
Genstat®

Directives

www.vsni.co.uk

Genstat® Reference Manual (Release 22)

Part 2: Directives

Genstat Release 22 was developed by VSN International Ltd, in collaboration with practising

statisticians at Rothamsted and other organisations in Britain, Australia, New Zealand and The

Netherlands.

Published by: VSN International, 2 Amberside, Wood Lane,

Hemel Hempstead, Hertfordshire HP2 4TP, UK

E-mail: info@genstat.co.uk

Website: http://www.genstat.co.uk/

First published 1996, as the Genstat 5 Release 3.2 Command Language Manual

This edition published 2022, for Genstat Release 22

Citation: VSN International (2022). Genstat Reference Manual

(Release 22), Part 2 Directives. VSN International, Hemel

Hempstead, UK.

Genstat is a registered trade of VSN International. All rights reserved.

© 2022 VSN International

Contents

List of directives in Release 22. 1

ADD. 7

ADDPOINTS. 9

ADISPLAY. 10

AFMINABERRATION. 12

AFRESPONSESURFACE. 14

AGRCRESOLVABLE. 17

AKEEP.. 20

ANOVA. 27

ASRULES. 33

ASSIGN. 35

AXES. 37

AXIS. 41

BARCHART. 44

BASSESS.. 47

BCUT.. 50

BGROW.. 51

BIDENTIFY.. 52

BJOIN. 54

BLOCKSTRUCTURE. 55

BREAK. 58

CALCULATE. 59

CALLS. 64

CAPTION. 65

CASE. 66

CATALOGUE. 68

CLOSE. 69

CLUSTER. 70

COKRIGE. 73

COLOUR. 77

COMBINE. 79

COMMANDINFORMATION.. 81

CONCATENATE. 82

CONTOUR. 84

COPY. 86

CORRELATE. 87

COUNTER.. 90

COVARIATE.. 91

CVA. 94

DBITMAP. 97

DCLEAR. 99

DCONTOUR. 100

DDISPLAY. 103

DEBUG. 104

DECLARE. 105

DELETE.. 106

DEVICE. 108

DFINISH. 110

DFONT. 111

DGRAPH. 112

DHISTOGRAM. 117

DIAGONALMATRIX. 121

DISPLAY.. 123

DISTRIBUTION. 124

DKEEP.. 129

DLOAD. 131

DPIE.. 132

DREAD. 134

DROP. 137

DSAVE. 139

DSHADE. 140

DSTART. 142

DSURFACE. 143

DUMMY. 146

DUMP. 147

DUPLICATE. 149

D3GRAPH. 151

D3HISTOGRAM. 154

EDIT. 156

ELSE. 160

ELSIF. 161

ENDBREAK. 162

ENDCASE. 163

ENDDEBUG. 164

ENDFOR. 165

ENDIF. 166

ENDJOB. 167

ENDPROCEDURE. 168

ENQUIRE. 169

EQUATE. 171

ESTIMATE. 173

EXECUTE. 179

EXIT. 180

EXPRESSION. 183

EXTERNAL.. 185

FACROTATE. 187

FACTOR. 189

FARGUMENTS.. 191

FAULT.. 192

FCA. 193

FCLASSIFICATION. 196

FCOPY.. 199

FCOVARIOGRAM. 200

FDELETE. 203

FILTER. 204

FIT. 206

FITCURVE. 211

FITNONLINEAR.. 215

FKEY. 221

FLRV. 225

FOR. 228

FORECAST. 231

FORMULA. 234

FOURIER.. 235

FPSEUDOFACTORS. 239

FRAME. 241

FRENAME.. 244

FRQUANTILES.. 245

FSIMILARITY. 247

FSSPM. 251

FTSM. 252

FVARIOGRAM. 255

iv Contents

GENERATE.. 257

GET. 260

GETLOCATIONS. 264

GETATTRIBUTE. 266

GRAPH. 268

GROUPS. 272

HCLUSTER. 275

HDISPLAY. 277

HELP. 279

HISTOGRAM. 280

HLIST. 283

HREDUCE.. 285

HSUMMARIZE. 287

IF. 288

INPUT. 290

INTERPOLATE.. 291

IRREDUNDANT. 293

JOB. 298

KRIGE. 300

LIST. 304

LPCONTOUR. 306

LPGRAPH. 308

LPHISTOGRAM. 312

LRV. 315

MARGIN. 317

MATRIX. 318

MCOVARIOGRAM. 320

MDS. 323

MERGE. 326

MODEL. 328

MONOTONIC. 332

NAG. 333

NNDISPLAY. 335

NNFIT. 336

NNPREDICT. 339

OPEN. 340

OPTION. 344

OR. 347

OUTPUT. 348

OWN. 349

PAGE. 351

PARAMETER. 352

PASS. 354

PCO. 357

PCORELATE.. 360

PCP. 362

PEN. 365

POINTER.. 375

PREDICT. 378

PRINT. 383

PROCEDURE. 395

QDIALOG. 398

QRD. 401

RANDOMIZE. 402

RBDISPLAY. 404

RBFIT. 405

RBPREDICT. 408

RCYCLE. 409

RDISPLAY. 411

READ.. 413

RECORD. 423

REDUCE. 424

REFORMULATE. 426

RELATE. 427

REML.. 429

RENAME.. 434

RESTRICT.. 436

RESUME. 438

RETRIEVE. 439

RETURN. 442

RFUNCTION.. 444

RKEEP. 446

RKESTIMATES. 452

ROTATE. 454

SCALAR. 456

SET. 458

SETALLOCATIONS.. 464

SETCALCULATE. 466

SETOPTION. 468

SETPARAMETER. 469

SETRELATE. 470

SET2FORMULA. 472

SHELLEXECUTE. 473

SKIP. 474

SORT. 475

SPLOAD. 476

SSPM. 478

STEP. 480

STOP. 482

STORE. 483

STRUCTURE. 486

SUSPEND. 488

SVD. 489

SWITCH. 491

SYMMETRICMATRIX. 493

SYNTAX. 495

TABLE.. 497

TABULATE.. 500

TDISPLAY. 505

TERMS. 506

TEXT. 509

TFILTER. 511

TFIT. 513

TFORECAST.. 519

TKEEP. 522

TRANSFERFUNCTION. 524

TREATMENTSTRUCTURE. 526

TREE. 528

TRY. 530

TSM. 532

TSUMMARIZE. 536

TXBREAK.. 538

TXCONSTRUCT.. 539

TXFIND. 542

Contents v

TXINTEGERCODES. 544

TXPOSITION. 545

TXREPLACE.. 547

TX2VARIATE.. 549

UNITS. 551

VARIATE. 553

VCOMPONENTS. 555

VCYCLE. 558

VDISPLAY. 560

VKEEP.. 562

VPEDIGREE. 567

VPREDICT. 569

VRESIDUAL. 572

VSTATUS. 574

VSTRUCTURE. 575

WORKSPACE. 582

XAXIS. 583

YAXIS. 588

ZAXIS. 591

%CD.. 594

%OPEN. 595

%FPOSITION. 596

%LOG. 597

%MESSAGEBOX. 598

%OPEN. 599

%SLEEP.. 600

%TEMPFILE. 601

%WRITE. 602

Index.. 604

Conventions

Genstat system words are shown in the Courier typeface e.g. CALCULATE. In the general form

of each statement, elements of the language to be substituted by the user are in italics, e.g.

variate. New directives in Release 22, or options and parameters of existing directives that have

been modified in Release 22, are marked by the symbol †.

List of directives in Release 22 1

List of directives in Release 22

ADD adds extra terms to a linear, generalized linear, generalized additive, or nonlinear model.

ADDPOINTS adds points for new objects to a principal coordinates analysis.

ADISPLAY displays further output from analyses produced by ANOVA.

AFMINABERRATION forms minimum aberration factorial or fractional-factorial designs.

AFRESPONSESURFACE uses the BLKL algorithm to construct designs for estimating response

surfaces.

AGRCRESOLVABLE forms doubly resolvable row-column designs.

AKEEP copies information from an ANOVA analysis into Genstat data structures.

ANOVA analyses y-variates by analysis of variance according to the model defined by earlier

BLOCKSTRUCTURE, COVARIATE, and TREATMENTSTRUCTURE statements.

ASRULES derives association rules from transaction data.

ASSIGN sets elements of pointers and dummies.

AXES defines the axes in each window for high-resolution graphics.

AXIS defines an oblique axis for high-resolution graphics.

BARCHART plots bar charts in high-resolution graphics.

BASSESS assesses potential splits for regression and classification trees.

BCUT cuts a tree at a defined node, discarding nodes and information below it.

BGROW adds new branches to a node of a tree.

BIDENTIFY identifies specimens using a tree.

BJOIN extends a tree by joining another tree to a terminal node.

BLOCKSTRUCTURE defines the blocking structure of the design and hence the strata and the

error terms.

BREAK suspends execution of the statements in the current channel or control structure and

takes subsequent statements from the channel specified.

CALCULATE calculates numerical values for data structures.

CALLS lists library procedures called by a procedure.

CAPTION prints captions in standardized formats.

CASE introduces a "multiple-selection" control structure.

CATALOGUE displays the contents of a backing-store file.

CLOSE closes files.

CLUSTER forms a non-hierarchical classification.

COKRIGE calculates kriged estimates using a model fitted to the sample variograms and

cross-variograms of a set of variates.

COLOUR defines the red, green and blue intensities to be used for the Genstat colours with

certain graphics devices.

COMBINE combines or omits "slices" of a multi-way data structure (table, matrix, or variate).

COMMANDINFORMATION provides information about whether (and how) a command has been

implemented.

CONCATENATE concatenates and truncates lines (units) of text structures; allows the case of

letters to be changed.

CONTOUR is a synonym for LPCONTOUR.

COPY forms a transcript of a job.

CORRELATE forms correlations between variates, autocorrelations of variates, and lagged

cross-correlations between variates.

COVARIATE specifies covariates for use in subsequent ANOVA statements.

CVA performs canonical variates analysis.

DBITMAP plots a bit map of RGB colours.

DCLEAR clears a graphics screen.

DCONTOUR draws contour plots on a plotter or graphics monitor.

2 List of directives in Release 21

DDISPLAY redraws the current graphical display.

DEBUG puts an implicit BREAK statement after the current statement and after every

NSTATEMENTS subsequent statements, until an ENDDEBUG is reached.

DECLARE declares one or more customized data structures.

DELETE deletes the attributes and values of structures.

DEVICE switches between (high-resolution) graphics devices.

DFINISH ends a sequence of related high-resolution plots.

DGRAPH draws graphs on a plotter or graphics monitor.

DHISTOGRAM draws histograms on a plotter or graphics monitor.

DIAGONALMATRIX declares one or more diagonal matrix data structures.

DISPLAY prints, or reprints, diagnostic messages.

DISTRIBUTION estimates the parameters of continuous and discrete distributions.

DKEEP saves information from the last plot on a particular device.

DLOAD loads the graphics environment settings from an external file.

DPIE draws a pie chart on a plotter or graphics monitor.

DREAD reads the locations of points from an interactive graphical device.

DROP drops terms from a linear, generalized linear, generalized additive, or nonlinear model.

DSAVE saves the current graphics environment settings to an external file.

DSHADE plots a shade diagram of 3-dimensional data.

DSTART starts a sequence of related high-resolution plots.

DSURFACE produces perspective views of a two-way arrays of numbers.

DUMMY declares one or more dummy data structures.

DUMP prints information about data structures, and internal system information.

DUPLICATE forms new data structures with attributes taken from an existing structure.

D3GRAPH plots a 3-dimensional graph.

D3HISTOGRAM plots three-dimensional histograms.

EDIT edits text vectors.

ELSE introduces the default set of statements in block-if or in multiple-selection control

structures.

ELSIF introduces a set of alternative statements in a block-if control structure.

ENDBREAK returns to the original channel or control structure and continues execution.

ENDCASE indicates the end of a "multiple-selection" control structure.

ENDDEBUG cancels a DEBUG statement.

ENDFOR indicates the end of the contents of a loop.

ENDIF indicates the end of a block-if control structure.

ENDJOB ends a Genstat job.

ENDPROCEDURE indicates the end of the contents of a Genstat procedure.

ENQUIRE provides details about files opened by Genstat.

EQUATE transfers data between structures of different sizes or types (but the same modes i.e.

numerical or text) or where transfer is not from single structure to single structure.

ESTIMATE is a synonym for TFIT.

EXECUTE executes the statements contained within a text.

EXIT exits from a control structure.

EXPRESSION declares one or more expression data structures.

EXTERNAL declares an external function in a DLL for use by the OWN function.

FACROTATE rotates factor loadings from a principal components, canonical variates or factor

analysis.

FACTOR declares one or more factor data structures.

FARGUMENTS forms lists of arguments involved in an expression.

FAULT checks whether to issue a diagnostic, i.e. a fault, warning or message.

FCA performs factor analysis.

List of directives in Release 22 3

FCLASSIFICATION forms a classification set for each term in a formula, breaks a formula up

into separate formulae (one for each term), and applies a limit to the number of factors and

variates in the terms of a formula.

FCOPY makes copies of files.

FCOVARIOGRAM forms a covariogram structure containing auto-variograms of individual

variates and cross-variograms for pairs from a list of variates.

FDELETE deletes files.

FILTER is a synonym for TFILTER.

FIT fits a linear, generalized linear, generalized additive, or generalized nonlinear model.

FITCURVE fits a standard nonlinear regression model.

FITNONLINEAR fits a nonlinear regression model or optimizes a scalar function.

FKEY forms design keys for multi-stratum experimental designs, allowing for confounded and

aliased treatments.

FLRV forms the values of LRV structures.

FOR introduces a loop; subsequent statements define the contents of the loop, which is

terminated by the directive ENDFOR.

FORECAST is a synonym for TFORECAST.

FORMULA declares one or more formula data structures.

FOURIER calculates cosine or Fourier transforms of real or complex series.

FPSEUDOFACTORS determines patterns of confounding and aliasing from design keys, and

extends the treatment model to incorporate the necessary pseudo-factors.

