>	Whether printed output for covariance models gives the
	variance matrices or the parameters (variancematrices,
	parameters); default vari
FMETHOD = string token	Controls whether and how to calculate F-statistics for fixed
	<pre>terms (automatic, none, algebraic, numerical); default auto</pre>
Parameter	
REML save structures	Save structure containing the details of each analysis; default is to take the save structure from the latest REML analysis

VEQUATE procedure

Equates across numerical structures (P.W. Goedhart). No options Parameters

OLDSTRUCTURES = <i>pointers</i>	Structures whose values are to be transferred – each pointer should contain a set of structures with the same length and type
	(either scalar, variate, matrix, diagonal matrix, symmetric matrix, table, text or pointer)
NEWSTRUCTURES = <i>pointers</i>	Structures to contain the transferred values – each pointer contains a set of either variates, texts or pointers, as relevant to
	the type of the OLDSTRUCTURES

VDEFFECTS procedure

Plots one- or two-way tables of effects estimated in a REML analysis (R.W. Payne).

Options

GRAPHICS = string token	Type of graph (highresolution, lineprinter); default high
METHOD = string token	What to plot (effects, lines); default effe
XFREPRESENTATION = <i>string token</i>	How to label the x-axis (levels, labels); default labels
PSE = string	uses the XFACTOR labels, if available What s.e. to plot to represent variation (differences,
ESE sumg	effects, alleffects); default diff
SAVE = REML save structure	Save structure of the analysis to display; the default is to take
	the most recent REML analysis
Parameters	
XFACTOR = $factors$	Factor providing the x-values for each plot
GROUPS = factors	Factor identifying the different sets of points from a two-way table of effects
COVARIATES = variates	X-variates for regression coefficients or pointer
NEWXLEVELS = variates	Values to be used for XFACTOR instead of its existing levels
TITLE = $texts$	Title for the graph; default defines a title automatically
YTITLE = texts	Title for the y-axis; default '
XTITLE = texts	Title for the x-axis; default is to use the identifier of the XFACTOR

VFIXEDTESTS procedure

Saves fixed tests from a REML analysis (R.W. Payne).

Options	
FIXEDTESTS = pointer	Saves the fixed tests
FMETHOD = string token	Controls whether and how to calculate F-statistics
	(automatic, none, algebraic, numerical); default auto
WMETHOD = string token	Controls which tests are saved (add, drop); default drop
SAVE = REML save structure	Specifies the save structure from the required analysis; default
	* i.e. most recent one

No parameters

VFLC procedure

Performs an F-test of random effects in a linear mixed model based on linear combinations of the responses, i.e. an FLC test (V.M. Cave).

PRINT = string tokens	Controls printed output (summary, monitoring); default
	summ
PLOT = string tokens	What graphs to plot for the bootstrap and fast double bootstrap
	FLC tests (kerneldensity, histogram); default * i.e. none
TEST = string tokens	Type(s) of test to perform; (flc, bootstrap,
	fastdoublebootstrap); default flc

4.1	Commands
-----	----------

NBOOT = $scalar$	Number of bootstrap samples to take; default 99
SEED = scalar	Seed for random number generation; default 0 continues an existing sequence or, if none, selects a seed automatically
WINDOW = scalar	Window to use for the graphs; default 3
SAVE = REML save structure	Specifies the save structure of the original analysis; default is to use the save structure from the most recent REML analysis
Parameters	
TERMS = formula	Random terms to test
STATISTIC = scalar	Saves the FLC test statistic
BOOTSTATISTICS = variate	Saves the FLC test statistics from the original data set (i.e. the observed FLC test statistic), and then the bootstrap samples
FASTDOUBLE = <i>pointer</i>	Pointer to scalars and variates to save the first-level bootstrap probability value and FLC test statistics, and the second-level fast double bootstrap FLC test statistics and resulting critical value
PROBABILITIES = <i>pointer</i>	Pointer to scalar(s) to save the probability value(s) from the test(s)
TITLE = text	Title for the graphs

VFMODEL procedure

Forms a model-definition structure for a REML analysis (R.W. Payne).

Options

MODELSTRUCTURE = pointer	Specifies the model-definition structure; no default (must be specified)
DESCRIPTION = text	Description of the model (for output)
FIXED = formula	Fixed model terms; default *
CONSTANT = string token	How to treat the constant term (estimate, omit); default esti
FACTORIAL = scalar	Limit on the number of factors or covariates in each fixed term; default 3
CADJUST = string token	What adjustment to make to covariates before analysis (mean, none); default mean
CHANGEITEMS = string tokens	What changes to make to an existing model-definition
	structure (description, fixed, constant, factorial, cadjust, random, initial, constraints); if this is unset, the structure is redefined completely
IMODELSTRUCTURE = <i>pointer</i>	Specifies the initial model-definition structure, to modify when CHANGEITEMS is set; default is to modify the one specified by MODELSTRUCTURE
EXPERIMENTS = factor	Factor defining the different experiments in a multi-experiment (meta-) analysis
Parameters	
RANDOM = formula	Random model terms
INITIAL = scalars	Initial values for each component
CONSTRAINTS = <i>string tokens</i>	How to constrain each variance component and the residual
-	variance (none, positive, fixrelative,
	fixabsolute); must be set unless MODIFY=yes

VFPEDIGREE procedure

Checks and prepares pedigree information from several factors, for use by VPEDIGREE and REML (S.A. Gezan & R.W. Payne).

Options

FREPRESENTATION = <i>string token</i>	Whether to match factor values by their levels or their labels
	(levels, labels); default leve
[†] SEX = <i>string token</i>	Possible sex categories of parents (fixed, either); default fixe
UNKNOWN = $scalar$ or $string$	Value to be treated as unknown in the pedigree factors

460	4 Syntax summary
[†] INVMETHOD = string token	How to represent the INVERSE (full, sparse); default spar
Parameters	
INDIVIDUALS = $factors$	Individuals on which data have been measured
MALEPARENTS = $factors$	Male parents (or sires) of the progeny
FEMALEPARENTS = $factors$	Female parents (of dams) of the progeny
NEWINDIVIDUALS = factors	New individuals factor, with levels standardized for use in VPEDIGREE
NEWMALEPARENTS = $factors$	New males factor, with levels standardized to match those in
	the NEWINDIVIDUALS factor
NEWFEMALEPARENTS = $factors$	New females factor, with levels standardized to match those in
	the NEWINDIVIDUALS factor
OTHERFACTORS = <i>pointers</i>	Pointer containing additional factors, that may be used in the
	REML models, whose levels must also be standardized to match
	those in the NEWINDIVIDUALS factor
NEWOTHERFACTORS = <i>pointers</i>	Pointer containing new additional factors, with standardized
	levels
[†] INVERSE = <i>pointer</i>	Inverse relationship matrix in sparse matrix form
[†] POPULATION = variates	Full list of identifiers generated from the individuals and
	parents

VFRESIDUALS procedure

Obtains residuals, fitted values and their standard errors from a REML analysis (S.J. Welham). **Options**

Options	
RESIDUALS = variate	Saves the residuals
SERESIDUALS = variate	Saves standard errors of the residuals
FITTEDVALUES = variate	Saves the fitted values
SEFITTEDVALUES = variate	Saves prediction standard errors for the fitted values
RMETHOD = string token	Which random terms to use when calculating the residuals
	(final, all); default fina
MAXNUNITS = $scalar$	Maximum number of units for which the full variance-
	covariance matrix will be formed; default 1000
EXIT = scalar	Exit code set to zero if the saving was successful, one
	otherwise
SAVE = <i>REML save structure</i>	Save structure for the required analysis; default uses the save
	structure from the most recent REML

No parameters

VFSTRUCTURE procedure

Adds a covariance-structure definition to a REML model-definition structure (R.W. Payne).

MODELSTRUCTURE = pointerSupplies the model-definition structure; no default (must be specified)EXPERIMENT = scalarLevel of the EXPERIMENTS factor for which a residual is to be defined (using the VRESIDUAL directive)TERMS = formulaModel terms for which the covariance structure is to be definedFORMATION = string tokenWhether the structure is formed by direct product construction or by definition of the whole matrix (direct, whole); default direCOORDINATES = identifiersCoordinates of the data points to be used in calculating distance-based models (list of variates or matrix)ParametersType of covariance model associated with the term(s), or with individual factors in the term(s) if FORMATION=direct (identity, fixed, AR, MA, ARMA, power, banded, correlation, antedependence, unstructured,	Options	
defined (using the VRESIDUAL directive)TERMS = formulaModel terms for which the covariance structure is to be definedFORMATION = string tokenWhether the structure is formed by direct product construction or by definition of the whole matrix (direct, whole); default direCOORDINATES = identifiersCoordinates of the data points to be used in calculating distance-based models (list of variates or matrix)ParametersType of covariance model associated with the term(s), or with individual factors in the term(s) if FORMATION=direct (identity, fixed, AR, MA, ARMA, power, banded,	MODELSTRUCTURE = <i>pointer</i>	
definedFORMATION = string tokenWhether the structure is formed by direct product construction or by definition of the whole matrix (direct, whole); default direCOORDINATES = identifiersCoordinates of the data points to be used in calculating distance-based models (list of variates or matrix)ParametersMODELTYPE = string tokensMODELTYPE = string tokensType of covariance model associated with the term(s), or with individual factors in the term(s) if FORMATION=direct (identity, fixed, AR, MA, ARMA, power, banded,	EXPERIMENT = scalar	
or by definition of the whole matrix (direct, whole); default dire COORDINATES = identifiers Coordinates of the data points to be used in calculating distance-based models (list of variates or matrix) Parameters MODELTYPE = string tokens MODELTYPE = string tokens Type of covariance model associated with the term(s), or with individual factors in the term(s) if FORMATION=direct (identity, fixed, AR, MA, ARMA, power, banded,	TERMS = formula	
Parameters distance-based models (list of variates or matrix) PodeLTYPE = string tokens Type of covariance model associated with the term(s), or with individual factors in the term(s) if FORMATION=direct (identity, fixed, AR, MA, ARMA, power, banded,	FORMATION = <i>string token</i>	or by definition of the whole matrix (direct, whole); default
MODELTYPE = string tokensType of covariance model associated with the term(s), or with individual factors in the term(s) if FORMATION=direct (identity, fixed, AR, MA, ARMA, power, banded,	COORDINATES = <i>identifiers</i>	· · ·
individual factors in the term(s) if FORMATION=direct (identity, fixed, AR, MA, ARMA, power, banded,	Parameters	
	MODELTYPE = string tokens	individual factors in the term(s) if FORMATION=direct (identity, fixed, AR, MA, ARMA, power, banded,

	diagonal, uniform, FA, FAequal) default iden
ORDER = scalar	Order of model
HETEROGENEITY = string token	Heterogeneity for correlation matrices (none, outside);
	default none
METRIC = string token	How to calculate distances when MODELTYPE=power
-	(cityblock, squared, euclidean); default city
FACTOR = factors	Factors over which to form direct products

VFUNCTION procedure

Calculates functions of variance components from a REML analysis (S.J. Welham).

Options	
PRINT = string token	Output required (function); default func
RANDOM = formula	Random model (excluding residual stratum) used for the REML analysis
NCONSTANT = scalar	Value to be used as constant in the numerator function; default 0
DCONSTANT = scalar	Value to be used as constant in the denominator function; default 0
SAVE = <i>REML save structure</i>	Specifies the (REML) save structure from which the variance components are to be taken; by default they are taken from the save structure of the most recent REML analysis
Parameters	
NUMERATOR = variates	Each variate contains a list of coefficients, one for each variance component, defining a linear combination of the components to use as the numerator of the function
DENOMINATOR = variates	Each variate contains coefficients defining a linear combination of the variance components to use as the denominator of the function
FUNCTIONVALUE = $scalars$	Saves the calculated value of the function
SE = scalars	Saves the approximate standard error of the function value

VGESELECT procedure

Selects the best variance-covariance model for a set of environments (M.P. Boer, M. Malosetti, S.J. Welham & J.T.N.M. Thissen).

Options	
PRINT = string tokens	What to print (summary, best, model, components,
	effects, means, stratumvariances, monitoring,
	vcovariance, deviance, waldtests, missingvalues,
	covariancemodels); default summ, best, comp, cova
VCMODELS = <i>string tokens</i>	Specifies the variance-covariance models that are to be
	compared for the set of environments (identity, diagonal,
	cs, hcs, outside, fa, fa2, unstructured); default iden,
	diag, cs, hcs, outs, fa, fa2, unst
CRITERION = string token	Defines which criterion is used to compare the different
	covariance structures (aic, sic); default sic
FIXED = formula	Defines extra fixed effects
UNITFACTOR = $factor$	Saves the units factor required to define the random model
	when UNITERROR is to be used
MVINCLUDE = string tokens	Whether to include units with missing values in the
	explanatory factors and variates and/or the y-variates
	(explanatory,yvariate); default expl,yvar
MAXCYCLE = scalar	Limit on the number of iterations; default 100
WORKSPACE = scalar	Number of blocks of internal memory to be set up for use by
	the REML algorithm; default 100
Parameters	
TRAIT = variates	Quantitative trait to be analysed; must be set

462	4 Syntax summary
GENOTYPES = factors	Genotype factor; must be set
ENVIRONMENTS = factors	Environment factor; must be set
UNITERROR = variate	Uncertainty on trait means (derived from individual unit or
	plot error) to be included in QTL analysis; default * i.e. omitted
SELECTEDMODEL = <i>texts</i>	VCMODELS setting for the best variance-covariance model
SAVE = REML save structures	Save the details of each REML analysis for use in subsequent
	VDISPLAY and VKEEP directives

VGRAPH procedure

Plots tables of means from REML (R.W. Payne).

Options	•
GRAPHICS = string token	Type of graph (highresolution, lineprinter); default high
METHOD = string token	What to plot (points, means, linesandpoints, onlylines, data, barchart, splines); default poin when XFACTOR is a factor, and only when it is a variate
XFREPRESENTATION = <i>string token</i>	How to label the x-axis (levels, labels); default labe uses the XFACTOR labels, if available
PSE = string token	What to plot to represent variation when points are plotted at the means (differences, lsd, means, allmeans); default diff
LSDLEVEL = scalar	Significance level (%) to use for approximate least significant differences; default 5
DFSPLINE = scalar	Number of degrees of freedom to use when METHOD=splines
YTRANSFORM = <i>string tokens</i>	Transformed scale for additional axis marks and labels to be plotted on the right-hand side of the y-axis (identity, log, log10, logit, probit, cloglog, square, exp, exp10, ilogit, iprobit, icloglog, root); default iden i.e. none
PENYTRANSFORM = $scalar$	Pen to use to plot the transformed axis marks and labels; default * selects a pen, and defines its properties, automatically
[†] KEYMETHOD = <i>string token</i>	What to use for the key descriptions when GROUPS specifies more than one factor (labels, namesandlabels); default name
[†] PLOTTITLEMETHOD = <i>string token</i>	What to use for the titles of the plots when TRELLISGROUPS specifies more than one factor (labels, namesandlabels); default name
[†] PAGETITLEMETHOD = <i>string token</i>	What to use for the titles of the pages when PAGEGROUPS specifies more than one factor (labels, namesandlabels); default name
[†] USEAXES = <i>string token</i>	Which aspects of the current axis definitions of window 1 to use (none, limits, marks, mpositions, nsubticks,); default none
SAVE = <i>REML save structure</i>	Save structure to provide the table of means; default uses the save structure from the most recent REML
Parameters	
XFACTOR = <i>factors</i> or <i>variates</i>	Provides the x-values for each plot; by default this is chosen automatically
GROUPS = factors or pointers	Factor or factors identifying groups in each plot; by default chosen automatically
TRELLISGROUPS = <i>factors</i> or <i>pointers</i>	Factor or factors specifying the different plots of a trellis plot of a multi-way table
PAGEGROUPS = <i>factors</i> or <i>pointers</i>	Factor or factors specifying plots to be displayed on different pages
NEWXLEVELS = variates	Values to be used for XFACTOR; default uses the existing levels if XFACTOR is a factor, and the minimum and maximum values

	if it is a variate
TITLE = texts	Title for the graph; default is to define a title automatically if GROUPS is set, or to have none if it is unset
YTITLE = texts	Title for the y-axis; default is to use the identifier of the y- variate, or to have no title if this is unnamed
XTITLE = texts	Title for the x-axis; default is to use the identifier of the XFACTOR
PENS = variates	Defines the pen to use to plot the points and/or line for each group defined by the GROUPS factors

VHERITABILITY procedure

Calculates generalized heritability for a random term in a REML analysis (R.W. Payne).		
PRINT = string tokens	Controls printed output (heritability); default heri	
	Save structure of the analysis from which to calculate the	
	heritabilities; default uses the most recent REML analysis	

Parameters

TERMS = formula	Random terms whose heritabilities are to be calculated
HERITABILITY = scalar or variate	Saves the heritabilities
EXIT = scalar or variate	Exit status for the calculations: one if unsuccessful, otherwise
	zero

need be given only if DATA is set

VHOMOGENEITY procedure

Tests homogeneity of variances and variance-covariance matrices (R.W. Payne).PRINT = string tokensControls printed output (test, variances); default testGROUPS = factorsDefine the groups whose variances are to be compared; these

Parameters

1 al ametel s	
DATA = variates or pointers	Data variate from which variances are calculated, or pointer to a list of variates from which variance-covariance matrices are calculated
VARIANCES = <i>any numerical structures</i>	or <i>pointers</i>
	Supplies the variances (in any numerical structure) or variance-covariance matrices in a pointer to a list of symmetric matrices if the DATA parameter is not set, or saves variances (in a table) and variance-covariance matrices (in a pointer to a list of symmetric matrices) if they have been calculated from DATA and GROUPS
DF = any numerical structure	Supplies the degrees of freedom for variances (in any numerical structure) or for variance-covariance matrices (as a pointer to a list of scalars) if the DATA parameter is not set, or saves the degrees of freedom for variances (in a table) or variance-covariance matrices (as a pointer to a list of scalars) if they have been calculated from DATA and GROUPS
SAVE = pointers	Saves the results i.e. type of test, chi-square statistic, degrees of freedom and probability

VINTERPOLATE procedure

Performs linear & inverse linear interpolation between variates (R.J. Reader).

Options	
METHOD = string token	Type of interpolation required (interval, value): for
	METHOD=value, y-values are interpolated for each point in the
	NEWINTERVALS variates and stored in the NEWVALUES
	variates, while for METHOD=interval, x-values are estimated
	for the y-values in the NEWVALUES variates and stored in the
	NEWINTERVALS variates; default inte

464	4 Syntax summary
RANGEMETHOD = string token	Whether the smallest value, largest value or the mean of the two is returned if more than one value is valid (first, middle, last); default midd
Parameters	
OLDVALUES = <i>pointers</i>	Each one contains variates specifying the y-values (data values) with which an interpolation is to be carried out
NEWVALUES = <i>pointers</i>	For METHOD=value, each pointer contains variates to store the results of an interpolation; for METHOD=interval, it contains either variates or scalars to specify y-values for which inverse interpolation is to be carried out
OLDINTERVALS = variates	Contains the x-values (intervals) corresponding to the variates in the OLDVALUES pointer
NEWINTERVALS = <i>pointers</i>	For METHOD=interval, each pointer contains variates to store the results of an inverse interpolation; for METHOD=value, it contains either variates or scalars to specify x-values at which interpolation is to be performed

VKEEP directive

Copies information from a REML analysis into Genstat data structures. **Options**

Options	
RESIDUALS = variate	Residuals from the analysis
FITTEDVALUES = variate	Fitted values from the analysis
SIGMA2 = scalar	Variance component for the lowest stratum
VCOVARIANCE = <i>symmetric matrix</i>	Variance-covariance matrix for the estimates of the variance components
VESTIMATES = variate	Saves a vector of all parameters in the variance model
VARESTIMATES = <i>symmetric matrix</i>	Variance-covariance matrix for the parameters in the variance
	model (as saved by VESTIMATES)
VLABELS = text	Vector of text labels for the VESTIMATES and VARESTIMATES
	structures
MVESTIMATES = variate	Estimates of missing values
MVSE = variate	Standard errors of missing-value estimates
MVUNITS = variate	Unit numbers of missing values
ALLEFFECTS = variate	Full set of estimated fixed and random effects
ALLVCOVARIANCE = <i>symmetric matrix</i>	Variance-covariance matrix for the full set of fixed and
	random effects not associated with the absorbing factor
DEVIANCE = $scalar$	Residual deviance from fitting the full fixed model
DF = scalar	Residual degrees of freedom after fitting the full fixed model
SUBDEVIANCE = scalar	Residual deviance after fitting the submodel of the fixed model
SUBDF = scalar	Residual degrees of freedom after fitting the submodel of the
	fixed model
RSS = scalar	Residual sum of squares from fitting the FIXED model by
	general least squares with a covariance matrix derived from
	the estimated variance components
INDEX = variate	Index of units included in the analysis
MODELS = pointer	Pointer to formulae giving the fixed, random, spline and
	residual terms fitted
RMATRIX = pointer	Saves details of the covariance model fitted to the residual
RMETHOD = string token	Which random terms to use when calculating RESIDUALS
	(final, all, notspline); default uses the setting from the
	REML statement
CFORMAT = string token	Whether the covariance matrices or the parameters are saved
	for a COVARIANCEMODEL (variancematrices,
	parameters); default vari
UVCOVARIANCE = <i>symmetric matrix</i>	Unit-by-unit variance-covariance matrix
DFFIXED = scalar	Number of degrees of freedom in the fixed model

DFRANDOM = scalar	Number of degrees of freedom in the random model
FMETHOD = string token	Controls how to calculate F-statistics for fixed terms
-	(automatic, none, algebraic, numerical); default auto
WMETHOD = string token	Controls which Wald statistics are saved (add, drop); default drop
WORKSPACE = scalar	Saves the workspace setting that was used by the REML command
YVARIATE = dummy	Dummy to be set to the y-variate of the analysis
EXIT = scalar	Exit status of the fit (0 if successful)
SAVE = <i>REML save structures</i>	Save structure from the required analysis; default * takes the save structure from the latest REML statement
Parameters	
TERMS = $formula$	Terms for which information is to be saved
COMPONENTS = scalars	Estimated variance components
COVARIANCEMODEL = pointers	Saves details of the covariance model fitted to a random term
MEANS = tables	Table of predicted means for each term
SEDMEANS = symmetric matrices	Standard errors of differences between the predicted means
VARMEANS = <i>symmetric matrices</i>	Variance-covariance matrix of the means
EFFECTS = tables	Table of estimated regression coefficients for each term
SEDEFFECTS = <i>symmetric matrices</i>	Standard errors of differences between the estimated parameters of each term
VAREFFECTS = symmetric matrices	Variance-covariance matrix of the effects of a term
DESIGNMATRIX = matrices	Saves the design matrix for the term
SPLBLUP = pointers	Best linear unbiased predictors for spline terms, saved in a
	pointer with a variate for each combination of the levels of the
	factors in the term
SPLDESIGN = pointers	Design matrices (Z) for spline terms, saved in a pointer with a matrix for each combination of the levels of the factors in the
	term
SPLX = pointers	Knot points for spline terms, saved in a pointer with a variate
	for each combination of the levels of the factors in the term
SPLSMOOTH = pointers	Smoothing parameters estimated for spline terms, saved in a
	pointer with a scalar for each combination of the levels of the
	factors in the term
CADJUSTMENT = scalars	For a term involving covariates, saves the adjustment made to
	its values during the analysis
WALD = scalars	Wald statistic (fixed terms only)
FSTATISTIC = scalars	F statistics (fixed terms only)
NDF = scalars	Numerator d.f. (fixed terms only)
DDF = scalars	Denominator d.f. (fixed terms only)

VLINEBYTESTER procedure Analyses a line-by-tester trial by REML (R.W. Payne). Options

Options	
PRINT = string tokens	Specifies the output to be produced (model, components,
	effects, means, monitoring, vcovariance, deviance,
	Waldtests,missingvalues,covariancemodels,aic,
	sic, bic, combinability, tests); default mode, comp,
	wald, comb, test
PRECOVERY = <i>string tokens</i>	Controls what summary output is produced about the models
	that are tried during recovery (deviance, aic, bic, sic,
	dffixed, dfrandom, change, exit, best); default devi,
	aic, sic, dfra, best
LINES = factor	Specifies the line (usually female parent); no default (must be
	specified)
TESTERS = factor	Specifies the tester (usually male parent); no default (must be

466	4 Syntax summary
	specified)
CONTROLS = factor	Distinguishes between control and test (line × tester)
	genotypes; default is that there are no controls
FIXED = formula	Fixed model terms, in addition to the TESTERS main effect and
	any control comparisons; default * i.e. none
RANDOM = formula	Random model terms, in addition to the terms involving
	LINES, TESTERS and EXPERIMENTS that are included
	automatically; default * i.e. none
CONSTANT = <i>string token</i>	How to treat the constant term (estimate, omit); default
FACTORIAL = scalar	esti Limit on the number of factors or covariates in each fixed
FACTORIAL – <i>scalar</i>	term; default 3
EXPERIMENTS = factor	Specifies the different experiments for a REML meta analysis;
EXPERIMENTS - Jucion	default is that the data are all from a single experiment
PCOMBINABILITYTERMS = formula	Terms whose combinability effects are to be printed, selected
formation formation	from LINES, LINES. TESTERS and their interactions with
	EXPERIMENTS; default is to print all of them
PTERMS = formula	Terms (fixed or random) for which effects or means are to be
5	printed; default * implies all the fixed terms
PSE = string token	Standard errors to be printed with tables of effects and means
	(differences, estimates, alldifferences,
	allestimates, none); default diff
MVINCLUDE = string tokens	Whether to include units with missing values in the
	explanatory factors and variates and/or the y-variates
	(explanatory, yvariate); default * i.e. omit units with
	missing values in either explanatory factors or variates or y-
	variates
RECOVER = <i>string token</i>	Whether to try to recover with a simpler random model if
	REML cannot fit the model (yes, no); default no
METHOD = string token	How to choose the best model during recovery (aic, sic,
Description	bic); default sic
Parameters	Destroyee verification
Y = variates	Response variates Pointer to tables of combinability effects for each y-variate
COMBINABILITY = pointers SECOMBINABILITY = pointers	Pointer to tables of combinability effects for each y-variate
SECOMBINABILITI – poimers	each y-variate
DEVIANCES = variates	Saves deviances for LINES, LINES. TESTERS and their
	interactions with EXPERIMENTS
EXIT = scalars	Exit status for each y-variate (zero to indicate that the analysis
	was successful)
SAVE = <i>REML save structures</i>	Save structure from the analysis of each y-variate
VLSD procedure	
Prints approximate least significant	differences for REML means (R.W. Payne).
Options	
PRINT = string tokens	Controls printed output (means, sed, lsd, df); default lsd

PRINT = string tokens	Controls printed output (means, sed, lsd, df); default lsd
FACTORIAL = scalar	Limit on the number of factors in each term; default 3
lsdlevel = scalar	Significance level (%) to use in the calculation of least
	significant differences; default 5
DFMETHOD = <i>string token</i>	Specifies which degrees of freedom to use for the t-statistics
	(fddf, given, tryfddf); default fddf
DFGIVEN = scalar	Specifies the number of degrees of freedom to use for the t-
	statistics when DFMETHOD=given, or if d.d.f. are unavailable
	when DFMETHOD=tryfddf
FMETHOD = string token	Controls how to calculate denominator degrees of freedom for
-	the F-statistics, if these are not already available in the REML

SAVE = REML save structure	save structure (automatic, algebraic, numerical); default auto Save structure to provide the table of means; default uses the save structure from the most recent REML
Parameters	
TERMS = $formula$	Treatment terms whose means are to be compared; default * takes the REML fixed model
MEANS = <i>pointer</i> or <i>table</i>	Saves the means for each term
SED = pointer or symmetric matrix	Saves standard errors of differences between means
LSD = pointer or symmetric matrix	Saves approximate least significant differences matrix for the means
DF = pointer or scalar	Saves the degrees of freedom used to calculate the t critical values for the LSDs
DDF = <i>pointer</i> or <i>scalar</i>	Saves the range of denominator degrees of freedom in the F tests for the term and any terms that are marginal to the term (available only when denominator degrees of freedom of F-statistics are being used)

VMATRIX procedure

Copies values and row/column labels from a matrix to variates or texts (D.A. Murray). No options

Parameters

MATRIX = matrices, symmetric matrices or diagonal matrices

MAIRIA – munices, symmetric munices	of alugonal mairices
	Matrices to copy into variates
VARIATE = variates	Saves the values from each matrix
ROWS = variates	Saves the row coordinates
COLUMNS = variates	Saves the column coordinates
ROWLABELS = <i>texts</i>	Saves the row labels
COLLABELS = texts	Saves the column labels

VMCOMPARISON procedure

Performs pairwise comparisons between REML means (D.M. Smith).

Options	
DD TNE -	- 4

Options	
PRINT = string tokens	Controls printed output (comparisons, critical,
	<pre>description, lines, letters, plot, mplot, pplot);</pre>
	default lett
METHOD = string token	Test to be performed (fplsd, fulsd, bonferroni, sidak);
	default fuls
FACTORIAL = scalar	Limit on the number of factors in each term; default 3
DIRECTION = string token	How to sort means (ascending, descending); default asce
PROBABILITY = scalar	The required significance level; default 0.05
STUDENTIZE = <i>string token</i>	Whether to use the alternative LSD test where the Studentized
	Range statistic is used instead of Student's t (yes, no); default
	no
DFMETHOD = string token	Specifies which degrees of freedom to use for the tests (fddf,
	given, tryfddf); default fddf
DFGIVEN = scalar	Specifies the number of degrees of freedom to use for the tests
	when DFMETHOD=given, or if d.d.f. are unavailable when
	DFMETHOD=tryfddf
FMETHOD = string token	Controls how to calculate denominator degrees of freedom for
	the F-statistics, if these are not already available in the REML
	<pre>save structure (automatic, algebraic, numerical);</pre>
	default auto
SAVE = REML save structure	Save structure to provide the tables of means and associated
	information; default uses the save structure from the most
	recent REML

Parameters	
TERMS = formula	Treatment terms whose means are to be compared
MEANS = <i>pointer</i> or <i>variate</i>	Saves the (sorted) means
LABELS = <i>pointer</i> or <i>text</i>	Saves labels for the (sorted) means
LETTERS = <i>pointer</i> or <i>text</i>	Saves letters indicating groups of means that do not differ
	significantly
SIGNIFICANCE = <i>pointer</i>	Indicators to show significant comparisons between or symmetric matrix (sorted) means

VMETA procedure

Performs a multi-treatment meta analysis using summary results from individual experiments (V.M. Cave).

Options

PRINT = string tokens	Controls printed output from the REML analysis (model,
	components, effects, means, monitoring,
	vcovariance, deviance, Waldtests,
	covariancemodels); default mode, comp, cova, mean
PSE = string token	Standard errors to be printed with tables of effects and means
-	(differences, estimates, alldifferences,
	allestimates, none); default alle
EMETHOD = string token	Specifies whether the EXPERIMENTS main effect is fitted as a
	fixed or random term in the REML model; default fixe
VCMODEL = string token	Specifies the between-experiment variance-covariance model
	(identity, diagonal, cs, hcs, unstructured,
	faequal1, faequal2, fa1); default iden for fixed
	EXPERIMENTS effects and cs for random effects
INITIAL = scalars, variates, matrices, s	symmetric matrices or pointers
	Initial parameter values for the variance-covariance model
	specified by VCMODEL (supplied in the structures appropriate
	for the model concerned); default generates values
	automatically
MAXCYCLE = scalar	Sets a limit on the number of iterations in the REML analysis;
	default 30
Parameters	
MEANS = variates	Supplies the TREATMENTS by EXPERIMENTS means
TREATMENTS = $factors$	Identifier of the treatments factor
EXPERIMENTS = $factors$	Identifier of the experiments factor
SEDMEANS = variates	Supplies the (average) standard error of differences in each
	experiment
VARIANCES = variates	Identifier for the variate containing the sampling variance for
	each experiment
MODERATOR = factors or variates	Identifier for a moderator variable
SAVE = REML save structures	Saves the details of each analysis for use in subsequent
	VDISPLAY and VKEEP directives

VMODEL procedure

Specifies the model for a REML analysis using a model-definition structure defined by VFMODEL	
Controls printed output (model, structure); default * i.e.	
none	
Model-definition structure	

VNEARESTNEIGHBOUR procedure

Analyses a field trial using nearest neighbour analysis (D.B. Baird).