FRAME defines the positions and appearamce of the plotting windows within the frame of a

high-resolution graph.

FRENAME renames files.

FRQUANTILES forms regression quantiles.

FSIMILARITY forms a similarity matrix or a between-group-elements similarity matrix or

prints a similarity matrix.

FSSPM forms the values of SSPM structures.

FTSM forms preliminary estimates of parameters in time-series models.

FVARIOGRAM forms experimental variograms.

GENERATE generates factor values for designed experiments.

GET accesses details of the "environment" of a Genstat job.

GETATTRIBUTE accesses attributes of structures.

GETLOCATIONS finds locations of an identifier within a pointer, or a string within a factor or

text, or a number within any numerical data structure.

GRAPH is a synonym for LPGRAPH.

GROUPS forms a factor (or grouping variable) from a variate or text, together with the set of

distinct values that occur.

HCLUSTER performs hierarchical cluster analysis.

HDISPLAY displays results ancillary to hierarchical cluster analyses: matrix of mean

similarities between and within groups, a set of nearest neighbours for each unit, a

minimum spanning tree, and the most typical elements from each group.

HELP provides help information about Genstat.

HISTOGRAM is a synonym for LPHISTOGRAM.

HLIST lists the data matrix in abbreviated form.

HREDUCE forms a reduced similarity matrix (referring to the GROUPS instead of the original

units).

HSUMMARIZE forms and prints a group by levels table for each test together with appropriate

summary statistics for each group.

IF introduces a block-if control structure.

INPUT specifies the input file from which to take further statements.

4 List of directives in Release 21

INTERPOLATE interpolates values at intermediate points.

IRREDUNDANT forms irredundant test sets for the efficient identification of a set of objects.

JOB starts a Genstat job.

KRIGE calculates kriged estimates using a model fitted to the sample variogram.

LIST lists details of the data structures currently available within Genstat.

LPCONTOUR produces contour maps of two-way arrays of numbers using character (i.e. line-

printer) graphics.

LPGRAPH produces point and line plots using character (i.e. line-printer) graphics.

LPHISTOGRAM produces histograms using character (i.e. line-printer) graphics.

LRV declares one or more LRV data structures.

MARGIN forms and calculates marginal values for tables.

MATRIX declares one or more matrix data structures.

MCOVARIOGRAM fits models to sets of variograms and cross-variograms.

MDS performs non-metric multidimensional scaling.

MERGE copies subfiles from backing-store files into a single file.

MODEL defines the response variate(s) and the type of model to be fitted for linear,

generalized linear, generalized additive, and nonlinear models.

MONOTONIC fits an increasing monotonic regression of y on x.

NAG calls an algorithm from the NAG Library.

NNDISPLAY displays output from a multi-layer perceptron neural network fitted by NNFIT.

NNFIT fits a multi-layer perceptron neural network.

NNPREDICT forms predictions from a multi-layer perceptron neural network fitted by NNFIT.

OPEN opens files.

OPTION defines the options of a Genstat procedure with information to allow them to be

checked when the procedure is executed.

OR introduces a set of alternative statements in a "multiple-selection" control structure.

OUTPUT defines where output is to be stored or displayed.

OWN does work specified in Fortran subprograms linked into Genstat by the user.

PAGE moves to the top of the next page of an output file.

PARAMETER defines the parameters of a Genstat procedure with information to allow them to

be checked when the procedure is executed.

PASS does work specified in subprograms supplied by the user, but not linked into Genstat.

This directive may not be available on some computers.

PCO performs principal coordinates analysis, also principal components and canonical

variates analysis (but with different weighting from that used in CVA) as special cases.

PCORELATE relates the observed values on a set of variables to the results of a principal

coordinates analysis.

PCP performs principal components analysis.

PEN defines the properties of "pens" for high-resolution graphics.

POINTER declares one or more pointer data structures.

PREDICT forms predictions from a linear or generalized linear model.

PRINT prints data in tabular format in an output file, unformatted file, or text.

PROCEDURE introduces a Genstat procedure.

QDIALOG produces a modal dialog box to obtain a response from the user.

QRD calculates QR decompositions of matrices.

RANDOMIZE randomizes the units of a designed experiment or the elements of a factor or

variate.

RBDISPLAY displays output from a radial basis function model fitted by RBFIT.

RBFIT fits a radial basis function model.

RBPREDICT forms predictions from a radial basis function model fitted by RBFIT.

RCYCLE controls iterative fitting of generalized linear, generalized additive, and nonlinear

List of directives in Release 22 5

models, and specifies parameters, bounds etc for nonlinear models.

RDISPLAY displays the fit of a linear, generalized linear, generalized additive, or nonlinear

model.

READ reads data from an input file, an unformatted file, or a text.

RECORD dumps a job so that it can later be restarted by a RESUME statement.

REDUCE is a synonym for HREDUCE.

REFORMULATE modifies a formula or an expression to operate on a different set of data

structures.

RELATE is a synonym for PCORELATE.

REML fits a variance-components model by residual (or restricted) maximum likelihood.

RENAME assigns new identifiers to data structures.

RESTRICT defines a restricted set of units of vectors for subsequent statements.

RESUME restarts a recorded job.

RETRIEVE retrieves structures from a subfile.

RETURN returns to a previous input stream (text vector or input channel).

RFUNCTION estimates functions of parameters of a nonlinear model.

RKEEP stores results from a linear, generalized linear, generalized additive, or nonlinear

model.

RKESTIMATES saves estimates and other information about individual terms in a regression

analysis.

ROTATE does a Procrustes rotation of one configuration of points to fit another.

SCALAR declares one or more scalar data structures.

SET sets details of the "environment" of a Genstat job.

SETALLOCATIONS runs through all ways of allocating a set of objects to subsets.

SETCALCULATE performs Boolean set calculations on the contents of vectors or pointers.

SETOPTION sets or modifies defaults of options of Genstat directives or procedures.

SETPARAMETER sets or modifies defaults of parameters of Genstat directives or procedures.

SETRELATE compares two sets of values in two data structures.

SET2FORMULA forms a model formula using structures supplied in a pointer.

SHELLEXECUTE launches executables or opens files in another application using their file

extension.

SKIP skips lines in input or output files.

SORT sorts units of vectors according to an index vector.

SPLOAD loads Genstat spreadsheet files.

SSPM declares one or more SSPM data structures.

STEP selects terms to include in or exclude from a linear, generalized linear, or generalized

additive model according to the ratio of residual mean squares.

STOP ends a Genstat program.

STORE to store structures in a subfile of a backing-store file.

STRUCTURE defines a compound data structure.

SUSPEND suspends execution of Genstat to carry out commands in the operating system. This

directive may not be available on some computers.

SVD calculates singular value decompositions of matrices.

SWITCH adds terms to, or drops them from a linear, generalized linear, generalized additive,

or nonlinear model.

SYMMETRICMATRIX declares one or more symmetric matrix data structures.

SYNTAX obtains details of the syntax of a command and the source code of a procedure.

TABLE declares one or more table data structures.

TABULATE forms summary tables of variate values.

TDISPLAY displays further output after an analysis by TFIT.

TERMS specifies a maximal model, containing all terms to be used in subsequent linear,

6 List of directives in Release 21

generalized linear, generalized additive, and nonlinear models.

TEXT declares one or more text data structures.

TFILTER filters time series by time-series models.

TFIT estimates parameters in Box-Jenkins models for time series.

TFORECAST forecasts future values of a time series.

TKEEP saves results after an analysis by TFIT.

TRANSFERFUNCTION specifies input series and transfer-function models for subsequent

estimation of a model for an output series.

TREATMENTSTRUCTURE specifies the treatment terms to be fitted by subsequent ANOVA

statements.

TREE declares a tree, & initializes it to have a single node known as the root.

TRY displays results of single-term changes to a linear, generalized linear, or generalized

additive model.

TSM declares one or more TSM data structures.

TSUMMARIZE displays characteristics of time series models.

TXBREAK breaks up a text structure into individual words.

TXCONSTRUCT forms a text structure by appending or concatenating values of scalars,

variates, texts, factors, pointers or formulae; allows the case of letters to be changed or

values to be truncated and reversed.

TXFIND finds a subtext within a text structure.

TXINTEGERCODES converts textual characters to and from their corresponding integer codes.

TXPOSITION locates strings within the lines of a text structure.

TXREPLACE replaces a subtext within a text structure.

TX2VARIATE converts text structures to variates.

UNITS defines an auxiliary vector of labels and/or the length of any vector whose length is

not defined when a statement needing it is executed.

VARIATE declares one or more variate data structures.

VCOMPONENTS defines the variance-components model for REML.

VCYCLE controls details of the REML algorithm.

VDISPLAY displays further output from a REML analysis.

VKEEP copies information from a REML analysis into Genstat data structures.

VPEDIGREE generates an inverse relationship matrix for use when fitting animal or plant

breeding models by REML.

VPREDICT forms predictions from a REML model.

VRESIDUAL defines the residual term for a REML model.

VSTATUS prints the current model settings for REML.

VSTRUCTURE defines a variance structure for random effects in a REML model

WORKSPACE accesses private data structures for use in procedures.

XAXIS defines the x-axis in each window for high-resolution graphics.

YAXIS defines the y-axis in each window for high-resolution graphics.

ZAXIS defines the z-axis in each window for high-resolution graphics.

%CD changes the current directory.

%CLOSE closes the binary file opened by %OPEN.

%FPOSITION returns the current position in the binary file opened by %OPEN.

%LOG adds text into the Input Log window in the Genstat client.

%MESSAGEBOX displays text in a dialog in the Genstat client.

%OPEN open a binary file for use with %WRITE.

%SLEEP pauses execution of the server for a time specified in seconds.

%TEMPFILE creates a unique temporary file in the Genstat temporary folder.

%WRITE writes values of data structures to a binary file opened by %OPEN.

ADD 7

ADD

Adds extra terms to a linear, generalized linear, generalized additive or nonlinear model.

Options

PRINT = string tokens What to print (model, deviance, summary,

estimates, correlations, fittedvalues,

accumulated, monitoring, confidence); default
mode, summ, esti

NONLINEAR = string token How to treat nonlinear parameters between groups

(common, separate, unchanged); default unch

CONSTANT = string token How to treat the constant (estimate, omit,

unchanged, ignore); default unch

FACTORIAL = scalar Limit for expansion of model terms; default * i.e. that in

previous TERMS statement

POOL = string token Whether to pool ss in accumulated summary between all

terms fitted in a linear model (yes, no); default no

DENOMINATOR = string token Whether to base ratios in accumulated summary on rms

from model with smallest residual ss or smallest residual

ms (ss, ms); default ss

NOMESSAGE = string tokens Which warning messages to suppress (dispersion,

leverage, residual, aliasing, marginality ,

df, inflation); default *

FPROBABILITY = string token Printing of probabilities for variance and deviance ratios

(yes, no); default no

TPROBABILITY = string token Printing of probabilities for t-statistics (yes, no); default
no

SELECTION = string tokens Statistics to be displayed in the summary of analysis

produced by PRINT=summary, seobservations is

relevant only for a Normally distributed response, and

%cv only for a gamma-distributed response

(%variance, %ss, adjustedr2, r2,

seobservations, dispersion, %cv,

%meandeviance, %deviance, aic, bic, sic); default

%var, seob if DIST=normal, %cv if DIST=gamma, and

disp for other distributions

PROBABILITY = scalar Probability level for confidence intervals for parameter

estimates; default 0.95

AOVDESCRIPTION = text Description for line in accumulated analysis of variance

(or deviance) table when POOL=yes

Parameter

formula List of explanatory variates and factors, or model

formula

Description

ADD adds terms to the current regression model, which may be linear, generalized linear,

generalized additive, standard curve or nonlinear. It is best to give a TERMS statement before

investigating sequences of models using ADD, in order to define a common set of units for the

models that are to be explored. If no model has been fitted since the TERMS statement, the current

model is taken to be the null model.

The model fitted by ADD will include a constant term if the previous model included one, and

8 Directives in Release 22

will not include one if the previous model did not. You can, however, change this using the

CONSTANT option.

The options of ADD are almost all the same as those of the FIT directive, and are described

there. There is also an extra option NONLINEAR. This is relevant when fitting curves. For

example, if we have a variate Dilution and a factor Solution, the program below will fit

parallel curves for the different solutions.

MODEL Density
TERMS Dilution * Solution
FITCURVE [PRINT=model,estimates; CURVE=logistic] \
 Dilution + Solution

If we then put

ADD Dilution.Solution

the curves are still constrained to have common nonlinear parameters, but all linear parameters

are estimated separately for each group. Alternatively, if we put

ADD [NONLINEAR=separate] Dilution.Solution

different nonlinear parameters will be estimated for each solution too; so only the information

about variability is pooled.

Options: PRINT, NONLINEAR, CONSTANT, FACTORIAL, POOL, DENOMINATOR, NOMESSAGE,

FPROBABILITY, TPROBABILITY, SELECTION, PROBABILITY, AOVDESCRIPTION.

Parameter: unnamed.

Action with RESTRICT

If a TERMS statement was given before fitting the model, any restrictions on the variates or

factors in the model will have been implemented then. So any restrictions on vectors involved

in the model specified by ADD will be ignored. If no TERMS statement has been given and ADD

introduces new terms into the model, restrictions on the variates or factors in these terms will

be taken into account and may cause the units involved in the regression to be redefined.

See also

Directives: MODEL, TERMS, FIT, FITCURVE, DROP, SWITCH, TRY.

Functions: COMPARISON, POL, REG, LOESS, SSPLINE.

Genstat Reference Manual 1 Summary section on: Regression analysis.

ADDPOINTS 9

ADDPOINTS

Adds points for new objects to a principal coordinates analysis.

Option

PRINT = string tokens Printed output required (coordinates, residuals);

default * i.e. no printing

Parameters

NEWDISTANCES = matrices Squared distances of the new objects from the original

points

LRV = LRVs Latent roots and vectors from the PCO analysis

CENTROID = diagonal matrices Centroid distances from the PCO analysis

COORDINATES = matrices Saves the coordinates of the additional points in the

space of the original points

RESIDUALS = matrices or variates Saves the residuals of the new objects from that space

Description

The input to ADDPOINTS is specified by the first three parameters. The NEWDISTANCES

parameter specifies an s×n matrix containing squared distances of the s new units from the n old

units. The LRV and CENTROID parameters specify structures defining the configuration of old

units; these have usually been produced by a PCO statement.

The PRINT option controls the printed output with settings:

coordinates to print the coordinates of the new points;

residuals to print the residual distances of the new units from the

coordinates in the space of the old units.

The other parameters can be used to save the results: the COORDINATES parameter allows you

to specify an s×k matrix to save the coordinates for the new units, and the residuals can be saved

in an s×1 matrix using the RESIDUALS parameter. The value k is determined by the

dimensionality of the input coordinates from the preceding PCO statement.

Option: PRINT.

Parameters: NEWDISTANCES, LRV, CENTROID, COORDINATES, RESIDUALS.

See also

Directives: PCO, PCORELATE.

Genstat Reference Manual 1 Summary section on: Multivariate and cluster analysis.

10 Directives in Release 22

ADISPLAY

Displays further output from analyses produced by ANOVA.

Options

PRINT = string tokens Output from the analyses of the y-variates, adjusted for

any covariates (aovtable, information,

covariates, effects, residuals, contrasts,

means, cbeffects, cbmeans, stratumvariances,

%cv, missingvalues); default * i.e. no printing

UPRINT = string tokens Output from the unadjusted analyses of the y-variates

(aovtable, information, effects, residuals,

contrasts, means, cbeffects, cbmeans,

stratumvariances, %cv, missingvalues); default * i.e.

no printing

CPRINT = string tokens Output from the analyses of the covariates, if any

(aovtable, information, effects, residuals,

contrasts, means, %cv, missingvalues); default *

i.e. no printing

CHANNEL = identifier Channel number of file, or identifier of a text to store

output; default current output file

PFACTORIAL = scalar Limit on number of factors in printed tables of means or

effects; default 9

PCONTRASTS = scalar Limit on order of printed contrasts; default 9

PDEVIATIONS = scalar Limit on number of factors in a treatment term whose

deviations from the fitted contrasts are to be printed;

default 9

FPROBABILITY = string token Printing of probabilities for variance ratios in the aov

table (yes, no); default no

PSE = string tokens Standard errors to be printed with tables of means,

PSE=* requests s.e.'s to be omitted (differences, lsd,

means); default diff

TWOLEVEL = string token Representation of effects in 2n experiments

(responses, Yates, effects); default resp

NOMESSAGE = string tokens Which warning messages to suppress (nonorthogonal,

residual); default *

LSDLEVEL = scalar Significance level (%) to use in the calculation of least

significant differences; default 5

Parameter

identifiers Save structure (from ANOVA) to provide details of each

analysis from which information is to be displayed; if

omitted, output is from the most recent ANOVA

Description

The ADISPLAY directive allows you to display further output from one or more analyses of

variance, without having to repeat all the calculations. You can store the information from each

analysis in a save structure, using ANOVA, and then specify the same structure in the SAVE

parameter of ADISPLAY. Several save structures can be listed, corresponding to the analyses of

several different variates. They need not all have been produced by the same ANOVA statement

nor even be from the same design. Alternatively, if you just want to display output from the last

y-variate that was analysed, you need not specify the SAVE parameter in either ANOVA or

ADISPLAY 11

ADISPLAY: the save structure for the last y-variate analysed is saved automatically, and provides

the default for ADISPLAY.

Apart from CHANNEL, all the options of ADISPLAY also occur with ANOVA and are described

there. CHANNEL can be set to a scalar to divert the output to another output channel.

Alternatively, it can specify the identifier of text data structure to store the output (and in fact

an undeclared structure will be defined as a text, automatically).

The other difference concerns the options for printed output. The default for PRINT with

ADISPLAY is different from that with ANOVA. You are most likely to use ADISPLAY when you

are working interactively, to examine one component of output at a time, and it is not obvious

that any one component will then be more popular than any other. So the default for ADISPLAY

produces no output (that is, PRINT=*). This also means that you do not need to suppress the

output explicitly when you are using UPRINT and CPRINT to examine components of output

from analysis of covariance. Also, the settings information, covariates, and

missingvalues have a slightly different effect with ANOVA than with ADISPLAY. As they are

part of the default specified for ANOVA, they will not produce any output unless there is

something definite to report. With ADISPLAY you need to request them explicitly, so Genstat

will always produce some sort of report. For example, putting

ADISPLAY [PRINT=missing]

when there are no missing values will simply tell you there are none.

Options: PRINT, UPRINT, CPRINT, CHANNEL, PFACTORIAL, PCONTRASTS, PDEVIATIONS,

FPROBABILITY, PSE, TWOLEVEL, NOMESSAGE, LSDLEVEL.

Parameter: unnamed.

See also

Directives: ANOVA, BLOCKSTRUCTURE, COVARIATE, TREATMENTSTRUCTURE, AKEEP.

Procedures: AGRAPH, APLOT, AMCOMPARISON, AMDUNNETT, APOLYNOMIAL,

ARESULTSUMMARY, AUDISPLAY, A2DISPLAY.

Genstat Reference Manual 1 Summary section on: Analysis of variance.

12 Directives in Release 22

AFMINABERRATION

Forms minimum aberration factorial or fractional-factorial designs.

Options

PRINT = string tokens Controls printed output (summary, keyblocks,

keydefining, monitoring); default *

NTIMES = scalar Number of designs to try in a random search; default 0

does the full search

SEED = scalar Seed for the random number generator used to search the

designs randomly; default 0

Parameters

LEVELS = scalars Number of levels of the treatment factors, must be a

power of a prime number

NTREATMENTFACTORS = scalars Number of treatment factors

NUNITS = scalars Number of units in each block of a block design or in the

principal block of a fractional factorial

NSUBUNITS = scalars Number of units in each (sub-)block

KEYBLOCKS = matrices Design key for the blocks and sub-blocks

KEYDEFINING = matrices Design key specifying the defining contrasts

RESOLUTION = scalars Saves the resolution of the design

ABERRATION = scalars Saves the aberration of the design

SUBRESOLUTION = scalars Saves the resolution of the sub-design

SUBABERRATION = scalars Saves the aberration of the sub-design

NDESIGN = scalars Saves or defines the design number

NSUBDESIGN = scalars Saves or defines the sub-design number

Description

The concept of minimum aberration provides an effective way of selecting either a full factorial

design where treatment contrasts are confounded with blocks, or a fractional factorial.

(Essentially, these are equivalent � the fractional factorial design is formed by taking only one

block of the full factorial.) The resolution of the design is defined as the largest integer r such

that no interaction term with r factors is confounded with blocks (or aliased). The aberration of

the design is the number of interaction terms with r+1 factors that are confounded (or aliased).

A minimum aberration design is a design with the smallest aberration out of the designs with the

highest available resolution. It is thus a design that is closest to the next level of resolution.

AFMINABERRATION searches for minimum aberration designs using the algorithm of Laycock

& Rowley (1995), and we gratefully acknowledge Patrick Laycock's assistance with the

implementation into Genstat. The number of treatment factors is specified by the NFACTORS

parameter. Their number of levels is specified by the LEVELS parameter. This must be an integer

power of a prime number. The number of units in each block (or the number of plots in the

equivalent fractional factorial) is specified by the NUNITS parameter, and must be a power of

LEVELS.

AFMINABERRATION can also form a sub-blocking factor that can be used to define blocks if

the design is to be used to form a fractional factorial. The number of units in each sub-block is

defined by the NSUBBLOCKS parameter (and again must be a power of LEVELS).

If there are very many designs to search, you may prefer to examine only a random selection.

The NTIMES option sets the number of designs to try; its default of zero requests the standard

(full) search. The SEED option sets the seed for the random numbers that are used to select the

designs randomly; the default of zero continues the existing sequence or (if none) initializes the

seed automatically. (Note that this version of the random number generator is shared with other

AFMINABERRATION 13

design construction algorithms, such as FKEY.)

Printed output is controlled by the PRINT option, with settings:

summary summarizes the design properties;

keyblocks prints a design key to generate the block and sub-block

factors from the treatment factor (or pseudo-factors to

generate them if they have more than p levels);

keydefining prints a design key specifying the defining contrasts i.e. all

the treatment contrasts confounded with blocks or sub-

blocks;

monitoring prints monitoring information about the design

construction.

You can save the design keys using the KEYBLOCKS and KEYDEFINING parameters. In

addition, the NDESIGN parameter can save a unique "design number" for the design, and the

NSUBDESIGN parameter can save a unique number for the sub-design of the design. You can

input these with NDESIGN and NSUBDESIGN later, along with the same settings for

NTREATMENTFACTORS, LEVELS, NUNITS and NSUBUNITS, to obtain the design keys without

repeating the design search. The RESOLUTION and ABERRATION parameters can save the

resolution and aberration of the (main) design, and the SUBRESOLUTION and SUBABERRATION

parameters can save the resolution and aberration of a sub-design.

Options: PRINT, NTIMES, SEED.

Parameters: LEVELS, NTREATMENTFACTORS, NUNITS, NSUBUNITS, KEYBLOCKS,

KEYDEFINING, RESOLUTION, ABERRATION, SUBRESOLUTION, SUBABERRATION, NDESIGN,

NSUBDESIGN.

Reference

Laycock, P.J. & Rowley, P.J. (1995). A method for generating and labelling all regular fractions

or blocks for qn�m designs. Journal of the Royal Statistical Society, Series B, 57, 191-204.

See also

Directives: AFRESPONSESURFACE, FKEY, FPSEUDOFACTORS.

Procedures: AGFACTORIAL, AKEY, ARANDOMIZE, ASAMPLESIZE, FACPRODUCT.

Genstat Reference Manual 1 Summary sections on: Design of experiments, Analysis of

variance.

14 Directives in Release 22

AFRESPONSESURFACE

Uses the BLKL algorithm to construct designs for estimating response surfaces.

Options

PRINT = string token Printed output required (monitoring); default * i.e. no

printing

TERMS = formula Model to be fitted when the design is used; no default

i.e. this option must be specified

CONSTANT = string token How to treat the constant in the model (estimate,

omit); default esti

FACTORIAL = scalar Limit for expansion of terms in the model; default 2

NUNITS = scalar Number of units (or trials) in the design

NDELETION = scalar Number of design points to consider for deletion; default

takes NUNITS/4, or 4 is this is larger

NINCLUSION = scalar Number of design points to consider for inclusion;

default takes NUNITS/4, or 4 is this is larger

NRUNS = scalar Number of times to run the algorithm; default 100

ADJUSTMENTSTEP = scalar Maximum amount by which to perturb the design points

in the adjustment algorithm; default * i.e. no adjustments

are tried

NBLOCKS = scalar Number of blocks; default 1 i.e. design not blocked

BLOCKFACTOR = factor Saves the block factor (if any) for the design

BLOCKSIZE = scalar or variate Number of units in each block of the design

PREVIOUSBLOCKS = factor Supplies values of the blocking factor for any previous

experiments that are to be included in the analysis of the

results of the design

MIXTURE = variates Lists any variates that are part of a mixture (their values

must be greater than zero and sum to one)

SEED = scalar Seed for random numbers used to construct the initial

design; default 124195

DETERMINANT = scalar Saves the determinant of the information matrix for the

best design

MEANGRID = scalar Saves the mean value of the standardized variance of

predictions obtained from the design over a grid of x-

values

MAXGRID = scalar Saves the maximum value of the standardized variance

of predictions obtained from the design over a grid of x-

values

NGRIDPOINTS = scalar Number of grid points in each x-direction to use for

MEANGRID and MAXGRID; default 5

Parameters

X = variates Lists the variates to be investigated in the design; these

need not be supplied if none of the other parameters are

required

X2 = variates Lists identifiers to be used to represent squares of the x-

variates in the model

X3 = variates Lists identifiers to be used to represent cubes of the x-

variates in the model

SUPPORTPOINTS = variates Support points for each x-variate in the design; if these

are not (all) specified, they are formed automatically

AFRESPONSESURFACE 15

PREVIOUSVALUES = variates Supplies values of the x-variates for any previous

experiments that are to be included in the analysis of the

results of the design

Description

AFRESPONSESURFACE uses the BLKL algorithm of Atkinson & Donev (1992) to construct a

design to estimate parameters of a response-surface model. The algorithm searches for a D-

optimal design: that is, a design that will provide a maximum value for the determinant of the

information matrix of the model parameters. The model is specified using the TERMS option,

with the CONSTANT option indicating whether or not it is to contain the constant term (or

intercept). The FACTORIAL sets a limit on the number of variates in each model term; by default

this is 2.

The NUNITS option specifies the number of units in the design. If there is to be a blocking

factor in the design, the NBLOCKS option specifies its number of levels, and the BLOCKFACTOR

option saves its values. The BLOCKSIZE option specifies the number of units to be contained in

each block of the design, in a scalar (if they are all the same) or a variate. If the block sizes are

fixed, the specified sizes must sum to the number of units. However, if you specify sizes that sum

to a value greater that the required number of units, the algorithm will search for the optimum

block sizes.

When the model is to contain squares or cubes of x-variables, you will need to specify

identifiers to represent these using the parameters of the directive. (When using regression

directives such as FIT to fit the model, you can use the POL function but this is not recognised

by AFRESPONSESURFACE.) The x-variates in the model must then all be listed by the X

parameter. The corresponding squares are listed by the X2 parameter, and the cubes by the X3

parameter.

After specifying the X parameter, you can also use the SUPPORTPOINTS parameter to specify

the x-values of the points to be considered when constructing the design; if this is not specified,

these support points are formed automatically. Note that the variates are all assumed to be scaled

to have values between �1 and 1. However, the criterion for D-optimality is unaffected by linear

transformations of the X-variables. So you can rescale afterwards in any way you like.

AFRESPONSESURFACE allows for a set of mixture variates, whose values must all be positive and

which must sum to 1. The variates in the mixture are specified using the MIXTURE option.