Analyses a neid that using heatest ne	eignooui analysis (D.B. Dallu).
Options	
PRINT = string tokens	Controls printed output (model, wald, components, means, effects, sed); default mode, wald, comp, mean, effe, sed
NDIFFERENCES = scalar	Specifies the number of neighbours to use in differencing the plots, either 1 for first or 2 for second differences; default 1
TMETHOD = string token	Indicates how the treatments effects are to be included in the model (fixed, random); default fixe
UMETHOD = string token	Whether to include a unit-error term in the model (include, omit); default incl
SEDMETHOD = string token	Specifies how the estimates of standard errors of differences of treatment effects are to be calculated (REML, simulation); default REML
NTIMES = scalar	Specifies the number of simulations to make; default 100
Parameters	
Y = variates	Variates to be analysed
TREATMENTS = factors	Treatment factor for each y-variate
BLOCKS = factors	Block factor for each y-variate, defining groups of plots to be detrended independently
UNITS = factors	Unit-within-block factor for each y-variate, defining the order of plots within each block
MEANS = tables	Saves the estimated treatment means from each analysis
EFFECTS = tables	Saves the estimated treatment effects from each analysis
SED = matrices or symmetric matrices	Saves the estimated standard errors of differences between treatments
COMPONENTS = variates	Saves the estimated variance components from the fitted model
SEED = scalars	Seed for the random number generator used in the simulations to calculate standard error of differences; default 0 continues from the previous generation or (if none) initializes the seed automatically

VORTHPOLYNOMIAL procedure

Forms orthogonal polynomials over time for repeated measures (J.T.N.M. Thissen). **Options**

TIMEPOINTS = variateVariate of timepoints; default uses the suffixes of the DATA pointerMAXDEGREE = scalarThe number of contrasts (excluding the mean); default is the number of identifiers in the CONTRAST pointer minus 1ParametersDATA = pointersDATA = pointersEach pointer contains the data variates (observed at successive times); must be setCONTRAST = pointersTo save the calculated contrasts: the first variate contains the means, the second the linear polynomial contrasts, the third the quadratic polynomial contrasts etc; must be set	Options	
Parameters number of identifiers in the CONTRAST pointer minus 1 PATA = pointers Each pointer contains the data variates (observed at successive times); must be set CONTRAST = pointers To save the calculated contrasts: the first variate contains the means, the second the linear polynomial contrasts, the third the	TIMEPOINTS = variate	▲ '
DATA = pointersEach pointer contains the data variates (observed at successive times); must be setCONTRAST = pointersTo save the calculated contrasts: the first variate contains the means, the second the linear polynomial contrasts, the third the	MAXDEGREE = scalar	
CONTRAST = pointerstimes); must be setTo save the calculated contrasts: the first variate contains the means, the second the linear polynomial contrasts, the third the	Parameters	
means, the second the linear polynomial contrasts, the third the	DATA = pointers	1
	CONTRAST = <i>pointers</i>	means, the second the linear polynomial contrasts, the third the

VPEDIGREE directive

Generates an inverse relationship matrix for use when fitting animal or plant breeding models by REML.

Options

Options	
SEX = string token	Possible sex categories of parents (fixed, either); default
	fixe
UNKNOWN = scalar	Value to be treated as unknown
Parameters	
INDIVIDUALS = $factors$	Individuals on which data has been measured

MALEPARENTS = $factors$	Male parents of the progeny
FEMALEPARENTS = $factors$	Female parents of the progeny
INVERSE = <i>pointer</i>	Inverse relationship matrix in sparse matrix form
POPULATION = variates	Full list of identifiers generated from the individuals and
	parents

VPERMTEST procedure

Does random permutation tests for the fixed effects in a REML analysis (R.W. Payne).

Options	
PRINT = string tokens	Controls printed output (prwald, criticalwald,
	ownstatistics, monitoring); default prwa, crit
NTIMES = scalar	Number of permutation samples to make; default 99
NRETRIES = scalar	Maximum number of extra samples to take when some REML
	analyses fail to converge; default NTIMES
BLOCKSTRUCTURE = <i>formula</i>	Model formula defining any blocking to consider during the
·	randomization; default none
EXCLUDE = factors	Factors in the block formula whose levels are not to be
U U	randomized
SEED = scalar	Seed for random number generation; default 0 continues an
	existing sequence or, if none, selects a seed automatically
WMETHOD = string token	Controls which Wald statistics are used (add, drop); default
our and the state of the state	add
OWNMETHOD = string token	Type of test required for own statistics (twosided,
	greaterthan, lessthan); default twos
CIPROBABILITY = scalar	Probability level for the confidence interval for own statistics;
Description	default 0.95
Parameters	
SAVE = REML save structures	Specifies the (REML) save structure of the original analysis;
	default * uses the SAVE structure from the most recent REML
· /	analysis
WALD = pointers	Wald statistics saved in a pointer with a variate for each term S_{1} and S_{2} and
CRITICALWALD = pointers	Saves a pointer with variates for the 5%, 1% and 0.1%
	significance levels containing the corresponding critical values
	for the fixed terms, obtained from the quantiles of the Wald
· /	statistics from the permuted data sets
PRWALD = pointers	Critical values for Wald statistics saved in a pointer with a
	scalar for each term
NNOTCONVERGED = $scalars$	Saves the number of permutations whose REML analysis failed
·····	to converge
OWNDATA = pointers	Data required to calculate own statistics
OWNOBSERVEDVALUES = variates	Saves observed values of the own statistics
OWNPROBABILITIES = variates	Saves probabilities for the own statistics
OWNESTIMATES = variates	Saves estimates for the own statistics
OWNSES = variates	Saves standard errors for the own statistics
OWNLOWERCIS = variates	Saves lower values of the confidence intervals for the own statistics
OWNUPPERCIS = variates	Saves upper values of the confidence intervals for the own
	statistics
OWNSTATISTICS = pointers	Saves the own statistics obtained from the permutation
1	samples, in a pointer with a variate for each statistic

VPLOT procedure

Plots residuals from a REML analysis (S.J. Welham).

Options RMETHOD = *string token*

Which random terms to use when calculating the residuals (final, all, notspline, stfinal, stall); default uses the

	setting from the REML statement
INDEX = variate or factor	X-variable for an index plot; default ! (1, 2)
GRAPHICS = string token	What type of graphics to use (lineprinter,
	highresolution); default high
TITLE = text	Overall title for the plots; if unset, the identifier of the y-
	variate is used
SAVE = <i>REML save structure</i>	Specifies the (REML) save structure from which the residuals
	and fitted values are to be taken; default * uses the SAVE
	structure from the most recent REML analysis
Parameters	
METHOD = string tokens	Type of graph for residuals (fittedvalues, normal,
	halfnormal, histogram, absresidual, index); default
	fitt, norm, half, hist
PEN = scalars, variates or factors	Pens to be used for the plots
VDOMED negoduro	

VPOWER procedure

Uses a parametric bootstrap to estin analysis (R.W. Payne & C.J. Brien)	nate the power (probability of detection) for terms in a REML
Options	
PRINT = string tokens	Controls printed output (power, nnotconverged, monitoring); default powe
VPRINT = string tokens	Controls the output from the REML analyses (model,
8	components, effects, means, stratumvariances,
	monitoring, vcovariance, deviance, Waldtests,
	missingvalues, covariancemodels); default * i.e. none
TERM = <i>formula</i>	Fixed term to be assessed in the analysis
UVCOVARIANCE = <i>symmetric matrix</i>	Specifies the variances and covariances of the units; default is
	to take this from the SAVE structure
PROBABILITY = scalar	Significance level at which the response is to be detected; default 0.05
TMETHOD = string token	Type of test to be made (fratio, wald, twosided,
-	greaterthan, lessthan, equivalence,
	noninferiority); default frat
XCONTRASTS = <i>variate</i>	X-variate defining a contrast to be detected
CONTRASTTYPE = <i>string token</i>	Type of contrast (regression, comparison) default rege
CRITICALVALUE = scalar	Supplies a critical value for the test statistic
NBOOT = $scalar$	Number of bootstrap samples to analyse; default 500
NRETRIES = scalar	Maximum number of extra samples to take when some REML analyses fail to converge; default NBOOT
SEED = scalar	Seed for random number generation; default 0 continues an existing sequence or, if none, selects a seed automatically
METHOD = string token	Indicates whether to use the standard Fisher-scoring algorithm or the new AI algorithm with sparse matrix methods (Fisher, AI); default AI
MAXCYCLE = scalar	Sets a limit on the number of iterations in the REML analyses; default 30
FMETHOD = string token	Controls whether and how to calculate F statistics for fixed
	<pre>terms (automatic, none, algebraic, numerical); default auto</pre>
WMETHOD = string token	Controls which Wald statistics are saved (add, drop); default add
WORKSPACE = scalar	Number of blocks of internal memory to be set up for use by the REML algorithm
SAVE = $vsave$	REML save structure to provide the unit-by-unit variance- covariance matrix if UVCOVARIANCE is not specified

Parameters

RESPONSE = <i>scalars</i> , <i>variates</i> or <i>tables</i>	Specifies the response to be detected
POWER = scalars	Saves the power (i.e. probability of detection) for RESPONSE
NCONVERGED = scalars	Saves the number of bootstrap samples whose REML analyses
NNOTCONVERGED = scalars	converged Saves the number of bootstrap samples whose REML analyses
	failed to converge

VPREDICT directive

Forms predictions from a ${\tt REML}$ model. Options

PRINT = string tokens	What to print (description, predictions, se, sed,
-	avesed, vcovariance); default desc, pred, se, aves
CHANNEL = scalar	Channel number for output; default * i.e. current output
	channel
MODEL = formula	Indicates which model terms (fixed and/or random) are to be
	used in forming the predictions; default * includes all the fixed
	terms and relevant random terms
OMITTERMS = formula	Specifies terms to be excluded from the MODEL; default * i.e.
	none
FACTORIAL = scalar	Limit on the number of factors or variates in each term in the
	models specified by MODEL or OMITTERMS; default 3
PRESENTCOMBINATIONS = <i>identifiers</i>	Lists factors for which averages should be taken across
	combinations that are present
WEIGHTS = tables	Weights classified by some or all of the factors in the model;
	default *
PREDICTIONS = table or scalar	To save the predictions; default *
SE = table or scalar	To save standard errors of predictions; default *
SED = symmetric matrix	To save standard errors of differences between predictions; default *
VCOVARIANCE = symmetric matrix	To save variances and covariances of predictions; default *
SAVE = <i>REML save structure</i>	Specifies the save structure from which to predict; default *
	i.e. that from most recent REML
Parameters	Mariatan and the Castan to all asiC status Canadiations
CLASSIFY = vectors	Variates and/or factors to classify table of predictions
LEVELS = <i>variates</i> , <i>scalars</i> or <i>texts</i>	To specify values of variates and/or levels of factors for which
	predictions are calculated
PARALLEL = <i>identifiers</i>	For each vector in the CLASSIFY list, allows you to specify
	another vector in the CLASSIFY list with which the values of
	this vector should change in parallel (you then obtain just one
	dimension in the table of predictions for these vectors)
NEWFACTOR = <i>identifiers</i>	Identifiers for new factors that are defined when LEVELS are specified

VRACCUMULATE procedure

Forms a summary accumulating the results of a sequence of REML random models (R.W. Payne).

Options		
PRINT = string tokens	Controls printed output (devia	nce, aic, bic, sic, dffixed,
	dfrandom, change, exit); de	f ault devi, aic, sic, dfra
METHOD = string token	How to accumulate the current a	malysis (add, printonly,
	restart); default add	
INCLUDE = string tokens	Which constants to include that	depend only on the fixed
	<pre>model (determinant, pi); def</pre>	ault pi
DMETHOD = string token	Method to use to calculate log(d	<pre>leterminant(X'X)) (choleski,</pre>
	lrv); default chol	
ACCUMULATED = pointer	Saves the summary	
0	Method to use to calculate log(c lrv); default chol	-

Parameters	
DESCRIPTION = text	Single-line text to describe the analysis; default lists the
	random terms added or deleted from the previous model
SAVE = <i>REML save structure</i>	Save structure for the REML analysis to put into the summary;
	default uses the save structure from the most recent $\ensuremath{\mathtt{REML}}$

VRADD procedure

Adds terms from a REML fixed model into a Genstat regression (R.W. Payne).

Options	
PRINT = string tokens	Controls printed output (model, deviance, summary,
	estimates, correlations, fittedvalues,
	accumulated); default mode, summ, esti, accu
FACTORIAL = scalar	Limit for expansion of terms; default 3
DENOMINATOR = string token	Whether to base ratios in accumulated summary on rms from
	model with smallest residual ss or smallest residual ms (ss,
	ms); default ss
SELECTION = string tokens	One or two criteria to be printed with the models (%variance,
	%ss, adjustedr2, r2, dispersion, aic, sic, bic); default
	%var,aic,sic
Parameter	
TERMS = formula	Fixed terms to be added

VRCHECK procedure

Checks effects of a random term in a REML analysis (R.W. Payne).

Options	
PRINT = string tokens	Controls printed output (largeblups, stability); default larg
TERM = formula	Random term whose BLUPs are to be assessed; must be set
RMETHOD = string token	Which random terms to use to form the residuals that are
	<pre>subtracted from the y-variate to provide the fitted values (all, term); default all</pre>
RLIMIT = scalar	Limit for detection of large standardized BLUPs; if this is not
	set, the limit is set automatically according to the number of
	BLUPs
NLARGEBLUPS = scalar	Saves the number of large standardized BLUPs that have been detected
LARGEBLUPUNITS = <i>pointer</i>	Saves the factor levels of the large standardized BLUPs
STABILITYTEST = pointer	Saves the results of the Levene test for stability of the variance
	of the standardized BLUPs
SAVE = REML save structure	Specifies the analysis from which the BLUPs are to be taken;
	by default this will be the most recent REML

No parameters

VRDISPLAY procedure

Displays output for a REML fixed model fitted in a Genstat regression (R.W. Payne).

Options	
PRINT = string tokens	Controls printed output (model, deviance, summary,
	estimates, correlations, fittedvalues,
	accumulated); default mode, summ, esti, accu
DENOMINATOR = <i>string token</i>	Whether to base ratios in accumulated summary on rms from
	model with smallest residual ss or smallest residual ms (ss,
	ms); default ss
SELECTION = <i>string tokens</i>	One or two criteria to be printed with the models (%variance,
	%ss,adjustedr2,r2,dispersion,aic,sic,bic); default
	%var,aic,sic
No parameters	

VRDROP procedure

Drops terms in a REML fixed model from a Genstat regression (R.W. Payne).

PRINT = string tokens	Controls printed output (model, deviance, summary,
	estimates, correlations, fittedvalues,
	accumulated); default mode, summ, esti, accu
FACTORIAL = scalar	Limit for expansion of terms; default 3
DENOMINATOR = string token	Whether to base ratios in accumulated summary on rms from
	model with smallest residual ss or smallest residual ms (ss,
	ms); default ss
SELECTION = string tokens	One or two criteria to be printed with the models (%variance,
	%ss,adjustedr2,r2,dispersion,aic,sic,bic); default
	%var,aic,sic
Parameter	
TERMS = formula	Fixed terms to be dropped

VREGRESS procedure

Performs regression across variates (M.W. Patefield & D. Tandy).

No options Parameters

Y = pointers	Pointers each containing a set of y-variates for each of whose units a regression is to be done
X = pointers	Pointer containing x-variates for each set of y-variates
SLOPE = variates	Variate to save the estimated slopes from each set of
	regressions
INTERCEPT = variates	Variate to save the estimated intercepts from each set of
	regressions

VRESIDUAL directive

Defines the residual term for a REML analysis, or the residual term for an experiment within a metaanalysis (combined analysis of several experiments)

Options

EXPERIMENT = scalar	Level of the EXPERIMENTS factor for which the residual is
	being defined
TERM = formula	Model term to be used as the residual
FORMATION = <i>string token</i>	Whether the structure is formed by direct product construction or by definition of the whole matrix (direct, whole); default dire
VARIANCE = scalar	Allows an initial estimate to be provided for the residual variance of the experiment
CONSTRAINT = string token	Allows the residual variance to be fixed at its initial value (fix, positive) default posi
COORDINATES = <i>matrix</i> or <i>variates</i>	Coordinates of the data points to be used in calculating distance-based models
Parameters	
MODELTYPE = <i>string tokens</i>	Type of covariance model associated with the term(s), or with individual factors in the term(s) if FORMATION=direct (identity, fixed, AR, MA, ARMA, power, boundedlinear, circular, spherical, linearvariance, banded, correlation, antedependence, unstructured,
	diagonal, uniform, FA, FAequal) default iden
ORDER = scalar	Order of model
HETEROGENEITY = <i>string token</i>	Heterogeneity for correlation matrices (none, outside); default none
METRIC = string token	How to calculate distances when MODELTYPE=power

	(cityblock, squared, euclidean); default city
FACTOR = factors	Factors over which to form direct products
MATRIX = <i>identifiers</i>	To define matrix values for the term or the factors when MODELTYPE=fixed
INVERSE = <i>identifiers</i>	To define values for matrix inverses (instead of the fixed matrices themselves) when MODELTYPE=fixed
INITIAL = <i>identifiers</i>	Initial parameter values for each correlation matrix
CONSTRAINTS = texts	Texts containing strings none, fix or positive to define constraints for the parameters in each model
EQUALITYCONSTRAINTS = variates	Non-zero values in the variate indicate groups of parameters whose values are to be constrained to be equal

VRFIT procedure

Fits terms from a ${\tt REML}$ fixed model in a Genstat regression (R.W. Payne).

PRINT = <i>string tokens</i> Controls printed output (model, deviance, summary,	
estimates, correlations, fittedvalues,	
accumulated); default mode, summ, esti, accu	
FACTORIAL = <i>scalar</i> Limit for expansion of terms; default 3	
DENOMINATOR = <i>string token</i> Whether to base ratios in accumulated summary on rms from the summary on	m
model with smallest residual ss or smallest residual ms (ss ms); default ss	
SELECTION = <i>string tokens</i> One or two criteria to be printed with the models (%varia	ice,
%ss, adjustedr2, r2, dispersion, aic, sic, bic); de	ault
%var,aic,sic	
Parameter	

TERMS = formula

Fixed terms to be fitted

VRKEEP procedure

Saves output for a REML fixed model fitted in a Genstat regression (R.W. Payne).

Options	
FACTORIAL = scalar	Limit for expansion of terms; default 3
RESIDUALS = variate	Residuals, as specified by the RMETHOD option
FITTEDVALUES = variate	Fitted values
RMETHOD = string token	Type of residuals to form (simple, standardized); default simp
RDF = scalar	Residual degrees of freedom
RSS = scalar	Residual sum of squares
ACCUMULATED = pointer	Accumulated analysis-of-variance table
DENOMINATOR = <i>string token</i>	Whether to base ratios in accumulated summary on rms from model with smallest residual ss or smallest residual ms (ss, ms); default ss
Parameters	
TERMS = formula	Terms whose information is to be saved
ESTIMATES = <i>table</i> , <i>scalar</i> or <i>pointer</i> to	tables or scalars
	Estimated regression coefficients for each term
SE = table, scalar or pointer to tables or	scalars
	Standard errors of estimated regression coefficients for each term
VCOVARIANCE = <i>symmetric matrix</i> or <i>pc</i>	<i>binter</i> to <i>symmetric matrices</i>
	Variances and covariances between the estimates of each term
NDF = scalar or pointer to scalars	Numerator degrees of freedom for each term
DDF = scalar or pointer to scalars	Denominator degrees of freedom for each term

VRMETAMODEL procedure

Forms the random model for a REML meta analysis (R.W. Payne).

Options

RANDOM = formula structure	Saves the random model
EXPERIMENTSFACTOR = factor	Factor defining which units are in each experiment
TERMS = formula	Specifies terms, if any, to be fitted over the whole data set;
	default * i.e. none
Parameters	

EXPERIMENT = *scalars*, *variates* or *texts*

LOCALTERMS = <i>formula structures</i>	Experiments on which additional random terms are to be fitted Random terms that are to be fitted only on the corresponding
SAVEVECTORS = <i>pointers</i>	experiment Saves the factors (and/or any variates) defined to represent the
environe pointers	local terms on each experiment

VRPERMTEST procedure

Performs permutation tests for random terms in REML analysis (V.M. Cave). Ontions

Options	
PRINT = string tokens	Controls printed output (summary, monitoring,
	vdiagnostics); default summ
VPRINT = string tokens	Controls the output from the REML analysis of the full and
	reduced models (model, components, effects, means,
	stratumvariances, monitoring, vcovariance,
	deviance,Waldtests,missingvalues,
	covariancemodels); default * i.e. none
PLOT = <i>string tokens</i>	What graphs to plot (kerneldensity, histogram); default *
MODELDEFINITION = pointer	REML model definition structure, defined using the VFMODEL
	and VFSTRUCTURE procedures, to specify the full model; no
	default, must be set
rdrop = formula	Random term(s) to drop from the full model; no default, must
	be set
NTIMES = scalar	Number of permutations to make; default 99
NRETRIES = scalar	Maximum number of extra permutations to make when some
	REML analyses fail to converge; default NTIMES
SEED = scalar	Seed for random number generation; default 0 continues an
	existing sequence or, if none, selects a seed automatically
WINDOW = scalar	Window to use for the graphs; default 3
Parameters	
Y = variates	Variates to be analysed
STATISTICS = scalars or pointers	Saves the test statistics
PROBABILITIES = <i>scalars</i> or <i>pointers</i>	Saves the p-values
TITLE = text	Title for the graphs

VRSETUP procedure

SAVE = *pointers*

 Sets up Genstat regression to assess terms from a REML fixed model (R.W. Payne).

 Option

 SAVE = REML save structure
 Specifies the analysis whose fixed terms are to be tested; by default this will be the most recent REML

 No parameters
 No parameters

Saves the test statistics and permuted values

VRSWITCH procedure

Adds or drops terms from a REML fixed model in a Genstat regression (R.W. Payne). **Options**

PRINT = *string tokens* Controls printed output (model, deviance, summary,

TERMS = formula	Fixed terms to be added or dropped
Parameter	%var,aic,sic
	%ss, adjustedr2, r2, dispersion, aic, sic, bic); default
SELECTION = <i>string tokens</i>	One or two criteria to be printed with the models (%variance,
	model with smallest residual ss or smallest residual ms (ss, ms); default ss
DENOMINATOR = string token	Whether to base ratios in accumulated summary on rms from
FACTORIAL = scalar	Limit for expansion of terms; default 3
	accumulated); default mode, summ, esti, accu
	estimates, correlations, fittedvalues,

VRTRY procedure

Tries the effect of adding and dropping individual terms from a REML fixed model in a Genstat regression (R.W. Payne).

Options

PRINT = string tokens	Controls printed output (changes); default chan
FACTORIAL = scalar	Limit for expansion of terms; default 3
CHANGES = <i>pointer</i>	Saves details of the changes
Parameter	
TERMS = formula	Fixed terms to be added or dropped

VSAMPLESIZE procedure

Estimates the replication to detect a fixed term or contrast in a REML analysis, using parametric bootstrap (R.W. Payne).

Options

PRINT = string tokens	Controls printed output (power, replication,
	monitoring); default powe, repl, moni
TERM = <i>formula</i>	Fixed term to be assessed in the analysis
REPLICATES = $factor$	Factor identifying the replication in the design
TRYREPLICATION = variate	Replication values to try first; default ! (2, 4)
MAXREPLICATION = scalar	Maximum feasible replication; default * i.e. not defined
FIXED = formula	Fixed terms in the analysis; if unset, determined automatically
	from the most recent VCOMPONENTS
RANDOM = formula	Random terms in the analysis; if unset, determined
	automatically from the most recent VCOMPONENTS
COMPONENTS = variate or scalar	Variate of variance components of the random terms; must be
	set
FACTORIAL = scalar	Limit on the number of factors or variates in fixed terms;
	default 3
PROBABILITY = scalar	Significance level at which the term is required to be detected
	(assuming a one-sided test); default 0.05
POWER = scalar	The required power (i.e. probability of detection) of the test;
	default 0.9
TMETHOD = string token	Type of test to be made (fratio, wald, twosided,
	lessthan, greaterthan, equivalence,
	noninferiority; default frat
XCONTRASTS = variate	X-variate defining a contrast to be detected
CONTRASTTYPE = string token	Type of contrast (regression, comparison) default rege
CRITICALVALUE = scalar	Supplies a critical value for the test statistic
NBOOT = scalar or variate	Number of bootstrap samples to analyse, in a variate with 2
	values if there is to be preliminary search, otherwise in a
	scalar; default 1000
NRETRIES = <i>scalar</i> or <i>variate</i>	Maximum number of extra samples to take when some ${\tt REML}$
	analyses fail to converge, in a variate with 2 values if there is
	to be preliminary search, otherwise in a scalar; default NBOOT

478	4 Syntax summary
SEED = scalar	Seed for random number generation; default 0 continues an
	existing sequence or, if none, selects a seed automatically
METHOD = string token	Indicates whether to use the standard Fisher-scoring algorithm
	or the new AI algorithm with sparse matrix methods (Fisher,
	AI); default AI
MAXCYCLE = scalar	Sets a limit on the number of iterations in the REML analyses;
	default 30
FMETHOD = string token	Controls whether and how to calculate F statistics for fixed
	<pre>terms (automatic, none, algebraic, numerical); default auto</pre>
WMETHOD = string token	Controls which Wald statistics are saved (add, drop); default add
WORKSPACE = scalar	Number of blocks of internal memory to be set up for use by
	the REML algorithm
Parameters	
RESPONSE = <i>scalars</i> or <i>tables</i>	Specifies the response to be detected
NREPLICATES = scalars	Number of replicates required to detect RESPONSE

VSCREEN procedure

Performs screening tests for fixed terms in a REML analysis (R.W. Payne).

Options	
PRINT = string tokens	Controls printed output (ftests, waldtests); default ftes, wald
EXCLUDEHIGHER = <i>string token</i>	Whether to exclude higher-order interactions in the conditional models (yes, no); default no
FORCED = formula	Terms that must always be included in the model (no tests on these terms); default *
FSAVE = pointer	Saves the F tests
WSAVE = pointer	Saves the Wald tests
SAVE = REML save structure	Specifies the analysis whose fixed terms are to be tested; by default this will be the most recent REML

No parameters

VSOM procedure

Analyses a simple REML variance components model for outliers using a variance shift outlier model (S.J. Welham, F.N. Gumedze & D.B. Baird).

Options

PRINT = string tokens	Specifies the output to be produced (fdr, outliers); default
	fdr,outl
VPRINT = string tokens	Controls the output from the REML analysis of the baseline
	model (model, components, effects, means,
	stratumvariances, monitoring, vcovariance,
	deviance,Waldtests,missingvalues,
	covariancemodels); default mode, comp, Wald, cova
PLOT = string tokens	Controls which plots are produced (indexplots, residual);
	default inde, resi
INDEXPLOT = string tokens	Selects the index plots to produce (omega, sigma2,
	tsquared, lrt, method, all); default meth
TERM = formula	Random term to scan for outliers; default is the residual term
METHOD = string token	Method for calculating the statistics used to indicate an outlier
	(full, partial, t); default t
THRMETHOD = string token	Method for obtaining the threshold statistics (approximate,
	bootstrap); default appr for METHOD=full and boot
	otherwise
NBOOT = $scalar$	Number of bootstrap samples to take to form the threshold
	statistics; default 99 for METHOD=full and 499 otherwise
FIXED = formula	Fixed model terms

RANDOM = formula	Random model terms
CONSTANT = <i>string token</i>	How to treat the constant term (estimate, omit); default esti
FACTORIAL = scalar	Limit on the number of factors or covariates in each fixed term; default 3
VCONSTRAINTS = <i>string token</i>	How to constrain the variance components and the residual
	<pre>variance (none, positive, fixrelative, fixabsolute);</pre>
	default posi
INITIAL = variate	Initial values for the variance components; default 1
SEED = scalar	Seed for random number generation; default 0 continues an
	existing sequence or, if none, selects a seed automatically
SAVEITEMS = <i>string tokens</i>	Selects the items to save (residuals, omega, sigma2,
	gamma, tsquared, lrt, fdr, approxthresholds,
	thresholdstats, outliers, method, all); default resi,
	omeg, sigm, meth, fdr, outl
Parameters	
Y = variates	Response variates
TITLE = texts	Specifies the title or titles to use for the plots
SAVE = $pointers$	Saves information from the analysis of each y-variate

VSPECTRALCHECK procedure

Forms the spectral components from the canonical components, and constrains any negative spectral components to zero (C.J. Brien).

Options	
PRINT = string tokens	Controls printed output (relationshipsmatrix,
	canonicalcomponentestimates,
	spectralcomponentestimates,
	nconstrainedcomponents, all); default spec
VPRINT = string tokens	Controls the output from the final REML refit (model,
	components, effects, means, stratumvariances,
	monitoring, vcovariance, deviance, Waldtests,
	missingvalues, covariancemodels); default * i.e. none
INITIALMETHOD = string token	Whether to use the estimates from the unconstrained fit as
	initial values in constrained fits or the default REML initial
	<pre>values (remldefault, unconstrainedanalysis); default unco</pre>
MAXCYCLE = scalar	Sets a limit on the number of iterations in the REML analyses;
	default 30
TOLERANCE = $scalar$	Tolerance for zero values; default 10^{-10}
DPRINT = string tokens	Controls output of diagnostic information
	(spectralcomponents, canonicalcomponents,
	relationshipmatrix, all); default * i.e. none
Parameters	
Y = variates	Response variates
CORRESPONDENCE = matrices	Upper-triangular matrix giving the spectral components in terms of the canonical components
SPECTRALESTIMATES = variates	Saves estimates of the spectral components
CANONICALESTIMATES = variates	Saves estimates of the canonical components
nconstrained components = scalars	Saves the number of spectral components constrained to zero,
	returns a missing value if some components could not be constrained
EXIT = scalars	Exit status of the final REML refit
SAVE = <i>REML save structures</i>	Supplies the save structure from the prior analysis of each Y variate; this need not be set, if that was the most recent REML
	analysis

VSPREADSHEET procedure

Saves results from a REML analysis in a spreadsheet (R.W. Payne).

Options

Options	
COMPONENTS = variate	Variate to contain the variance components; default components
MEANS = $pointer$	Pointer to tables to contain the means; default means
SEDMEANS = pointer	Pointer to matrices to contain the standard errors of differences
	of the means; default sedmeans
VARMEANS = <i>pointer</i>	Pointer to matrices to contain the variance-covariance matrices
	of the means; default varmeans
EFFECTS = pointer	Pointer to tables to contain the effects; default effects
SEDEFFECTS = <i>pointer</i>	Pointer to matrices to contain the standard errors of differences
	of the effects; default sedeffects
VAREFFECTS = <i>pointer</i>	Pointer to matrices to contain the variance-covariance matrices
	of the effects; default vareffects
REPLICATIONS = pointer	Pointer to tables of replications; default replication
WALDTABLE = pointer	Pointer to a text and variates containing the information in the
	table of tests for fixed effects; default waldtable
PTERMS = formula	Terms (fixed or random) for which effects or means are to be
	saved; default * implies all the fixed terms
FMETHOD = string token	Controls whether and how to calculate F-statistics for fixed
	<pre>terms (automatic, none, algebraic, numerical); default auto</pre>
SPREADSHEET = <i>string tokens</i>	What to include in the spreadsheet (components,
	waldtable, effects, sedeffects, vareffects, means,
	sedmeans, varmeans, replications); default comp, wald,
	mean, sedm, repl
OUTFILENAME = texts	Name of Genstat workbook file (.gwb) or Excel (.xls or .xlsx)
	file to create
SAVE = REML save structure	Specifies which REML analysis to save; default * i.e. most
	recent one
No noromotors	

No parameters

VSTATUS directive

Prints the current model settings for REML. Option PRINT = *string tokens* What to print (model); default mode No parameters

VSTRUCTURE directive

Defines a variance structure for random effects in a REML model.

Options	
TERMS = formula	Model terms for which the covariance structure is to be
	defined
FORMATION = string token	Whether the structure is formed by direct product construction
	or by definition of the whole matrix (direct, whole); default dire
CORRELATE = <i>string token</i>	Whether to impose correlation across the model terms if
0	several are specified (none, positive, unrestricted);
	default none
CINITIAL = scalars	Initial values for covariance matrix across terms
COORDINATES = matrix or variates	Coordinates of the data points to be used in calculating
	distance-based models
Parameters	
MODELTYPE = string tokens	Type of covariance model associated with the term(s), or with
	individual factors in the term(s) if FORMATION=direct

	(identity, fixed, AR, MA, ARMA, power, boundedlinear,	
	circular, spherical, linearvariance, banded,	
	correlation, antedependence, unstructured,	
_	diagonal, uniform, FA, FAequal) default iden	
ORDER = scalar	Order of model	
HETEROGENEITY = <i>string token</i>	Heterogeneity for correlation matrices (none, outside);	
	default none	
METRIC = string token	How to calculate distances when MODELTYPE=power	
	(cityblock, squared, euclidean); default city	
FACTOR = <i>factors</i>	Factors over which to form direct products	
MATRIX = symmetric matrices, diagonal matrices or pointers		
	Defines matrix values for a term or the factors when MODELTYPE=fixed	
INVERSE = symmetric matrices, diagon	nal matrices or pointers	
	Define values for matrix inverses (instead of the fixed matrices	
	themselves) when MODELTYPE=fixed	
DISTANCES = <i>symmetric matrices</i>	Symmetric matrix of pre-formed distances to be used in distance-based models of order one	
COORDINATES = matrices, variates or pointers		
	Specifies coordinates of each factor level to be used in calculating distance-based models	
INITIAL = scalars, variates, matrices,	symmetric matrices or pointers	
	Initial parameter values for each correlation matrix (supplied in the structures appropriate for the model concerned)	
CONSTRAINTS = texts	Texts containing strings none, fix or positive to define	
	constraints for the parameters in each model	
EQUALITYCONSTRAINTS = variates	Non-zero values in the variate indicate groups of parameters whose values are to be constrained to be equal	

VSUMMARY procedure

Summarizes a variate, with classifying factors, into a data matrix of variates and factors (D.B. Baird). **Options**

options	
PRINT = string token	What to print (summaries); default * i.e. none
CLASSIFICATION = factors	Factors classifying the summary groups
NEWCLASSIFICATION = $factors$	Factors in the data matrix to classify the output variates
REDEFINE = string token	Whether to redefine the CLASSIFICATION factors and DATA variates, if NEWCLASSIFICATION or NEWDATA are not set
CMERTICO - string to have	(yes, no); default no
CMETHOD = string token	How to form levels for carried factors (median, minimum, maximum); default median
MVINCLUDE = string token	Whether to include factor combinations with no observations
	in summaries (yes, no); default no
WARNING = string token	What warnings to output (carry); default carry warns when
-	carried factors have varying values within classification groups
Parameters	
DATA = variates, factors or pointers	Data to be summarized
STATISTIC = <i>texts</i>	What statistic to calculate (carry, counts, sums, totals,
	nobservations, means, minima, maxima, variances,
	quantiles, sds, skewness, kurtosis, semeans,
	seskewness, sekurtosis); default mean
PERCENTILE = <i>scalars</i> or <i>variates</i>	Percentile to be used for quantiles; default 50.
	Summary statistics as variates or factors for STATISTIC=carry

VSURFACE procedure

Fits a 2-dimensional spline surface using REML, and estimates its extreme point (D.B. Baird).

Options	
PRINT = string tokens	What to print (description, model, components,
	effects, vcovariance, deviance, waldtests, extreme,
	confidence, monitoring); default desc, mode, comp,
	wald, extr
PLOT = string tokens	What to plot (contour, surface); default * i.e. nothing
BASIS = string token	Spline basis to use (thinplate, pspline,
0	penalizedspline); default thin
KNOTS = <i>scalar</i> , <i>variate</i> or <i>pointer</i>	Knots to be fitted in spline model, if a scalar, this is the total
	number of knots to be fitted; if a variate of length 2, this is the
	number of knots in the X1 and X2 directions; and if a pointer to
	2 variates, these are the values for knots in the X1 and X2
	directions; default 16
PENALTYMETHOD = string token	Which tensor spline penalty to use (isotropic,
TENALITHETHOD String token	semiconstrained, unconstrained); default unco
DEGREE = <i>scalars</i>	Degree of polynomial used to form the underlying spline;
DEGREE – Scalars	
	default 1 for METHOD=penalizedspline and 3 for
1	METHOD=pspline
DIFFORDER = scalars	Differencing order for p-spline penalty; default 2
EXTREME = scalars	Saves the estimated value of y at the extreme point
SEEXTREME = scalars	Saves the standard error of the estimated value of y at the
	extreme point
TYPEEXTREME = <i>string token</i>	Type of extreme to be identified (minimum, maximum); default
	maxi
PREDICTIONS = matrix or pointer	Saves predictions
PMETHOD = string tokens	Method of returning predictions (grid, list); default grid
NBOOT = $scalars$	The number of bootstrap samples to estimate standard errors
	and confidence limits; default 100
NRETRIES = scalars	Number of times to retry bootstrap sampling when the REML fit
	fails; default is the same value as NBOOT
SEED = scalars	The seed used to initialize the randomization in the bootstrap
	sampling; default 0 continues an existing sequence or, if none,
	selects a seed automatically
CIPROBABILITY = scalar	Probability level for confidence intervals for parameter
	estimates; default 0.95
COLOURS = <i>text</i> or <i>variate</i>	Colours for the plots
Parameters	1
Y = variates	Y-variate to which the spline surface will be fitted
$x_1 = variates$	The first X-variate which defines the spline surface
$x_2 = variates$	The second X-variate which defines the spline surface
ESTIMATE = variates	Estimated value of each x-variate at the extreme point
SE = variates	Standard error of the estimated value of each x-variate at the
SE - variates	extreme point
LEVELS = <i>scalars</i> , <i>variates</i> or <i>pointers</i>	Number of values or values at which to evaluate each x for
LEVELS – Scalars, variates of pointers	plots and predictions
TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT	Title to use for graphs; default automatically made from the
TITLE = texts	variate identifiers used for Y, X1 and X2.
WINDOW = scalars	Window number for the graphs; default 3
SCREEN = <i>string tokens</i>	Whether to clear the screen before plotting or to continue
,	plotting on the old screen (clear, keep); default clea
EXIT = scalars	Exit code from the REML fit and location of extreme point

VTABLE procedure

Forms a variate and set of classifying factors from a table (P.W. Goedhart).

No options Parameters

Parameters	
TABLE = $tables$	Tables to be copied
VARIATE = variates	New variate to contain the body of each table
CLASSIFICATION = pointers	Pointer containing the factors by which each new variate is
	classified
LABELS = $texts$	Labels for the new variate, indicating the values of the
	classifying factors corresponding to each of its units

VTCOMPARISONS procedure

Calculates comparison contrasts within a multi-way table of predicted means from a ${\tt REML}$ analysis (R.W. Payne).

Options

PRINT = string tokens	Controls printed output (contrasts, Waldtests); default cont
MODEL = formula	Indicates which model terms (fixed and/or random) are to be used in forming the predictions; default * includes all the fixed terms and relevant random terms
OMITTERMS = formula	Specifies terms to be excluded from the MODEL; default * i.e. none
FACTORIAL = scalar	Limit on the number of factors or variates in each term in the models specified by MODEL or OMITTERMS; default 3
PRESENTCOMBINATIONS = <i>identifiers</i>	Lists factors for which averages should be taken across combinations that are present
WEIGHTS = tables	One-way tables of weights classified by factors in the model; default *
GROUPS = <i>factors</i>	Groups for which to estimate each contrast
DFMETHOD = string token	Specifies which degrees of freedom to use for the comparisons (fddf, given, tryfddf, none); default fddf
DFGIVEN = scalar	Specifies the number of degrees of freedom to use for the comparisons when DFMETHOD=given, or if d.d.f. are unavailable when DFMETHOD=tryfddf
FMETHOD = string token	Controls how to calculate denominator degrees of freedom for the F-statistics, if these are not already available in the REML save structure (automatic, algebraic, numerical); default auto
SAVE = <i>identifier</i>	REML save structure for the analysis from which the comparisons are to be calculated
Parameters	
CONTRAST = tables	Defines the comparisons to be estimated
ESTIMATE = <i>scalars</i> or <i>variates</i>	Saves the estimated contrasts
SE = scalars or variates	Saves standard errors of the contrasts
VCOVARIANCE = <i>symmetric matrices</i>	Save the variance-covariance matrices of contrasts estimated for GROUPS
STATISTIC = scalars or variates	Saves saves the test statistic (t or Wald)
DF = scalars or variates	Saves estimated numbers of residual degrees of freedom of the contrasts
PROBABILITY = scalars or variates	Saves the probabilities of the contrasts
WALD = scalars	Wald statistic for each comparison, combining the tests within groups
FSTATISTIC = scalars	F statistics for each comparison, if available, combining the tests within groups
NDF = scalars	Numerator d.f. for FSTATISTIC
DDF = scalars	Denominator d.f. for FSTATISTIC

VUVCOVARIANCE procedure

Forms the unit-by-unit variance-covariance matrix for specified variance components in a REML model (R.W. Payne).

OptionsFIXED = formulaFixed model terms; default *CONSTANT = string tokenHow to treat the constant term (estimate, omit); default
estiFACTORIAL = scalarLimit on the number of factors or covariates in each fixed
term; default 3SEED = scalarSeed for the random numbers used to generate a dummy y-
variate; default 12345ParametersRandom model terms

RANDOM = formula structures	Random model terms
COMPONENTS = variates	Values for the variance components and residual variance
UVCOVARIANCE = <i>symmetric matrices</i>	Saves the unit-by-unit variance-covariance matrices

WADLEY procedure

Fits models for Wadley's problem, allowing alternative links and errors (D.M. Smith).

Options	
PRINT = string tokens	Controls printed output (deviance, estimates,
	correlations, monitoring); default devi, esti
DISTRIBUTION = string token	Distribution of the response variate (poisson,
	negativebinomial, qlnegativebinomial,
	qlscaledpoisson); default pois
LINK = <i>string token</i>	Link transformation (logit, probit,
	complementaryloglog, cauchit); default logi
TERMS = formula	Model to be fitted
CONTROL = factor	Factor to distinguish the control, or zero, dose (level 1) from
	the other treatments (level 2)
MAXIMAL = $factor$	Factor to define the maximal model i.e. with a level for every
	combination of values of the variates and factors in TERMS
RMETHOD = string token	Type of residuals to be formed (deviance, Pearson); default devi
Parameters	
Y = variates	Response variate for each fit
RESTDUALS = variates	Variate to save the residuals from each fit

RESIDUALS = variates	
FITTEDVALUES = variates	

WILCOXON procedure

Performs a Wilcoxon Matched-Pairs (Signed-Rank) test (S.J. Welham, N.M. Maclaren & H.R. Simpson).

Option

PRINT = *string tokens*

Parameters

DATA = variates RANKS = variates STATISTIC = scalars PROBABILITY = scalars SIGN = scalars Output required (test, ranks): test gives the relevant test statistics, ranks prints out the signed ranks for the vector of differences; default test

Variate to save the fitted values from each fit

Variates holding the differences between each pair of samples Variate to save the signed ranks Scalar to save the value of the test statistic Saves the probability for each test statistic Scalar to indicate the sign of the total sum of the signed ranks: 1 if the sum is positive, 0 otherwise

WINDROSE procedure

Plots rose diagrams of circular data like wind speeds (P.W. Goedhart & R.W. Payne).

Options

PRINT = string token	What to print (table); default * i.e. nothing
SEGMENT = scalar	Width of sectors (in degrees) into which to group an ANGLES
	variates before plotting; default 20
MSEGMENT = scalar	Defines the centre (in degrees) of the sectors; default 0
INTERVALS = <i>scalar</i> or <i>variate</i>	Scalar to define the intervals at which to summarize the data
	values, or a variate defining the boundaries between the
	intervals; default * i.e. determined automatically
%INTERVAL = scalar	Interval (on the percent scale) between the circles drawn to
	provide a scale on the diagram; default * i.e. determined
	automatically
COLOURS = <i>text</i> or <i>variate</i>	Colours to shade the triangles segment for each interval;
	default * sets suitable colours automatically
SCREEN = string token	Whether to clear screen before displaying the graphs (keep,
	clear); default clea
Parameters	
DATA = variates	Data values
ANGLES = factors or variates	Directions of the data values
TITLE = text	Title for the graph; default * i.e. identifier of the DATA variate
WINDOW = scalar	Window for the graph; default 3

WORKSPACE directive

Accesses private data structures for use in procedures.

No options Parameters

NAME = $texts$	Texts, each containing a single line, to give the names used to
	identify the private data structures
DUMMY = <i>identifiers</i>	Dummy structure to be used to refer to each private data
	structure
	structure

WSTATISTIC procedure

Calculates the Shapiro-Wilk test for Normality (R.W. Payne).

Option	
PRINT = string tokens	What to print (test); default test
Parameters	
DATA = variates	Samples of data to be tested for Normality
W = scalars	Saves the Shapiro-Wilk W statistic for each sample
PROBABILITY = scalars	Saves the probability for W under the assumption that the data are Normal

XAXIS directive

Defines the x-axis in each window for high-resolution graphics.

Option	
RESET = <i>string token</i>	

Whether to reset the axis definition to the default values (no, yes); default no

Parameters

WINDOW = scalars TITLE = texts TPOSITION = string tokens TDIRECTION = string tokens LOWER = scalars UPPER = scalars MARKS = scalars or variates

Numbers of the windows
Title for the axis
Position of title (middle, end)
Direction of title (parallel, perpendicular)
Lower bound for axis
Upper bound for axis
Distance between each tick mark (scalar) or positions of the
marks along the axis (variate)

100	r Syntax summary
MPOSITION = string tokens	Positioning of the tick marks on the axis (inside, outside,
	across)
LABELS = <i>texts</i> or <i>variates</i>	Labels at each major tick mark
LPOSITION = string tokens	Position of the axis labels (inside, outside)
LDIRECTION = string tokens	Direction of the axis labels (parallel, perpendicular)
LROTATION = <i>scalars</i> or <i>variates</i>	Rotation of the axis labels
NSUBTICKS = scalars	Number of subticks per interval (ignored if MARKS is a variate)
YORIGIN = scalars	Position on y-axis at which the axis is drawn
ZORIGIN = scalars	Position on z-axis at which the axis is drawn
PENTITLE = scalar	Pen to use to write the axis title
PENAXIS = scalar	Pen to use to draw the axis
PENLABELS = scalars	Pen to use to write the axis labels
ARROWHEAD = <i>string tokens</i>	Whether the axis should have an arrowhead (include, omit)
ACTION = string tokens	Whether to display or hide the axis (display, hide)
TRANSFORM = <i>string tokens</i>	Transformed scale for the axis (identity, log, log10,
	logit, probit, cloglog, square, exp, exp10, ilogit,
	iprobit, icloglog, root); default iden
LINKED = scalars	Linked axis whose definitions should be used for this axis in 2-
	dimension graphs; default * i.e. none
MLOWER% = scalars	How large a margin to set between the lowest x-value and the
	lower value of the axis, if not set explicitly by LOWER
	(expressed as a percentage of the range of the x-values)
MUPPER% = scalars	How large a margin to set between the largest x-value and the
	upper value of the axis, if not set explicitly by UPPER
	(expressed as a percentage of the range of the x-values)
DECIMALS = scalars or variates	Number of decimal places to use for numbers printed at the
	marks
DREPRESENTATION = scalars, variates	or texts
	Format to use for dates and times printed at the marks
VREPRESENTATION = <i>string tokens</i>	Format to use for numbers printed at the marks (decimal,
_	engineering, scientific); default deci
YOMETHOD = string tokens	Method to use to set the position of the origin on the y-axis if
	not set explicitly by YORIGIN (upper, lower, center,
	centre)
ZOMETHOD = string tokens	Method to use to set the position of the origin on the z-axis if
	not set explicitly by ZORIGIN (upper, lower, center,
	centre)
REVERSE = <i>string tokens</i>	Whether to reverse the axis direction to run from upper to
C C	lower instead of the default lower to upper (yes, no); default
	no
SAVE = pointers	Saves details of the current settings for the axis concerned
XOCATEGORIES procedure	
1	a from cross-over trials (D M. Smith & M G Kenward)

Performs analyses of categorical data from cross-over trials (D.M. Smith & M.G.Kenward). **Options**

Options	
PRINT = string token	What to print at each fit (model, summary, accumulated,
	estimates, correlations, fittedvalues,
	<pre>monitoring); default *</pre>
PDATA = string token	Whether or not a display of category combination by sequence
	is required (yes, no); default no
METHOD = <i>string token</i>	Type of analysis for which factors are required (subject,
	loglinear, ownsubject, ownloglinear);
CARRYOVER = <i>string token</i>	Whether or not models with carryover effects in are to be
0	produced (yes, no); default no
Parameters	
SEQUENCE = $factors$	The identifier of the sequence of treatments
SEQUENCE – Jaciors	The identifier of the sequence of treatments

RESULTS = <i>pointers</i>	Pointer containing factors (one for each period) giving the category scores observed
NUMBER = variates	Numbers recorded in the sequence/category combinations
SAVE = <i>pointers</i>	Saves the factors constructed to do the analysis
REUSE = <i>pointers</i>	To reuse factors saved earlier using SAVE
MODEL = formula	Additional terms to be fitted to model if OWNSUBJECT or
	OWNLOGLINEAR options used; default *

XOEFFICIENCY procedure

Calculates efficiency of estimating effects in cross-over designs (B. Jones & P.W. Lane). **Options**

What reports to produce (summary, efficiency, variance,
carryover, contrasts, dummyanalysis, incidence);
default summ, effi, cont
Number of periods in the design; no default
Whether to included effects of carryover (yes, no); default no
Type of treatment contrasts if POLYNOMIAL and OWN
parameters are unset (pairwise, control); default pair
Saves incidence matrices; default *
Text, variate or factor with sequence of levels of a single
treatment; no default
Order of polynomials to represent each term in the
SEQUENCES parameter; default *, i.e. represent effects
according to OWN parameter or CONTRASTTYPE option
Specific contrasts for each term in the sequences parameter;
default *, i.e. represent effects according to POLYNOMIAL
parameter or CONTRASTTYPE option
iates or diagonal matrices
Saves efficiencies; default *
es or diagonal matrices
Saves variances; default *

XOPOWER procedure

Estimates the power of contrasts in cross-over designs (P.W. Lane & B. Jones). **Options**

options	
PRINT = string tokens	What reports to produce (summary, contrasts,
	nonequality, equivalence, noninferiority,
	superiority); default summ, none
NPERIODS = $scalar$	Number of periods in the design; default 2
NREPEATS = $scalar$	Number of repeats of supplied sequences, or variate or a series
	of numbers to get power for multiples of a design; default 1
CARRYOVER = <i>string token</i>	Whether to include the carry-over term (yes, no); default no
CONTRASTTYPE = <i>string token</i>	Type of treatment contrasts if POLYNOMIAL and OWN
	parameters are unset (pairwise, control); default pair
ALPHALEVEL = scalar	Significance level at which to test each contrast, adjusted if
	necessary for multiplicity; default 0.05
DELTA = scalar	Tolerance for equivalence & non-inferiority tests; default
	0.2231 i.e. $\log(1.25)$
VARWITHIN = scalar	Variance of response within subjects; default 1
VARBETWEEN = scalar	Variance of response between subjects; default 1
NSIMULATIONS = $scalar$	Number of simulations; default 1000
SEED = scalar	Seed for random-number generator; default 0 i.e. continue
	from previous or use system clock
MONITOR = string token	What summary of power values to report every 50 simulations
-	for each report chosen in PRINT option (minimum, mean,

488	4 Syntax summary
Parameters	<pre>median, maximum); default * i.e. no monitoring</pre>
SEQUENCES = texts, variates or factors POLYNOMIAL = scalars	Sequence of levels of a single treatment factor; no default Order of polynomials to represent the treatment factor; default * i.e. represent effects according to OWN parameter or CONTRASTTYPE option
OWN = matrices	Specific contrasts for the treatment factor; default * i.e. represent effects according to POLYNOMIAL parameter or CONTRASTTYPE option
MEANS = variates	Pattern of means for each treatment level for which to establish power; default * i.e. all zero
NONEQUALITY = symmetric matrices of	matrices
	Structure to save calculated power values for nonequality; default *
EQUIVALENCE = <i>symmetric matrices</i> or	matrices
	Structure to save calculated power values for equivalence; default *
NONINFERIORITY = symmetric matrice	es or matrices
	Structure to save calculated power values for noninferiority; default *
SUPERIORITY = symmetric matrices of	
	Structure to save calculated power values for superiority; default *

YAXIS directive

Defines the y-axis in each window for high-resolution graphics. **Option** RESET = *string token* Whether to reset the axis definition to the default values (no,

Parameters

WINDOW = scalars Numbers of the windows Title for the axis TITLE = texts**TPOSITION** = *string tokens* Position of title (middle, end) TDIRECTION = string tokens Direction of title (parallel, perpendicular) Lower bound for axis LOWER = *scalars* UPPER = scalars Upper bound for axis MARKS = *scalars* or *variates* Distance between each tick mark (scalar) or positions of the marks along the axis (variate) MPOSITION = *string tokens* Positioning of the tick marks on the axis (inside, outside, across) Labels at each major tick mark LABELS = *texts* or *variates* LPOSITION = *string tokens* Position of the axis labels (inside, outside) Direction of the axis labels (parallel, perpendicular) LDIRECTION = *string tokens* **LROTATION** = *scalars* or *variates* Rotation of the axis labels NSUBTICKS = scalars Number of subticks per interval (ignored if MARKS is a variate) XORIGIN = scalars Position on x-axis at which the axis is drawn Position on z-axis at which the axis is drawn ZORIGIN = scalars PENTITLE = scalars Pen to use to write the axis title Pen to use to draw the axis PENAXIS = scalars Pen to use to write the axis labels PENLABELS = scalar ARROWHEAD = *string tokens* Whether the axis should have an arrowhead (include, omit) ACTION = *string tokens* Whether to display or hide the axis (display, hide) Transformed scale for the axis (identity, log, log10, TRANSFORM = *string tokens* logit, probit, cloglog, square, exp, exp10, ilogit, iprobit, icloglog, root); default iden Linked axis whose definitions should be used for this axis in 2-LINKED = scalars

ves): default no

	dimensional graphs; default * i.e. none
MLOWER% = scalars	How large a margin to set between the lowest y-value and the
	lower value of the axis, if not set explicitly by LOWER
	(expressed as a percentage of the range of the y-values)
MUPPER% = scalars	How large a margin to set between the largest y-value and the
	upper value of the axis, if not set explicitly by UPPER
	(expressed as a percentage of the range of the y-values)
DECIMALS = scalars or variates	Number of decimal places to use for numbers printed at the
	marks
DREPRESENTATION = <i>scalars</i> , <i>variates</i>	
	Format to use for dates and times printed at the marks
VREPRESENTATION = <i>string tokens</i>	Format to use for numbers printed at the marks (decimal,
	engineering, scientific); default deci
XOMETHOD = string tokens	Method to use to set the position of the origin on the x-axis if
	not set explicitly by XORIGIN (upper, lower, center,
	centre)
ZOMETHOD = <i>string tokens</i>	Method to use to set the position of the origin on the z-axis if
	not set explicitly by ZORIGIN (upper, lower, center,
	centre)
REVERSE = <i>string tokens</i>	Whether to reverse the axis direction to run from upper to
	lower instead of the default lower to upper (yes, no); default no
SAVE = pointers	Saves details of the current settings for the axis concerned

YTRANSFORM procedure

Estimates the parameter lambda of a single parameter transformation (D.M. Smith).

Options	
TRANSFORM = <i>string token</i>	Type of transformation (power, modulus, foldedpower,
	GuerreroJohnson, Aranda1, Aranda2, powerlogit);
	default powe
METHOD = string tokens	Method of evaluating transformation parameter lambda
	(Atkinson, Andrews, BoxCox, Robust); default boxc
K = scalar	Cut-off value for robust method; default *
LOWER = scalar	Lower limit of range of lambda; default *
UPPER = scalar	Upper limit of range of lambda; default *
STEPLENGTH = scalar	Increment of lambda; default (UPPER - LOWER)/20
LAMBDA = scalar	Single value of lambda; default *
FVBOUND = string token	Replace illegal fitted values by the corresponding boundary
	values (no, yes); default no
GRAPHICS = <i>string token</i>	What sort of graphics to use (lineprinter,
-	highresolution); default high
TERMS = formula	Terms of model
Parameters	
Y = variates	Response variate
NBINOMIAL = variates	Denominator for a binomial variate
SAVE = pointers	Structures to save the output

ZAXIS directive

Defines the z-axis in each window for high-resolution graphics.

Option RESET = *string token*

Whether to reset the axis definition to the default values (no, yes); default no

Parameters

WINDOW = scalars TITLE = texts TPOSITION = string tokens Numbers of the windows Title for the axis Position of title (middle, end)

TDIRECTION = string tokens	Direction of title (parallel, perpendicular)
LOWER = scalars	Lower bound for axis
UPPER = scalars	Upper bound for axis
MARKS = <i>scalars</i> or <i>variates</i>	Distance between each tick mark (scalar) or positions of the
	marks along the axis (variate)
MPOSITION = string tokens	Positioning of the tick marks on the axis (inside, outside,
0	across)
LABELS = $texts$	Labels at each major tick mark
LPOSITION = string tokens	Position of the axis labels (inside, outside)
LDIRECTION = string tokens	Direction of the axis labels (parallel, perpendicular)
LROTATION = scalars or variates	Rotation of the axis labels
NSUBTICKS = <i>scalars</i>	Number of subticks per interval (ignored if MARKS is a variate)
XORIGIN = <i>scalars</i>	Position on x-axis at which the axis is drawn
YORIGIN = scalars	Position on y-axis at which the axis is drawn
PENTITLE = scalars	Pen to use to write the axis title
PENAXIS = scalars	Pen to use to draw the axis
PENLABELS = scalar	Pen to use to write the axis labels
ARROWHEAD = string tokens	Whether the axis should have an arrowhead (include, omit)
ACTION = string tokens	Whether to display or hide the axis (display, hide)
MLOWER% = scalars	How large a margin to set between the lowest z-value and the
FILOWER'S Scalars	lower value of the axis, if not set explicitly by LOWER
	(expressed as a percentage of the range of the z-values)
MUPPER% = scalars	How large a margin to set between the largest z-value and the
MOFFER® - Scalars	upper value of the axis, if not set explicitly by UPPER
	(expressed as a percentage of the range of the z-values)
DECIMALS = scalars or variates	Number of decimal places to use for numbers printed at the
DECIMALS – scalars of variates	marks
DREPRESENTATION = scalars variates	
DREPRESENTATION - scalars variales (Format to use for dates and times printed at the marks
VREPRESENTATION = <i>string tokens</i>	Format to use for numbers printed at the marks (decimal,
VREPRESENTATION – string tokens	engineering, scientific); default deci
VONETILOD - string tokong	Method to use to set the position of the origin on the x-axis if
XOMETHOD = string tokens	· · ·
	not set explicitly by XORIGIN (upper, lower, center,
VONTERVOD - string to have	centre)
YOMETHOD = string tokens	Method to use to set the position of the origin on the y-axis if
	not set explicitly by YORIGIN (upper, lower, center,
	centre)
REVERSE = <i>string tokens</i>	Whether to reverse the axis direction to run from upper to
	lower instead of the default lower to upper (yes, no); default no
SAVE = <i>pointers</i>	Saves details of the current settings for the axis concerned
SAVE - pouners	Saves details of the current settings for the axis concerned

%CD directive

Changes current directory, PC Windows only. No options Parameters DIRECTORY = text Directory CURRENT = text Saves new

Directory to change to Saves new directory

%CLOSE directive

Closes the binary file opened by **%OPEN**. No options or parameters

%FPOSITION directive

Returns the current position in the binary file opened by \$OPEN. No options

Parameter scalar	Number of bytes of the current position from the start of the file
%LOG directive	
Adds text into the Input Log window No options Parameter	in the Genstat client.
text	Text to display in the Input Log window
%MESSAGEBOX directive	4 - 11
Display text in a dialog in the Gensta	it client.
Options TITLE = <i>text</i>	Title for the dialog; default 'Genstat'
ICON = string token	Icon to display in the dialog (information, warning,
	error, question); default info
Parameter	· • //
text	text to display in the dialog
%OPEN directive	
Open a binary file for use with %WRI	TF.
No options	
Parameter	
NAME = $text$	Name of file to be opened for binary output using $\ensuremath{\mathtt{WRITE}}$
SLEEP directive	
Pauses execution of the server for a t	ime specified in seconds.
No options	
Parameter	
scalar	specifies the time in seconds to pause
%TEMPFILE directive	
Creates a unique temporary file in the	e Genstat temporary folder.
No options	
Parameters	
PREFIX = string	Prefix for the filename
FILENAME = $text$	Saves the filename
INDEX = scalar	Saves the index number that follows the prefix in the filename
%WRITE directive	
Writes values of data structures to a	binary file opened by %OPEN.
Options	
SEPARATOR = <i>scalar or text</i>	Separator character as a literal character or a scalar giving an ASCII code (0-255); default * i.e. none
TERMINATOR = <i>string token</i>	Terminator to use at the end of a text (null, newline) default null
POSITION = scalar	File position at which to write the data; default 0 writes at the current position
Parameters	
DATA = texts, scalars, variates or matri	
	Data structures to write to the file
FORMATTED = <i>string tokens</i>	Output format to use when writing the structures (bit, byte,
	shortint, longint, real, double, string, text, rawtext, factor); default depends on the type of data

structure

492	4 Syntax summary
NBYTES = scalars	Saves the number of bytes written to the file
4.2 Functions for calculati	ons
Function name	Description
ABS(x)	the absolute value of x : $ x $.
ACOS	synonym for ARCCOS.
ANG	synonym of ANGULAR.
ANGLE(y;x) ANGULAR(p)	inverse tangent of y/x , result in radians in range $(-\pi,\pi]$. the angular transformation: for a percentage p (0 <p 100),="" <="" forms<="" td=""></p>
	$x = (180/pi) \times \arcsin(sqrt(p/100)).$
ARCCOS (x)	inverse cosine of x, where $-1 \le x \le 1$.
ARCSIN(x)	inverse sine of x, where $-1 \le x \le 1$.
ARCTAN (x)	arctangent (inverse tangent) of x, result in radians.
AREA (y;x)	numerically integrates the curve running through the points specified by variates y and x using the trapezoidal method.
ASIN ATAN	synonym for ARCSIN. synonym for ARCTAN.
AIAN BASE(i;n)	column matrix with n rows, value one in row i and zero elsewhere.
BBELOW(t;n;m)	provides a variate containing numbers of all the nodes below node n of tree t; if m=1 this gives only the terminal nodes below n, otherwise it includes internal nodes as well.
BBRANCHES(t;n)	provides a variate containing the numbers of the branches taken on the path to node n in tree t (the result is of the same length as the results of BPATH, and includes a $*$ as the final
	element, corresponding to n itself).
BDEPTH(t;x)	calculates the depths of nodes \times in tree t.
BETA(a;b;x)	Beta function $B(a,b)$ or, if x is set, regularized incomplete Beta function $I(a,b,x)$.
BIO(x)	modified Bessel function of the first kind $I_0(x)$.
BI1(x)	modified Bessel function of the first kind $I_1(x)$.
BIN(x;n)	modified Bessel function of the first kind $I_n(x; n)$.
BJ0 (x)	Bessel function of the first kind $J_0(x)$.
BJ1(x)	Bessel function of the first kind $J_1(x)$. Bessel function of the first kind $J''(x; n)$.
BJN(x;n)	modified Bessel function of the second kind $K_0(x)$.
BKO (x) BK1 (x)	modified Bessel function of the second kind $K_0(x)$.
BKN(x;n)	modified Bessel function of the second kind $K_1(x)$.
BLUE (x)	calculates the blue components of the RGB colour values in x
BMAXNODE(t)	provides the maximum node number in tree t.
BNBRANCHES(t;x)	provides the number of branches below nodes x in tree t (0 if n is a terminal node).
BNEXT(t;x;y)	finds the numbers of the nodes on branches y from nodes x in tree t (or * for any terminal node).
BNNODES(t)	provides the number of nodes in tree t.
BOUND(x;l;u)	sets values of x less than 1 to 1, and values greater than u to u missing values can be set in 1 or u to imply no boundary.
BPATH(t;n)	provides a variate containing the numbers of the nodes on the branch to node n in tree t (includes n itself as the final element).
BPREVIOUS(t;x)	finds the numbers of the nodes immediately above nodes \times in tree t (or * for the root of the tree).