The PREVIOUSVALUES parameter can be used to supply values of the x-variates for any

previous experiments that are to be included in the analysis of the results of the new experiment,

or to specify points that must be included in the design. The PREVIOUSBLOCKS option should

then indicate the blocks to which these previous observations belonged.

The BLKL algorithm starts by forming an initial design by making a random selection of

points from the set of support points. The SEED option defines the seed for the random numbers

used to make the selection (default 124195). The algorithm then uses an exchanges algorithm

to improve the design. At each exchange, the K points with the lowest variance of prediction

amongst the points of design are considered for replacement by the L points with the highest

variance of prediction amongst the candidate points for inclusion in the design. The algorithm

makes the best one of these exchanges, continuing until there are none that increase the

determinant. The values for K and L are specified by the NDELETION and NINCLUSION options

respectively. The best values depend on the design parameters, including the number of model

parameters and the number of residual degrees of freedom. If they are unset,

AFRESPONSESURFACE sets them to the number of units divided by 4, or 4 if this larger. The

NRUNS option can be set to request that the algorithm is run several times, with different starting

designs; the default is 100. The design parameters are saved only for the best design found, but

you can set option PRINT=monitoring to print information about each attempt.

There is also be a final adjustment algorithm which can be used except when the design

16 Directives in Release 22

contains mixtures. This examines the design points one at a time to see whether the design can

be improved by moving it a small amount along any x-axis. If an increase is possible, the point

providing the greatest increase is moved. The process is then repeated until no improvment is

possible. This phase is selected by setting the ADJUSTMENTSTEP option to the maximum amount

(e.g. 0.2) by which the point may be moved on any axis.

The DETERMINANT option allows you to saves the determinant of the information matrix for

the best design. An alternative way of evaluating the design is to examine the standardized

variance of the predictions that would be obtained from the design at other points, not in the

design. The MEANGRID option can save the mean value of the standardized variance of prediction

over a grid of x-values, and the MAXGRID option can save the maximum value. Number of grid

points in each x-direction is specified by the NGRIDPOINTSMETHOD option (default 5).

Options: PRINT, TERMS, CONSTANT, FACTORIAL, NUNITS, NDELETION, NINCLUSION, NRUNS,

ADJUSTMENTSTEP, NBLOCKS, BLOCKFACTOR, BLOCKSIZE, PREVIOUSBLOCKS, MIXTURE,

SEED, DETERMINANT, MEANGRID, MAXGRID, NGRIDPOINTS.

Parameters: X, X2, X3, SUPPORTPOINTS, PREVIOUSVALUES.

Method

The algorithm is described in Sections 15.6 and 15.7 of Atkinson & Donev (1992). The source

code of the algorithm was provided by Alex Donev. This, and his assistance generally with this

Genstat implementation, is gratefully acknowledged.

Action with RESTRICT

Restrictions on the X, X2, X3, SUPPORTPOINTS or PREVIOUSVALUES parameters are ignored.

Reference

Atkinson, A.C. & Donev, A.N. (1992) Optimum Experimental Designs. Oxford University Press,

Oxford.

See also

Procedures: AFNONLINEAR, AGBOXBEHNKEN, AGCENTRALCOMPOSITE, AGFACTORIAL,

AGMAINEFFECT, RQUADRATIC.

Genstat Reference Manual 1 Summary sections on: Design of experiments, Regression

analysis.

AGRCRESOLVABLE 17

AGRCRESOLVABLE

Forms doubly resolvable row-column designs.

Options

PLOTORDER = string token Defines the order in which the plots are formed into

replicates (colserpentine, colbycol,

rowserpentine, rowbyrow); default rowb

TIME = scalar Time in seconds to spend searching for an optimal

design; default 60

SEED = scalar Seed for the randomization; default 0

MAXITERATIONS = scalar The number of random designs to search for an optimal

design; default 10000

Parameters

NROWS = scalars Number of rows in the design

NCOLUMNS = scalars Number of columns in the design

LEVELS = scalar, variate or text Defines the number of levels or labels of the

TREATMENT factor for each design

TREATMENTS = factors Saves the treatment allocation in each design

ROWREPLICATES = factors Saves the row replicates in each design

COLREPLICATES = factors Saves the column replicates in each design

ROWS = factors Saves the row locations of the plots in each design

COLUMNS = factors Saves the column locations of the plots in each design

EXIT = scalars Saves the exit code from the design search program (0

for success, greater than 0 for failure)

Description

AGRCRESOLVABLE creates approximately optimal row-column designs. They are formed into

replicates in both the row and column directions so that they are doubly resolvable, i.e.

resolvable in both row and column directions. The layout of plots must be a complete rectangular

array, and the treatments must be equally replicated. This requires that the number of rows

multiplied by the number of columns in the array must be equal to the number of treatments

multiplied by the number of replicates. The row replicates are comprised of units in adjacent

rows, and the column replicates are comprised of units in adjacent columns. This design can be

thought of as a generalization of a Latin square, with each treatment occurring once in each row

and column replicate.

An example design with four replicates of five treatments in a five-row by four-column array

is shown below. As the number of treatments is the same as the number of rows, the column

replicates are the same as the columns, so each treatment occurs once in each column. The row

replicates are shaded in different colours and consist of five plots from adjacent columns. This

is an optimal design, as the treatments in the five rows form a balanced incomplete block design

(within the rows, each treatment occurs three times with every other treatment).

18 Directives in Release 22

1 5 4 3

2 1 5 4

3 2 1 5

4 3 2 1

5 4 3 2

The number of rows and columns in the design must be specified by the NROWS and NCOLUMNS

parameters, respectively. The number of treatments is specified by the LEVELS parameter, either

as a scalar (defining the number explicitly), or as a variate giving the levels for the treatments,

or by a text defining a name for each treatment.

The algorithm has the following constraints. There must be no more than 8000 plots in the

design. There must be no more than 4000 rows, columns or treatments. There must be no more

than 20 replicates. There must be at least two rows, columns and treatments, and at least three

replicates. The number of columns must not be greater than the number of treatments. The

number of rows can be greater than the number of treatments, but it must be a multiple of the

number of treatments (and multiple replicates are then stacked in the columns).

The PLOTORDER option defines the order in which the plots are numbered:

colserpentine column-by-column in a serpentine way e.g. top-to-bottom,

and then bottom-to-top;

colbycol column-by-column taking the same direction for every

column;

rowserpentine row-by-row in a serpentine way e.g. left-to-right, and then

right-to-left;

rowbyrow row-by-row taking the same direction for every row

(default).

 The TIME option specifies the maximum time in seconds to spend searching for an optimal

design; default 60. For large designs, TIME should be increased. For example, 1000 seconds is

recommended for more than 100 treatments, and 4000 seconds for more than 200 treatments.

The SEED parameter specifies the starting seed for the randomization process; the default of

zero initializes the seed automatically.

The MAXITERATIONS option sets the maximum number of random starting designs to use in

the search; default 10000. The search stops when either the TIME or the MAXITERATIONS limit

is reached.

The factors for the resulting design can be saved by the TREATMENTS, ROWREPLICATES,

COLREPLICATES, ROWS and COLUMNS parameters.

The EXIT parameter can save a scalar which is set to 0 if the design search has found a valid

design, 1 if the design limits have been exceeded, 2 if a design is not possible, 3 if no design has

been found, and 9 if not enough memory could be allocated for the design search.

Options: PLOTORDER, TIME, SEED, MAXITERATIONS.

Parameters: NROWS, NCOLUMNS, LEVELS, TREATMENTS, ROWREPLICATES, COLREPLICATES,

ROWS, COLUMNS, EXIT.

Method

The treatments are allocated in a random order constrained to meet the resolvability criterion,

and then the MS criterion (Shah 1960) is optimized by an exchange algorithm. This is repeated

until an optimal design is found or the time limit or maximum number of starting designs is

reached. The design chosen is one that minimizes the MS criterion.

AGRCRESOLVABLE 19

Reference

Shah, K.R. (1960). Optimality criteria for incomplete block designs. Annals of Mathematical

Statistics, 22, 235-247.

See also

Procedure: AFRCRESOLVABLE.

Genstat Reference Manual 1 Summary section on: Design of experiments.

20 Directives in Release 22

AKEEP

Copies information from an ANOVA analysis into Genstat data structures.

Options

FACTORIAL = scalar Limit on number of factors in a model term; default 3

STRATUM = formula Model term of the lowest stratum to be searched for

effects; default * implies the lowest stratum

SUPPRESSHIGHER = string token Whether to suppress the searching of higher strata if a

term is not found in STRATUM (yes, no); default no

TWOLEVEL = string token Representation of effects in 2n experiments

(responses, Yates, effects); default resp

RESIDUALS = variate Saves residuals from the final stratum (as in the

RESIDUALS parameter of ANOVA)

FITTEDVALUES = variate Saves fitted values (data values or missing value

estimates, minus the residuals from the final stratum � as

in the FITTEDVALUES parameter of ANOVA)

CBRESIDUALS = variate Saves the sum of the residuals from all the strata

CBCREGRESSION = variate Saves the estimates of the covariate regression

coefficients, combining information from all the strata

CBCVCOVARIANCE = symmetric matrix

Saves the variance-covariance matrix of the combined

estimates of the covariate regression coefficients

TREATMENTSTRUCTURE = formula structure

Saves the treatment formula used for the analysis

BLOCKSTRUCTURE = formula structure

Saves the block formula used for the analysis

AFACTORIAL = scalar Saves the setting of the FACTORIAL option used in the

ANOVA command that performed the analysis

WEIGHTS = variate Saves the weights used in the analysis

YVARIATE = dummy Dummy to be set to the y-variate of the analysis

LSDLEVEL = scalar Significance level (%) to use in the calculation of least

significant differences; default 5

AOVTABLE = pointer Saves the analysis-of-variance table as a pointer with a

variate or text for each column (source, d.f., s.s., m.s.

etc)

EQFACTORS = factors Factors whose levels are to be assumed to be equal

within the comparisons between means calculated for
SEMEANS

RMETHOD = string token Type of residuals to form if the RESIDUALS option or

parameter is set (simple, standardized); default
simp

EXIT = scalar Saves an exit code indicating the properties of the design

SAVE = identifier Defines the Save structure (from ANOVA) that provides

details of the analysis; default * gives that from the most

recent ANOVA

Parameters

TERMS = formula Model terms for which information is required

MEANS = tables Table to store means for each term (available for

treatment terms only)

SEMEANS = tables Table of effective standard errors for the means, usable

AKEEP 21

for calculating standard errors for differences between

means in the table, at equal levels of the factors specified

by the EQFACTORS option

SEDMEANS = symmetric matrices Standard errors for comparisons between every pair of

entries in the table of means

VCMEANS = symmetric matrices Variances and covariances of means

EFFECTS = tables or scalars Table or scalar (for terms with 1 d.f. when

TWOLEVEL=responses or Yates) to store effects (for

treatment terms only)

PARTIALEFFECTS = tables Table or scalar (for terms with 1 d.f. when

TWOLEVEL=responses or Yates) to store partial

effects (for treatment terms only)

REPLICATIONS = tables or scalars Table to store replications or scalar if they are all equal

RESIDUALS = tables Table to store residuals (for block terms only)

DF = scalars Number of degrees of freedom for each term

LSDMEANS = symmetric matrices Least significant differences of means

DFMEANS = symmetric matrices Degrees of freedom for comparisons between every pair

of entries in the table of means

SS = scalars Sum of squares for each term

EFFICIENCY = scalars Efficiency factor for each term

VARIANCE = scalars Unit variance for the effects of each term

RTERM = formula structures Residual terms: for a treatment term this saves the

lowest stratum where the term is estimated (down to the

stratum specified by the STRATUM option); for a block

term it saves all the strata to which it would be

appropriate to compare the term

CEFFICIENCY = scalars Covariance efficiency factor for each term

CREGRESSION = variates Estimated regression coefficients for the covariates in

the specified stratum

CVCOVARIANCE = symmetric matrix

Variance-covariance matrix of the covariate regression

coefficients in the specified stratum

CSSP = symmetric matrices Covariate sums of squares and products in the specified

stratum

CONTRASTS = pointers Estimates for the fitted contrasts of each treatment term,

stored in a pointer to scalars or tables; units of the

pointer are labelled by the contrast name (as used in the

analysis-of-variance table)

XCONTRASTS = pointers X-variates used to fit contrasts, as orthogonalized by

ANOVA, stored in a pointer to tables; units of the pointer

are labelled as for CONTRASTS

SECONTRASTS = pointers Standard errors for estimated contrasts, stored in a

pointer to scalars or tables; units of the pointer are

labelled as for CONTRASTS

DFCONTRASTS = pointers Degrees of freedom for estimated contrasts, stored in a

pointer to scalars; units of the pointer are labelled as for
CONTRASTS

CBMEANS = tables Table to store estimates of the means, combining

information from all the strata (for treatment terms only)

SECBMEANS = tables Table of standard errors for the combined means, usable

for calculating standard errors for differences between

22 Directives in Release 22

means in the table, at equal levels of the factors specified

by the EQFACTORS option

SEDCBMEANS = symmetric matrices Standard errors for comparisons between every pair of

entries in the table of combined means

VCCBMEANS = symmetric matrices Variances and covariances of combined means

LSDCBMEANS = symmetric matrices

Least significant differences of combined means

DFCBMEANS = symmetric matrices Effective degrees of freedom for comparisons between

every pair of entries in the table of combined means

CBEFFECTS = tables or scalars Table or scalar (for terms with 1 d.f. when

TWOLEVEL=responses or Yates) to store estimates of

the effects, combining information from all the strata

(for treatment terms only)

CBVARIANCE = scalars Unit variance for the combined estimates of the effects

of each term

DFCEFFECTS = scalars Effective degrees of freedom for the combined estimates

of the effects of each term

CBCEFFICIENCY = scalars Covariance efficiency factor for the combined estimates

of each term

STRATUMVARIANCE = scalars Estimates of the stratum variances (for block terms only)

COMPONENT = scalars Stratum variance components (for block terms only)

STATUS = scalars Status code describing how the term is estimated

(together with its marginal terms, if the term is a

treatment term)

Description

AKEEP allows you to copy components of the output from an analysis of variance into standard

Genstat data structures. You can save the information from the analysis in a save structure, using

the SAVE option of ANOVA and then specify the same structure in the SAVE option of AKEEP.