	tree t in an standard branch-by-branch order that visits each
	node once (or $*$ for the root of the tree).
BTERMINAL(t;x)	finds the next terminal nodes after nodes x in tree t (or * for
	the node after the last terminal node).
BYO(x)	Bessel function of the second kind $Y_0(x)$.
BY1(x)	Bessel function of the second kind $Y_1(x)$.
BYN(x;n)	Bessel function of the second kind $Y_n(x; n)$.
С	synonym of CONSTANTS.
CED	synonym of EDCHI.
CEILING(x)	ceiling of x: returns for each value x_j of x the least integer <i>i</i> such that $i \ge x_j$.
CHARACTERS (g; c)	returns a variate giving the length of each line of text t: if c is omitted or set to 0 the length is the "raw" length (with no checking for any typesetting commands); if $c = 1$ it is the formatted length (taking account of typesetting commands, see 1.4.2 for their syntax); finally, if $c = -1$ it is the number of storage units ("bytes") required to store the text (standard characters like letters and digits require only one, more
	complicated characters like Chinese or Thai characters may require as many as four).
CHISQ	synonym of CLCHI.
CHOLESKI(x)	the Choleski decomposition of a symmetric matrix x: such that
	x = LL' where L is square with upper off-diagonal elements
	zero.
CIRCULATE(x;s)	shifts the values of x, treating x as a circular stack. If s is
	omitted, values are shifted one to the right, as for $s=1$.
CLBETA(x;a;b)	cumulative lower probability for a beta distribution with
	parameters a and b.
CLBINOMIAL(j;n;p)	probability of j or fewer successes out of n binomial trials with probability of success p.
CLBVARIATENORMAL(x;y;r)	cumulative lower probability for a bivariate normal
	distribution with means 0, variances 1, and correlation r.
CLCHISQUARE(x;df;c)	cumulative lower probability for a non-central chi-square
	distribution with noncentrality parameter c; if the third
	parameter c is omitted, it is assumed to be zero, giving the
	ordinary (central) chi-square distribution.
CLF(x;df1;df2;c)	cumulative lower probability for a non-central F distribution
	with degrees of freedom df1 and df2, and noncentrality
	parameter c; if the fourth parameter c is omitted, it is assumed
CT CANNA ()	to be zero, giving the ordinary (central) F distribution. cumulative lower probability for a gamma distribution with
CLGAMMA(x;k;t)	shape parameter k (kappa) and scale parameter t (theta).
CLHYPERGEOMETRIC(j;l;m;n)	probability of j or fewer positive samples out of a total sample
	of size m from a population of size n of which 1 are positive
	(hypergeometric distribution).
CLINVNORMAL(x;m;1)	cumulative lower probability for an inverse Normal (or inverse
	Gaussian) distribution with mean m and reciprocal dispersion
	parameter 1 (variance is $m^3/1$).
CLLOGNORMAL(x)	cumulative lower probability for a lognormal distribution
	corresponding to a normal distribution with mean 0 and
	variance 1.
CLNORMAL(x;m;v)	cumulative lower probability for a Normal distribution with
	mean m (default 0) and variance v (default 1).
CLOGLOG(p)	takes the complementary log-log transformation of the
	percentages p ($0).$
CLPOISSON(j;m)	probability of value of j or less for a Poisson distribution with

494	4 Syntax summary
CLSMMODULUS(x;df;n)	mean m. cumulative lower probability for a Studentized maximum modulus distribution with degrees of freedom df and number of means n.
CLSRANGE(x;df;n)	cumulative lower probability for a Studentized range distribution with degrees of freedom df and number of means
CLT(x;df;c)	n. cumulative lower probability for a non-central Student's t distribution with degrees of freedom df and noncentrality parameter c ; if the third parameter c is omitted, it is assumed to be zero, giving the ordinary (central) t distribution.
CLUNIFORM(x;a;b)	cumulative lower probability for a uniform distribution on [a,b].
COLBIND(x;y)	joins matrices x and y side by side.
COLCENTRE (x)	centres the columns of matrix x by subtracting their means.
COLMEANS (x)	mean of the non-missing elements of each row of matrix x.
COLNOBSERVATIONS (x)	number of non-missing elements in each column of matrix x.
COLSUMS(x)	sum of the non-missing elements of each column of matrix x .
COL1(n)	column matrix of 1's with n rows.
CONSTANTS (g)	provides the value of various constants, according to the
	contents of g: e (for a string of 'e' or 'E'), π ('pi' or 'PI'), missing value ('*'), the conversion factor by which to multiply radians to get degrees ('degrees'), the conversion
	factor by which to multiply degrees to get radians ('radians') and the number ε defined as the smallest number such that the calculation 1+ ε is detectable on the computer as
	greater than one ('epsilon').
CORRELATION(x;y)	if both x and y are specified, returns a scalar giving the correlation between the values of x and y; if y is omitted,
	forms a correlation matrix from a symmetric matrix \times of sums
	of squares and products.
CORRMAT	synonym of CORRELATION.
COS (x)	cosine of x , for x in radians.
COSH (x)	hyperbolic cosine of x. synonym of COVARIANCE.
COV COVARIANCE(x;y)	returns a scalar giving the covariance between the values of x
COVARIANCE (x, y)	and y.
CPUTIME(x)	returns a scalar containing the currently used cpu time in seconds (argument \times is ignored).
CUBETA(x;a;b)	cumulative upper probability for a beta distribution with parameters a and b.
CUBINOMIAL(j;n;p)	probability of more than j successes out of n binomial trials with probability of success p.
CUBVARIATENORMAL(x;y;r)	cumulative upper probability for a bivariate normal distribution with means 0, variances 1, and correlation r.
CUCHISQUARE(x;df;c)	cumulative upper probability for a non-central chi-square distribution with noncentrality parameter c ; if the third parameter c is omitted, it is assumed to be zero, giving the ordinary (central) chi-square distribution.
CUF(x;df1;df2;c)	cumulative upper probability for a non-central F distribution with degrees of freedom df1 and df2, and noncentrality parameter c; if the fourth parameter c is omitted, it is assumed to be zero, giving the ordinary (central) F distribution.
CUGAMMA(x;k;t)	cumulative upper probability for a gamma distribution with shape parameter k (kappa) and scale parameter t (theta).
CUHYPERGEOMETRIC(j;l;m;n)	probability of more than j positive samples out of a total

	sample of size m from a population of size n of which 1 are
	positive (hypergeometric distribution).
CUINVNORMAL(x;m;l)	cumulative upper probability for an inverse Normal (or inverse
	Gaussian) distribution with mean m and reciprocal dispersion
	parameter 1 (variance is $m^3/1$).
CULOGNORMAL(x)	cumulative upper probability for a lognormal distribution
	corresponding to a normal distribution with mean 0 and
	variance 1.
CUM	synonym of CUMULATE.
CUMULATE (x)	forms the cumulative sum of the values of x; i.e. x_1, x_1+x_2 ,
CONOLATE (X)	$x_1+x_2+x_3$, and so on.
	cumulative upper probability for a Normal distribution with
CUNORMAL(x;m;v)	mean m (default 0) and variance v (default 1).
CUPOISSON(j;m)	probability of a value greater than j for a Poisson distribution
	with mean m.
CUSMMODULUS(x;df;n)	cumulative upper probability for a Studentized maximum
	modulus distribution with degrees of freedom df and number
	of means n.
CUSRANGE(x;df;n)	cumulative upper probability for a Studentized range
	distribution with degrees of freedom df and number of means
	n.
CUT(x;df;c)	cumulative upper probability for a non-central Student's t
	distribution with degrees of freedom df and noncentrality
	parameter c ; if the third parameter c is omitted, it is assumed
	to be zero, giving the ordinary (central) t distribution.
CUUNIFORM(x;a;b)	cumulative upper probability for a uniform distribution on
	[a,b].
D	synonym of DETERMINANT.
DATE(d;m;y)	constructs the date value corresponding to day d, month m and
	year y.
DAY (x)	the day of month corresponding to date-time value x .
DEGREES (x)	converts angles \times from radians to degrees.
DEGREES (X)	synonym of DETERMINANT.
DETERMINANT (x)	the determinant of a square or symmetric matrix
	form a diagonal matrix from a variate x, or takes diagonal of a
DIAGONAL(x;b)	
	square, symmetric or diagonal matrix x ; b may be set if x is a
	matrix, to request a banded diagonal matrix of order b
	(returned as a square matrix with the values off the bands set to
	zero).
DIFFERENCE(x;s)	forms the differences of x, i.e. $x_i - x_{i-s}$; if s is omitted, first
	differences are formed, as for $s=1$
DIGAMMA(x)	digamma function of x, $\Psi(x)$.
DPRODUCT (x;y)	direct or Kronecker product of matrices x and y : $x \otimes y$.
DSUM(x;y)	direct sum of matrices x and y (x \oplus y); alternatively, if the
	second argument is omitted, x can be a pointer and the
	function then gives $x[1] \oplus x[2] \oplus x[n]$.
EDBETA(p;a;b)	equivalent deviate corresponding to cumulative lower
	probability p for a beta distribution with parameters a and b.
EDBINOMIAL(p;n;bp)	equivalent deviate corresponding to cumulative lower
	probability p for a binomial distribution with n trials and
	probability of success bp (returns the smallest integer x such
	that the probability of up to \times successes is greater than or equal
	that the probability of up to \times successes is greater than or equal to p).
EDCHISQUARE(p;df;c)	to p).
EDCHISQUARE(p;df;c)	

496	4 Syntax summary
EDF(p;df1;df2;c)	it is assumed to be zero, giving the ordinary (central) chi- square distribution. equivalent deviate corresponding to cumulative lower probability p for a non-central F distribution with degrees of freedom df1 and df2, and noncentrality parameter c; if the fourth parameter c is omitted, it is assumed to be zero, giving
EDGAMMA(p;k;t)	the ordinary (central) F distribution. equivalent deviate corresponding to cumulative lower probability p for a gamma distribution with shape parameter k
EDHYPERGEOMETRIC(p;l;m;n)	 (kappa) and scale parameter t (theta). equivalent deviate corresponding to cumulative lower probability p for a hypergeometric distribution with samples of size m from a population of size n of which 1 are positive (returns the smallest integer x such that the probability of up to
EDINVNORMAL(p;m;l)	x successes is greater than or equal to p). equivalent deviate corresponding to cumulative lower probability p for an inverse Normal (or inverse Gaussian) distribution with mean m and reciprocal dispersion parameter 1 (variance is $m^3/1$).
EDLOGNORMAL(p)	equivalent deviate corresponding to cumulative lower probability p for a lognormal distribution corresponding to a normal distribution with mean 0 and variance 1.
EDNORMAL(p;m;v)	equivalent deviate corresponding to cumulative lower probability p for a Normal distribution with mean m (default 0) and variance v (default 1).
EDPOISSON(p;m)	equivalent deviate corresponding to cumulative lower probability p for a Poisson distribution with mean m (returns the smallest integer x such that the probability of up to x successes is greater than or equal to p).
EDSMMODULUS(p;df;n)	equivalent deviate corresponding to cumulative lower probability p for a Studentized maximum modulus distribution with degrees of freedom df and number of means
EDSRANGE(p;df;n)	n. equivalent deviate corresponding to cumulative lower probability p for a Studentized range distribution with degrees of freedom df and number of means n.
EDT(p;df;c)	equivalent deviate corresponding to cumulative lower probability p for a non-central Student's t distribution with degrees of freedom df and noncentrality parameter c; if the third parameter c is omitted, it is assumed to be zero, giving the ordinary (central) t distribution.
EDUNIFORM(p;a;b)	equivalent deviate corresponding to cumulative lower probability p for a uniform distribution on [a,b].
ELEMENTS(x;e1;e2)	forms a sub-structure of x. If x is a vector or a diagonal matrix, then only $e1$ should be specified; this then indicates the selected elements of x. If x is a rectangular matrix, then both e1 and $e2$ should be given, to specify respectively the selected rows and columns of x. For a symmetric matrix x, if the same rows and columns are to be selected (giving a symmetric matrix) then only $e1$ should be specified; otherwise both $e1$ and $e2$ should be given (and the result is a matrix).
EVALUES(x) EVECTORS(x)	eigenvalues of x (as a diagonal matrix). eigenvectors of x (as a rectangular matrix).
EXP(x)	exponential: e ^x .
EXPAND(x;s)	forms a variate of length s, containing zeroes and ones; if s is omitted and the length cannot be determined from the context,

	the length of the current units structure, if any, is taken. The
	values in \times specify the numbers of the units that are to contain
	the value 1.
FACTORIAL(x)	factorial of $x (x!)$: the values in x must be non-negative, missing values are given for results that are too large to be stored.
FED	synonym of EDF.
FLOOR(x)	floor of x: returns for each value x_i of x the largest integer <i>i</i>
	such that $i \le x_j$.
FPROBABILITY	synonym of CLF.
FRACTION(x)	fractional part of x i.e. x -INTEGER (x).
FRATIO	synonym of CLF.
GAMMA(a;x)	Gamma function, $\Gamma(a)$ for a>0 or, if x is set, lower incomplete Gamma function $\gamma(a,x)$.
GCONSTANTS (q)	provides type numbers of Genstat data structures. The string g
Scond 111110 (g)	can therefore be either 'scalar', 'factor', 'text',
	'variate', 'matrix', 'diagonalmatrix',
	'symmetricmatrix', 'table', 'asave', 'tsave',
	'expression', 'formula', 'dummy', 'pointer', 'lrv',
	'sspm', 'tsm', 'rsave', 'tree', Or 'vsave'.
GETFIRST(g)	gives a variate containing the position of the first non-space
	character in each string of the text g.
GETLAST (g)	gives a variate containing the position of the last non-space
	character in each string of the text g.
GETPOSITION(g1;g2;x)	for each unit, if the string in the text g2 occurs as a substring of the string in the text g1, this returns the position at which
	the substring starts; otherwise it returns the value zero. The
	text g^2 may contain a single string (to be checked against
	every string of g1). The structure x (scalar or variate) supplies
	a logical value to indicate whether to ignore the case of any
	letters; if x is omitted, the logical is assumed to be false (case
	not ignored).
GINVERSE(x)	Moore-Penrose generalized inverse of x.
GRAY(x)	calculates RGB colour values for the values on the gray (grey)
	scale in x.
GRBETA(n;a;b)	generates n pseudo-random numbers from a Beta distribution
<pre>GRBINOMIAL(n;t;p)</pre>	with parameters a and b. generates n pseudo-random numbers from a Binomial
GREINOMIAL (II, C, P)	distribution with t trials and probability p.
GRCHISQUARE(n;df;c)	generates n pseudo-random numbers from a chi-square
2 - () -) -)	distribution with degrees of freedom df and non-centrality
	parameter c (default c=0).
GREEN(x)	calculates the green components of the RGB colour values in
	х.
GREY(x)	calculates RGB colour values for the values on the gray (grey)
	scale in x.
GRF(n;df1;df2;c)	generates n pseudo-random numbers from an F distribution
	with df1 and df2 degrees of freedom, and non-centrality parameter c (by default c1=0).
GRGAMMA(n;k;t)	generates n pseudo-random numbers from a Gamma
	distribution with shape parameter k (kappa) and scale
	parameter t (theta).
<pre>GRHYPERGEOMETRIC(n;l;m;p)</pre>	generates n pseudo-random numbers from a Hypergeometric
· · · · ·	distribution representing the number of positive values or
	successes in samples of size m from a population of size p of
	which 1 are positive.

498	4 Syntax summary
<pre>GRLOGNORMAL(n;m;v)</pre>	generates n pseudo-random numbers from a lognormal distribution such that $log(x)$ has a Normal distribution with mean m and variance v.
<pre>GRNORMAL(n;m;v)</pre>	generates n pseudo-random numbers from a Normal distribution with mean m (default 0) and variance v (default 1).
GRPOISSON(n;m)	generates n pseudo-random numbers from a Poisson distribution with mean m.
GRSAMPLE(n; v; p)	forms a variate of size n by sampling with replacement from variate v with probabilities (or relative weights) p; if p is omitted, the probabilities are assumed to be equal; if v is omitted, sampling is from a variate containing the integers $1n$.
GRSELECT(n; v; r)	forms a variate of size n by sampling from a population defined as NEXPAND $(r; v)$; if r is omitted, the population contains just one of each element of v; if v is omitted, sampling is from a variate containing the integers 1n.
GRT(n;df;c)	generates n pseudo-random numbers from a Student's t distribution with degrees of freedom df and non-centrality parameter c (default $c=0$).
GRUNIFORM(n;a;b)	generates n pseudo-random numbers from a uniform distribution on $[a,b]$.
HOURS(x)	the number of hours during the day corresponding to x (i.e. the number of hours recorded on a 24 hour clock at date-time value x).
I	synonym of INVERSE.
IANGULAR(x)	gives the inverse of the angular transformation (result in percentages).
ICLOGLOG(x)	gives the inverse of the complementary log-log transformation (result in percentages).
IDENTITY(n)	identity matrix of order n (returned as a diagonal matrix).
ILOGIT(x)	gives the inverse of the logit transformation (result in percentages).
INT	synonym of INTEGER.
INTEGER (x)	integer part of x: [x].
INV	synonym of INVERSE.
INVERSE(x)	the inverse of a non-singular square, symmetric or diagonal matrix x.
<pre>IMBEQUALIZE(r;l;u)</pre>	performs histogram equalization of brightness of RGB image in matrix r ; scalar 1 specifies the lower threshold and scalar h specifies the upper threshold.
IMBLUR(r;b)	blurs the RGB image in matrix r by the amount specified in scalar b ($0 \le 100$; default 2).
<pre>IMCEQUALIZE(r;l;u)</pre>	performs an independent histogram equalization of colours in RGB image in matrix r ; scalars 1 and h specify the lower and upper threshold.
IMBRIGHTNESS(r;l;h;m)	modifies brightness of the RGB image in matrix r, setting pixels in each channel with brightness less than 1 (default 0) to 0 and those brighter than h (default 255) to 255; m defines mode of adjustment (default 0 stretches brightness and 1 distributes brightness evenly across the range).
<pre>IMBSTRETCH(r;l;u;m)</pre>	performs a histogram stretch of brightness in RGB image in matrix r; scalar 1 (default 0) specifies percentage of pixels to set to 0 (i.e. black), scalar h (default 0) specifies percentage of pixels to set to white, and scalar m ($0 \le m \le 255$; default 128) specifies the colour value in each channel to be set to the middle intensity.

IMCONTRAST(r;c;b)	modifies contrast and brightness of RGB image in matrix r ; c $(-1 \le c \le 1$; default 0 i.e. no adjustment) defines adjustment to the contrast, and b $(-1 \le b \le 1$; default 0 i.e. no adjustment) defines adjustment to the brightness.
<pre>IMCREPLACE(r;c;d;t)</pre>	replaces colour c in RGB image in matrix r with colour d, using tolerance t (default 0).
<pre>IMCSTRETCH(r;l;h;m)</pre>	performs a histogram stretch of the individual colours in RGB image in matrix r; scalar 1 (default 0) specifies percentage of pixels to set to 0 (i.e. black), scalar h (default 0) specifies percentage of pixels to set to white, and scalar m ($0 \le m \le 255$; default 128) specifies the colour value in each channel to be set to the middle intensity.
IMDESPECKLE(r)	despeckles the RGB image in matrix r.
<pre>IMELLIPSE(r;cx;cy;hr;vr;c;cf</pre>	(default 40), vertical radius $\forall r$ (default 40), colour cl, fill colour cf (default 0) and opacity p ($0 \le p \le 1$, where 0 is transparent and default of 1 is solid) on RGB image in matrix r.
<pre>IMEMBOSS(r;b;t;a;e;d)</pre>	embosses RGB image in matrix r; matrix b specifies a "bump map" defining the peaks and valleys in the output image (typically this is a grey scale version of r); matrix t defines the texture to apply to the input matrix; scalar a gives the angle of the light source in radians; scalar e is the elevation of the light source in radians; scalar d defines the depth of the effect.
IMGAMMA(r;g)	applies gamma correction $g (g \ge 0; default 1.5)$ to the brightness of RGB image in matrix $r; g < 1$ decreases brightness, and $g > 1$ increases brightness.
IMGBLUR(r;s)	applies a Gaussian blur with standard deviation s to RGB image in matrix r.
$\ensuremath{IMGRAYSCALE}$ (r) or $\ensuremath{IMGREYSCALE}$	(r) convert RGB image in matrix r to grey scale.
IMHFLIP(r) IMLINE(r;x1;y1;x2;y2;c)	performs a horizontal flip on RGB image in matrix r. draws a line from point (x1, y1) to (x2, y2) in colour c on RGB image in matrix r.
<pre>IMMCONVOLUTION(r;f;i;cr;cg;c</pre>	(b;m) applies the convolution filter in matrix f to RGB image
<pre>IMMEDIANFILTER(r) IMOVERLAY(rt;rb;m;mp;p;x;y)</pre>	in matrix r; scalar i (default 1) defines intensity parameter; scalars cr, cg and cb contain 0 or 1 (default) according to whether red, green and blue channels, respectively, are to be modified. If mode defined by scalar m is 0 (default), the new value at each point is i multiplied by the sum of the values at the point and nearby points multiplied by the convolution matrix. Alternatively, if m=1 (default), the new value at each point is the current value at the point minus i multiplied by the sum of the values at the point and nearby points multiplied by the values in the convolution matrix. performs a median filter on the RGB image in a matrix r. overlays RGB image in matrix rt over RGB image in matrix rb; m controls how images are blended (0 = fast blend, 1 = slower, more accurate blend, 2 = pixels combined with logical AND, 3 = pixels combined with logical OR, 4 = pixels combined with logical XOR, 5 = output pixel is maximum of top and bottom as in Photoshop "Lighten", 6 = output pixel is minimum of top and bottom as in Photoshop "Darken", 7 = output pixel is sum of top and bottom, 8 = output pixel is
	difference of top and bottom, $9 = if top > mp$, output top, $10 = if top < mp$, output top, $11 = absolute value of the difference of top and bottom, 12 = take top \times bottom / maximum component, 13 = take top \times bottom \times ModeParameter /$

	maxComponent, $14 =$ screen, $15 =$ define bottom to be bottom
	+ top $-$ mp, 16 = define bottom to bottom $-$ top $-$ mp, 17 =
	pixels combined with logical NAND, 18 = pixels combined
	with logical NOR, $19 = pixels$ combined with logical
	NXOR/XNOR, $20 = \text{color dodge}$, $21 = \text{color burn}$, $22 = \text{soft}$
	dodge, $23 = $ soft burn, $24 = $ Photoshop "overlay", $25 = $ soft
	light, $26 =$ hard light, $27 =$ XFader reflect, $28 =$ XFader glow,
	29 = XFader freeze, 30 = XFader heat); p defines the opacity
	of the blended image; and (x, y) specifies the position of
	bottom left-hand corner of the top image on the bottom image.
IMPUSH(r;x1;y1;x2;y2)	applies a point-to-point warp on RGB image in matrix r, "pushing" point (x1, y1) to (x2, y2).
$IMPECTANCIE(\mathbf{x},\mathbf{y}^{1},\mathbf{y}^{1},\mathbf{y}^{2},\mathbf{y}^{2},\mathbf{z}^{2}$	colours rectangle with bottom left corner ($x1$, $y1$) and top
	right corner (x2, y2) in RGB image in matrix r to be colour c.
<pre>IMROTATE(r;a;b)</pre>	rotates RGB image in matrix r ; a is the angle in radians
	(default $\pi/2$); b is the background colour to put into the (blank)
	corners.
IMSATURATE(r;s)	adjusts the saturation level of RGB image in matrix r
	according to the value of scalar s (default 1.1): when $s>1$ the
	saturation is increased, when $0 \le 1$ saturation is decreased,
	and when $s < 0$ photo-negative is generated.
IMSHARPEN(r;s)	sharpens RGB image in matrix r by the amount specified in
	scalar s ($0 \le 100$; default 2).
IMSIZE(r;w;h;m)	changes the size of RGB image in matrix r to have width w
	and height h; ${\tt m}$ selects the algorithm to use to assign colours in
	the new image: $0 = box$ filter, $1 = triangle$ filter, $2 = Hamming$
	filter, 3 = Gaussian filter, 4 = bell filter, 5 = B-spline filter, 6 =
	cubic 1 filter, 7 = cubic 2 filter, 8 = Lanczos3 filter, 9 =
	Mitchell filter, 10 = sinc filter, 11 = Hermite filter, 12 =
	Hanning filter, $13 = \text{Catrom filter}$, $14 = \text{fast area-average}$, $15 =$
	area-average, 16 = bi-linear interpolation, 17 (default) = bi-
	cubic interpolation, 18 = nearest neighbour.
<pre>IMSSTRETCH(r;l;h;m)</pre>	performs a histogram stretch of the saturation in RGB image in
	matrix r; scalar 1 (default 0) specifies percentage of pixels to
	set to 0 (i.e. black), scalar h (default 0) specifies percentage of pixels to set to white, and scalar m ($0 \le m \le 255$; default 128)
	specifies the colour value in each channel to be set to the
	middle intensity.
IMSTEXT (r.st.c.fb.v1.v1.v2.v	2;ft;tr;sm) draws the text in string st with height fh, font
	ft, colour c, transparency tr and smoothness sm (sm=1 for
	none, or 2 or 4) within the bounding rectangle with top left
	corner at $(x1, y1)$ and bottom right corner at $(x2, y2)$ on RGB
	image in matrix r.
<pre>IMTEXT(r;st;c;fh;y1;x1;y2;x2</pre>	(;ft) draws the text in string st with height fh, font ft and
	colour ${\rm c}$ within the bounding rectangle with top left corner at
	(x1, y1) and bottom right corner at (x2, y2) on RGB image in
	matrix r.
<pre>IMUNSHARPEN(r;t;a;s)</pre>	applies an unsharp mask to RGB image in matrix r: this first
	applies a Gaussian blur with standard deviation s; it then finds
	the difference between pixels in the blurred image and in the
	original and, if this is greater than t in each channel, it adds
	the amount specified by scalar a multiplied by the difference
	from the original value.
IMVFLIP(r)	performs a vertical flip on RGB image in a matrix r. shears RGB image in matrix r by moving the top of the image
IMXSHEAR(r;x;b)	x pixels to the right (x>0) or left (x<0); the blank parts of the
	new image are given (background) colour b.

<pre>image are given (background) colour b. IM3CONVOLUTION (r; f; i; cr; cg; cb; d) applies convolution filter in the 3×3 matrix f to RGB image in matrix r; scalar i (default 1) defines intensity parameter; scalars cr, cg and cb contain 0 or 1 (default) according to whether red, green and blue channels, respectively, are to be modified. If the "feedback" defined by scalar d is 0 (default), the new value at each point is i multiplied by the sum of the values at the point and nearby points multiplied by the convolution matrix. Alternatively, if d=i (default), the new value at each point is calculated by taking (1-i) multiplied by the current value at the point, and then subtracting i multiplied by the sum of the values at the point and nearby points multiplied by the sum of the values in the convolution matrix. IPROBIT (x) gives the inverse of the probit transformation (result in percentages). KRONECKER synonym for DPRODUCT. KURTOSIS (x) kurtosis of the non-missing values in x. LEAPYEAR (x) returns 1 if the year corresponding to date-time value x is a leap year, 0 otherwise. LEVELS (f) forms a variate containing the levels of the factor f. LIB Synonym of LLBINOMIAL. LLDAMMA (x; k; t) log-likelihood function for the Binomial distribution; n is the mean and v the variance. LIP Synonym of LLPOISSON LLEPOISSON (x;m) log-likelihood function for the Poisson distribution; m is the mean. LNFACTORIAL (x) log of x! for non-negative integer values x. LNGAMMA (x) log-Gamma function, log_(f(x)), for x>0. LOGIT (p) takes the logit transformation log(p/(100-p)) of the percentages p(0</pre>	IMYSHEAR(r;y;b)	shears RGB image in matrix r by moving the right-hand side of the image $ y $ pixels up or down; the blank parts of the new
$ \begin{split} eq:linear_l$		
<pre>image in matrix r; scalar cr, cg and cb contain 0 or 1 (default) according to whether red, green and blue channels, respectively, are to be modified. If the "feedback" defined by scalar d is 0 (default), the new value at each point is i multiplied by the sum of the values at the point and nearby points multiplied by the our of the values at the point, and their subtracting i multiplied by the current value at each point is calculated by taking (1-i) multiplied by the current value at each point is calculated by taking (1-i) multiplied by the current value at the point, and then subtracting i multiplied by the values in the convolution matrix. IPROBIT (x) gives the inverse of the probit transformation (result in percentages), KRONECKER synonym for DERODUCT. KURTOSIS(x) taking (1 by year corresponding to date-time value x is a leap year, 0 otherwise. LEVELS(f) forms a variate containing the levels of the factor f. LLB Synonym of LLBINOMIAL LLSINOMIAL (x; n; p) log-likelihood function for the Binomial distribution; n is the sample size and p the variance. LLP synonym of LLGAMMA. LLGAMMAL (x; n; p) log-likelihood function for the Gamma distribution; m is the mean. LLFOURAL (x; m; v) log-likelihood function for the Poisson distribution; m is the mean. LLFACTORIAL (x; n; p) log-likelihood function for the Poisson distribution; m is the mean. LLFACTORIAL (x; m; v) log-fikelihood function log(p(10-p)) of the percentages p (0 < p < 100%). The perce</pre>	IM3CONVOLUTION(r:f:i:cr:cg:c	
parameter:scalar cir. cg and cb contain 0 or 1 (default) according to whether red, green and blue channels, respectively, are to be modified. If the "feedback" defined by scalar d is 0 (default), the new value at each point is 1 		
according to whether red, green and blue channels, respectively, are to be modified. If the "feedback" defined by scalar di s0 (defbult), the new value at each point is i multiplied by the sum of the values at the point and nearby points multiplied by the current value at each point is calculated by taking (1-i) multiplied by the sum of the values at the point, and then subtracting i multiplied by the values in the values at the point and nearby points multiplied by the values in the convolution matrix.IPROBIT (x)gives the inverse of the probit transformation (result in percentages).RRONECKERsynonym for DPRODUCT. KURTOSIS (x)LEAPYEAR (x)returns 1 if the year corresponding to date-time value x is a leap year, 0 otherwise.LEVELS (f)forms a variate containing the levels of the factor f.LLBsynonym of LLBINOMIAL.LLB INOMIAL (x;n;p)log-likelihood function for the Binomial distribution; n is the sample size and p the mean proportion (or the probability).LLGsynonym of LLGAMMA.LLGAMMA (x;k;t)log-likelihood function for the Gamma distribution; m is the mean and v the variance.LLPsynonym of LLPOISSON.LLPOISSON (x;m)log of x! for non-negative integer values x.LNGCAMAL (x)log of x! for non-negative integer values x.LGGI10 (x)logarithm of x, for x > 0.LGGI2 (x)matrix of vectors from the left-hand side of a singular-value decomposition of x.LIPOTORON (x)matrix of vectors from the left-lend and singular-value decomposition of x.LIPOTORON (x)matrix for the spece seq p 0.0 LIPOTORON (x)matrix of vectors from the left-l		
$\label{eq:constraints} \begin{tabular}{lllllllllllllllllllllllllllllllllll$		
scalar d is 0 (default), the new value at each point is 1 multiplied by the sum of the values at the point and nearby points multiplied by the souroolution matrix. Alternatively, if d=i (default), the new value at each point is calculated by taking (1-1) multiplied by the current value at the point, and then subtracting i multiplied by the sum of the values at the point and nearby points multiplied by the sum of the values at the point and nearby points multiplied by the values in the convolution matrix.IPROBIT (x)gives the inverse of the probit transformation (result in percentages).KRONECKERsynonym for DPRODUCT. KURTOSIS (x)LEAPYEAR (x)returns 1 if the year corresponding to date-time value x is a leap year, 0 otherwise.LEVELS (f)forms a variate containing the levels of the factor f. Synonym of LLBINOMIAL.LLBsynonym of LLGAMMA.LLBsynonym of LLGAMMA.LLGMMA (x; k; t)log-likelihood function for the Binomial distribution; n is the sample size and p the mean proportion (or the probability).LLSsynonym of LLGAMMA.LLNsynonym of LLNORMAL.LLNsynonym of LLPOISSON.LLPsynonym of LLPOISSON.LLPsynonym of LLPOISSON.LNFACTORIAL (x; m; v)log d' for non-negative integer values x. log-d' for non-negative int		
$\begin{tabular}{lllllllllllllllllllllllllllllllllll$		
points multiplied by the convolution matrix. Alternatively, if d=i (default), the new value at each point is calculated by taking (1-i) multiplied by the current value at the point, and then subtracting i multiplied by the current value at the point, and then subtracting i multiplied by the current value at the point and nearby points multiplied by the values in the convolution matrix.IPROBIT (x)gives the inverse of the probit transformation (result in percentages).KRONECKERsynonym for DENCOUCT.KURTOSIS (x)kurtosis of the non-missing values in x.LEAPVEAR (x)returns I if the year corresponding to date-time value x is a leap year, 0 otherwise.LEVELS (f)forms a variate containing the levels of the factor f.LIBsynonym of LLBINOMIAL.LLBINOMIAL (x;n;p)log-likelihood function for the Binomial distribution; n is the sample size and p the mean proportion (or the probability).LIGsynonym of LLGAMMA.LLAAMA (x; k; t)log-likelihood function for the Normal distribution; m is the mean and v the variance.LLPsynonym of LLPOISSON.LLPsynonym of LLPOISSON.LLPlog of x! for non-negative integer values x.LNGAMMA (x)log-Gamma function, log_(f(x)), for x>0.LOG10 (x)log arithm to base 10 of x, for x > 0.LOG10 (x)logarithm to base 10 of x, for x > 0.LOG10 (x)logarithm to base 10 of x, for x > 0.LOG10 (x)logarithm to pase for duct of x and y: a more efficient way of calculating TRANSPOSE (x) *+y.LTPRODUCT (x; y)left transposed product of x and y: a more efficient way of calculating TRANSPOSE (x) *+y		
taking $(1-i)$ multiplied by the current value at the point, and then subtracting i multiplied by the sum of the values at the point and nearby points multiplied by the values in the convolution matrix.IPROBIT (x)gives the inverse of the probit transformation (result in percentages).KRONECKERsynonym for DPRODUCT.KURTOSIS (x)kurtosis of the non-missing values in x.LEAPEAR (x)returns 1 if the year corresponding to date-time value x is a leap year, 0 otherwise.LEVELS (f)forms a variate containing the levels of the factor f.LIBsynonym of LLBINOMIAL.LLBsynonym of LLGAMMA.LLGAMMA (x; h; t)log-likelihood function for the Binomial distribution; n is the sample size and p the mean proportion (or the probability).LLGsynonym of LLNORMAL.LLNsynonym of LLNORMAL.LLNsynonym of LLNORMAL.LLNsynonym of LLPOISSON.LLPsynonym of LLPOISSON.LLPsynonym of LLOGAMMA (x; m; v)log-Ginma function, log(f(x)), for x>0.LOG10 (x)log-Ginma function, log(f(x)), for x>0.LOG10 (x)logarithm to base lo of x, for x > 0.LOG10 (x)logarithm of x, for x > 0.LTPRODUCT (x; y)left transporsed product of x and y: a more efficient way of calculating TRANSPOSE (x) *+y.LTPRAINELE (m; d)returns the lower triangel of square matrix m, as a square matrix with the upper triangular set to zero; putting d=1 (default) indicates that the diagonal.MATOsynonym of MALINUM.MATOsynonym of MALINUM.MAXIMUM (x)finds the posit		
then subtracting i multiplied by the sum of the values at the point and nearby points multiplied by the values in the convolution matrix.IPROBIT (x)gives the inverse of the probit transformation (result in percentages).KONECKERsynonym for DPRODUCT.KURTOSIS (x)kurtosis of the non-missing values in x.LEAPYEAR (x)returns I if the year corresponding to date-time value x is a leap year, 0 otherwise.LEVELS (f)forms a variate containing the levels of the factor f.LLBsynonym of LLBINOMIAL.LLBINOMIAL (xfnfp)log-likelihood function for the Binomial distribution; n is the sample size and p the mean proportion (or the probability).LLGsynonym of LLGAMMA.LLDN (xfkft)log-likelihood function for the Gamma distribution with shape parameter k (kappa) and scale parameter t (theta).LLNsynonym of LLPOISSONLLP (xfmfv)log-likelihood function for the Normal distribution; m is the mean and v the variance.LLP (xfm)log of x! for non-negative integer values x.LNGAMMA (x)log of x! for non-negative integer values x.LNGAMMA (x)log-Gamma function, log(lT(x)), for x>0.LOGI (x)logarithm to fax, for x > 0,LOGIT (p)takes the logit transformation log(p(100-p)) of the percentages p (0 LTPRODUCT (x; y)left transposed product of x and y: a more efficient way of calculating TRANSPOSE (x) *+y.LTPRANGLE (m; d)returns the lower triangled as to zero; putting d=1 (default) indicates that the diagonal is to be included, while putting d=0 excludes the diagonal.MATOsynonym of MAZEMOM.		
eq:point and nearby points multiplied by the values in the convolution matrix. gives the inverse of the probit transformation (result in percentages). KRONECKER synonym for DPRODUCT. KURTOSIS(x) kurtosis of the non-missing values in x. LEAPYEAR(x) terturns 1 if the year corresponding to date-time value x is a leap year, 0 otherwise. LEVELS(f) forms a variate containing the levels of the factor f. LLB synonym of LLBINOMTAL. LLEINOMTAL(x;n;p) log-likelihood function for the Binomial distribution; n is the sample size and p the mean proportion (or the probability). LLG synonym of LLGAMMA. LLGAMMA(x;k;t) log-likelihood function for the Gamma distribution; m is the mean and v the variance. LLN synonym of LLNORMAL. LLN synonym of LLPOISSON. LLPOISSON(x;m) log-likelihood function for the Poisson distribution; m is the mean and v the variance. LLP synonym of LLPOISSON. LLPOISSON(x;m) log of x! for non-negative integer values x. LNGAMMA(x) log of x! for non-negative integer values x. LNGAMMA(x) log of x! for non-negative integer values x. LNGAMMA(x) log of x! for non-negative integer values x. LNGAMMA(x) log of x! for non-negative integer values x. LNGAMMA(x) log of x! for non-negative integer values x. LNGAMMA(x) log of x! for non-negative integer values x. LNGAMMA(x) log of x! for non-negative integer values x. LNGAMMA(x) log of x! for non-negative integer values x. LNGAMMA(x) log of x! for non-negative integer values x. LNGAMMA(x) log of x! for non-negative integer values x. LNGAMMA(x) log dimtim to base 10 of x, for x > 0. LOGI t(p) takes the logit transformation log(p/(100-p)) of the percentages p(0 LIFTRANGLE (m; d) terturns the lower triangle of square matrix m, as a square matrix with the upper triangular set to zero; putting d=1 (default) indicates that the diagonal. synonym of MAZIMUM. MAXTO synonym of MAZIMUM. MAXIMUM(x) finds the position of the first instance of the maximum value MAXTO synonym of MAZIMUM. MAXIMUM (x) finds t		taking (1-i) multiplied by the current value at the point, and
$\label{eq:convolution matrix.} \\ \begin{tabular}{lllllllllllllllllllllllllllllllllll$		then subtracting i multiplied by the sum of the values at the
IPROBIT (x)gives the inverse of the probit transformation (result in percentages).KRONECKERsynonym for DPRODUCT.KURTOSIS(x)kurtosis of the non-missing values in x.LEAPYEAR(x)returns 1 if the year corresponding to date-time value x is a leap year, 0 otherwise.LEVELS(f)forms a variate containing the levels of the factor f.LBsynonym of LLBINOMIAL.LLBINOMIAL (x; n; p)log-likelihood function for the Binomial distribution; n is the sample size and p the mean proportion (or the probability).LGsynonym of LLGAMMA.LLGAMMA (x; k; t)log-likelihood function for the Gamma distribution with shape parameter k (kappa) and scale parameter t (theta).LLNsynonym of LLPOISSON.LLPsynonym of LLPOISSON.LLPsynonym of LLPOISSON.LLPlog-dikelihood function for the Poisson distribution; m is the mean.LNFACTORIAL (x)log of x! for non-negative integer values x.LNGAMA (x)log-Gamma function, log_(T(x)), for x>0.LOGI (x)logarithm to base 10 of x, for x > 0.LOGIT (p)takes the logit transformation log(p/(100-p)) of the percentages p (0 LTPRODUCT (x; y)left transposed product of x and y: a more efficient way of calculating TRANSPOSE (x) *+y.LTRIANGLE (m; d)returns the lower triangle of square matrix m, as a square matrix with the upper triangular set to zero; putting d=1 (default) indicates that the diagonal.MATOsynonym of MAZINUM.MATOsynonym of MAZENO.MAT1 (r; c)matrix of ones of size r by c. synonym of MAZENO. <td></td> <td></td>		
percentages).KRONECKERsynonym for DPRODUCT.KURTOSIS(x)kurtosis of the non-missing values in x.LEAPYEAR(x)returns I if the year corresponding to date-time value x is a leap year, 0 otherwise.LEVELS(f)forms a variate containing the levels of the factor f.LIBsynonym of LLBINOMIAL.LLBINOMIAL(x;n;p)log-likelihood function for the Binomial distribution; n is the sample size and p the mean proportion (or the probability).LIGsynonym of LLGAMMA.LLGAMMA(x; k;t)log-likelihood function for the Gamma distribution with shape parameter k (kappa) and scale parameter t (theta).LINsynonym of LLPOISSON.LLDlog-likelihood function for the Normal distribution; m is the mean and v the variance.LIPsynonym of LLPOISSON.LLPsynonym of LLPOISSON.LLPlog of x! for non-negative integer values x.LNGAMMA(x)log-Gamma function, log,(T(x)), for x>0.LOG(x)natural logarithm of x, for x > 0.LOG10(x)logarithm to base 10 of x, for x > 0.LOG11(p)takes the logit transformation log(p/(100-p)) of the percentages p(0 LTPRODUCT (x; y)left transposed product of x and y: a more efficient way of caluating TRANSPOSE (x) *+y.LTRIANGLE (m; d)returns the lower triangle of square matrix m, as a square matrix with the upper triangular set to zero; putting d=1 (default) indicates that the diagonal.MATOsynonym of MAZENO.MATOsynonym of MAZENO.MATOsynonym of MAZENO.MAXsynonym of MAZENO.<		convolution matrix.
KRONECKERsynonym for DPRODUCT.KURTOSIS (x)kurtosis of the non-missing values in x.LEAPYEAR (x)returns 1 if the year corresponding to date-time value x is a leap year, 0 otherwise.LEVELS (f)forms a variate containing the levels of the factor f.LLBsynonym of LLBINOMIAL.LLBINOMIAL (x;n;p)log-likelihood function for the Binomial distribution; n is the sample size and p the mean proportion (or the probability).LLGsynonym of LLGAMMA.LLOAMMA (x; k; t)log-likelihood function for the Gamma distribution with shape parameter k (kappa) and scale parameter t (theta).LLNsynonym of LLNORMAL.LLNORMAL (x; m; v)log-likelihood function for the Normal distribution; m is the mean and v the variance.LLPsynonym of LLPOISSON.LLPOISSON (x; m)log-likelihood function for the Poisson distribution; m is the mean.LNFACTORIAL (x)log of x! for non-negative integer values x.LOG (x)natural logarithm of x, for x > 0.LOG 10 (x)logarithm to base 10 of x, for x > 0.LOG 10 (x)logarithm to base 10 of x, for x > 0.LOG 10 (x)matrix of vectors from the left-hand side of a singular-value decomposition of x.LTPRODUCT (x; y)left transposed product of x and y: a more efficient way of calculating TRANSPOSE (x) *+y.MAT0synonym of MZERO.MAT0synonym of MZERO.MAT1 (r; c)matrix of ones of size r by c.MAXsynonym of MZERO.MAXsynonym of MZERO.	IPROBIT(x)	
KURTOSIS (x)kurtosis of the non-missing values in x.LEAPYEAR (x)returns 1 if the year corresponding to date-time value x is a leap year, 0 otherwise.LEVELS (f)forms a variate containing the levels of the factor f.LLBsynonym of LLBINOMIAL.LLBINOMIAL (x; n; p)log-likelihood function for the Binomial distribution; n is the sample size and p the mean proportion (or the probability).LLGsynonym of LLGAMMA.LLGAMMA (x; k; t)log-likelihood function for the Gamma distribution with shape parameter k (kappa) and scale parameter t (theta).LLNsynonym of LLDORMAL.LLNORMAL (x; m; v)log-likelihood function for the Normal distribution; m is the mean and v the variance.LLPsynonym of LLPOISSON.LLPOISSON (x; m)log-likelihood function, log_((f(x)), for x>0.LNFACTORIAL (x)log of x! for non-negative integer values x.LNGAMMA (x)log-Gamma function, log_((f(x)), for x>0.LOG (x)natural logarithm of x, for x > 0.LOGIT (p)takes the logit transformation log(p/(100-p)) of the percentages p (0 LTPRODUCT (x; y)left transposed product of x and y: a more efficient way of calculating TRANSPOSE (x) *+y.LTRIANGLE (m; d)returns the lower triangle of square matrix m, as a square matrix with the upper triangular set to zero; putting d=1 (default) indicates that the diagonal is to be included, while putting d=0 excludes the diagonal.MATO MAT1 (r; c)matrix of ones of size r by c.MAX MAXNUMU (x)finds the maximum of the values in x.		
LEAPYEAR (x)returns 1 if the year corresponding to date-time value x is a leap year, 0 otherwise.LEVELS (f)forms a variate containing the levels of the factor f.LIBsynonym of LLBINOMIAL.LLBINOMIAL (x;n;p)log-likelihood function for the Binomial distribution; n is the sample size and p the mean proportion (or the probability).LIGsynonym of LLGAMMA.LLGAMMA (x;k;t)log-likelihood function for the Gamma distribution with shape parameter k (kappa) and scale parameter t (theta).LIMsynonym of LLNORMAL.LLNsynonym of LLORMAL.LLNsynonym of LLPOISSON.LLPsynonym of LLPOISSON.LLPOISSON (x;m)log-likelihood function for the Poisson distribution; m is the mean.LNFACTORIAL (x)log of x! for non-negative integer values x.LNGAMMA (x)log-Gamma function, log_((T(x)), for x>0.LOG (x)natural logarithm to base 10 of x, for x > 0.LOGI (p)takes the logit transformation log(p/(100-p)) of the percentages p (0 LTPRODUCT (x; y)left transposed product of x and y: a more efficient way of calculating TRANSPOSE (x) *+y.LTRIANGLE (m; d)returns the lower triangle of square matrix m, as a square matrix with the upper triangular set to zero; putting d=1 (default) indicates the the diagonal.MATOsynonym of MZERO.MAT0synonym of MZERO.MAT1 (r; c)matrix of ones of size r by c.MAXsynonym of MZERO.MAXsynonym of MZERO.	KRONECKER	
leap year, 0 otherwise.LEVELS (f)forms a variate containing the levels of the factor f.LLBsynonym of LLBINOMIAL.LLBINOMIAL (x; n; p)log-likelihood function for the Binomial distribution; n is the sample size and p the mean proportion (or the probability).LLGsynonym of LLGAMMA.LLGAMMA (x; k; t)log-likelihood function for the Gamma distribution with shape parameter k (kappa) and scale parameter t (theta).LLNsynonym of LLNORMAL.LLNORMAL (x; m; v)log-likelihood function for the Normal distribution; m is the mean and v the variance.LLPsynonym of LLPOISSON.LLPOISSON (x; m)log of x! for non-negative integer values x.LNGAMMA (x)log-Gamma function, log,(T(x)), for x>0.LOG(x)natural logarithm to base 10 of x, for x > 0.LOGIU (x)logarithm to base 10 of x, for x > 0.LOGIT (p)takes the logit transformation log(p/(100-p)) of the percentages p (0 LTPRODUCT (x; y)left transposed product of x and y: a more efficient way of calculating TRANSPOSE (x) *+y.LTRIANGLE (m; d)returns the lower triangle of square matrix m, as a square matrix with the upper triangular set to zero; putting d=1 (default) indicates that the diagonal.MATOsynonym of MAZERO.MAT1 (r; c)matrix of ones of size r by c.MAXINUM (x)finds the maximum of the values in x.MAXPOSITION (x)finds the position of the first instance of the maximum value	KURTOSIS(x)	e
LEVELS (f)forms a variate containing the levels of the factor f.LLBsynonym of LLBINOMIAL.LLB INOMIAL (x;n;p)log-likelihood function for the Binomial distribution; n is the sample size and p the mean proportion (or the probability).LLGsynonym of LLGAMMA.LLGAMMA (x;k;t)log-likelihood function for the Gamma distribution with shape parameter k (kappa) and scale parameter t (theta).LLNsynonym of LLNORMAL.LLNsynonym of LLNORMAL.LLPsynonym of LLPOISSON.LLPsynonym of LLPOISSON.LLPOISSON (x;m)log-likelihood function for the Poisson distribution; m is the mean.LNGAMMA (x)log of x! for non-negative integer values x.LNGAMA (x)log-Gamma function, log_((\Gamma(x)), for x>0.LOG (x)natural logarithm of x, for x > 0.LOGIU (x)logarithm to base 10 of x, for x > 0.LOGIT (p)takes the logit transformation log(p/(100-p)) of the percentages p(0 LTPRODUCT (x; y)left transposed product of x and y: a more efficient way of calculating TRANSPOSE (x) *+y.LTRIANGLE (m; d)returns the lower triangle of square matrix m, as a square matrix with the upper triangular set to zero; putting d=1 (default) indicates that the diagonal.MATO MAXIMUM (x)finds the maximum of the values in x.MAXIMUM (x)finds the maximum of the values in x.	LEAPYEAR(x)	
LLBsynonym of LLBINOMIAL.LLBINOMIAL (x;n;p)log-likelihood function for the Binomial distribution; n is the sample size and p the mean proportion (or the probability).LLGsynonym of LLGAMMA.LLGAMMA (x;k;t)log-likelihood function for the Gamma distribution with shape parameter k (kappa) and scale parameter t (theta).LLNsynonym of LLNORMAL.LLNsynonym of LLPOISSON.LLPsynonym of LLPOISSON.LLPOISSON (x;m)log-likelihood function for the Poisson distribution; m is the mean.NFACTORIAL (x)log of x! for non-negative integer values x.LNGAMMA (x)log-Gamma function, $\log_e(\Gamma(x))$, for x>0.LOG(x)natural logarithm of x, for x > 0.LOGI0 (x)logarithm to base 10 of x, for x > 0.LOGIT (p)takes the logit transformation $\log(p/(100-p))$ of the percentages p (0 LTPRODUCT (x; y)left transposed product of x and y: a more efficient way of calculating TRANSPOSE (x) *+y.LTRIANGLE (m; d)returns the lower triangle of square matrix m, as a square matrix with the upper triangular set to zero; putting d=1 (default) indicates that the diagonal.MATOsynonym of MZERO.MATTOsynonym of MAXIMUM.MAXIMUM (x)finds the position of the values in x.MAXIMUM (x)finds the position of the first instance of the maximum value		
LLBINOMIAL (x; n; p)log-likelihood function for the Binomial distribution; n is the sample size and p the mean proportion (or the probability).LLGsynonym of LLGAMMA.LLGAMMA (x; k; t)log-likelihood function for the Gamma distribution with shape parameter k (kappa) and scale parameter t (theta).LLNsynonym of LLNORMAL.LLNORMAL (x; m; v)log-likelihood function for the Normal distribution; m is the mean and v the variance.LLPsynonym of LLPOISSON.LLPlog-likelihood function for the Poisson distribution; m is the mean.LNFACTORIAL (x)log of x! for non-negative integer values x.LNGAMMA (x)log-Gamma function, log($\Gamma(x)$), for x>0.LOG (x)natural logarithm of x, for x > 0.LOGI (x)logarithm to base 10 of x, for x > 0.LOGI (x)matrix of vectors from the left-hand side of a singular-value decomposition of x.LTPRODUCT (x; y)left transposed product of x and y: a more efficient way of calculating TRANSPOSE (x) *+y.LTRIANGLE (m; d)returns the lower triangle of signal s to be included, while putting d=0 excludes the diagonal.MAT0synonym of MZER0.MAT0synonym of MZER0.MAXIMUM (x)finds the position of the values in x.MAXIMUM (x)finds the position of the first instance of the maximum value		
sample size and p the mean proportion (or the probability).LLGsynonym of LLGAMMA.LLGAMMA (x; k; t)log-likelihood function for the Gamma distribution with shape parameter k (kappa) and scale parameter t (theta).LLNsynonym of LLNORMAL.LLNORMAL (x; m; v)log-likelihood function for the Normal distribution; m is the mean and v the variance.LLPsynonym of LLPOISSON.LLPlog-likelihood function for the Poisson distribution; m is the mean.LNFACTORIAL (x)log of x! for non-negative integer values x.LNGAMMA (x)log-Gamma function, log($\Gamma(x)$), for x>0.LOG (x)natural logarithm of x, for x > 0.LOGI0 (x)logarithm to base 10 of x, for x > 0.LOGI0 (x)matrix of vectors from the left-hand side of a singular-value decomposition of x.LTPRODUCT (x; y)left transposed product of x and y: a more efficient way of calculating TRANSPOSE (x) *+y.LTRIANGLE (m; d)returns the lower triangle of square matrix m, as a square matrix with the upper triangular set to zero; putting d=1 (default) indicates that the diagonal.MAT0synonym of MZERO.MAX1MUM (x)finds the position of the values in x.MAXIMUM (x)finds the position of the first instance of the maximum value		
LLGsynonym of LLGAMMA.LLGAMMA (x; k; t)log-likelihood function for the Gamma distribution with shape parameter k (kappa) and scale parameter t (theta).LLNsynonym of LLNORMAL.LLNORMAL (x; m; v)log-likelihood function for the Normal distribution; m is the mean and v the variance.LLPsynonym of LLPOISSON.LLPOISSON (x; m)log-likelihood function for the Poisson distribution; m is the mean.LNFACTORIAL (x)log of x! for non-negative integer values x.LNGAMMA (x)log-Gamma function, log_(\Gamma(x)), for x>0.LOGI (x)natural logarithm of x, for x > 0.LOGI (x)logarithm to base 10 of x, for x > 0.LOGI (x)matrix of vectors from the left-hand side of a singular-value decomposition of x.LTPRODUCT (x; y)left transposed product of x and y: a more efficient way of calculating TRANSPOSE (x) *+y.LTRIANGLE (m; d)returns the lower triangle of square matrix m, as a square matrix with the upper triangular set to zero; putting d=1 (default) indicates that the diagonal.MAT0 MAX1 (r; c)synonym of MAXIMUM. MAXIMUM (x)MAXIMUM (x)finds the maximum of the values in x.MAXIMUM (x)finds the position of the first instance of the maximum value	LLBINOMIAL(x;n;p)	
LLGAMMA (x; k; t)log-likelihood function for the Gamma distribution with shape parameter k (kappa) and scale parameter t (theta).LLNsynonym of LLNORMAL.LLNORMAL (x; m; v)log-likelihood function for the Normal distribution; m is the mean and v the variance.LLPsynonym of LLPOISSON.LLPOISSON (x; m)log-likelihood function for the Poisson distribution; m is the mean.LNFACTORIAL (x)log of x! for non-negative integer values x.LNGAMMA (x)log-Gamma function, log_(\Gamma(x)), for x>0.LOG (x)natural logarithm of x, for x > 0.LOGI0 (x)logarithm to base 10 of x, for x > 0.LOGIT (p)takes the logit transformation log(p/(100-p)) of the percentages p (0 LSVECTORS (x)matrix of vectors from the left-hand side of a singular-value decomposition of x.LTPRODUCT (x; y)left transposed product of x and y: a more efficient way of calculating TRANSPOSE (x) *+y.LTRIANGLE (m; d)returns the lower triangle of square matrix m, as a square matrix with the upper triangular set to zero; putting d=1 (default) indicates that the diagonal.MAT0 MAT1 (r; c)synonym of MAZIMUM.MAX1MUM (x)finds the maximum of the values in x.MAXMUM (x)finds the mostion of size r by c.		
LLNparameter k (kappa) and scale parameter t (theta).LLNsynonym of LLNORMAL.LLNORMAL $(x;m;v)$ log-likelihood function for the Normal distribution; m is the mean and v the variance.LLPsynonym of LLPOISSON.LLPOISSON $(x;m)$ log-likelihood function for the Poisson distribution; m is the mean.LNFACTORIAL (x) log of x! for non-negative integer values x.LNGAMMA (x) log-Gamma function, $\log_e(\Gamma(x))$, for x>0.LOG (x) natural logarithm of x, for $x > 0$.LOGI0 (x) logarithm to base 10 of x, for $x > 0$.LOGIT (p) takes the logit transformation $\log(p/(100-p))$ of the percentages $p (0 .LSVECTORS (x)matrix of vectors from the left-hand side of a singular-valuedecomposition of x.LTPRODUCT (x; y)left transposed product of x and y: a more efficient way ofcalculating TRANSPOSE (x) *+y.LTRIANGLE (m; d)returns the lower triangle of square matrix m, as a squarematrix with the upper triangular set to zero; putting d=1(default) indicates that the diagonal is to be included, whileputting d=0 excludes the diagonal.MAT0synonym of MZERO.MAT1 (r; c)matrix of ones of size r by c.MAXsynonym of MAXIMUM.MAXIMUM (x)finds the maximum of the values in x.MAXIMUM (x)finds the maximum of the first instance of the maximum value$		• •
LLNsynonym of LLNORMAL.LLNORMAL (x; m; v)log-likelihood function for the Normal distribution; m is the mean and v the variance.LLPsynonym of LLPOISSON.LLPOISSON (x; m)log-likelihood function for the Poisson distribution; m is the mean.LNFACTORIAL (x)log of x! for non-negative integer values x.LNGAMMA (x)log-Gamma function, log_($\Gamma(x)$), for x>0.LOG (x)natural logarithm of x, for x > 0.LOGI0 (x)logarithm to base 10 of x, for x > 0.LOGIT (p)takes the logit transformation log(p/(100-p)) of the percentages p (0 LSVECTORS (x)matrix of vectors from the left-hand side of a singular-value decomposition of x.LTPRODUCT (x; y)left transposed product of x and y: a more efficient way of calculating TRANSPOSE (x) *+y.LTRIANGLE (m; d)returns the lower triangle of square matrix m, as a square matrix with the upper triangular set to zero; putting d=1 (default) indicates that the diagonal. synonym of MZERO.MAT0synonym of MZERO.MAXsynonym of MAXIMUM.MAXfinds the maximum of the values in x.MAXDOSITION (x)finds the position of the first instance of the maximum value	LLGAMMA (X; K; t)	
LLNORMAL (x; m; v)log-likelihood function for the Normal distribution; m is the mean and v the variance.LLPsynonym of LLPOISSON.LLPOISSON (x; m)log-likelihood function for the Poisson distribution; m is the mean.LNFACTORIAL (x)log of x! for non-negative integer values x.LNGAMMA (x)log-Gamma function, log ₆ ($\Gamma(x)$), for x>0.LOG (x)natural logarithm of x, for x > 0.LOGI0 (x)logarithm to base 10 of x, for x > 0.LOGIT (p)takes the logit transformation log(p/(100-p)) of the percentages p (0 LSVECTORS (x)matrix of vectors from the left-hand side of a singular-value decomposition of x.LTPRODUCT (x; y)left transposed product of x and y: a more efficient way of calculating TRANSPOSE (x) *+y.LTRIANGLE (m; d)returns the lower triangle of square matrix m, as a square matrix with the upper triangular set to zero; putting d=1 (default) indicates the diagonal.MAT0synonym of MZERO.MAT1 (r; c)matrix of ones of size r by c.MAXsynonym of MAXIMUM.MAXIMUM (x)finds the maximum of the values in x.MAXOSITION (x)finds the position of the first instance of the maximum value	ΤΤΝ	
mean and v the variance.LLPsynonym of LLPOISSON.LLPOISSON(x;m)log-likelihood function for the Poisson distribution; m is the mean.LNFACTORIAL(x)log of x! for non-negative integer values x.LNGAMMA(x)log-Gamma function, $log_e(\Gamma(x))$, for x>0.LOG(x)natural logarithm of x, for x > 0.LOG10(x)logarithm to base 10 of x, for x > 0.LOGIT(p)takes the logit transformation $log(p/(100-p))$ of the percentages $p (0 .LSVECTORS(x)matrix of vectors from the left-hand side of a singular-valuedecomposition of x.LTPRODUCT(x;y)left transposed product of x and y: a more efficient way ofcalculating TRANSPOSE(x) *+y.LTRIANGLE(m;d)returns the lower triangle of square matrix m, as a squarematrix with the upper triangular set to zero; putting d=1(default) indicates that the diagonal is to be included, whileputting d=0 excludes the diagonal.MAT0synonym of MZERO.MAT1(r;c)matrix of ones of size r by c.MAXsynonym of MAXIMUM.MAXIMUM(x)finds the maximum of the values in x.MAXPOSITION(x)finds the position of the first instance of the maximum value$		
LLPsynonym of LLPOISSON.LLPOISSON $(x;m)$ log-likelihood function for the Poisson distribution; m is the mean.LNFACTORIAL (x) log of x! for non-negative integer values x.LNGAMMA (x) log-Gamma function, $\log_e(\Gamma(x))$, for $x>0$.LOG (x) natural logarithm of x, for $x > 0$.LOG10 (x) logarithm to base 10 of x, for $x > 0$.LOGIT (p) takes the logit transformation $\log(p/(100-p))$ of the percentages $p (0 .LSVECTORS (x)matrix of vectors from the left-hand side of a singular-valuedecomposition of x.LTPRODUCT (x; y)left transposed product of x and y: a more efficient way ofcalculating TRANSPOSE (x) *+y.LTRIANGLE (m; d)returns the lower triangle of square matrix m, as a squarematrix with the upper triangular set to zero; putting d=1(default) indicates that the diagonal is to be included, whileputting d=0 excludes the diagonal.MAT0synonym of MZERO.MAT1 (r;c)matrix of ones of size r by c.MAXsynonym of MAXIMUM.MAX1MUM (x)finds the maximum of the values in x.MAXPOSITION (x)finds the position of the first instance of the maximum value$		-
LLPOISSON (x; m)log-likelihood function for the Poisson distribution; m is the mean.LNFACTORIAL (x)log of x! for non-negative integer values x.LNGAMMA (x)log-Gamma function, $\log_e(\Gamma(x))$, for x>0.LOG (x)natural logarithm of x, for x > 0.LOG10 (x)logarithm to base 10 of x, for x > 0.LOGIT (p)takes the logit transformation $\log(p/(100-p))$ of the percentages $p (0 .LSVECTORS (x)matrix of vectors from the left-hand side of a singular-valuedecomposition of x.LTPRODUCT (x; y)left transposed product of x and y: a more efficient way ofcalculating TRANSPOSE (x) *+y.LTRIANGLE (m; d)returns the lower triangle of square matrix m, as a squarematrix with the upper triangular set to zero; putting d=1(default) indicates that the diagonal is to be included, whileputting d=0 excludes the diagonal.MAT0synonym of MZERO.MAXsynonym of MAXIMUM.MAXIMUM (x)finds the maximum of the values in x.MAXPOSITION (x)finds the position of the first instance of the maximum value$	LLP	
mean.LNFACTORIAL (x)log of x! for non-negative integer values x.LNGAMMA (x)log-Gamma function, log_($\Gamma(x)$), for x>0.LOG (x)natural logarithm of x, for x > 0.LOG10 (x)logarithm to base 10 of x, for x > 0.LOGIT (p)takes the logit transformation log(p/(100-p)) of the percentages p (0 LSVECTORS (x)matrix of vectors from the left-hand side of a singular-value decomposition of x.LTPRODUCT (x; y)left transposed product of x and y: a more efficient way of calculating TRANSPOSE (x) *+y.LTRIANGLE (m; d)returns the lower triangle of square matrix m, as a square matrix with the upper triangular set to zero; putting d=1 (default) indicates that the diagonal is to be included, while putting d=0 excludes the diagonal.MAT0synonym of MZERO.MAT1 (r; c)matrix of ones of size r by c.MAXsynonym of MAXIMUM.MAXIMUM (x)finds the maximum of the values in x.MAXPOSITION (x)finds the position of the first instance of the maximum value		• •
LNGAMMA (x)log-Gamma function, $log_e(\Gamma(x))$, for x>0.LOG (x)natural logarithm of x, for x > 0.LOG10 (x)logarithm to base 10 of x, for x > 0.LOGIT (p)takes the logit transformation $log(p/(100-p))$ of the percentages $p (0 .LSVECTORS (x)matrix of vectors from the left-hand side of a singular-valuedecomposition of x.LTPRODUCT (x; y)left transposed product of x and y: a more efficient way ofcalculating TRANSPOSE (x) *+y.LTRIANGLE (m; d)returns the lower triangle of square matrix m, as a squarematrix with the upper triangular set to zero; putting d=1(default) indicates that the diagonal is to be included, whileputting d=0 excludes the diagonal.MAT0MAXsynonym of MZER0.MAXMAXIMUM (x)finds the maximum of the values in x.finds the position of the first instance of the maximum value$		-
LOG (x)natural logarithm of x, for $x > 0$.LOG10 (x)logarithm to base 10 of x, for $x > 0$.LOGIT (p)takes the logit transformation log(p/(100-p)) of the percentages p ($0).LSVECTORS (x)matrix of vectors from the left-hand side of a singular-valuedecomposition of x.LTPRODUCT (x; y)left transposed product of x and y: a more efficient way ofcalculating TRANSPOSE (x) *+y.LTRIANGLE (m; d)returns the lower triangle of square matrix m, as a squarematrix with the upper triangular set to zero; putting d=1(default) indicates that the diagonal is to be included, whileputting d=0 excludes the diagonal.MAT0synonym of MZERO.MAT1 (r; c)matrix of ones of size r by c.synonym of MAXIMUM.MAXsynonym of the transmum of the values in x.finds the maximum of the first instance of the maximum value$	LNFACTORIAL(x)	log of x! for non-negative integer values x.
LOG10 (x)logarithm to base 10 of x, for $x > 0$.LOGIT (p)takes the logit transformation log(p/(100-p)) of the percentages p (0 LSVECTORS (x)matrix of vectors from the left-hand side of a singular-value decomposition of x.LTPRODUCT (x; y)left transposed product of x and y: a more efficient way of calculating TRANSPOSE (x) *+y.LTRIANGLE (m; d)returns the lower triangle of square matrix m, as a square matrix with the upper triangular set to zero; putting d=1 (default) indicates that the diagonal is to be included, while putting d=0 excludes the diagonal.MAT0synonym of MZERO.MAT1 (r; c)matrix of ones of size r by c.MAXsynonym of MAXIMUM.MAXIMUM (x)finds the maximum of the values in x.MAXPOSITION (x)finds the position of the first instance of the maximum value	LNGAMMA(x)	log-Gamma function, $\log_{e}(\Gamma(x))$, for x>0.
LOGIT (p)takes the logit transformation $log(p/(100-p))$ of the percentages $p (0 .LSVECTORS (x)matrix of vectors from the left-hand side of a singular-valuedecomposition of x.LTPRODUCT (x; y)left transposed product of x and y: a more efficient way ofcalculating TRANSPOSE (x) *+y.LTRIANGLE (m; d)returns the lower triangle of square matrix m, as a squarematrix with the upper triangular set to zero; putting d=1(default) indicates that the diagonal is to be included, whileputting d=0 excludes the diagonal.MAT0synonym of MZERO.MAT1 (r; c)matrix of ones of size r by c.MAXsynonym of MAXIMUM.MAXIMUM (x)finds the maximum of the values in x.MAXPOSITION (x)finds the position of the first instance of the maximum value$	LOG(x)	
LSVECTORS (x)percentages $p (0 .LSVECTORS (x)matrix of vectors from the left-hand side of a singular-valuedecomposition of x.LTPRODUCT (x; y)left transposed product of x and y: a more efficient way ofcalculating TRANSPOSE (x) *+y.LTRIANGLE (m; d)returns the lower triangle of square matrix m, as a squarematrix with the upper triangular set to zero; putting d=1(default) indicates that the diagonal is to be included, whileputting d=0 excludes the diagonal.MAT0synonym of MZERO.MAT1 (r; c)matrix of ones of size r by c.MAXsynonym of MAXIMUM.MAXIMUM (x)finds the maximum of the values in x.MAXPOSITION (x)finds the position of the first instance of the maximum value$	LOG10(x)	
LSVECTORS (x)matrix of vectors from the left-hand side of a singular-value decomposition of x.LTPRODUCT (x;y)left transposed product of x and y: a more efficient way of calculating TRANSPOSE (x) *+y.LTRIANGLE (m; d)returns the lower triangle of square matrix m, as a square matrix with the upper triangular set to zero; putting d=1 (default) indicates that the diagonal is to be included, while putting d=0 excludes the diagonal.MAT0synonym of MZERO.MAT1 (r; c)matrix of ones of size r by c.MAXsynonym of MAXIMUM.MAXIMUM (x)finds the maximum of the values in x.MAXPOSITION (x)finds the position of the first instance of the maximum value	LOGIT(p)	
LTPRODUCT (x; y)left transposed product of x and y: a more efficient way of calculating TRANSPOSE (x) *+y.LTRIANGLE (m; d)returns the lower triangle of square matrix m, as a square matrix with the upper triangular set to zero; putting d=1 (default) indicates that the diagonal is to be included, while putting d=0 excludes the diagonal.MAT0synonym of MZERO.MAT1 (r; c)matrix of ones of size r by c.MAXsynonym of MAXIMUM.MAXIMUM (x)finds the maximum of the values in x.MAXPOSITION (x)finds the position of the first instance of the maximum value		
LTPRODUCT (x; y)left transposed product of x and y: a more efficient way of calculating TRANSPOSE (x) *+y.LTRIANGLE (m; d)returns the lower triangle of square matrix m, as a square matrix with the upper triangular set to zero; putting d=1 (default) indicates that the diagonal is to be included, while putting d=0 excludes the diagonal.MAT0synonym of MZERO.MAT1 (r; c)matrix of ones of size r by c.MAXsynonym of MAXIMUM.MAXIMUM (x)finds the maximum of the values in x.MAXPOSITION (x)finds the position of the first instance of the maximum value	LSVECTORS (x)	-
calculating TRANSPOSE (x) *+y.LTRIANGLE (m; d)returns the lower triangle of square matrix m, as a square matrix with the upper triangular set to zero; putting d=1 (default) indicates that the diagonal is to be included, while putting d=0 excludes the diagonal.MAT0synonym of MZERO.MAT1 (r; c)matrix of ones of size r by c.MAXsynonym of MAXIMUM.MAXIMUM (x)finds the maximum of the values in x.MAXPOSITION (x)finds the position of the first instance of the maximum value		•
LTRIANGLE (m; d)returns the lower triangle of square matrix m, as a square matrix with the upper triangular set to zero; putting d=1 (default) indicates that the diagonal is to be included, while putting d=0 excludes the diagonal.MAT0synonym of MZERO.MAT1 (r; c)matrix of ones of size r by c.MAXsynonym of MAXIMUM.MAXIMUM (x)finds the maximum of the values in x.MAXPOSITION (x)finds the position of the first instance of the maximum value	LTPRODUCT (x; y)	
matrix with the upper triangular set to zero; putting d=1 (default) indicates that the diagonal is to be included, while putting d=0 excludes the diagonal.MAT0synonym of MZERO.MAT1(r;c)matrix of ones of size r by c.MAXsynonym of MAXIMUM.MAXIMUM(x)finds the maximum of the values in x.MAXPOSITION(x)finds the position of the first instance of the maximum value		-
(default) indicates that the diagonal is to be included, while putting d=0 excludes the diagonal.MAT0synonym of MZERO.MAT1 (r; c)matrix of ones of size r by c.MAXsynonym of MAXIMUM.MAXIMUM (x)finds the maximum of the values in x.MAXPOSITION (x)finds the position of the first instance of the maximum value	LTRIANGLE(m;d)	
putting d=0 excludes the diagonal.MAT0synonym of MZERO.MAT1(r;c)matrix of ones of size r by c.MAXsynonym of MAXIMUM.MAXIMUM(x)finds the maximum of the values in x.MAXPOSITION(x)finds the position of the first instance of the maximum value		
MAT0synonym of MZERO.MAT1(r;c)matrix of ones of size r by c.MAXsynonym of MAXIMUM.MAXIMUM(x)finds the maximum of the values in x.MAXPOSITION(x)finds the position of the first instance of the maximum value		
MAT1(r;c)matrix of ones of size r by c.MAXsynonym of MAXIMUM.MAXIMUM(x)finds the maximum of the values in x.MAXPOSITION(x)finds the position of the first instance of the maximum value	Mሻጥበ	
MAXsynonym of MAXIMUM.MAXIMUM(x)finds the maximum of the values in x.MAXPOSITION(x)finds the position of the first instance of the maximum value		
MAXIMUM(x)finds the maximum of the values in x.MAXPOSITION(x)finds the position of the first instance of the maximum value		
MAXPOSITION (x) finds the position of the first instance of the maximum value		
the maximum. For a matrix the row of the maximum value can		