Alternatively, Genstat automatically stores the save structure from the last y-variate that has been

analysed, and this is used as a default by AKEEP if you do not specify a save structure explicitly.

Several options are provided to save information about the analysis as a whole. The

RESIDUALS and FITTEDVALUES options allow variates to be specified to store the residuals and

fitted values, respectively. The residuals, like those saved by the RESIDUALS parameter of

ANOVA, are taken only from the final stratum. The RMETHOD option controls whether these are

simple residuals (like those printed by ANOVA � the default) or whether they are standardized

according to their variances. As an alternative, the CBRESIDUALS option saves residuals that

incorporate the variability from all the strata. With an orthogonal design, these are simply the

sum of the residuals from every stratum. For a non-orthogonal design, they are the data values

minus the combined estimates of the treatment effects. Likewise, the CBCREGRESSION option

allows you to save estimates of covariate regression coefficients that combine information from

all the strata, and the CBCVCOVARIANCE option can save their variances and covariances. (The

estimates and their variances and covariances from each individual stratum can be saved using

the CREGRESSION and CVCOVARIANCE parameters, as described below.) The AOVTABLE option

saves the analysis-of-variance table, as a pointer with a variate or a text for each column of the

table. The pointer elements are labelled with the column labels of the table, and the variates

contain missing values where the table has blanks. These can be printed as blanks by setting

option MISSING=' ' in the PRINT directive.

The TREATMENTSTRUCTURE, BLOCKSTRUCTURE and WEIGHTS options can save the treatment

and block formulae, and the weights variate (if any) that were used to specify the analysis. The

AFACTORIAL option can save the value used for the FACTORIAL option in the ANOVA comamnd

AKEEP 23

that did the analysis, and the YVARIATE option can be set to a dummy to point to the variate that

was analysed (i.e. the variate defined by the Y parameter of ANOVA). The EXIT option can save

an exit code summarizing the properties of the design; see the description of ANOVA for details.

The parameters of AKEEP save information about particular model terms in the analysis. With

the TERMS parameter you specify a model formula, which Genstat expands to form the series of

model terms about which you wish to save information. As in ANOVA, the FACTORIAL option

sets a limit on the number of factors in each term. Any term containing more than that limit is

deleted. The subsequent parameters allow you to specify identifiers of data structures to store

various components of information for each of the terms that you have specified. If there are

components that are not required for some of the terms, you should insert a missing identifier

(*) at that point of the list. For example

AKEEP Source + Amount + Source.Amount; MEANS=*,*,Meangain;\
 SS=Ssource,Samount,Ssbya; VARIANCE=Vsource,*,*

sets up a table Meangain containing the source by amount table of means; it forms scalars

Ssource, Samount and Ssbya to hold the sums of squares for Source, Amount and

Source.Amount respectively, and scalar Vsource to store the unit variance for the effects of

Source.

The structures to hold the information are defined automatically, so you need not declare them

in advance. If you have declared any of the tables already, its classification set will be redefined,

if necessary, to match the factors in the table that you wish to store. Thus Meangain here would

be redefined to be classified by the factors Source and Amount, if it had previously been

declared with some other set of classifying factors. Sizes of variates and symmetric matrices will

also be redefined if necessary.

Many of the components are stored in tables, classified by the factors in the model term.

Tables of means and effects are relevant only for treatment terms. Standard errors for a table of

means can be saved using the SEMEANS parameter. For some designs, such as split-plots,

different standard errors are needed for the means according to which pair of means is to be

compared. The EQFACTORS option allows you to specify factors within the tables of means

whose levels are assumed to be equal for the two means. Alternatively, the SEDMEANS parameter

can save a symmetric matrix containing a standard error of difference for each pair of means, the

VCMEANS parameter can save a symmetric matrix with the variances and covariances for the

means, and the LSDMEANS parameter can save a symmetric matrix containing least significant

differences. The LSDLEVEL option specifies the significance level to use; default 5(%). The

DFMEANS parameter saves a symmetric matrix with the degrees of freedom for comparing each

pair of means. The rows and columns of these matrices are labelled by the factor name and level

(or label if available) of the mean concerned.

Tables of partial effects (saveable only for treatment terms, using the PARTIALEFFECTS

parameter) differ from the usual effects, presented by Genstat, only when there is non-

orthogonality. The usual effects of a treatment term are estimated after eliminating the terms that

precede it in the model, whereas the partial effects are those that would be estimated after

eliminating the subsequent treatment terms as well. The TWOLEVEL option controls what it stored

for terms whose factors all have only two levels. The settings response (the default) or Yates

generate a scalar response; whereas TWOLEVELS=effects produces a table of effects.

Replications are stored in tables if the values are unequal. For equal replications you can supply

either a scalar or a table, but if the saving structure has not been declared AKEEP will define it

as a scalar. Tables of residuals are available only for block terms, and the RMETHOD option

controls whether or not they are standardized.

Sums of squares, numbers of degrees of freedom, efficiency factors and unit variances are

saved in scalars. The unit variance of a treatment term is the residual mean square of the stratum

where the term is estimated, divided by its efficiency factor and covariance efficiency factor.

Thus you can calculate the estimated variance of any of the effects of the term by dividing its

24 Directives in Release 22

unit variance by the replication of the effect.

For a treatment term, the RTERM parameter can be used to save a formula containing the model

term corresponding to the lowest stratum in which it is estimated (down to and including any

stratum defined by the STRATUM option). This can then be used as the setting of the TERMS

parameter of a subsequent AKEEP statement to obtain further information about the stratum, for

example its number of residual degrees of freedom. For a block term, RTERM saves all the strata

to which it would be appropriate to compare the term. So, with a block structure of

Blocks/Plots/Subplots

the command

AKEEP Blocks + Blocks.Plots; RTERM=Rb,Rbp

would define Rb as the formula !f(Blocks.Plots), and Rbp as the formula

!f(Blocks.Plots,Subplots). Alternatively, with a block structure of

Reps/(Rows*Columns)

the command

AKEEP Reps; RTERM=Rr

would define Rr as the formula !f(Reps.Rows + Reps.Blocks).

There are three parameters for saving information about the covariates. To save the regression

coefficients estimated in a particular stratum, you should specify the model term of the stratum

with the TERMS parameter and a variate with the CREGRESSION parameter. Genstat defines the

variate to have a length equal to the number of covariates, and stores the estimated regression

coefficients of the covariates in the order in which they were listed in the COVARIATE statement.

The CVCOVARIANCE parameter saves the variances and covariances of the estimated covariate

regression coefficients, in a symmetric matrix. The CSSP parameter allows you to obtain sums

of squares and products between the covariates for the specified model term. These are arranged

in a symmetric matrix. The value in row i on the diagonal is the sum of squares for the term in

the analysis of variance that has as its y-variate the ith covariate listed in the COVARIATE

statement. The value in row i and column j is the cross-product between the effects estimated for

the term in the analysis of variance of covariate i and those estimated for the same term in the

analysis of covariate j.

The CONTRASTS, XCONTRASTS, SECONTRASTS and DFCONTRASTS parameters save

information about contrasts. For each treatment term there will generally be several contrasts,

so the information is stored in pointers with one element for each contrast. The elements are

laballed by the name of the contrasts as it appears, for example, in the analysis-of-variance table.

The CBMEANS, CBSEMEANS, CBSEDMEANS, VCCBMEANS, LSDCBMEANS, DFCBMEANS,

CBEFFECTS, CBVARIANCE, DFCEFFECTS, CBCEFFICIENCY and STRATUMVARIANCES

parameters save details of estimates that combine information from all the strata of the design,

and the COMPONENT parameter saves the stratum variance components.

In designs where there is partial confounding, and treatment terms are estimated in more than

one stratum, options STRATUM and SUPPRESSHIGHER allow you to specify the strata from which

the information is to be taken. This is relevant to tables of effects and partial effects, sums of

squares, efficiency factors, unit variances, sums of squares and products between covariates, and

information about contrasts. By default, Genstat searches all the strata, and takes the information

from the lowest of the strata where the term is estimated. If you set the STRATUM option, only

strata down to the specified stratum are searched. By setting SUPPRESSHIGHER=yes, you can

restrict the search to only that stratum. You cannot save tables of means if you have excluded

any stratum from the search. Likewise, tables of residuals and residual sums of squares cannot

be saved for any of the excluded strata. If a term is not estimated in any of the strata that are

searched, the corresponding data structures are filled with missing values.

The STATUS parameter saves an integer code that describes the type of term, and how it is

estimated. If the term is a treatment term, the code also gives information about how its marginal

AKEEP 25

terms are estimated. (For example, the interaction term A.B has the main effects A and B as

margins.)

1 the term is a treatment term; the term itself and all of its

margins are orthogonal, and are estimated in the same

stratum.

2 the term is a treatment term; the term itself and all of its

margins have the same efficiency factor, and are estimated

in the same stratum.

3 the term is a treatment term; the term and its margins have

different efficiency factors, but are all estimated in the

same stratum.

4 the term is a treatment term; the term itself and all of its

margins are orthogonal, but are estimated in different

strata.

5 the term is a treatment term; the term itself and all of its

margins have the same efficiency factor, but are estimated

in different strata.

6 the term is a treatment term; the term and its margins have

different efficiency factors and are all estimated in

different strata.

0 the term is a treatment term; and term itself or one of its

margins is aliased.

�1 the term is an orthogonal block term.

�2 the term is a non-orthogonal block term.

* the term was not in either the block or treatment model but

all of its factors occurred somewhere in the analysis

(AKEEP gives a fault if the term contains factors that did

not occur anywhere in the analysis); all other parameters

are then ignored for that term.

As explained in the description of the BLOCKSTRUCTURE directive, Genstat will set up an

extra "factor" denoted *Units* if the block formula does not specify the final stratum explicitly.

AKEEP allows you to refer to this "factor", if necessary, by putting the string '*Units*' (or

'*units*' or '*UNITS*') in the TERMS formula. Thus, to save the residual sum of squares in

these circumstances, you could put

AKEEP '*Units*'; SS=ResidSS

Options: FACTORIAL, STRATUM, SUPPRESSHIGHER, TWOLEVEL, RESIDUALS, FITTEDVALUES,

CBRESIDUALS, CBCREGRESSION, CBCVCOVARIANCE, TREATMENTSTRUCTURE,

BLOCKSTRUCTURE, AFACTORIAL, WEIGHTS, YVARIATE, LSDLEVEL, AOVTABLE, EQFACTORS,

RMETHOD, EXIT, SAVE.

Parameters: TERMS, MEANS, SEMEANS, SEDMEANS, VCMEANS, EFFECTS, PARTIALEFFECTS,

REPLICATIONS, RESIDUALS, DF, LSDMEANS, DFMEANS, SS, EFFICIENCY, VARIANCE,

RTERM, CEFFICIENCY, CREGRESSION, CVCOVARIANCE, CSSP, CONTRASTS, XCONTRASTS,

SECONTRASTS, DFCONTRASTS, CBMEANS, SECBMEANS, SEDCBMEANS, VCCBMEANS,

LSDCBMEANS, DFCBMEANS, CBEFFECTS, CBVARIANCE, DFCEFFECTS, CBCEFFICIENCY,

STRATUMVARIANCE, COMPONENT, STATUS.

26 Directives in Release 22

See also

Directives: ANOVA, BLOCKSTRUCTURE, COVARIATE, TREATMENTSTRUCTURE.

Procedures:AFMEANS, AUKEEP, A2KEEP, ASPREADSHEET, A2RDA.

Genstat Reference Manual 1 Summary section on: Analysis of variance.

ANOVA 27

ANOVA

Analyses y-variates by analysis of variance according to the model defined by earlier

BLOCKSTRUCTURE, COVARIATE and TREATMENTSTRUCTURE statements.

Options

PRINT = string tokens Output from the analyses of the y-variates, adjusted for

any covariates (aovtable, information,

covariates, effects, residuals, contrasts,

means, cbeffects, cbmeans, stratumvariances,

%cv, missingvalues); default aovt, info, cova,

mean, miss

UPRINT = string tokens Output from the unadjusted analyses of the y-variates

(aovtable, information, effects, residuals,

contrasts, means, cbeffects, cbmeans,

stratumvariances, %cv, missingvalues); default *

i.e. no printing

CPRINT = string tokens Output from the analyses of the covariates, if any

(aovtable, information, effects, residuals,

contrasts, means, %cv, missingvalues); default *

i.e. no printing

FACTORIAL = scalar Limit on number of factors in a treatment term; default 3

CONTRASTS = scalar Limit on the order of a contrast of a treatment term;

default 4

DEVIATIONS = scalar Limit on the number of factors in a treatment term for

the deviations from its fitted contrasts to be retained in

the model; default 9

PFACTORIAL = scalar Limit on number of factors in printed tables of means or

effects; default 9

PCONTRASTS = scalar Limit on order of printed contrasts; default 9

PDEVIATIONS = scalar Limit on number of factors in a treatment term whose

deviations from the fitted contrasts are to be printed;

default 9

FPROBABILITY = string token Printing of probabilities for variance ratios (yes, no);

default no

PSE = string token Standard errors to be printed with tables of means,

PSE=* requests s.e.'s to be omitted (differences, lsd,

means); default diff

TWOLEVEL = string token Representation of effects in 2n experiments

(responses, Yates, effects); default resp

DESIGN = pointer Stores details of the design for use in subsequent

analyses; default *

WEIGHTS = variate Weights for each unit; default * i.e. all units with weight

one

ORTHOGONAL = string token Whether or not design to be assumed orthogonal

(notassumed, assumed, compulsory); default nota

SEED = scalar Seed for random numbers to generate dummy variate for

determining the design; default 12345

MAXCYCLE = scalar Maximum number of iterations for estimating missing

values; default 20

TOLERANCES = variate Allows you to redefine the tolerances for zero used by

various parts of the algorithm

28 Directives in Release 22

NOMESSAGE = string tokens Which warning messages to suppress (nonorthogonal,

residual); default *

LSDLEVEL = scalar Significance level (%) to use in the calculation of least

significant differences; default 5

EXIT = scalar Saves an exit code indicating the properties of the design

Parameters

Y = variates Variates to be analysed

RESIDUALS = variates Variate to save residuals for each y variate

FITTEDVALUES = variates Variate to save fitted values

SAVE = identifiers Save details of each analysis for use in subsequent

ADISPLAY or AKEEP statements

Description

The ANOVA directive analyses balanced designs. These include most of the commonly occurring

experimental designs such as randomized blocks, Latin squares, split plots and other orthogonal

designs, as well as designs with balanced confounding, like balanced lattices and balanced

incomplete blocks. Many partially balanced designs can also be handled, so a very wide range

of designs can be analysed. The necessary condition of first-order balance is explained

algorithmically by Wilkinson (1970) and Payne & Wilkinson (1976), and mathematically by

James & Wilkinson (1971) and Payne & Tobias (1992). However, ANOVA can itself detect

whether or not a design can be analysed, so if you are not sure whether or not a particular design

is analysable, you can run it through ANOVA and see what happens! (If it is unbalanced, you can

use the AUNBALANCED procedure for designs with a single error term, or the REML directive for

those with several.)