5	Δ	\mathbf{r}
J	υ	2

4 Syntax summary

	then be calculated as
	row = INTEGER((MAXPOSITION(x)-1)/NROWS(x)) + 1
	and the column as $M_{\rm A} = M_{\rm A} N_{\rm B} O M_{\rm C} (m) + (more 1)$
	col = MAXPOSITION(x) - NROWS(x) * (row-1)
	For a symmetric matrix, the column is col = INTEGER((SQRT(8*MAXPOSITION(x)+1)+1)/2)
	and the row is row = MAXPOSITION(x) - col*(col-1)/2
MBASE(r;c;i;j)	matrix of size r by c which is zero, except for position(s) i,j
	which are set to one.
MCENTRE (m)	doubly centres the matrix m so that its rows and columns have
	mean zero.
MEAN(x)	forms the mean of the values of x .
MED	synonym of MEDIAN.
MEDIAN(x)	finds the median of the values in x .
MEXP(m)	calculates the matrix exponential of m.
MFRACTION(x;p;m)	returns the period within a month that date-time value \times
	belongs to; p is the length of the period (e.g. 5 for pentade, 10
	for decade), and m is the starting month (default 1).
MIN	synonym of MINIMUM.
MINIMUM(x)	finds the minimum of the values in x .
MINPOSITION(x)	finds the position of the first instance of the minimum value
	within \times . For a variate this is the number of the unit containing
	the minimum. For a matrix the row of the minimum value can
	then be calculated as
	row = INTEGER((MINPOSITION(x) -1)/NROWS(x)) + 1
	and the column as
	<pre>col = MINPOSITION(x) - NROWS(x)*(row-1)</pre>
	For a symmetric matrix, the column is
	<pre>col = INTEGER((SQRT(8*MINPOSITION(x)+1)+1)/2)</pre>
	and the row is row = MINPOSITION(x) - col*(col-1)/2
MINSERT(x;m;i;j)	inserts matrix m into matrix x, putting its top-left element into
$\operatorname{MINOERT}(X, m, 1, j)$	row i and column j of x; elements of m that are defined to lie
	outside x are ignored.
MINUTES(x)	the number of minutes during the hour corresponding to x (i.e.
MINULES (X)	the number of minutes during the nour corresponding to x (i.e.
	x).
MODULO(x;y)	Form modulus of x to base y .
MONTH (x)	the month corresponding to date-time value x.
MPOWER(m; n)	raises matrix m to the n'th power.
MSQRT(m)	calculates the matrix square root of m.
MVINSERT(x;y)	replaces values in x by missing value wherever the second
	identifier stores a non-zero value (logical .TRUE.).
MVREPLACE(x;y)	replaces missing values in x with the values in the
	corresponding units of y.
MZERO(r;c)	zero matrix of size r by c.
NCOLUMNS(x)	gives the number of columns of x.
NCOMBINATIONS(n;r)	number of combinations ${}^{n}C_{r}$ of r objects taken from a set of
	size n.
NDAYINYEAR(x;m)	the number of the day in year corresponding to date-time value
	x, and starting the year at the beginning of month m (default 1).
NED	synonym of EDNORMAL.
NEWLEVELS(f;x)	forms a variate from the factor f; the variate x defines a value
	for each level and should be the same length as the number of
	levels of the factor; if the second argument \times is omitted, the
	ordinals (1, 2) are given.
NEXPAND(n;v)	expands structure v to repeat each value the number of times
· · ·	I I I I I I I I I I I I I I I I I I I

	specified by the corresponding element of n.
NLEVELS(f)	gives the number of levels of factor f.
NMV(x)	counts the number of missing values in x.
NOBSERVATIONS (x)	counts the number of observations (that is non-missing values)
	in x.
NORMAL	synonym of CLNORMAL.
NOW(x)	returns a scalar containing the current date and time (argument
	\times is ignored).
NPERMUTATIONS(n;r)	number of permutations " P_r of r objects taken from a set of
	size n.
NROWS (x)	gives the number of rows of x.
NVALUES (x)	gives the number of values of x including missing values and
NVALUES (X)	taking account of any restriction.
	synonym of NVALUES.
NVRESTRICTED (x)	
NVUNRESTRICTED(x)	number of values of x ignoring any restriction (i.e. gives the $\int H H_{\text{res}} dH_{\text{res}} dH_{\text{res}} dH_{\text{res}}$
	full "length" of x).
NWEEKINYEAR(x;s)	number of the week through the year for date-time value x .
	The default setting for s is 'iso'; this uses the definition of
	ISO Standard IS-8601 (1988) in which any week (starting on
	Monday) that lies in more than one year is assigned a week
	number for the year in which most of its days occur. The
	alternative setting, 'simple', takes the first week of the year
	as the one containing 1st January.
OWN(x; 'name'; p1; p2pn)	calls an external function with data in a variate x and n scalar
	parameters; the function is in a DLL defined by the EXTERNAL
	directive.
PAREA(y;x)	area of a polygon with vertices specified by y and x .
	percentiles (defined in variate p) of the values of x.
PERCENTILES (x; p)	
POSITION(x;y)	finds the position, within the vector y , of each value of x.
PRBETA(x;a;b)	probability density function for a beta distribution with
	parameters a and b.
PRBINOMIAL(j;n;p)	probability of j successes out of n binomial trials with
	probability of success p.
<pre>PRCHISQUARE(x;df;c)</pre>	probability density function for a non-central chi-square
	distribution with noncentrality parameter c; if the third
	parameter c is omitted, it is assumed to be zero, giving the
	ordinary (central) chi-square distribution.
<pre>PRF(x;df1;df2;c)</pre>	probability density function for a non-central F distribution
	with degrees of freedom df1 and df2, and noncentrality
	parameter c ; if the fourth parameter c is omitted, it is assumed
	to be zero, giving the ordinary (central) F distribution.
PRGAMMA(x;k;t)	probability density function for a gamma distribution with
$\frac{1}{1} \left(\left(X, X, C \right) \right)$	shape parameter k (kappa) and scale parameter t (theta).
<pre>PRHYPERGEOMETRIC(j;l;m;n)</pre>	probability of j successes out of a sample of m from a
	population of size n of which 1 are positive (hypergeometric
	distribution).
<pre>PRINVNORMAL(x;m;1)</pre>	probability density function for an inverse Normal (or inverse
	Gaussian) distribution with mean m and reciprocal dispersion
	parameter 1 (variance is $m^3/1$).
PRLOGNORMAL(x)	probability density function for a lognormal distribution
	corresponding to a normal distribution with mean 0 and
	variance 1.
PRNORMAL(x;m;v)	probability density function for a Normal distribution with
	mean m (default 0) and variance v (default 1).
PROBIT(p)	takes the probit transformation of the percentages p (0
TRODIT (P)	100%). This is equal to the Normal equivalent deviate of
	10070, 1 mo io equal to the mornial equivalent deviate of

p/100. forms the matrix product of x and y (that is x + y). PRODUCT (x; y) PRPOISSON(j;m) probability of the value j for a Poisson distribution with mean probability density function for a Studentized maximum PRSMMODULUS(x;df;n) modulus distribution with degrees of freedom df and number of means n. probability density function for a Studentized range PRSRANGE(x;df;n) distribution with degrees of freedom df and number of means n. PRT(x;df;c) probability density function for a non-central Student's t distribution with degrees of freedom df and noncentrality parameter c; if the third parameter c is omitted, it is assumed to be zero, giving the ordinary (central) t distribution. PRUNIFORM(p;a;b) probability density function for a uniform distribution on [a,b]. forms the quadratic product of x and y (that is QPRODUCT (x; y) x + y + TRANSPOSE(x), where x is a rectangular matrix or variate and y is a symmetric or diagonal matrix or a scalar. OTPRODUCT (x; y) quadratic matrix product of x' and y (that is TRANSPOSE (x) *+ y *+ x), where x is a rectangular matrix or variate and y is a symmetric or diagonal matrix or a scalar. QUANTILES (x;q) quantiles (defined in variate q) of the values of x. converts angles x from degrees to radians. RADIANS(x) RANGE (x) range of values in x, i.e. MAX(x) - MIN(x). ranks of the values in x. RANKS(x) RED(x) calculates the red components of the RGB colour values in x. searches x for all occurrences of each value in y, and replaces REPLACE (x;y;z) them with the corresponding value from z. forms a variate with the value 1 in the units to which x is RESTRICTION(x) currently restricted. REVERSE (x) reverses the values of x. calculates RGB colour values from the red, green and blue RGB(x;y;z) components in x, y and z, respectively; these components must all be between 0 and 255. gives the RGB colour values of the standard Genstat colours in RGB(t) text t. The text can contain the string 'match' in its second and subsequent units, to repeat the colour in the previous unit. It can also contain strings made up of three pairs of hexadecimal digits (00-FF) prefixed by #, 0x or 0X: i.e. '#rgb', '0xrgb' or '0Xrgb' where rgb are pairs of hexadecimal digits 00-FF that define the red, green and blue intensities of the colour respectively. running means of x using a window around each unit that RMEANS(x;p;q) includes p preceding and q succeeding observations; p must be set, default for q is 0. number of observations contributing to the computation of a RNOBSERVATIONS (x;p;q) running mean or total involving p preceding and q succeeding observations about each unit of x; p must be set, default for q is 0. ROUND(x) rounds the values of x to the nearest integer. ROWBIND(x;y) joins matrices x and y vertically (i.e. stacks y below x). centres the rows of matrix \times by subtracting their means. ROWCENTRE (x) mean of the non-missing elements of each row of matrix x. ROWMEANS (x) ROWNOBSERVATIONS (x) number of non-missing elements in each row of matrix x. sum of the non-missing elements of each row of matrix x. ROWSUMS (x) ROW1(n) row matrix of 1's with n columns.

4 Syntax summary

RQOBJECTIVE(y;d;p;t)	returns the objective function from fitting a quantile linear regression with a response variate y, a design matrix d, a probability value specified by the scalar p, and using a tolerance defined by the scalar t; if the fourth argument is omitted, a default tolerance of 10^{-12} is used.
RSVECTORS (x)	matrix of vectors from the right-hand side of a singular-value
	decomposition of x.
RTOTALS(x;p;q)	running totals of x using a window around each unit that includes $\rm p$ preceding and $\rm q$ succeeding observations; $\rm p$ must be
	set, default for q is 0.
RTPRODUCT (x;y)	forms the right transposed product of x and y (that is $x + $
	TRANSPOSE (y)).
RUNS(x)	length of run of identical values up to each unit in x.
SD(x)	standard deviation of the non-missing values in x.
SECONDS (x)	the number of seconds (including fraction of seconds) during
	the minute corresponding to date-time value x.
SEMEAN(x)	standard error of the mean of the non-missing values in x.
SET (x)	returns a scalar logical value containing the values 1 or 0
5E1 (A)	according to whether or not dummy \times is set (i.e. the opposite
	of the function UNSET).
SHIFT(x;s)	shifts the values of x by s places (to the right or left according
	to the sign of s). This is not a circular shift, so some positions
	lose their values and are given missing values.
SIGN(x)	sign of $x (-1, 0 \text{ or } 1 \text{ for } x < 0, x == 0 \text{ or } x > 0 \text{ respectively}).$
SIN(x)	sine of x, for x in radians.
SINH(x)	hyperbolic sine of x.
SKEWNESS(x)	skewness of the non-missing values in x.
SOLUTION(x;y)	finds the solution b of the set of simultaneous linear equations
-	x + b = y.
SORT (x; y)	sorts the elements of x into the order that would put the values
	of y into ascending order; if y is omitted, the values of x are
	sorted.
SQRT(x)	gives the square root of $x (x \ge 0)$.
SSPLINE(y;x;df;p)	fits a smoothing-spline of y on x, with df degrees of freedom
bor hind (y, n, ar, p)	or (if df is missing) smoothing parameter p .
STANDARIZE (x)	standardizes x to $(x-MEAN(x))/SD(x)$.
	forms sub-triangles or sub-rectangles of a rectangular or
SUBMAT(x)	
	symmetric matrix. The rows and columns to be included are
	determined by matching the pointers indexing the resultant
	matrix with the pointers indexing \times . (SUBMAT does not allow
	for indexing by variates or texts.)
SUM(x)	forms the sum of the values in x (synonym TOTAL).
SVALUES(x)	singular values of x (as a diagonal matrix).
Т	synonym of TRANSPOSE.
TAN(x)	tangent of x , for x in radians.
TANH(x)	hyperbolic tangent of x.
TCOLUMN(t)	converts one-way table t into a matrix with a single column.
TDIAGONAL(t)	converts one-way table t into a diagonal matrix.
TIME(h;m;s)	constructs the time value (days and fractions of days)
	corresponding to h hours, m minutes and s seconds.
TKURTOSIS(x)	forms margins containing the kurtosis of the cells in table t.
TMATRIX(t;f1;f2)	converts two-way table t into a matrix, with classifying factor
· · · ·	f1 corresponding to the rows, and classifying factor f2
	corresponding to the columns.
TMAXIMA(t)	forms margins of maxima for table t.
TMEANS(t)	forms margins of means for table t.
\\ \ \ \ /	

506	4 Syntax summary
TMEDIANS(t)	forms margins of medians for table t.
TMINIMA(t)	forms margins of minima for table t.
TNMV(t)	forms margins counting the numbers of missing values in table
	t.
TNOBSERVATIONS(t)	forms margins counting the numbers of observations (non- missing values) in table t.
TNVALUES(t)	forms margins counting the numbers of values (missing or non-missing) in table t.
TOTAL(x)	forms the total of the values in x (synonym SUM).
TPROJECT(t)	converts table t into a variate, using the values of its classifying factors to determine which value of the table to put into each unit of the variate.
TRACE(x)	calculates the trace of the square, diagonal, or symmetric matrix \times (that is the sum of all its diagonal elements).
TRANSPOSE (x)	forms the transpose of a rectangular matrix x.
TRIGAMMA(x)	trigamma function of x.
TROW(t)	converts one-way table t into a matrix with a single row.
TSD(t)	forms margins of between-cell standard deviations for table t .
TSEMEANS(t)	forms margins of standard errors for between-cell means of table t .
TSKEWNESS(x)	forms margins containing the skewness of the cells in table t.
TSUMS	synonym of TTOTALS.
TTOTALS(t)	forms margins of totals for table t.
TVARIANCES(t)	forms margins of between-cell variances for table t.
TVECTOR(t; s; p)	copies the values from table t into a variate. The scalar s is zero if the margins of the table are to be omitted, or a non-zero (and non-missing) value if they are included. The pointer p contains the classifying factors of the table, defining the order in which the values are to be copied; this can be omitted if t is a one-way table. If margins are not to be included from a one- way table, s can also be omitted.
TYPE(x)	gives the type number of the data structure x.
UNIQUE(x)	the unique values in x .
UNSET (d)	returns a scalar logical value according to whether or not the dummy d is set.
URAND(seed;s)	provides s uniform pseudo-random numbers in the range $(0,1)$. If s is not supplied and URAND cannot determine the length of the result from the context of the expression, the length of the current units structure (if any) is taken. Scalar seed initializes the generator. If zero in the first use of URAND in a job, the system clock is used to provide a seed; subsequent calls may
UTRIANGLE (m;d)	use zero to continue the sequence of random numbers. returns the upper triangle of square matrix m; as a square matrix with the lower triangular set to zero; putting d=1 (default) indicates that the diagonal is to be included, while putting d=0 excludes the diagonal.
VAR	synonym of VARIANCE.
VARIANCE(x)	gives the variance of the values in x.
VCORRELATION(p1;p2)	gives the correlation, at every unit, between the values of the corresponding structures in the pointers p1 and p2.
VCOVARIANCE(p1;p2)	gives the covariance, at every unit, between the values of the corresponding structures in the pointers p1 and p2.
VEC(x)	stacks columns of a matrix \times into a single variate (<i>VEC</i> operator).
VECH(x)	stacks columns of the lower triangle of a matrix \times (<i>VECH</i> operator).

	1.1 Communus
VKURTOSIS(x)	kurtosis of the non-missing values in each unit of the variates
	(or scalars) in pointer p.
VMAXIMA(p)	finds the maximum of the values in each unit of the variates (or
-	scalars) in pointer p.
VMEANS (p)	gives the mean of the non-missing values in each unit of the
-	variates (or scalars) in pointer p.
VMEDIANS (p)	finds the median of the values in each unit of the variates (or
	scalars) in pointer p.
VMINIMA(p)	finds the minimum of the values in each unit of the variates (or
	scalars) in pointer p.
VNMV (p)	counts the number of missing values in each unit of the
	variates (or scalars) in pointer p.
VNOBSERVATIONS (p)	counts the number of observations (non-missing values) in
	each unit of the variates (or scalars) in pointer p.
VNVALUES (p)	gives the number of values in each unit of the variates (or
	scalars) in pointer p: that is the number of values of p.
VPERCENTILES (p;s)	calculates percentiles for the value supplied in scalar s, across
	the set of variates in pointer p.
VPOSITIONS(x;p)	gives the suffix of the first vector in the pointer p containing
	the value in each unit of the variate or text x.
VQUANTILES(p;s)	calculates quantiles for the probability supplied in scalar s ,
	across the set of variates in pointer p.
VRANGE (p)	range of values within the units of the variates in pointer p.
VSD(x)	standard deviation of the non-missing values in each unit of
	the variates (or scalars) in pointer p.
VSEMEANS (x)	standard error of the mean of non-missing values in each unit
	of the variates (or scalars) in pointer p.
VSKEWNESS(x)	skewness of the non-missing values in each unit of the variates
	(or scalars) in pointer p.
VSUMS (p)	gives the sum of the non-missing values in each unit of the
	variates (or scalars) in pointer p (synonym VTOTALS).
VTOTALS (p)	gives the total of the non-missing values in each unit of the
	variates (or scalars) in pointer p (synonym VSUMS).
VVARIANCES(p)	gives the variance of the non-missing values in each unit of the
	variates (or scalars) in pointer p.
WEEKDAY(x)	the day of the week (where Monday is weekday 1) corresponding to data-time value x.
MUEDE (x)	produces a variate listing the units of x that are logically true
WHERE(x)	(i.e. non-zero).
WHICH (x)	synonym of WHERE.
WHICH(x)	the year corresponding to date-time value x.
YEAR(x)	the year corresponding to date-time value x.

4.1 Commands

4.3 Functions for model formulae

Function name	Description
COMPARISON(f;s;m)	estimates the comparisons amongst the levels of factor f specified by the first s rows of the matrix m. In regression models, the first argument may be a variate instead of a factor; COMP(v; s; m) then fits a set of associated variates stored in the first s rows of the rows of the matrix m. In either case, the comparisons define explanatory variates to be included in the regression, and their parameter estimates are the resulting regression coefficients. In TREATMENTSTRUCTURE formulae (specifying a model for analysis-of-variance), the parameter estimates are the estimates of the comparisons themselves (i.e.

508	4 Syntax summary
	m*+e, where e is the vector of estimated effects of factor f). This differs from the use of COMPARISON in regression models (and the use of the REG function in either regression or analysis of variance) as there the parameter estimates are regression coefficients. Another difference is that in analysis of variance each comparison is fitted ignoring the other comparisons, but in regression they are adjusted for each other.
LO synonym of LOESS.	
LOESS(x;d;s;l)	fits a locally weighted regression of order $1 (= 1 \text{ for linear, } 2 \text{ for quadratic})$ with approximately d degrees of freedom or using smoothing parameter s (regression models only): x is a variate for univariate smoothing, or a pointer to up to four variates for multivariate smoothing; when x is a variate 1 is a scalar, when x is a pointer it is either a scalar or a variate with an element for each variate in the pointer.
POL(f;s;v)	indicates that the effects of factor f are to be partitioned into polynomial contrasts (linear, quadratic etc) up to order s, where s is a scalar containing an integer between 1 and 4. Variate v defines a numerical value for each level of the factor; if omitted, the factor levels themselves are used. In a TREATMENT formula, the contrasts are orthogonalized, but they are not in a regression or generalized linear model. In regression models, POL (v; s) can be used to fit simple (non- orthogonalized) polynomials of a variate v up to order s.
<pre>POLND(f;s;v)</pre>	has the same effect as POL, except that no Dev components are fitted for factor f in interactions (TREATMENT formulae only).
REG(f;s;m)	indicates that the effects of factor f are to be partitioned into the orthogonal regression contrasts specified by the first s rows of the matrix m. In regression models, the first argument may be a variate instead of a factor; REG ($v; s; m$) then orthogonalizes and fits a set of associated variates stored in the first s rows of the rows of the matrix m. The matrix m may be omitted in a regression model, in which case orthogonal polynomial contrasts are constructed for either f or v. Note, though, that the orthogonalization is with respect to the replication of the main effect of the factor or variate, so interactions of the contrasts with other vectors in a regression model may not be orthogonal.
REGND(f;s;m) S	has the same effect as REG, except that no Dev components are fitted for factor f in interactions (TREATMENT formulae only). synonym of SSPLINE.
SSPLINE(v;s;p)	indicates that the effect of a variate v is to be fitted by a smoothing spline with approximately s degrees of freedom or using "smoothing parameter" p (only in regression models or expressions).

This lists the directives in Release 22, together with the procedures in the Procedure Library PL30 that accompanies Release 22.

ABIVARIATE produces graphs and statistics for bivariate analysis of variance.

ABLUPS calculates BLUPs for block terms in an ANOVA analysis.

ABOXCOX estimates the power λ in a Box-Cox transformation, that maximizes the partial log-likelihood in ANOVA.

ACANONICAL determines the orthogonal decomposition of the sample space for a design, using an analysis of the canonical relationships between the projectors derived from two or more model formulae.

ACDISPLAY provides further output from an analysis by ACANONICAL.

ACHECK checks assumptions for an ANOVA analysis.

ACKEEP saves information from an analysis by ACANONICAL.

ACONFIDENCE calculates simultaneous confidence intervals for ANOVA means.

ADD adds extra terms to a linear, generalized linear, generalized additive, or nonlinear model.

ADDPOINTS adds points for new objects to a principal coordinates analysis.

ADETECTION calculates the minimum size of effect or contrast detectable in an analysis of variance.

ADISPLAY displays further output from analyses produced by ANOVA.

ADPOLYNOMIAL plots single-factor polynomial contrasts fitted by ANOVA.

ADSPREADSHEET puts the data and plan of an experimental design into Genstat spreadsheets.

AEFFICIENCY calculates efficiency factors for experimental designs.

AFALPHA generates alpha designs.

AFAUGMENTED forms an augmented design.

AFCARRYOVER forms factors to represent carry-over effects in cross-over trials.

AFCOVARIATES defines covariates from a model formula for ANOVA.

AFCYCLIC generates block and treatment factors for cyclic designs.

AFDISCREPANCY calculates the discrepancy of a design.

AFFYMETRIX estimates expression values for Affymetrix slides.

AFIELDRESIDUALS display residuals in field layout.