Before you use ANOVA you must first define the model that is to be fitted in the analysis.

Potentially this has three parts. The TREATMENTSTRUCTURE directive specifies the treatment (or

systematic, or fixed) terms for the analysis. The BLOCKSTRUCTURE directive defines the

"underlying structure" of the design or, equivalently, the error terms for the analysis; in the

simple cases where there is only a single error term this can be omitted. The other directive,

COVARIATE, lists the covariates if an analysis of covariance is required. At the start of a job all

these model-definition directives have null settings. However, once any one of them has been

used, the defined setting remains in force for all subsequent analyses in the same job until it is

redefined.

The first parameter of ANOVA, Y, lists the variates whose values are to be analysed. Genstat

examines them all and forms a list of units for which any of the y-variates or any covariate has

a missing value. These units are treated as missing in all the analyses. (This is necessary to avoid

having to re-analyse covariates for each y-variate.) However, if your y-variates have different

missing units, you may prefer to analyse them with separate ANOVA statements, while saving

details of the model and design with the DESIGN option to improve efficiency. Genstat also

checks whether any of the y-variates has a restriction. If several variates are restricted, they must

all be restricted to the same set of units. Only these units are included in the analysis of each y-

variate.

If a y-variate has no values, or if you specify a null entry in the Y list, Genstat produces a

skeleton analysis-of-variance table, which excludes sums of squares, mean squares and variance

ratios; the only other output available is the information summary. You can save a design

structure, but no save structure is formed. This is a good way of checking that a design can be

analysed, before the experiment is carried out.

The RESIDUALS parameter allows you to specify a variate to save the estimated residuals from

each analysis. Genstat will declare this variate for you if you have not done so already. In models

where there are several error terms, only the final one is included. Others can be obtained using

ANOVA 29

the AKEEP directive. The fitted values from the analysis are defined to be the data values minus

the estimated residuals. These too can be saved, using the FITTEDVALUES parameter. In models

where there are several error terms, only the final error term is subtracted. If this is not what you

want, you can save the other error terms using AKEEP and subtract them by CALCULATE.

The last parameter, SAVE, allows you to save the complete details of the analysis in an ANOVA

save structure. The ADISPLAY directive lets you use a save structure to produce further output.

You can also use it in the AKEEP directive to put quantities calculated from the analysis into data

structures which you can then use elsewhere in Genstat. Save structures are special compound

structures, and Genstat declares them automatically. The save structure for the last y-variate

analysed is stored automatically, and forms the default for ADISPLAY and AKEEP if you do not

provide one explicitly.

The PRINT option selects which components of output are to be displayed.

aovtable analysis-of-variance table

information information summary, giving details of aliasing and non-

orthogonality or of any large residuals

covariates estimates of covariate regression coefficients

effects tables of estimated treatment parameters

residuals tables of estimated residuals

contrasts estimated contrasts of treatment effects

means tables of predicted means for treatment terms

cbeffects estimated effects of treatment terms combining

information from all the strata in which each term is

estimated

cbmeans predicted means for treatment terms combining

information from all the strata in which each term is

estimated

stratumvariances estimated variances of the units in each stratum and

stratum variance components

%cv coefficients of variation and standard errors of individual

units

missingvalues estimates of missing values

The default is intended to give the output that you will require most often from a full analysis:

aovtable, information, covariates, means and missingvalues. However, with ANOVA

the settings information, covariates and missingvalues will not produce any output

unless there is something definite to report.

In analysis of covariance, you can also print output from the analyses of the covariates and

from the analysis of the y-variate ignoring the covariates. This is controlled by options CPRINT

and UPRINT respectively. These are similar to the PRINT option except that they do have not

have the setting covariates, and their defaults are to print nothing.

A table of means is produced by default for each term in the treatment model. By using the

PFACTORIAL option you can exclude tables for terms containing more than a specified number

of factors; Genstat does not allow tables to have more than nine factors, so the default value of

nine gives all the available tables. PFACTORIAL also applies to tables of effects. These are

estimates of treatment parameters in the linear model.

The PSE option controls the standard errors printed with the tables of means. The default

setting is differences, which gives standard errors of differences of means. The setting means

produces standard errors of means, LSD produces least significant differences and by setting

PSE=* the standard errors can be suppressed altogether. The significance level to use in the

calculation of the least significant differences can be changed from the default of 5% using the

LSDLEVEL option.

When a factor has only two levels, Genstat usually prints the difference between the two main

30 Directives in Release 22

effects instead of the effects themselves. This difference is called a response. For interaction

terms whose factors all have only two levels, there are two forms of response. The choice

between them is controlled by the TWOLEVEL option. If you leave the default,

TWOLEVEL=response, Genstat calculates the response for an interaction between two factors

as the difference between the two main-effect responses, and so on; this is the form described

in most textbooks. By putting TWOLEVEL=Yates, you can obtain the form defined by Yates

(1937) in which the responses all have equal standard errors. Alternatively, you can put

TWOLEVEL=effects if you prefer not to have responses, but to have the effects themselves, as

for factors with more than two levels.

The warnings about any large residuals printed in the information summary can be suppressed

by setting the NOMESSAGES option to residuals. The other setting, nonorthogonality, of

NOMESSAGES suppresses the warning produced when there is non-orthogonality between

treatment terms or covariates.

The treatment terms to be included in the model are controlled by the FACTORIAL option; this

sets a limit (by default 3) on the number of factors in a treatment term: terms containing more

than that number are deleted.

The CONTRASTS option places a limit on the order of contrast to be fitted. (Contrasts are

defined by using the functions POL, REG, COMPARISON, POLND or REGND in the treatment

formula.) For a term involving a single factor, the orders of the successive contrasts run from one

upwards, with the deviations term (if any) numbered highest. In interactions between contrasts,

the order is the sum of the orders of the component parts. The default value for CONTRASTS is

4. Option PCONTRASTS similarly sets a limit on the order of the contrasts that are printed; its

default value is 9.

If your design has few or no degrees of freedom for the residual, you may wish to regard the

deviations from some of the fitted contrasts as error components, and assign them to the residual

of the stratum where they occur. You can do this by the DEVIATIONS option; its value sets a

limit on the number of factors in the terms whose deviations are to be retained in the model. For

example, by putting DEVIATIONS=1, the deviations from the contrasts fitted to all terms except

main effects will be assigned to error. The PDEVIATIONS option similarly controls the printing

of deviations: to put PDEVIATIONS=0, for example, would ensure that no deviations are printed.

When deviations have been assigned to error, they will not be included in the calculation of

tables of means, which will then be labelled "smoothed". However the associated standard errors

of the means are not adjusted for the smoothing.

The WEIGHT option allows you to specify a weight for each unit, to define a weighted analysis

of variance. You might want to do this if, for example, different parts of the experiment have

different variability; each weight would then be proportional to the reciprocal of the expected

variance for the corresponding unit. However unless the weights are fairly systematic, for

example to give proportional weighted replication, the design is unlikely to be balanced.

Before Genstat does any calculations with the y-variates, it does an initial investigation known

as the dummy analysis to acquire all the information that it needs for the analysis. You can use

the DESIGN option to store this information so that Genstat need not recalculate it for future

ANOVA statements. The structure in the option is automatically declared as a pointer if you have

not declared it already. It points to several other structures which store information about

different aspects of the analysis. The only other details that are required for future analyses are

the values of the factors in the block and treatment formulae. If you have not previously declared

the design structure, or if it has no values, then the current statement derives and stores the

necessary information. If the pointer does already have values, then these are used to do the

analysis. In that case, of course, values of the factors in the block and treatment formulae must

not have been changed since the design structure was formed. The current settings of options

FACTORIAL, CONTRASTS, DEVIATIONS and WEIGHT are then ignored, as is any change in the

restrictions on the y-variates. The DESIGN option is particularly useful with designs where there

ANOVA 31

are many model terms or where there is non-orthogonality, as the dummy analysis may then be

time-consuming.

Genstat has a simplified version of the dummy analysis which you can use to save computing

time if all the model terms are orthogonal and if, for every term, all the combinations of its

factors were applied to the same number of units. A check is incorporated which will detect non-

orthogonality except in particularly complicated designs where terms are aliased. If you set

option ORTHOGONAL=assumed, Genstat does the simple version unless non-orthogonality is

detected, whereupon it gives a warning message and then switches to the full version. (Before

Release 14, this was requested by setting ORTHOGONAL=yes, but the aim now is that options

with settings yes and no do not have any other settings; however, yes is retained as a synonym

for assumed, so that existing programs will still run.) The simplified version is done also if

ORTHOGONAL=compulsory, but non-orthogonality now causes the analysis to stop altogether,

with an error message; this is useful for checking for typing errors in the factor values when you

know that the design should otherwise be orthogonal. The dummy analysis involves the analysis

of a specially generated variate which contains random numbers from a Cauchy distribution. The

starting value for their generation is set by the SEED option.

The TOLERANCES option controls numerical aspects of analysis. Its setting is a variate with

up to four values: the first is used to calculate the tolerance for the analysis of the y-variates

(default 10�7), the second is for the tolerance used in the dummy analysis (default 10�9), the third

is for the estimation of missing values (default 10�5) and the fourth is for the estimation of

stratum variances (default 10�5). The MAXCYCLE option sets a limit on the number of iterations

for estimating missing values. The EXIT option can save an exit code summarizing the properties

of the design:

0 design orthogonal;

1 design has general balance (blocks terms mutually

orthogonal, treatment terms mutually orthogonal, some

treatment terms non-orthogonal to the block terms);

2 blocks terms mutually orthogonal, treatment terms non-

orthogonal;

3 block terms non-orthogonal, treatment terms orthogonal;

4 block terms non-orthogonal, treatment terms non-

orthogonal;

* design unbalanced (ANOVA failed to analyse it).

Options: PRINT, UPRINT, CPRINT, FACTORIAL, CONTRASTS, DEVIATIONS, PFACTORIAL,

PCONTRASTS, PDEVIATIONS, FPROBABILITY, PSE, TWOLEVEL, DESIGN, WEIGHTS,

ORTHOGONAL, SEED, MAXCYCLE, TOLERANCES, NOMESSAGE, LSDLEVEL, EXIT.

Parameters: Y, RESIDUALS, FITTEDVALUES, SAVE.

Action with RESTRICT

You can restrict the set of units used for the analysis by applying a restriction to any of the y-

variates. If several are restricted, they must all be restricted to the same set of units. Only these

units are included in the analysis of each y-variate.

References

James, A.T. & Wilkinson, G.N. (1971). Factorisation of the residual operator and canonical

decomposition of non-orthogonal factors in analysis of variance. Biometrika, 58, 279-294.

Payne, R.W. & Wilkinson, G.N. (1977). A general algorithm for analysis of variance. Applied

Statistics, 26, 251-260.

Payne, R.W. & Tobias, R.D. (1992). General balance, combination of information and the

analysis of covariance. Scandinavian Journal of Statistics, 19, 3-23.

32 Directives in Release 22

Wilkinson, G.N. (1970). A general recursive algorithm for analysis of variance. Biometrika, 57,

19-46.

Yates, F. (1937). The Design and Analysis of Factorial Experiments. Technical Communication

No. 35 of the Commonwealth Bureau of Soils. Commonwealth Agricultural Bureaux,

Farnham Royal.

See also

Directives: BLOCKSTRUCTURE, COVARIATE, TREATMENTSTRUCTURE, ADISPLAY, AKEEP,

FIT, REML.

Procedures: ABOXCOX, ABLUPS, ACHECK, AFCOVARIATES, AFMEANS, AGRAPH, APLOT,

AFIELDRESIDUALS, APERMTEST, APOWER, AMCOMPARISON, AMDUNNETT, AN1ADVICE,

APAPADAKIS, APOLYNOMIAL, ARESULTSUMMARY, ASPREADSHEET, ASTATUS,

AOVANYHOW, A2RDA, A2WAY, AUNBALANCED, AREPMEASURES, ASCREEN, AYPARALLEL,

FALIASTERMS.

Functions: COMPARISON, POL, POLND, REG, REGND.

Genstat Reference Manual 1 Summary sections on: Analysis of variance, Design of

experiments, REML analysis of linear mixed models.

ASRULES 33

ASRULES

Derives association rules from transaction data.

Options

PRINT = string tokens Controls printed output (rules); default rule

METHOD = string tokens What to use to calculate the support of a rule

(allitems, antecedent); default ante

MINSUPPORT = scalar Minimum amount of support for a rule to be included;

default 0.1

MINCONFIDENCE = scalar Minimum amount of confidence for a rule to be

included; default 0.8

MAXITEMS = scalar Maximum number of items that a rule may contain;

default 10

MAXRULES = scalar Maximum number of rules to generate; default 100

Parameters

ITEMS = factors Items in the transactions

TRANSACTIONS = factors Specifies the transaction to which each each item

belongs

NRULES = scalars Saves the number of rules that have been derived

RULES = pointers Pointer to factors, each of which saves the antecedent

items and then the consequent item in one of the rules

SUPPORT = variates Saves the support values for the rules

CONFIDENCE = variates Saves the confidence values for the rules

Description

ASRULES examines a set of "transaction data" to derive rules of the form: "if a transaction

contains items a1 ... am, then it is likely also to contain item c". The items a1 ... am are known as

the antecedent set, and the item c is known as the consequent item.