AFLABELS forms a variate of unit labels for a design.

AFMEANS forms tables of means classified by ANOVA treatment factors.

AFMINABERRATION forms minimum aberration factorial or fractional-factorial designs.

AFNONLINEAR forms D-optimal designs to estimate the parameters of a nonlinear or generalized linear model.

AFORMS prints data forms for an experimental design.

AFPREP searches for an efficient partially-replicated design.

AFRCRESOLVABLE forms doubly resolvable row-column designs, with output.

AFRESPONSESURFACE uses the BLKL algorithm to construct designs for estimating response surfaces.

AFUNITS forms a factor to index the units of the final stratum of a design.

AGALPHA forms alpha designs by standard generators for up to 100 treatments.

AGBIB generates balanced incomplete block designs.

AGBOXBEHNKEN generates Box-Behnken designs.

AGCENTRALCOMPOSITE generates central composite designs.

AGCROSSOVERLATIN generates Latin squares balanced for carry-over effects.

AGCYCLIC generates cyclic designs from standard generators.

AGDESIGN generates generally balanced designs.

AGFACTORIAL generates minimum aberration block or fractional factorial designs.

AGFRACTION generates fractional factorial designs.

AGHIERARCHICAL generates orthogonal hierarchical designs.

AGINDUSTRIAL helps to select and generate effective designs for use in industrial experiments.

AGLATIN generates mutually orthogonal Latin squares.

AGLOOP generates loop designs e.g. for time-course microarray experiments

AGMAINEFFECT generates designs to estimate main effects of two-level factors.

AGNATURALBLOCK forms 1- and 2-dimensional designs with blocks of natural size

AGNEIGHBOUR generates neighbour-balanced designs.

AGNONORTHOGONALDESIGN generates non-orthogonal multi-stratum designs.

AGQLATIN generates complete and quasi-complete Latin squares.

AGRAPH plots tables of means from ANOVA.

AGRCRESOLVABLE forms doubly resolvable row-column designs.

AGREFERENCE generates reference-level designs e.g. for microarray experiments

AGSEMILATIN generates semi-Latin squares.

AGSPACEFILLINGDESIGN generates space filling designs.

AGSQLATTICE generates square lattice designs.

AKAIKEHISTOGRAM prints histograms with improved definition of groups.

AKEEP copies information from an ANOVA analysis into Genstat data structures.

AKEY generates values for treatment factors using the design key method.

ALIAS finds out information about aliased model terms in analysis of variance.

ALIGNCURVE forms an optimal warping to align an observed series of observations with a standard series.

ALLDIFFERENCES shows all pairwise differences of values in a variate or table.

ALLPAIRWISE performs a range of all pairwise multiple comparison tests.

AMCOMPARISON performs pairwise multiple comparison tests for ANOVA means.

AMDUNNETT forms Dunnett's simultaneous confidence interval around a control.

AMERGE merges extra units into an experimental design.

AMMI allows exploratory analysis of genotype \times environment interactions.

AMTDISPLAY displays further output for a multi-tiered design analysed by AMTIER.

AMTIER analyses a multi-tiered design with up to 3 structures.

AMTKEEP saves information from the analysis of a multitiered design by AMTIER.

ANOVA analyses y-variates by analysis of variance according to the model defined by earlier

BLOCKSTRUCTURE, COVARIATE, and TREATMENTSTRUCTURE statements.

ANTMVESTIMATE estimates missing values in repeated measurements.

ANTORDER assesses order of ante-dependence for repeated measures data.

ANTTEST calculates overall tests based on a specified order of ante-dependence.

AN1ADVICE aims to give useful advice if a design that is thought to be balanced fails to be analysed by ANOVA.

AONEWAY performs one-way analysis of variance.

AOVANYHOW performs analysis of variance using ANOVA, regression or REML as appropriate.

AOVDISPLAY provides further output from an analysis by AOVANYHOW.

APAPADAKIS analysis of variance with an added Papadakis covariate, formed from neighbouring residuals.

APERMTEST does random permutation tests for analysis-of-variance tables

 $\ensuremath{\texttt{APLOT}}$ plots residuals from an $\ensuremath{\texttt{ANOVA}}$ analysis.

APOLYNOMIAL forms equations for single-factor polynomial contrasts fitted by ANOVA.

APOWER calculates the power (probability of detection) for terms in an aov.

APPEND appends a list of vectors of compatible types.

APRODUCT forms a new experimental design from the product of two designs.

ARANDOMIZE randomizes and prints an experimental design.

ARCSPLITPLOT adds extra treatments onto the replicates of a resolvable row-column design, and

generates factors giving the row and column locations of the plots within the design.

AREPMEASURES produces an analysis of variance for repeated measurements.

ARESULTSUMMARY provides a summary of results from an ANOVA analysis.

ARETRIEVE retrieves an ANOVA save structure from an external file.

 $\label{eq:samplesize} \texttt{ASAMPLESIZE} \ \text{finds the replication to detect a treatment effect or contrast}.$

ASPREADSHEET saves results from an analysis of variance in a spreadsheet.

ASRULES derives association rules from transaction data.

ASCREEN performs screening tests for designs with orthogonal block structure

ASSIGN sets elements of pointers and dummies.

ASTATUS provides information about the settings of ANOVA models and variates.

ASTORE stores an ANOVA save structure in an external file.

ASWEEP performs sweeps for model terms in an analysis of variance.

AUDISPLAY produces further output for an unbalanced design (after AUNBALANCED).

AUGRAPH plots tables of means from AUNBALANCED.

AUKEEP saves output from analysis of an unbalanced design (by AUNBALANCED).

AUNBALANCED performs analysis of variance for unbalanced designs.

AUMCOMPARISON performs pairwise multiple comparison tests for means from an unbalanced analysis of variance, performed previously by AUNBALANCED.

AUPREDICT forms predictions from an unbalanced design (after AUNBALANCED).

AUSPREADSHEET saves results from an analysis of an unbalanced design (by AUNBALANCED) in a spreadsheet.

 ${\tt AU2RDA}\ saves\ results\ from\ an\ unbalanced\ analysis\ of\ variance,\ by\ {\tt AUNBALANCED},\ in\ R\ data\ frames.$

AXES defines the axes in each window for high-resolution graphics.

AXIS defines an oblique axis for high-resolution graphics.

AYPARALLEL does the same analysis of variance for several y-variates, and collates the output.

A2DISPLAY provides further output following an analysis of variance by A2WAY

A2KEEP copies information from an A2WAY analysis into Genstat data structures

A2PLOT plots effects from two-level designs with robust s.e. estimates.

A2RDA saves results from an analysis of variance in R data frames.

A2RESULTSUMMARY provides a summary of results from an analysis by A2WAY.

A2WAY performs analysis of variance of a balanced or unbalanced design with up to two treatment factors.

BACKTRANSFORM calculates back-transformed means with approximate standard errors and confidence intervals.

BAFFYMETRIX estimates expression values from an Affymetrix CED and CDF file.

BANK calculates the optimum aspect ratio for a graph.

BARCHART plots bar charts in high-resolution graphics.

BASELINE estimates a baseline for a series of numbers whose minimum value is drifting.

BASSESS assesses potential splits for regression and classification trees.

BBINOMIAL estimates the parameters of the beta binomial distribution.

BCDISPLAY displays a classification tree.

BCFDISPLAY displays information about a random classification forest.

BCFIDENTIFY identifies specimens using a random classification forest.

BCFOREST constructs a random classification forest.

BCIDENTIFY identifies specimens using a classification tree.

BCKEEP saves information from a classification tree.

BCLASSIFICATION constructs a classification tree.

BCONSTRUCT constructs a tree.

BCUT cuts a tree at a defined node, discarding nodes and information below it.

BCVALUES forms values for nodes of a classification tree.

BGIMPORT imports MCMC output in CODA format produced by WinBUGS or OpenBUGS.

BGPLOT produces plots for output and diagnostics from MCMC simulations.

BGRAPH plots a tree.

BGROW adds new branches to a node of a tree.

BGXGENSTAT runs WinBUGS or OpenBUGS from Genstat in batch mode using scripts.

BIDENTIFY identifies specimens using a tree.

BIPLOT produces a biplot from a set of variates.

BJESTIMATE fits an ARIMA model, with forecast and residual checks.

BJFORECAST plots forecasts of a time series using a previously fitted ARIMA.

BJIDENTIFY displays time series statistics useful for ARIMA model selection.

BJOIN extends a tree by joining another tree to a terminal node.

BKDISPLAY displays an identification key.

BKEY constructs an identification key.

BKIDENTIFY identifies specimens using a key.

BKKEEP saves information from an identification key.

BLANDALTMAN produces Bland-Altman plots to assess the agreement between two variates.

BLOCKSTRUCTURE defines the blocking structure of the design and hence the strata and the error terms.

BNTEST calculates one- and two-sample binomial tests.

BOOTSTRAP produces bootstrapped estimates, standard errors and distributions.

BOXPLOT draws box-and-whisker diagrams or schematic plots.

BPCONVERT converts bit patterns between integers, pointers of set bits and textual descriptions.

BPRINT displays a tree.

BPRUNE prunes a tree using minimal cost complexity.

BRDISPLAY displays a regression key.

BREAK suspends execution of the statements in the current channel or control structure and takes

subsequent statements from the channel specified.

BREGRESSION constructs a regression tree.

BRFDISPLAY displays information about a random regression forest.

BRFOREST constructs a random regression forest.

BRFPREDICT makes predictions using a random regression forest.

BRKEEP saves information from a regression tree.

BRPREDICT makes predictions using a regression tree.

BRVALUES forms values for nodes of a regression tree.

CABIPLOT plots results from correspondence analysis or multiple correspondence analysis.

CALCULATE calculates numerical values for data structures.

CALLS lists library procedures called by a procedure.

CANCORRELATION does canonical correlation analysis.

CAPTION prints captions in standardized formats.

CASE introduces a "multiple-selection" control structure.

CASSOCIATION calculates measures of association for circular data.

CATALOGUE displays the contents of a backing-store file.

CATRENDTEST calculates the Cochran-Armitage chi-square test for trend.

CCA performs canonical correspondence analysis.

CCOMPARE tests whether samples from circular distributions have a common mean direction or have identical distributions.

CDESCRIBE calculates summary statistics and tests of circular data.

CDNAUGMENTEDDESIGN constructs an augmented block design, using CycDesigN if the controls are in an incomplete-block design.

CDNBLOCKDESIGN constructs a block design using CycDesigN.

CDNPREP constructs a multi-location partially-replicated design using CycDesigN.

CDNROWCOLUMNDESIGN constructs a row-column design using CycDesigN.

CENSOR pre-processes censored data before analysis by ANOVA.

CHECKARGUMENT checks the arguments of a procedure.

CHIPERMTEST performs a random permutation test for a two-dimensional contingency table.

CHISQUARE calculates chi-square statistics for one- and two-way tables.

CINTERACTION clusters rows and columns of a two-way interaction table.

CLASSIFY obtains a starting classification for non-hierarchical clustering.

CLOSE closes files.

CLUSTER forms a non-hierarchical classification.

 ${\tt CMHTEST} \ performs \ the \ Cochran-Mantel-Haenszel \ test.$

COKRIGE calculates kriged estimates using a model fitted to the sample variograms and crossvariograms of a set of variates.

COLOUR defines the red, green and blue intensities to be used for the Genstat colours with certain graphics devices.

COMBINE combines or omits "slices" of a multi-way data structure (table, matrix, or variate).

COMMANDINFORMATION provides information about whether (and how) a command has been implemented.

CONCATENATE concatenates and truncates lines (units) of text structures; allows the case of letters to be changed.

CONCORD is a synonym for KCONCORDANCE.

CONFIDENCE calculates simultaneous confidence intervals.

CONTOUR is a synonym for LPCONTOUR.

CONVEXHULL finds the points of a single or a full peel of convex hulls.

COPY forms a transcript of a job.

CORANALYSIS does correspondence analysis, or reciprocal averaging.

CORRELATE forms correlations between variates, autocorrelations of variates, and lagged crosscorrelations between variates.

CORRESP is a synonym for CORANALYSIS. COVARIATE specifies covariates for use in subsequent ANOVA statements. COVDESIGN produces experimental designs efficient under analysis of covariance. CSPRO reads a data set from a CSPro survey data file and dictionary, and loads it into Genstat or puts it into a spreadsheet file. CUMDISTRIBUTION fits frequency distributions to accumulated counts. CRBIPLOT plots correlation or distance biplots after RDA, or ranking biplots after CCA. CRTRIPLOT plots ordination biplots or triplots after CCA or RDA. CVA performs canonical variates analysis. CVAPLOT plots the mean and unit scores from a canonical variates analysis. CVASCORES calculates scores for individual units in canonical variates analysis. DARROW adds arrows to an existing plot. DAYLENGTH calculates daylengths at a given period of the year. DBARCHART produces bar charts for one or two-way tables. DBCOMMAND runs an SQL command on an ODBC database. DBEXPORT updates an ODBC database table using data from Genstat. DBIMPORT loads data into Genstat from an ODBC database. DBINFORMATION loads information on the tables and columns in an ODBC database. DBIPLOT plots a biplot from an analysis by PCP, CVA or PCO. DBITMAP plots a bit map of RGB colours. DCIRCULAR plots circular data. DCLEAR clears a graphics screen. DCLUSTERLABELS labels clusters in a single-page dendrogram plotted by DDENDROGRAM. DCOLOURS forms a band of graduated colours for graphics. DCOMPOSITIONAL plots 3-part compositional data within a barycentric triangle. DCONTOUR draws contour plots on a plotter or graphics monitor. DCORRELATION plots a correlation matrix. DCOVARIOGRAM plots 2-dimensional auto- and cross-variograms. DDEEXPORT sends data or commands to a Dynamic Data Exchange server. DDEIMPORT gets data from a Dynamic Data Exchange (DDE) server. DDENDROGRAM draws dendrograms with control over structure and style. DDESIGN plots the plan of an experimental design. DDISPLAY redraws the current graphical display. DEBUG puts an implicit BREAK statement after the current statement and after every NSTATEMENTS subsequent statements, until an ENDDEBUG is reached. DECIMALS sets the number of decimals for a structure, using its round-off. DECLARE declares one or more customized data structures. DELETE deletes the attributes and values of structures. DELLIPSE draws a 2-dimensional scatter plot with confidence, prediction and/or equal-frequency ellipses superimposed. DEMC performs Bayesian computing using the Differential Evolution Markov Chain algorithm. DERRORBAR adds error bars to a graph. DESCRIBE saves and/or prints summary statistics for variates. DESIGN helps to select and generate effective experimental designs. DEVICE switches between (high-resolution) graphics devices. DFINISH ends a sequence of related high-resolution plots. DFONT defines the default font for high-resolution graphics. DFOURIER performs a harmonic analysis of a univariate time series. DFRTEXT adds text to a graphics frame. DFUNCTION plots a function. DGRAPH draws graphs on a plotter or graphics monitor. DHELP provides information about Genstat graphics. DHISTOGRAM draws histograms on a plotter or graphics monitor. DHSCATTERGRAM plots an h-scattergram. DIAGONALMATRIX declares one or more diagonal matrix data structures.

DIALLEL analyses full and half diallel tables with parents.

DILUTION calculates Most Probable Numbers from dilution series data. DIRECTORY prints or saves a list of files with names matching a specified mask. DISCRIMINATE performs discriminant analysis. DISPLAY prints, or reprints, diagnostic messages. DISTRIBUTION estimates the parameters of continuous and discrete distributions. DKALMAN plots results from an analysis by KALMAN. DKEEP saves information from the last plot on a particular device. DKEY adds a key to a graph. DKSTPLOT produces diagnostic plots for space-time clustering. DLOAD loads the graphics environment settings from an external file. DMADENSITY plots the empirical CDF or PDF (kernel smoothed) by groups. DMASS plots discrete data like mass spectra, discrete probability functions. DMSCATTER produces a scatter-plot matrix for one or two sets of variables. DMST gives a high resolution plot of an ordination with minimum spanning tree. DOTHISTOGRAM plots dot histograms. DOTPLOT produces a dot-plot using line-printer or high-resolution graphics. DPARALLEL displays multivariate data using parallel coordinates. DPIE draws a pie chart on a plotter or graphics monitor. DPOLYGON draws polygons using high-resolution graphics. DPROBABILITY creates a probability distribution plot of the values in a variate. DPSPECTRALPLOT calculates an estimate of the spectrum of a spatial point pattern. DPTMAP draws maps for spatial point patterns using high-resolution graphics. DPTREAD adds points interactively to a spatial point pattern. DQMAP displays a genetic map. DQMKSCORES plots a grid of marker scores for genotypes and indicates missing data. DQMQTLSCAN plots the results of a genome-wide scan for QTL effects in multi-environment trials. DQRECOMBINATIONS plots a matrix of recombination frequencies between markers. DQSQTLSCAN plots the results of a genome-wide scan for QTL effects in single-environment trials. DREAD reads the locations of points from an interactive graphical device. DREFERENCELINE adds reference lines to a graph. DREPMEASURES plots profiles and differences of profiles for repeated measures data. DRESIDUALS plots residuals. DROP drops terms from a linear, generalized linear, generalized additive, or nonlinear model. DRPOLYGON reads a polygon interactively from the current graphics device. DSAVE saves the current graphics environment settings to an external file. DSCATTER produces a scatter-plot matrix using high-resolution graphics. DSEPARATIONPLOT creates a separation plot for visualising the fit of a model with a dichotomous (i.e. binary) or polytomous (i.e. multi-categorical) outcome. DSHADE plots a shade diagram of 3-dimensional data. DSTART starts a sequence of related high-resolution plots. DSTTEST plots power and significance for t-tests, including equivalence tests. DSURFACE produces perspective views of a two-way arrays of numbers. DTABLE plots tables. DTEXT adds text to a graph. DTIMEPLOT produces horizontal bars displaying a continuous time record. DUMMY declares one or more dummy data structures. DUMP prints information about data structures, and internal system information. DUPLICATE forms new data structures with attributes taken from an existing structure. DVARIOGRAM plots fitted models to an experimental variogram. DXDENSITY produces one-dimensional density (or violin) plots. DXYDENSITY produces density plots for large data sets. DXYGRAPH draws two-dimensional graphs with marginal distribution plots alongside the y- and x-axes. DYPOLAR produces polar plots. D3GRAPH plots a 3-dimensional graph. D3HISTOGRAM plots three-dimensional histograms. ECABUNDANCEPLOT produces rank/abundance, ABC and k-dominance plots

ECACCUMULATION plots species accumulation curves for samples or individuals. ECANOSIM perform's an analysis of similarities (ANOSIM) ECDIVERSITY calculates measures of diversity with jackknife or bootstrap estimates ECFIT fits models to species abundance data ECNICHE generates relative abundance of species for niche-based models ECNPESTIMATE calculates nonparametric estimates of species richness. ECRAREFACTION calculates individual or sample-based rarefaction EDDUNNETT calculates equivalent deviates for Dunnett's simultaneous confidence interval around a control. EDFTEST performs empirical-distribution-function goodness-of-fit tests. EDIT edits text vectors. ELSE introduces the default set of statements in block-if or in multiple-selection control structures. ELSIF introduces a set of alternative statements in a block-if control structure. ENDBREAK returns to the original channel or control structure and continues execution. ENDCASE indicates the end of a "multiple-selection" control structure. ENDDEBUG cancels a DEBUG statement. ENDFOR indicates the end of the contents of a loop. ENDIF indicates the end of a block-if control structure. ENDJOB ends a Genstat job. ENDPROCEDURE indicates the end of the contents of a Genstat procedure. ENQUIRE provides details about files opened by Genstat. EQUATE transfers data between structures of different sizes or types (but the same modes i.e. numerical or text) or where transfer is not from single structure to single structure. ESTIMATE is a synonym for TFIT. EXAMPLE obtains and runs a Genstat example program. EXECUTE executes the statements contained within a text. EXIT exits from a control structure. EXPORT outputs data structures in foreign file formats, including Excel, Quattro, dBase, SPlus, Gauss, MatLab and Instat, or as plain or comma-delimited text. EXPRESSION declares one or more expression data structures. EXTERNAL declares an external function in a DLL for use by the OWN function. EXTRABINOMIAL fits the models of Williams (1982) to overdispersed proportions. FACAMEND permutes the levels and labels of a factor. FACCOMBINATIONS forms a factor to indicate observations with identical combinations of values of a set of variates, texts or factors. FACDIVIDE represents a factor by factorial combinations of a set of factors. FACEXCLUDEUNUSED redefines the levels and labels of a factor to exclude those that are unused. FACGETLABELS obtains the labels for a factor if it has been defined with labels, or constructs labels from its levels otherwise. FACLEVSTANDARDIZE standardizes the levels or labels of a list of factors. FACMERGE merges levels of factors. FACPRODUCT forms a factor with a level for every combination of other factors. FACROTATE rotates factor loadings from a principal components, canonical variates or factor analysis. FACSORT sorts the levels of a factor according to an index vector. FACTOR declares one or more factor data structures.

FACUNIQUE redefines a factor so that its levels and labels are unique.

FALIASTERMS forms information about aliased model terms in analysis of variance.

FALTASTERMS forms information about anased model terms in analysis of

FARGUMENTS forms lists of arguments involved in an expression.

FAULT checks whether to issue a diagnostic, i.e. a fault, warning or message.

FBASICCONTRASTS breaks a model term down into its basic contrasts.

FBETWEENGROUPVECTORS forms variates and classifying factors containing within-group summaries to use e.g. in a between-group analysis.

FCA performs factor analysis.

FCLASSIFICATION forms a classification set for each term in a formula, breaks a formula up into separate formulae (one for each term), and applies a limit to the number of factors and variates in the terms of a formula.

FCOMPLEMENT forms the complement of an incomplete block design.

FCONTRASTS modifies a model formula to contain contrasts of factors.

FCOPY makes copies of files.

FCORRELATION forms the correlation matrix for a list of variates.

FCOVARIOGRAM forms a covariogram structure containing auto-variograms of individual variates and cross-variograms for pairs from a list of variates.

FDELETE deletes files.

FDESIGNFILE forms a backing-store file of information for AGDESIGN.

FDIALLEL forms the components of a diallel model for REML or regression.

FDISTINCTFACTORS checks sets of factors to remove any that define duplicate classifications.

FDRBONFERRONI estimates false discovery rates by a Bonferroni-type procedure.

FDRMIXTURE estimates false discovery rates using mixture distributions.

FEXACT2X2 does Fisher's exact test for 2×2 tables.

FFRAME forms multiple windows in a plot-matrix for high-resolution graphics.

FFREERESPONSEFACTOR forms multiple-response factors from free-response data.

FHADAMARDMATRIX forms Hadamard matrices.

FHAT calculates an estimate of the F nearest-neighbour distribution function.

FIELLER calculates effective doses or relative potencies.

FILEREAD reads data from a file.

FILTER is a synonym for TFILTER.

FIT fits a linear, generalized linear, generalized additive, or generalized nonlinear model.

FITCURVE fits a standard nonlinear regression model.

FITINDIVIDUALLY fits regression models one term at a time.

FITMULTINOMIAL fits generalized linear models with multinomial distribution.

FITNONLINEAR fits a nonlinear regression model or optimizes a scalar function.

FITNONNEGATIVE is a synonym for RNONNEGATIVE.

FITPARALLEL is a synonym for RPARALLEL.

FITSCHNUTE is a synonym for RSCHNUTE.

FKEY forms design keys for multi-stratum experimental designs, allowing for confounded and aliased treatments.

FLRV forms the values of LRV structures.

FMEGAENVIRONMENTS forms mega-environments based on winning genotypes from an AMMI-2 model.

FMFACTORS forms a pointer of factors representing a multiple-response.

FNCORRELATION calculates correlations from variances and covariances, together with their variances and covariances.

FNLINEAR estimates linear functions of random variables, and calculates their variances and covariances.

FNPOWER estimates products of powers of two random variables, and calculates their variances and covariances.

FOCCURRENCES counts how often each pair of treatments occurs in the same block. FOR introduces a loop.

FORECAST is a synonym for TFORECAST.

FORMULA declares one or more formula data structures.

FOURIER calculates cosine or Fourier transforms of real or complex series.

FPARETOSET forms the Pareto optimal set of non-dominated groups.

FPLOTNUMBER forms plot numbers for a row-by-column design.

FPROJECTIONMATRIX forms a projection matrix for a set of model terms.

FPSEUDOFACTORS determines patterns of confounding and aliasing from design keys, and extends the treatment model to incorporate the necessary pseudo-factors.

FRAME defines the positions and appearance of the plotting windows within the frame of a high-resolution graph.

FREGULAR expands vectors onto a regular two-dimensional grid.

FRENAME renames files.

FRESTRICTEDSET forms vectors with the restricted subset of a list of vectors.

FRIEDMAN performs Friedman's non-parametric analysis of variance.

FROWCANONICALMATRIX puts a matrix into row canonical, or reduced row echelon, form. FRQUANTILES forms regression quantiles.

FRTPRODUCTDESIGNMATRIX forms summation, or relationship, matrices for model terms.

FSIMILARITY forms a similarity matrix or a between-group-elements similarity matrix or prints a similarity matrix.

FSPREADSHEET creates a Genstat Spreadsheet file (GSH) from specified data structures.

FSSPM forms the values of SSPM structures.

FSTRING forms a single string from a list of strings in a text.

FTEXT forms a text structure from a variate.

FTSM forms preliminary estimates of parameters in time-series models.

FUNIQUEVALUES redefines a variate or text so that its values are unique.

FVARIOGRAM forms experimental variograms.

FVCOVARIANCE forms the variance-covariance matrix for a list of variates.

FVSTRING forms a string listing the identifiers of a set of data structures.

FWITHINTERMS forms factors to define terms representing the effects of one factor within another factor.

FZERO gives the F function expectation under complete spatial randomness.

F2DRESIDUALVARIOGRAM calculates and plots a 2-dimensional variogram from a 2-dimensional array of residuals.

GALOIS forms addition and multiplication tables for a Galois finite field.

GBGRIDCONVERSION converts GB grid references to or from latitudes and longitudes or to or from UTM coordinates.

GEE fits models to longitudinal data by generalized estimating equations.

GENERATE generates factor values for designed experiments.

GENPROCRUSTES performs a generalized Procrustes analysis.

GESTABILITY calculates stability coefficients for genotype-by-environment data.

GET accesses details of the "environment" of a Genstat job.

GETATTRIBUTE accesses attributes of structures.

GETLOCATIONS finds locations of an identifier within a pointer, or a string within a factor or text, or a

number within any numerical data structure.

GETNAME forms the name of a structure according to its IPRINT attribute.

GETRGB gets the RGB values of the standard graphics colours.

GGEBIPLOT plots displays to assess genotype+genotype-by-environment variation.

GHAT calculates an estimate of the G nearest-neighbour distribution function.

GINVERSE calculates the generalized inverse of a matrix.

GLDISPLAY displays further output from a GLMM analysis.

GLKEEP saves results from a GLMM analysis.

GLM analyses non-standard generalized linear models.

GLMM fits a generalized linear mixed model.

GLPERMTEST does random permutation tests for generalized linear mixed models.

GLPLOT plots residuals from a GLMM analysis.

GLPREDICT forms predictions from a GLMM analysis.

GLRTEST calculates likelihood tests to assess random terms in a generalized linear mixed model.

GPREDICTION produces genomic predictions (breeding values) using phenotypic and molecular marker information.

GRANDOM generates pseudo-random numbers from probability distributions.

GRAPH is a synonym for LPGRAPH.

GRCSR generates completely spatially random points in a polygon.

GREJECTIONSAMPLE generates random samples using rejection sampling.

GRIBIMPORT reads data from a GRIB2 meteorological data file, and loads it or converts it to a spreadsheet file.

GRLABEL randomly labels two or more spatial point patterns.

 ${\tt GRMNOMIAL}\ generates\ multinomial\ pseudo-random\ numbers.$

GRMULTINORMAL generates multivariate normal pseudo-random numbers.

GROUPS forms a factor (or grouping variable) from a variate or text, together with the set of distinct values that occur.

GRTHIN randomly thins a spatial point pattern.

GRTORSHIFT performs a random toroidal shift on a spatial point pattern.

 $\ensuremath{\texttt{GSTATISTIC}}$ calculates the gamma statistic of agreement for ordinal data.

G2AEXPORT forms a dbase file to transfer ANOVA output to Agronomix Generation II.

G2AFACTORS redefines block and treatment variables as factors.

G2VEXPORT forms a dbase file to transfer REML output to Agronomix Generation II.

HANOVA does hierarchical analysis of variance or covariance for unbalanced data.

HBOOTSTRAP performs bootstrap analyses to assess the reliability of clusters from hierarchical cluster analysis.

HCLUSTER performs hierarchical cluster analysis.

HCOMPAREGROUPINGS compares groupings generated, for example, from cluster analyses.

HDISPLAY displays results ancillary to hierarchical cluster analyses: matrix of mean similarities

between and within groups, a set of nearest neighbours for each unit, a minimum spanning tree, and the most typical elements from each group.

HEATUNITS calculates accumulated heat units of a temperature dependent process.

HELP provides help information about Genstat.

HFAMALGAMATIONS forms an amalgamations matrix from a minimum spanning tree.

HFCLUSTERS forms a set of clusters from an amalgamations matrix.

HGANALYSE analyses data using a hierarchical or double hierarchical generalized linear model. HGDISPLAY displays results from a hierarchical or double hierarchical generalized linear model. HGDRANDOMMODEL defines the random model in a hierarchical generalized linear model for the

dispersion model of a double hierarchical generalized linear model.

HGFIXEDMODEL defines the fixed model for a hierarchical or double hierarchical generalized linear model.

HGFTEST calculates likelihood tests for fixed terms in a hierarchical generalized linear model HGGRAPH draws a graph to display the fit of an HGLM or DHGLM analysis.

HGKEEP saves information from a hierarchical or double hierarchical generalized linear model analysis.

HGNONLINEAR defines nonlinear parameters for the fixed model of a hierarchical generalized linear model.

HGPLOT produces model-checking plots for a hierarchical or double hierarchical generalized linear model.

HGPREDICT forms predictions from a hierarchical or double hierarchical generalized linear model. HGRANDOMMODEL defines the random model for a hierarchical or double hierarchical generalized linear model.

HGRTEST calculates likelihood tests for random terms in a hierarchical generalized linear model. HGSTATUS displays the current HGLM model definitions.

HGWALD prints or saves Wald tests for fixed terms in an HGLM.

HISTOGRAM is a synonym for LPHISTOGRAM.

HLIST lists the data matrix in abbreviated form.

HPCLUSTERS prints a set of clusters.

HREDUCE forms a reduced similarity matrix (referring to the GROUPS instead of the original units).

HSUMMARIZE forms and prints a group by levels table for each test together with appropriate summary statistics for each group.

IDENTIFY identifies an unknown specimen from a defined set of objects.

IF introduces a block-if control structure.

IFUNCTION estimates implicit and/or explicit functions of parameters.

IMPORT reads data from a foreign file format, and loads it or converts it to a spreadsheet file.

INPUT specifies the input file from which to take further statements.

INSIDE determines whether points lie within a specified polygon.

INTERPOLATE interpolates values at intermediate points.

IRREDUNDANT forms irredundant test sets for the efficient identification of a set of objects.

JACKKNIFE produces Jackknife estimates and standard errors.

JOB starts a Genstat job.

JOIN joins or merges two sets of vectors together, based on classifying keys.

KALMAN calculates estimates from the Kalman filter.

KAPLANMEIER calculates the Kaplan-Meier estimate of the survivor function.