The data are specified in a pair of factors, using the ITEMS and TRANSACTIONS parameters.

ITEMS specifies the items involved in (all) the transactions, and TRANSACTIONS specifies the

transaction to which each item belongs. The data must be provided in sorted order, one

transaction at a time and the items within each transaction in ascending order. For example

Items 2 3 5 1 6 7 8 4 7 9 10 1 3 4 6 8 ...
Transactions 1 1 1 2 2 2 2 3 3 3 3 4 4 4 4 4 ...

You can do this with the SORT directive. For example, if the transactions factor is Trans and

the items factor is Items, the command would be

SORT [INDEX=Trans,Items] Trans,Items

ASRULES finds sets of items that occur frequently together within the transactions, and then

examines these to derive the rules.

The support of a set of items is the proportion of the transactions that contains them. To avoid

presenting rules that have little justification, the MINSUPPORT option defines a minimum value

for the support of a rule for it to be included (default 0.1). The METHOD option controls whether

the support is defined to be the support for all the items in the rule, or only of its antecedent

items (the default).

The confidence of a rule, is the proportion of those transactions that contain the antecedent

set of items that also contains the consequent set. The MINCONFIDENCE option a minimum value

for the confidence of a rule for it to be included (default 0.8).

The MAXITEMS option sets a maximum limit on the number of items that a rule may contain

(default 10), and the MAXRULES option specifies the maximum number of rules that may be

generated (default 100).

34 Directives in Release 22

By default the rules are printed, with their support and confidence values. However, this can

be suppressed by setting option PRINT=*.

The number of rules that have been derived can be saved, in a scalar, using the NRULES

parameter. The rules themselves can be saved using the RULES parameter, in a pointer to a set

of factors. Each factor contains the the antecedent items and then the conseqent item for a

particular rule. The SUPPORT parameter can save a variate with a unit for each rule, containing

its support. The CONFIDENCE parameter similarly saves the confidence of the rules.

Options: PRINT, METHOD, MINSUPPORT, MINCONFIDENCE, MAXITEMS, MAXRULES.

Parameters: ITEMS, TRANSACTIONS, NRULES, RULES, SUPPORT, CONFIDENCE.

Method

ASRULES uses the function nagdmc_assoc from the Numerical Algorithms Group's library of

Data Mining Components (DMCs).

Action with RESTRICT

ITEMS and TRANSACTIONS may be restricted to derive the rules from only a subset of the data.

See also

Directives: NNFIT, RBFIT.

Procedure: KNEARESTNEIGHBOURS.

Genstat Reference Manual 1 Summary section on: Data mining.

ASSIGN 35

ASSIGN

Sets elements of pointers and dummies.

Options

NSUBSTITUTE = scalar Number of times n to substitute a dummy setting of the

POINTER parameter in order to determine which dummy

should be assigned the setting of the STRUCTURE

parameter (if n is negative, the assigned dummy is the

�nth from the bottom of the chain of dummies, like the

NTIMES option of EXIT); default 0 i.e. no substitution

METHOD = string token Whether to replace or preserve the existing value in each

dummy or pointer element (replace, preserve);

default repl (note, pointer elements are never unset so

METHOD=preserve with a pointer simply causes the

assignment to be ignored)

RENAME = string token Whether to reset the default name for the structure if it

has only a suffixed identifier (yes, no); default no

SCOPE = string token This allows dummies or pointer elements within a

procedure to be set to point to structures in the program

that called the procedure (SCOPE=external) or in the

main program itself (SCOPE=global) rather than to

structures within the procedure (local, external,

global); default loca

NSTRUCTURESUBSTITUTE = scalar

Number of times n to substitute a dummy setting of the

STRUCTURE parameter in order to determine which

structure to assign to the setting of the POINTER

parameter (if n is negative, the assigned structure is the

�nth from the bottom of the chain of dummies, like the

NTIMES option of EXIT); default 0 i.e. no substitution

Parameters

STRUCTURE = identifiers Values for the dummies or pointer elements

POINTER = dummies or pointers Structure that is to point to each of those in the

STRUCTURE list

ELEMENT = scalars or texts Unit or unit label indicating which pointer element is to

be set; if omitted, the first element is assumed

Description

ASSIGN allows you to set individual elements of pointers, or to assign a value to a dummy. The

parameter POINTER lists the pointers or dummies whose values you want to set; the values that

you want to give them are listed by the STRUCTURE parameter. You pick out the individual

elements of pointers by the ELEMENT parameter; a scalar identifies the element by its suffix

number, while a text identifies it by its label. This example sets the dummy Yvar to point to the

variate Height, and elements 1 and 2 of the pointer Xvars to Protein and Vitamin,

respectively.

VARIATE Height,Protein,Vitamin
POINTER [NVALUES=2] Xvars
DUMMY Yvar
ASSIGN Height,Protein,Vitamin;POINTER=Yvar,2(Xvars); \
 ELEMENT=1,1,2

36 Directives in Release 22

Element 1 is assumed unless you specify otherwise; so to set just Yvar we need only put

ASSIGN Height; POINTER=Yvar

Options NSUBSTITUTE and METHOD are likely to be most useful when setting dummies within

a procedure. By setting METHOD=preserve, any dummies that are already set will have their

existing settings preserved. Hence this provides a very convenient and effective way of making

default assignments while leaving any explicit assignments unchanged. Suppose, for example,

that a procedure has dummy arguments FITTEDVALUES, RESIDUALS and RSS available to save

various aspects of the analysis, and that we wish to use these as working variables while

calculating this information within the procedure. By specifying

ASSIGN [METHOD=preserve] LocalF,LocalR,LocalRSS; \
 FITTEDVALUES,RESIDUALS,RSS

any of the dummies that is not set when the procedure is called will be assigned to the

corresponding local structure, either LocalF, LocalR or LocalRSS. Note, however, that

elements of pointers cannot be unset; they will always point to some identifier, even if it is

unnamed. Thus, ASSIGN has no effect on elements of pointers when METHOD=preserve.

The NSUBSTITUTE option is useful when you have dummies pointing to other dummies, in

a chain. This can often happen when one procedure calls another, passing one of its own

arguments as the argument to the procedure that it calls. A positive setting substitutes the

dummies in the POINTER list the defined number of times in order to determine which dummy

in a chain is to be assigned a value. Alternatively, you can set NSUBSTITUTE to a negative

integer to specify the dummy to assign by counting up from the bottom of the chain of dummies,

instead of down from the top.

Similarly, the NSTRUCTURESUBSTITUTE option is useful when you have a dummy as the

setting of the STRUCTURE parameter. By default, it is the dummy itself that is assigned to the

corresponding dummy or pointer in the POINTER list. However, you can set

NSTRUCTURESUBSTITUTE, in the same way as NSUBSTITUTE, to substitute the dummy before

making the assignment.

The RENAME option enables you to control what identifier is used for data structures in the rare

occasions when your program contains structures that can be referred to by more than one

suffixed identifier and which do not have identifiers in their own right.

Finally, the SCOPE option enables you to assign a dummy within a procedure to a structure in

the program that called the procedure. The dummy will thus operate as though it was a dummy

option or parameter, except that the decision about the structure that it references in the outer

program has been made within the procedure instead of outside it. This facility allows you to

define new data structures in the outer program; however, care needs to be taken to ensure that

there is no conflict with any existing structures.

Options: NSUBSTITUTE, METHOD, RENAME, SCOPE, NSTRUCTURESUBSTITUTE.

Parameters: STRUCTURE, POINTER, ELEMENT.

See also

Directives: DUMMY, POINTER, PROCEDURE.

Genstat Reference Manual 1 Summary sections on: Calculations and manipulation, Program

control.

AXES 37

AXES

Defines the x- and y-axis in each window for high-resolution graphics.

Options

EQUAL = string tokens Whether/how to make axes equal (no, scale, lower,

upper); default no

RESET = string token Whether to reset the axes definitions to the default

values (yes, no); default no

Parameters

WINDOW = scalars Numbers of the windows

YTITLE = texts Title for the y-axis in each window

XTITLE = texts Title for the x-axis in each window

YLOWER = scalars Lower bound for y-axis

YUPPER = scalars Upper bound for y-axis

XLOWER = scalars Lower bound for x-axis

XUPPER = scalars Upper bound for x-axis

YMARKS = scalars or variates Distance between each tick mark on y-axis (scalar) or

positions of the marks (variate)

XMARKS = scalars or variates Distance between each tick mark on x-axis (scalar) or

positions of the marks (variate)

YMPOSITION = string tokens Position of the tick marks across the y-axis (left,

right, centre)

XMPOSITION = string tokens Position of the tick marks across the x-axis (above,

below, centre)

YLABELS = texts Labels at each mark on y-axis

XLABELS = texts Labels at each mark on x-axis

YLPOSITION = string tokens Position of the labels for the y-axis (left, right)

XLPOSITION = string tokens Position of the labels for the x-axis (above, below)

YORIGIN = scalars Position on y-axis at which x-axis is drawn

XORIGIN = scalars Position on x-axis at which y-axis is drawn

STYLE = string tokens Style of axes (none, x, y, xy, box, grid)

PENTITLE = scalars Pen to use for the title

PENAXES = scalars Pen to use for the axes and their labelling

PENGRID = scalars Pen to use for the grid

SAVE = pointers Saves details of the current settings for the axes

concerned

Description

There is a definition for the x- and y-axis associated with each Genstat graphics window. This

specifies how the axes are to be drawn when graphical output is produced in that window. The

default definition for each set of axes requires some of the features to be determined from the

data, as described below. Others have fixed defaults that are independent of the data. The AXES

directive can be used to override the default action and specify explicitly how particular parts

of the axis are drawn. All parameters of AXES are relevant when using DGRAPH, but for other

directives only some of the parameters are used.

The graphical attributes controlled by AXES can be set more conveniently using the directives

XAXIS, YAXIS and ZAXIS, and extensions to the FRAME directive, that were introduced in

Release 4.2. AXES has been retained to enable existing programs to run, but it is recommended

that for new programs FRAME, XAXIS, YAXIS and ZAXIS be used instead.

The WINDOW parameter specifies the window whose axes definitions are to be altered. WINDOW

38 Directives in Release 22

can be set to a list of window numbers, in which case the other parameter lists are cycled in the

usual way. By default, only those aspects specified by subsequent parameter lists are modified;

any parameters that are not set will retain their current settings. Alternatively, you can specify

option RESET=yes to reset the values of any parameters that are not set for each window, back

to the default values that are set up by Genstat at the start of a job.

The YLOWER and YUPPER parameters specify the lower and upper bounds for the y-axis. By

default, Genstat derives suitable axis bounds from the data, as described for the appropriate

directive. You can set the lower bound to a value greater than the upper bound, to obtain an

inverted data scale, but the bounds must not be equal. The XLOWER and XUPPER parameters set

bounds for the x-axis in a similar way. The values specified with these parameters are on the

scale of the data values that are plotted, and are independent of the normalized device

coordinates used to define the window size in FRAME. The EQUAL option can be used to ensure

that equal upper or lower bounds are used for the y- and x-axes. For example, if EQUAL=lower,

lower bounds for both axes will be set to the lower of the values determined automatically from

the data. The bounds obtained when using the EQUAL option may be constrained by settings of

other parameters: for example, if YUPPER is set and EQUAL=upper, the upper bounds of both

axes are set to the value specified by YUPPER; but if XUPPER is also set, EQUAL will be ignored.

You can set EQUAL=lower,upper to constrain both upper and lower bounds, and

EQUAL=scale can be used to ensure physical distance is equal on both axes, for example the

y-axis could range from 0 to 100 and the x-axis from 100 to 200.

The YORIGIN parameter determines the value on the y-axis through which the x-axis is drawn.

If its value is outside the y-axis bounds, the upper or lower bound is adjusted so that the axis will

extend up to the specified origin. This applies whether you have set the bounds explicitly or have

left Genstat to calculate them from the data. The XORIGIN parameter sets the origin for the x-

axis in a similar way. By default, the lower bounds of each axis are used, so that the axes are

drawn on the bottom and left-hand sides of the plot.

Titles can be added to the axes using the YTITLE and XTITLE parameters. In each case, the

title is limited to a single line of characters.

Each axis is marked with a scale, determined automatically so that tick marks are evenly

spaced and positioned to give "round" numbers for the scale values. For each axis, you can

specify either the increment between tick marks or their actual positions. You can also specify

labels to use for scale markings instead of their numerical values.

To specify the increment on the y-axis, the YMARKS parameter should be set to a scalar. For

example, YMARKS=1.5 with bounds 10 and 2 causes tick marks to appear at 2, 3.5, 5, 6.5, 8 and

9.5. The interval must be a positive number, irrespective of the values of the bounds.

Alternatively, you can set YMARKS to a variate (with more than one value) to specify the actual

positions of the tick marks on the y-axis. Any values that lie outside the axis bounds are ignored.

The scale values printed next to the tick marks use a format that is determined automatically

from the values, but if you have set YMARKS to a variate it will use the number of decimals

specified in the variate declaration. When you have set YMARKS, you can also use the YLABELS

parameter to specify a set of labels to mark the axis scale. For example,

TEXT [VALUES=Mon,Tues,Wed,Thur,Fri,Sat,Sun] Day
VARIATE [VALUES=1...31] Month
AXES 1; YMARKS=Month; YLABELS=Day

The strings within the text are cycled if necessary; hence, the number of strings can be less than

the number of tick marks.