KAPPA calculates a kappa coefficient of agreement for nominally scaled data. KCONCORDANCE calculates Kendall's Coefficient of Concordance. KCROSSVALIDATION computes cross validation statistics for punctual kriging. KCSRENVELOPES simulates K function bounds under complete spatial randomness. KERNELDENSITY uses kernel density estimation to estimate a sample density. KHAT calculates an estimate of the K function. KLABENVELOPES gives bounds for K function differences under random labelling. KNEARESTNEIGHBOURS classifies items or predicts their responses by examining their k nearest neighbours. KOLMOG2 performs a Kolmogorov-Smirnoff two-sample test. KRIGE calculates kriged estimates using a model fitted to the sample variogram. KRUSKAL carries out a Kruskal-Wallis one-way analysis of variance. KSED calculates the standard error for K function differences under random labelling. KSTHAT calculates an estimate of the K function in space, time and space-time. KSTMCTEST performs a Monte-Carlo test for space-time interaction. KSTSE calculates the standard error for the space-time K function. KTAU calculates Kendall's rank correlation coefficient τ KTORENVELOPES gives bounds for the bivariate K function under independence. K12HAT calculates an estimate of the bivariate K function. LCONCORDANCE calculates Lin's concordance correlation coefficient. LIBEXAMPLE accesses examples and source code of library procedures. LIBFILENAME supplies the names of information files for library procedures. LIBHELP provides help information about library procedures. LIBSOURCE obtains the source code of a Genstat procedure. LIBVERSION provides the name of the current Genstat Procedure Library. LINDEPENDENCE finds the linear relations associated with matrix singularities. LIST lists details of the data structures currently available within Genstat. LORENZ plots the Lorenz curve and calculates the Gini and asymmetry coefficients. LPCONTOUR produces contour maps of two-way arrays of numbers using character (i.e. line-printer) graphics. LPGRAPH produces point and line plots using character (i.e. line-printer) graphics. LPHISTOGRAM produces histograms using character (i.e. line-printer) graphics. LRIDGE does logistic ridge regression. LRV declares one or more LRV data structures. LRVSCREE prints a scree diagram and/or a difference table of latent roots. LSIPLOT plots least significant intervals, saved from SEDLSI. LSPLINE calculates design matrices to fit a natural polynomial or trignometric L-spline as a linear mixed model. LVARMODEL analyses a field trial using the Linear Variance Neighbour model. MAANOVA does analysis of variance for a single-channel microarray design. MABGCORRECT performs background correction of Affymetrix slides. MACALCULATE corrects and transforms two-colour microarray differential expressions. MADESIGN assesses the efficiency of a two-colour microarray design. MAEBAYES modifies t-values by an empirical Bayes method. MAESTIMATE estimates treatment effects from a two-colour microarray design. MAHISTOGRAM plots histograms of microarray data. MANNWHITNEY performs a Mann-Whitney U test. MANOVA performs multivariate analysis of variance and covariance. MANTEL assesses the association between similarity matrices. MAPCLUSTER clusters probes or genes with microarray data. MAPLOT produces two-dimensional plots of microarray data. MAREGRESSION does regressions for single-channel microarray data. MARGIN forms and calculates marginal values for tables. MARMA calculates Affymetrix expression values. MAROBUSTMEANS does a robust means analysis for Affymetrix slides. MASCLUSTER clusters microarray slides.

MASHADE produces shade plots to display spatial variation of microarray data. MATRIX declares one or more matrix data structures. MAVDIFFERENCE applies the average difference algorithm to Affymetrix data. MAVOLCANO produces volcano plots of microarray data. MA2CLUSTER performs a two-way clustering of microarray data by probes (or genes) and slides. MCNEMAR performs McNemar's test for the significance of changes. MCOMPARISON performs pairwise multiple comparison tests within a table of means. MCORANALYSIS does multiple correspondence analysis. MCOVARIOGRAM fits models to sets of variograms and cross-variograms. MCROSSPECTRUM performs a spectral analysis of a multiple time series. MC1PSTATIONARY gives the stationary probabilities for a 1st-order Markov chain. MDS performs non-metric multidimensional scaling. MEDIANTETRAD gives robust identification of multiple outliers in 2-way tables. MERGE copies subfiles from backing-store files into a single file. META combines estimates from individual trials. MICHAELISMENTEN fits the Michaelis-Menten equation for substrate concentration versus time data. MINFIELDWIDTH calculates minimum field widths for printing data structures. MINIMIZE finds the minimum of a function calculated by a procedure. MINIDIMENSION finds the minimum of a function in one dimension. MMPREDICT predicts the Michaelis-Menten curve for a particular set of parameter values. MNORMALIZE normalizes two-colour microarray data. MODEL defines the response variate(s) and the type of model to be fitted for linear, generalized linear, generalized additive, and nonlinear models. MONOTONIC fits an increasing monotonic regression of y on x. MOVINGAVERAGE calculates and plots the moving average of a time series. MPOLISH performs a median polish of two-way data. MPOWER forms integer powers of a square matrix. MSEKERNEL2D estimates the mean square error for a kernel smoothing. MTABULATE forms tables classified by multiple-response factors. MULTMISSING estimates missing values for units in a multivariate data set. MVAOD does an analysis of distance of multivariate data. MVARIOGRAM fits models to an experimental variogram. MVFILL replaces missing values in a vector with the previous non-missing value. NAG calls an algorithm from the NAG Library. NCONVERT converts integers between base 10 and other bases. NCSPLINE calculates natural cubic spline basis functions (for use e.g. in REML) NLAR1 fits curves with an AR1 or a power-distance correlation model. NLCONTRASTS fits nonlinear contrasts to quantitative factors in ANOVA. NNDISPLAY displays output from a multi-layer perceptron neural network fitted by NNFIT. NNFIT fits a multi-layer perceptron neural network. NNPREDICT forms predictions from a multi-layer perceptron neural network fitted by NNFIT. NORMTEST performs tests of univariate and/or multivariate Normality. NOTICE provides news and other information about Genstat. OPEN opens files. OPLS performs orthogonal partial least squares regression. OPTION defines the options of a Genstat procedure with information to allow them to be checked when the procedure is executed. OR introduces a set of alternative statements in a "multiple-selection" control structure. ORTHPOLYNOMIAL calculates orthogonal polynomials. OUTPUT defines where output is to be stored or displayed. OWN does work specified in Fortran subprograms linked into Genstat by the user. PAGE moves to the top of the next page of an output file. PAIRTEST performs t-tests for pairwise differences. PARAMETER defines the parameters of a Genstat procedure with information to allow them to be checked when the procedure is executed.

PARTIALCORRELATIONS calculates partial correlations for a list of variates.

PASS does work specified in subprograms supplied by the user, but not linked into Genstat. This directive may not be available on some computers.

PCO performs principal coordinates analysis, also principal components and canonical variates analysis (but with different weighting from that used in CVA) as special cases.

PCOPROCRUSTES performs a multiple Procrustes analysis.

PCORELATE relates the observed values on a set of variables to the results of a principal coordinates analysis.

PCP performs principal components analysis.

PDESIGN prints or stores treatment combinations tabulated by the block factors.

PDUPLICATE duplicates a pointer, with all its components.

PEAKFINDER finds the locations of peaks in an observed series.

PEN defines the properties of "pens" for high-resolution graphics.

PENSPLINE calculates design matrices to fit a penalized spline as a linear mixed model.

PERCENT expresses the body of a table as percentages of one of its margins.

PERIODTEST gives periodogram-based tests for white noise in time series.

PERMUTE forms all possible permutations of the integers 1...*n*.

PFACLEVELS prints levels and labels of factors.

PLINK prints a link to a graphics file into an HTML file.

PLS fits a partial least squares regression model.

PNTEST calculates one- and two-sample Poisson tests.

POINTER declares one or more pointer data structures.

POSSEMIDEFINITE calculates a positive semi-definite approximation of a non-positive semi-definite symmetric matrix.

PPAIR displays results of t-tests for pairwise differences in compact diagrams.

PRCORRELATION calculates probabilities for product moment correlations.

PRDOUBLEPOISSON calculates the probability density for the double Poisson distribution.

PREDICT forms predictions from a linear or generalized linear model.

PREWHITEN filters a time series before spectral analysis.

PRIMEPOWER decomposes a positive integer into its constituent prime powers.

PRINT prints data in tabular format in an output file, unformatted file, or text.

 $\ensuremath{\texttt{PRKTAU}}$ calculates probabilities for Kendall's rank correlation coefficient τ

 $\label{eq:prmannwhitney} {\tt PRMANNWHITNEYU} \ calculates \ probabilities \ for \ the \ Mann-Whitney \ U \ statistic.$

PROBITANALYSIS fits probit models allowing for natural mortality and immunity. PROCEDURE introduces a Genstat procedure.

PRSPEARMAN calculates probabilities for Spearman's rank correlation statistic.

PRWILCOXON calculates probabilities for the Wilcoxon signed-rank statistic.

PSPLINE calculates design matrices to fit a P-spline as a linear mixed model.

PTAREAPOLYGON calculates the area of a polygon.

PTBOX generates a bounding or surrounding box for a spatial point pattern.

PTCLOSEPOLYGON closes open polygons.

PTDESCRIBE gives summary and second order statistics for a point process.

PTGRID generates a grid of points in a polygon.

PTINTENSITY calculates the overall density for a spatial point pattern.

PTKERNEL2D performs kernel smoothing of a spatial point pattern.

PTK3D performs kernel smoothing of space-time data.

PTREMOVE removes points interactively from a spatial point pattern.

PTROTATE rotates a point pattern.

PTSINPOLYGON returns points inside or outside a polygon.

QBESTGENOTYPES sorts individuals of a segregating population by their genetic similarity with a target genotype, using the identity by descent (IBD) information at QTL positions.

QCANDIDATES selects QTLs on the basis of a test statistic profile along the genome.

QCOCHRAN performs Cochran's Q test for differences between related-samples

QDESCRIBE calculates descriptive statistics of molecular markers.

QDIALOG produces a modal dialog box to obtain a response from the user.

QDISCRIMINATE performs quadratic discrimination between groups i.e. allowing for different

variance-covariance matrices.

QEIGENANALYSIS uses principal components analysis and the Tracy-Widom statistic to find the number of significant principal components to represent a set of variables.

QEXPORT exports genotypic data for QTL analysis.

QFACTOR allows the user to decide to convert texts or variates to factors.

QFLAPJACK creates a Flapjack project file from genotypic and phenotypic data.

QGSELECT obtains a representative selection of genotypes by means of genetic distance sampling or genetic distance optimization.

QIBDPROBABILITIES reads molecular marker data and calculates IBD probabilities.

QIMPORT imports genotypic and phenotypic data for QTL analysis.

QKINSHIPMATRIX forms a kinship matrix from molecular markers.

QLDDECAY estimates linkage disequilibrium (LD) decay along a chromosome.

QLINKAGEGROUPS forms linkage groups using marker data from experimental populations.

QLIST gets the user to select a response interactively from a list.

QMAP constructs genetic linkage maps using marker data from experimental populations.

QMASSOCIATION performs multi-environment marker-trait association analysis in a genetically diverse population using bi-allelic and multi-allelic markers.

QMATCH matches different data structures to be used in QTL estimation.

QMBACKSELECT performs a QTL backward selection for loci in multi-environment trials or multiple populations.

QMESTIMATE calculates QTL effects in multi-environment trials or multiple populations.

QMKDIAGNOSTICS generates descriptive statistics and diagnostic plots of molecular marker data. QMKRECODE recodes marker scores into separate alleles.

QMKSELECT obtains a representative selection of markers by means of genetic distance sampling or genetic distance optimization.

QMQTLSCAN performs a genome-wide scan for QTL effects (Simple and Composite Interval Mapping) in multi-environment trials or multiple populations.

QMTBACKSELECT performs a QTL backward selection for loci in multi-trait trials.

QMTESTIMATE calculates QTL effects in multi-trait trials.

QMTQTLSCAN performs a genome-wide scan for QTL effects (Simple and Composite Interval Mapping) in multi-trait trials.

QMVAF calculates percentage variance accounted for by QTL effects in a multi-environment analysis. QMVESTIMATE replaces missing molecular marker scores using conditional genotypic probabilities. QMVREPLACE replaces missing marker scores with the mode scores of the most similar genotypes. QNORMALIZE performs quantile normalization.

QRD calculates QR decompositions of matrices.

QRECOMBINATIONS calculates the expected numbers of recombinations and the recombination frequencies between markers.

QREPORT creates an HTML report from QTL linkage or association analysis results.

QSASSOCIATION performs marker-trait association analysis in a genetically diverse population using bi-allelic and multi-allelic markers.

QSBACKSELECT performs a QTL backward selection for loci in single-environment trials.

QSELECTIONINDEX calculates (molecular) selection indexes by using phenotypic information and/or molecular scores of multiple traits.

QSESTIMATE calculates QTL effects in single-environment trials.

QSIMULATE simulates marker data and QTL effects for single and multiple environment trials.

QSQTLSCAN performs a genome-wide scan for QTL effects (Simple and Composite Interval Mapping) in single-environment trials.

QTHRESHOLD calculates a threshold to identify a significant QTL.

QUANTILE calculates quantiles of the values in a variate.

QUESTION obtains a response using a Genstat menu.

RADIALSPLINE calculates design matrices to fit a radial-spline surface as a linear mixed model.

RANDOMIZE randomizes the units of a designed experiment or the elements of a factor or variate.

RANK produces ranks, from the values in a variate, allowing for ties.

RAR1 fits regressions with an AR1 or a power-distance correlation model.

RBDISPLAY displays output from a radial basis function model fitted by RBFIT.

RBFIT fits a radial basis function model.

RBPREDICT forms predictions from a radial basis function model fitted by RBFIT. RBRADLEYTERRY fits the Bradley-Terry model for paired-comparison preference tests. RCATENELSON performs a Cate-Nelson graphical analysis of bivariate data. RCHECK checks the fit of a linear or generalized linear regression. RCIRCULAR does circular regression of mean direction for an angular response. RCOMPARISONS calculates comparison contrasts amongst regression means. RCURVECOMMONNONLINEAR refits a standard curve with common nonlinear parameters across groups to provide s.e.'s for linear parameters. RCYCLE controls iterative fitting of generalized linear, generalized additive, and nonlinear models, and specifies parameters, bounds etc for nonlinear models. RDA performs redundancy analysis. RDESTIMATES plots one- or two-way tables of regression estimates. RDISPLAY displays the fit of a linear, generalized linear, generalized additive, or nonlinear model. READ reads data from an input file, an unformatted file, or a text. RECORD dumps a job so that it can later be restarted by a RESUME statement. REDUCE is a synonym for HREDUCE. REFORMULATE modifies a formula or an expression to operate on a different set of data structures. RELATE is a synonym for PCORELATE. REML fits a variance-components model by residual (or restricted) maximum likelihood. RENAME assigns new identifiers to data structures. REPPERIODOGRAM gives periodogram-based analyses for replicated time series. RESHAPE reshapes a data set with classifying factors for rows and columns, into a reorganized data set with new identifying factors. RESTRICT defines a restricted set of units of vectors for subsequent statements. RESUME restarts a recorded job. RETRIEVE retrieves structures from a subfile. RETURN returns to a previous input stream (text vector or input channel). RFFAMOUNT fits harmonic models to mean rainfall amounts for a Markov model. RFFPROBABILITY fits harmonic models to rainfall probabilities for a Markov model. RFINLAYWILKINSON performs Finlay and Wilkinson's joint regression analysis of genotype-byenvironment data. RESUMMARY forms summaries for a Markov model from rainfall data. RFUNCTION estimates functions of parameters of a nonlinear model. RGRAPH draws a graph to display the fit of a regression model. RIDGE produces ridge regression and principal component regression analyses. RJOINT does modified joint regression analysis for variety-by-environment data. RKEEP stores results from a linear, generalized linear, generalized additive, or nonlinear model. RKESTIMATES saves estimates and other information about individual terms in a regression analysis. RLASSO performs lasso using iteratively reweighted least-squares. RLFUNCTIONAL fits a linear functional relationship model RLIFETABLE calculates the life-table estimate of the survivor function. RMGLM fits a model where different units follow different generalized linear models. RMULTIVARIATE performs multivariate linear regression with accumulated tests. RNEGBINOMIAL fits a negative binomial generalized linear model estimating the aggregation parameter. RNONNEGATIVE fits a generalized linear model with nonnegativity constraints. ROBSSPM forms robust estimates of sum-of-squares-and-products matrices. ROTATE does a Procrustes rotation of one configuration of points to fit another. RPAIR gives t-tests for all pairwise differences of means from a regression or generalized linear model. RPARALLEL carries out analysis of parallelism for nonlinear functions. RPERMTEST does random permutation tests for regression or generalized-linear-model analyses RPHCHANGE modifies a proportional hazards model fitted by RPHFIT. RPHDISPLAY prints output for a proportional hazards model fitted by RPHFIT. RPHFIT fits the proportional hazards model to survival data as a generalized linear model. RPHKEEP saves information from a proportional hazards model fitted by RPHFIT. RPHVECTORS forms vectors for fitting proportional hazards data as a generalized linear model. RPOWER calculates the power (probability of detection) for regression models.

RPROPORTIONAL fits the proportional hazards model to survival data as a generalized linear model. ROLINEAR fits and plots quantile regressions for linear models. RQNONLINEAR fits and plots quantile regressions for nonlinear models. RQSMOOTH fits and plots quantile regressions for loess or spline models. RQUADRATIC fits a quadratic surface and estimates its stationary point. RRETRIEVE retrieves a regression save structure from an external file. RSCHNUTE fits a general 4 parameter growth model to a non-decreasing Y-variate. RSCREEN performs screening tests for generalized or multivariate linear models. RSEARCH helps search through models for a regression or generalized linear model. RSPREADSHEET puts results from a regression, generalized linear or nonlinear model into Genstat spreadsheets. RSTEST compares groups of right-censored survival data by nonparametric tests. RSTORE stores a regression save structure in an external file. RSURVIVAL models survival times of exponential, Weibull, extreme-value, log-logistic or lognormal distributions. RTCOMPARISONS calculates comparison contrasts within a multi-way table of means. RUGPLOT draws "rugplots" to display the distribution of one or more samples. RUNTEST performs a test of randomness of a sequence of observations. RWALD calculates Wald and F tests for dropping terms from a regression. RXGENSTAT submits a set of commands externally to R and reads the output. RYPARALLEL fits the same regression model to several response variates, and collates the output. ROINFLATED fits zero-inflated regression models to count data with excess zeros. ROKEEP saves information from a zero-inflated regression model for count data with excess zeros fitted by ROINFLATED. R2LINES fits two-straight-line (broken-stick) models to data SAGRAPES produces statistics and graphs for checking sensory panel performance. SAMPLE samples from a set of units, possibly stratified by factors. SBNTEST calculates the sample size for binomial tests. SCALAR declares one or more scalar data structures. SCORRELATION calculates the sample size to detect specified correlations. SDISCRIMINATE selects the best set of variates to discriminate between groups. SEDLSI calculates least significant intervals. SED2ESE calculates effective standard errors that give good approximate sed's. SET sets details of the "environment" of a Genstat job. SETALLOCATIONS runs through all ways of allocating a set of objects to subsets. SETCALCULATE performs Boolean set calculations on the contents of vectors or pointers. SETDEVICE opens a graphical file and specifies the device number on basis of its extension. SETNAME sets the identifier of a data structure to be one specified in a text. SETOPTION sets or modifies defaults of options of Genstat directives or procedures. SETPARAMETER sets or modifies defaults of parameters of Genstat directives or procedures. SETRELATE compares two sets of values in two data structures. SET2FORMULA forms a model formula using structures supplied in a pointer. SHELLEXECUTE launches executables or opens files in another application using their file extension. SIGNTEST performs a one or two sample sign test. SIMPLEX searches for the minimum of a function using the Nelder-Mead algorithm. SKEWSYMMETRY provides an analysis of skew-symmetry for an asymmetric matrix. SKIP skips lines in input or output files. SLCONCORDANCE calculates the sample size for Lin's concordance coefficient. SMANNWHITNEY calculates sample sizes for the Mann-Whitney test. SMCNEMAR calculates sample sizes for McNemar's test. SMOOTHSPECTRUM forms smoothed spectrum estimates for univariate time series. SOM declares a self-organizing map. SOMADJUST performs adjustments to the weights of a self-organizing map. SOMDESCRIBE summarizes values of variables at nodes of a self-organizing map. SOMESTIMATE estimates the weights for self-organizing maps.

SOMIDENTIFY allocates samples to nodes of a self-organizing map.

SOMPREDICT makes predictions using a self-organizing map. SORT sorts units of vectors according to an index vector. SPCAPABILITY calculates capability statistics. SPCCHART plots c or u charts representing numbers of defective items. SPCOMBINE combines spreadsheet and data files, without reading them into Genstat. SPCUSUM prints CUSUM tables for controlling a process mean. SPEARMAN calculates Spearman's rank correlation coefficient. SPEWMA plots exponentially weighted moving-average control charts. SPLINE calculates a set of basis functions for M-, B- or I-splines. SPLOAD loads Genstat spreadsheet files. SPPCHART plots p or np charts for binomial testing for defective items. SPNTEST calculates the sample size for a Poisson test. SPRECISION calculates the sample size to obtain a specified precision. SPSHEWHART plots control charts for mean and standard deviation or range. SPSYNTAX puts details about the syntax of commands into a spreadsheet. SSIGNTEST calculates the sample size for a sign test. SSPM declares one or more SSPM data structures. STACK combines several data sets by "stacking" the corresponding vectors. STANDARDIZE standardizes columns of a data matrix to have mean zero and variance one. STEEL performs Steel's many-one rank test. STEM produces a simple stem-and-leaf chart. STEP selects terms to include in or exclude from a linear, generalized linear, or generalized additive model according to the ratio of residual mean squares. STOP ends a Genstat program. STORE to store structures in a subfile of a backing-store file. STRUCTURE defines a compound data structure. STTEST calculates the sample size for t-tests (including equivalence tests). SUBSET forms vectors containing subsets of the values in other vectors. SUSPEND suspends execution of Genstat to carry out commands in the operating system. This directive may not be available on some computers. SVBOOT bootstraps data from random surveys. SVCALIBRATE performs generalized calibration of survey data. SVD calculates singular value decompositions of matrices. SVGLM fits generalized linear models to survey data. SVHOTDECK performs hot-deck and model-based imputation for survey data. SVMERGE merges strata prior to survey analysis. SVMFIT fits a support vector machine. SVMPREDICT forms the predictions using a support vector machine. SVREWEIGHT modifies survey weights, adjusting other weights to ensure that their overall sum remains unchanged. SVSAMPLE constructs stratified random samples. SVSTRATIFIED analyses stratified random surveys by expansion or ratio raising. SVTABULATE tabulates data from random surveys, including multistage surveys and surveys with unequal probabilities of selection. SVWEIGHT forms survey weights. SWITCH adds terms to, or drops them from a linear, generalized linear, generalized additive, or nonlinear model. SYMMETRICMATRIX declares one or more symmetric matrix data structures. SYNTAX obtains details of the syntax of a command and the source code of a procedure. TABINSERT inserts the contents of a sub-table into a table. TABLE declares one or more table data structures. TABMODE forms summary tables of modes of values TABSORT sorts tables so their margins are in ascending or descending order. TABTABLE opens a tabbed-table spreadsheet in the Genstat client.

TABULATE forms summary tables of variate values.

TALLY forms a simple tally table of the distinct values in a vector.

TCOMBINE combines several tables into a single table.

TDISPLAY displays further output after an analysis by TFIT.

TENSORSPLINE calculates design matrices to fit a tensor-spline surface as a linear mixed model.

TERMS specifies a maximal model, containing all terms to be used in subsequent linear, generalized linear, generalized additive, and nonlinear models.

TEXT declares one or more text data structures.

TFILTER filters time series by time-series models.

TFIT estimates parameters in Box-Jenkins models for time series.

TFORECAST forecasts future values of a time series.

THINPLATE calculates the basis functions for thin-plate splines.

TKEEP saves results after an analysis by TFIT.

TOBIT performs a Tobit linear mixed model analysis on data with fixed-threshold censoring.

TRANSFERFUNCTION specifies input series and transfer-function models for subsequent estimation of a model for an output series.

TREATMENTSTRUCTURE specifies the treatment terms to be fitted by subsequent ANOVA statements. TREE declares a tree, & initializes it to have a single node known as the root.

TRELLIS does a trellis plot.

TRY displays results of single-term changes to a linear, generalized linear, or generalized additive model.

 $\ensuremath{\mathbb{TSM}}$ declares one or more TSM data structures.

TSUMMARIZE displays characteristics of time series models.

TTEST performs a one- or two-sample t-test.

TUKEYBIWEIGHT estimates means using the Tukey biweight algorithm.

TVARMA fits a vector autoregressive moving average (VARMA) model.

TVFORECAST forecasts future values from a vector autoregressive moving average (VARMA) model.

TVGRAPH plots a vector autoregressive moving average (VARMA) model.

TXBREAK breaks up a text structure into individual words.

TXCONSTRUCT forms a text structure by appending or concatenating values of scalars, variates, texts, factors, pointers or formulae; allows the case of letters to be changed or values to be truncated and reversed.

TXFIND finds a subtext within a text structure.

TXINTEGERCODES converts textual characters to and from their corresponding integer codes.

TXPAD pads strings of a text structure with extra characters so that their lengths are equal.

TXPOSITION locates strings within the lines of a text structure.

TXPROGRESSION forms a text containing a progression of strings.

TXREPLACE replaces a subtext within a text structure.

TXSPLIT splits a text into individual texts, at positions on each line marked by separator character(s). TX2VARIATE converts text structures to variates.

T%CONTROL expresses tables as percentages of control cells.

UNITS defines an auxiliary vector of labels and/or the length of any vector whose length is not defined when a statement needing it is executed.

UNSTACK splits vectors into individual vectors according to levels of a factor.

UTMCONVERSION converts between geographical latitude and longitude coordinates and UTM eastings and northings.

VABLOCKDESIGN analyses an incomplete-block design by REML, allowing automatic selection of random and spatial covariance models.

VAIC calculates the Akaike and Schwarz (Bayesian) information coefficients for REML.

VALINEBYTESTER provides combinabilities and deviances for a line-by-tester trial analysed by VABLOCKDESIGN or VAROWCOLUMNDESIGN.

VALLSUBSETS fits all subsets of the fixed terms in a REML analysis.

VAMETA performs a REML meta analysis of a series of trials.

VAOPTIONS defines options for the fitting of models by VARANDOM and associated procedures.

VARANDOM finds the best REML random model from a set of models defined by VFMODEL.

VARECOVER recovers when REML, is unable to fit a model, by simplifying the random model.

VARIATE declares one or more variate data structures.

VAROWCOLUMNDESIGN analyses a row-and-column design by REML, with automatic selection of the best

random and spatial covariance model.

VASDISPLAY displays further output from an analysis by VASERIES.

VASERIES analyses a series of trials with incomplete-block or row-and-column designs by REML, automatically selecting the best random models.

VASKEEP copies information from an analysis by VASERIES into Genstat data structures.

VASMEANS saves experiment × treatment means from analysis of a series of trials by VASERIES.

VAYPARALLEL does the same REML analysis for several y-variates, and collates the output.

VBOOTSTRAP performs a parametric bootstrap of the fixed effects in a REML analysis.

 ${\tt VCHECK}\ checks\ standardized\ residuals\ from\ a\ {\tt REML}\ analysis.$

VCOMPONENTS defines the variance-components model for REML.

VCRITICAL uses a parametric bootstrap to estimate critical values for a fixed term in a REML analysis. VCYCLE controls details of the REML algorithm.

VDEFFECTS plots one- or two-way tables of effects estimated in a REML analysis.

VDFIELDRESIDUALS display residuals from a REML analysis in field layout.

VDISPLAY displays further output from a REML analysis.

VEQUATE equates values across a set of structures.

 ${\tt VFIXEDTESTS}$ saves fixed tests from a ${\tt REML}$ analysis.

VFLC performs an F-test of random effects in a linear mixed model based on linear combinations of the responses, i.e. an FLC test.

VFMODEL forms a model-definition structure for a REML analysis.

VFPEDIGREE checks and prepares pedigree information from several factors, for use by VPEDIGREE and REML.

VFRESIDUALS obtains residuals, fitted values and their standard errors from a REML analysis.

VFSTRUCTURE adds a covariance-structure definition to a REML model-definition structure.

VFUNCTION calculates functions of variance components from a REML analysis.

VGESELECT selects the best variance-covariance model for a set of environments.

VGRAPH plots tables of means from REML.

VHERITABILITY calculates generalized heritability for a random term in a REML analysis.

VHOMOGENEITY tests homogeneity of variances and variance-covariance matrices.

VINTERPOLATE performs linear & inverse linear interpolation between variates.

VKEEP copies information from a REML analysis into Genstat data structures.

VLINEBYTESTER analyses a line-by-tester trial by REML.

VLSD prints approximate least significant differences for REML means.

VMATRIX copies values and row/column labels from a matrix to variates or texts.

VMCOMPARISON performs pairwise comparisons between REML means.

VMETA performs a multi-treatment meta analysis using summary results from individual experiments.

VMODEL specifies the model for a REML analysis using a model-definition structure defined by VFMODEL.

VNEARESTNEIGHBOUR analyses a field trial using nearest neighbour analysis.

VORTHPOLYNOMIAL forms orthogonal polynomials over time for repeated measures.

VPEDIGREE generates an inverse relationship matrix for use when fitting animal or plant breeding models by REML.

VPERMTEST does random permutation tests for the fixed effects in a REML analysis.

VPLOT plots residuals from a REML analysis.

VPOWER uses a parametric bootstrap to estimate the power (probability of detection) for terms in a REML analysis.

VPREDICT forms predictions from a REML model.

VRACCUMULATE forms a summary accumulating the results of a sequence of REML random models.

VRADD adds terms from a REML fixed model into a Genstat regression.

VRCHECK checks effects of a random term in a REML analysis.

VRDISPLAY displays output for a REML fixed model fitted in a Genstat regression.

VRDROP drops terms in a REML fixed model from a Genstat regression.

VREGRESS performs regression across variates.

VRESIDUAL defines the residual term for a REML model.

VRFIT fits terms from a REML fixed model in a Genstat regression.

VRKEEP saves output for a REML fixed model fitted in a Genstat regression.

VRMETAMODEL forms the random model for a REML meta analysis.

VRPERMTEST performs permutation tests for random terms in REML analysis.

VRSETUP sets up Genstat regression to assess terms from a REML fixed model.

VRSWITCH adds or drops terms from a REML fixed model in a Genstat regression.

- VRTRY tries the effect of adding and dropping individual terms from a REML fixed model in a Genstat regression.
- VSAMPLESIZE estimates the replication to detect a fixed term or contrast in a REML analysis, using parametric bootstrap.
- VSCREEN performs screening tests for fixed terms in a REML analysis.
- VSOM analyses a simple REML variance components model for outliers using a variance shift outlier model.
- VSPECTRALCHECK forms the spectral components from the canonical components of a multitiered design, and constrains any negative spectral components to zero.
- VSPREADSHEET saves results from a REML analysis in a spreadsheet.
- VSTATUS prints the current model settings for REML.

VSTRUCTURE defines a variance structure for random effects in a REML model.

VSUMMARY summarizes a variate, with classifying factors, into a data matrix of variates and factors.

VSURFACE fits a 2-dimensional spline surface using REML, and estimates its extreme point.

VTABLE forms a variate and set of classifying factors from a table.

VTCOMPARISONS calculates comparison contrasts within a multi-way table of predicted means from a REML analysis.

VUVCOVARIANCE forms the unit-by-unit variance-covariance matrix for specified variance components in a REML model.

WADLEY fits models for Wadley's problem, allowing alternative links and errors.

WILCOXON performs a Wilcoxon Matched-Pairs (Signed-Rank) test.

WINDROSE plots rose diagrams of circular data like wind speeds.

WORKSPACE accesses private data structures for use in procedures.

WSTATISTIC calculates the Shapiro-Wilk test for Normality.

XAXIS defines the x-axis in each window for high-resolution graphics.

XOCATEGORIES performs analyses of categorical data from cross-over trials.

XOEFFICIENCY calculates efficiency of estimating effects in cross-over designs.

XOPOWER estimates the power of contrasts in cross-over designs.

YAXIS defines the y-axis in each window for high-resolution graphics.

YTRANSFORM estimates the parameter lambda of a single parameter transformation.

ZAXIS defines the z-axis in each window for high-resolution graphics.

%CD changes the current directory.

%CLOSE closes the binary file opened by %OPEN.

%FPOSITION returns the current position in the binary file opened by %OPEN.

%LOG adds text into the Input Log window in the Genstat client.

 ${\rm MESSAGEBOX}$ displays text in a dialog in the Genstat client.

SOPEN open a binary file for use with SWRITE.

%SLEEP pauses execution of the server for a time specified in seconds.

STEMPFILE creates a unique temporary file in the Genstat temporary folder.

SWRITE writes values of data structures to a binary file opened by SOPEN.