The tick marks can be drawn to the left or to the right of the axis, or can be centred (that is,

across the axis). By default, the tick marks are drawn towards the "outside" of the plot; that is,

to the left if the y-axis is to the left of the centre of the plot, or to the right if the y-axis is drawn

to the right of centre. The aim is to position the tick marks away from the main part of the plot,

so that they interfere with the plotted points as little as possible. You can control the positioning

AXES 39

of the tick marks by setting the YMPOSITION parameter to either left, right or centre. A

similar rule governs the default positioning of the scale markings or labels, but you can again

control this by setting the YLPOSITION parameter to either left or right. Setting YMARKS=*

will return to the default positioning of the tick marks; YLABELS=* will switch off any labels

previously specified; and YMPOSITION=* and YLPOSITION=* will switch off tick marks or

labels altogether.

Annotation of the x-axis can be controlled in a similar way using the XMARKS, XLABELS,

XMPOSITION and XLPOSITION parameters, except that the settings left and right are

replaced by above and below.

The STYLE parameter controls the type of axes that are drawn. By default STYLE=xy, so both

y- and x-axes are plotted. Alternative settings allow the axes to be completed by drawing a box

around the graph, with an overlaid grid if required. The settings STYLE=x and STYLE=y can be

used if only one axis is required. Finally, STYLE=none inhibits the plotting of axes completely,

although some other parameters, such as YLOWER, may still have an effect on the plotted data.

There are three parameters that control the pens to be used when drawing the axes. These are

PENTITLE, PENAXES and PENGRID, specifying the pen for the title, the axes and annotation, and

the grid, respectively. The initial default is to use pens �1, �2 and �4 in every window. These

pens are given negative numbers to allow them to be distinguished from the pens used for the

contents of the plot. They are initially set up to use colour 1, line style 1, thickness 1, size 1 and

font 1. You can thus control which pens are used for drawing the axes in each window, and the

attributes of those pens. For example, if no AXES statement has yet been given,

PEN �4; LINESTYLE=4; COLOUR=2

will request that the grids in every window should be drawn in line style 4 and colour 2; while

PEN 29; LINESTYLE=3; COLOUR=4
AXES 1; PENAXES=29

will change the appearance of just the axes in window 1, as pen 29 is not used for the other

windows. Control of the grid pen is particularly useful as a combination of colour and line style

can be chosen to ensure that the grid does not obscure the plotted points. You should of course

be careful of side-effects when changing the pen numbers. For example, pen 29 may also have

been modified for use in a DGRAPH statement and other attributes may have been set that are not

wanted when drawing the axes.

Axis annotation is plotted in the margins specified by the FRAME directive. You may wish to

reduce the size of these margins if you have defined axes that use less space, for example by

keeping within the area of the graph itself, or by omitting titles or labels. Space can thus be

regained and used for plotting data. However, if the margins are too small the axis annotation

may be "clipped" at the boundaries of the margins; if this happens, you can use FRAME to

increase the margin size. The margins are used by DGRAPH, DHISTOGRAM and DCONTOUR, but

they are ignored by other directives.

The current settings of the axes for a particular window can be saved in a pointer supplied by

the SAVE parameter. The elements of the pointer are labelled to identify the components. This

facility is of most use within procedures, where it may be necessary to check or modify particular

AXES settings before constructing complicated graphs. Also, the DKEEP directive allows you to

extract the actual bounds used when plotting; these will be the bounds determined from the data

if none have been defined explicitly by AXES.

Options: EQUAL, RESET.

Parameters: WINDOW, YTITLE, XTITLE, YLOWER, YUPPER, XLOWER, XUPPER, YMARKS, XMARKS,

YMPOSITION, XMPOSITION, YLABELS, XLABELS, YLPOSITION, XLPOSITION, YORIGIN,

XORIGIN, STYLE, PENTITLE, PENAXES, PENGRID, SAVE.

40 Directives in Release 22

See also

Directives: AXIS, XAXIS, YAXIS, ZAXIS.

Genstat Reference Manual 1 Summary section on: Graphics.

AXIS 41

AXIS

Defines an oblique axis for high-resolution graphics.

Option

RESET = string token Whether to reset the axis definition to the default values

(yes, no); default no

Parameters

IDENTIFIER = identifiers Name to be used inside Genstat to identify each axis

TITLE = texts Title for each axis

TPOSITION = string tokens Position of title (middle, end)

TDIRECTION = string tokens Direction of title (parallel, perpendicular)

LOWER = scalars Lower bound for each axis

UPPER = scalars Upper bound for each axis

MARKS = scalars or variates Distance between each tick mark (scalar) or positions of

the marks along each axis (variate)

MPOSITION = string tokens Positioning of the tick marks on each axis (inside,

outside, across)

LABELS = texts or variates Labels at each major tick mark

LPOSITION = string tokens Position of the axis labels (inside, outside)

LDIRECTION = string tokens Direction of the axis labels (parallel,

perpendicular)

LROTATION = scalars or variates Rotation of the axis labels

NSUBTICKS = scalars Number of subticks per interval (ignored if MARKS is a

variate)

XZERO = scalars Position of the axis origin in the x-dimension

YZERO = scalars Position of the axis origin in the y-dimension

ZZERO = scalars Position of the axis origin in the z-dimension

XSTEP = scalars Step in the x-direction corresponding to a step of length

one along the axis

YSTEP = scalars Step in the y-direction corresponding to a step of length

one along the axis

ZSTEP = scalars Step in the z-direction corresponding to a step of length

one along the axis

PENTITLE = scalars Pen to use to write the axis title

PENAXIS = scalars Pen to use to draw the axis

PENLABELS = scalars Pen to use to write the axis labels

ARROWHEAD = string tokens Whether the axis should have an arrowhead (include,

omit)

ACTION = string tokens Whether to display or hide the axis (display, hide)

TRANSFORM = string tokens Transformed scale for the axis marks and labels

(identity, log, log10, logit, probit, cloglog,

square, exp, exp10, ilogit, iprobit, icloglog,

root); default iden

DECIMALS = scalars or variates Number of decimal places to use for numbers printed at

the marks

DREPRESENTATION = scalars or variates

Format to use for dates and times printed at the marks

VREPRESENTATION = string tokens Format to use for numbers printed at the marks

(decimal, engineering, scientific); default deci

ZEROOFFSET = scalars Point on the axis corresponding to XZERO, YZERO and

42 Directives in Release 22

ZZERO

SAVE = pointers Saves details of the current settings for the axis

concerned

Description

The AXIS directive allows you to define an oblique axis for high-resolution graphics. You use

the IDENTIFIER parameter to supply an identifier to store the axis definition. You can then use

this as a setting of the AXES parameter of the FRAME directive to display the axis in a particular

graphics window. The other parameters define particular attributes of the axis. Any that are not

set in a particular AXIS statement retain their existing settings. These may be the initial default

settings, which are the same as those of other (x-, y- or z-) axes, or they may have been defined

by an earlier AXIS statement with the same axis identifier. Alternatively, you can set option

RESET=yes to reset the values back to the initial default values.

The position of the axis in the x-, y- and z-dimensions of the window is specified by the

parameters XZERO, YZERO and ZZERO, respectively. The initial default is for these to define the

position of the origin of the axis i.e. the zero point. However, you can use the ZEROOFFSET

parameter to specify that the position is at another point along the axis. This may be more

accurate, if the axis origin is a long way outside the graphics frame. The XSTEP, YSTEP and

ZSTEP parameters define the size of the steps in the x-, y- and z-directions that corresponds to

a step of length one along the axis. These seven parameters thus define the location and direction

of the axis.

You can specify a title for the axis using the TITLE parameter. This is limited to a single line

of characters. The TPOSITION parameter controls whether the title is placed in the middle or at

the end of the axis, and the TDIRECTION parameter controls whether it is written parallel or

perpendicular to the axis.

The LOWER and UPPER parameters specify the lower and upper bounds for the axis. By default,

Genstat sets the axis bounds so that the axis goes from one side of the window to the other.

The axis is marked with a scale, determined automatically so that tick marks are evenly spaced

and positioned to give "round" numbers for the scale values. You can set the MARKS parameter

to a scalar to define the increment between tick marks. For example, setting MARKS=1.5 with

bounds 10 and 2, causes tick marks to appear at 2, 3.5, 5, 6.5, 8 and 9.5. The interval must be a

positive number, irrespective of the values of the bounds. Alternatively, you can set MARKS to

a variate (with more than one value) to specify the actual positions of the tick marks on the axis.

Any values that lie outside the axis bounds are ignored. The scale values printed next to the tick

marks use a format that is determined automatically from the values, but if you set MARKS to a

variate it will use the number of decimals specified in the variate declaration. If MARKS is unset

or set to a scalar, you can use the NSUBTICKS parameter to specify a number of "subticks" to be

drawn between each of the (major) tick marks.

When you set MARKS, you can also use the LABELS parameter to specify a set of labels to print

at the (major) axis marks, instead of the numbers. For example,

TEXT [VALUES=Mon,Tues,Wed,Thur,Fri,Sat,Sun] Day
VARIATE [VALUES=1...31] Month
AXIS Timeax; MARKS=Month; LABELS=Day

The strings within the text are cycled if necessary, so the number of strings can be less than the

number of tick marks. The DECIMALS parameter can set the number of decimal places to use if

you are printing numbers at the marks. If the numbers represent dates or times, you should

specify their formats using the DREPRESENTATION parameter (see the PRINT directive for

details). By default, numbers are printed in decimal form. If you would prefer scientific format

you can set parameter VREPRESENTATION=scientific; numbers are then printed as a decimal

number with absolute value less than 10, followed by an exponent (e.g. 3.4567 E4 for 34567).

Alternatively, you can set VREPRESENTATION=engineering to use engineering format; the

AXIS 43

decimal number then has an absolute value less than 10000, so the exponent is a multiple of 3

(e.g. 34.567 E3 for 34567). With scientific or engineering formats, the DECIMALS parameter sets

the number of significant figures to use rather than the number of decimal places.

The MPOSITION parameter controls the positioning of the tick marks, which can be drawn on

the inside or the outside of the axis, or can be drawn across the axis. With the outside setting,

the tick marks are drawn towards the outside of the plot; that is below the axis if the axis is in

the lower half of the plot, or above the axis if it is in the top half of the plot. The aim is then to

position the tick marks away from the main part of the plot, so that they interfere with the plotted

points as little as possible. With the inside setting, the marks are drawn on the opposite side

(that is, to the inside of the plot), while the across setting draws them across the axis. Similarly,

the positioning of the scale markings or labels is controlled by the LPOSITION parameter, with

settings inside or outside. The LDIRECTION parameter controls whether the scale markings

or labels are written parallel or perpendicular to the axis. Alternatively, you can use the

LROTATION parameter to specify the direction of the labels more precisely, as a rotation in

degrees from the horizontal (i.e. parallel) direction. If LROTATION is specified, any setting of

LDIRECTION is ignored.

Setting MARKS=* will return to the default positioning of the tick marks. Setting LABELS=*

will switch off any labels previously specified. Setting MPOSITION=* will switch off any tick

marks, and setting LPOSITION=* or LDIRECTION=* will switch off any labels.

The TRANSFORM parameter allows you to transform the marks and labels on the axis. The

location and direction of the axis are defined according to the original scale, by the XZERO,

YZERO, ZZERO, ZEROOFFSET, XSTEP, YSTEP and ZSTEP parameters, as usual. The coordinates

along the axis are then transformed, and labelled according to the transformed scale. So, for

example, with TRANSFORM=log10, the original coordinates 1, 10 and 100 would be labelled 0,

1 and 2. The settings are the same as the names of the equivalent Genstat functions, with the

addition of exp10 for the antilog transformation (i.e. 10x), and square for x2.

There are three parameters to control the pens to be used to draw the axis. These are

PENTITLE, PENAXIS and PENLABEL, specifying the pen for the title, the axis and the labelling,

respectively. The initial default is to use pens �1, �2 and �3 as for other axes.

The ARROWHEAD parameter controls whether the axis is drawn with an arrowhead at the end.

The ACTION parameter controls whether or not the axis is displayed or hidden initially when the

window is used for a plot (you can then choose to display the axis from within the graphics

viewer).

The current settings defined for the axis can be saved in a pointer supplied by the SAVE

parameter. The elements of the pointer are labelled to identify the components.

Option: RESET.

Parameters: IDENTIFIER, TITLE, TPOSITION, TDIRECTION, LOWER, UPPER, MARKS,

MPOSITION, LABELS, LPOSITION, LDIRECTION, LROTATION, NSUBTICKS,, XSTEP, YSTEP,

ZSTEP, PENTITLE, PENAXIS, PENLABELS, ARROWHEAD, ACTION, TRANSFORM, DECIMALS,

DREPRESENTATION, VREPRESENTATION, ZEROOFFSET SAVE.

See also

Directives: XAXIS, YAXIS, ZAXIS, FRAME.

Genstat Reference Manual 1 Summary section on: Graphics.

44 Directives in Release 22

BARCHART

Plots bar charts in high-resolution graphics.

Options

TITLE = text General title; default *

WINDOW = scalar Window number for the bar charts; default 1

KEYWINDOW = scalar Window number for the key (zero for no key); default 2

BARWIDTH = scalar, variate or table

Width(s) of the bars; default * sets equal widths to fill

the x-axis

BARCOVERING = scalar What proportion of the space allocated along the x-axis

each bar should occupy; default * gives proportion 1 for

a DATA variate, and 0.8 for a factor or table (thus giving

a gap between each bar)

LABELS = text Labels for the bars or groups of bars; default *

APPEND = string token Whether or not the bars of the bar charts are appended

together (yes, no); default no

ORIENTATION = string token Direction of the plot (horizontal, vertical); default
vert

YSCALING = string token What scale to use to label the y-axis (absolute,

proportion, percentage); default abso

OUTLINE = string token Where to draw outlines (bars, perimeter); default
bars

PENOUTLINE = scalar Pen to use for the outlines; default �9

SCREEN = string token Whether to clear the screen before plotting or to

continue plotting on the old screen (clear, keep);

default clea

KEYDESCRIPTION = text Overall description for the key; default *

ENDACTION = string token Action to be taken after completing the plot (continue,

pause); default * uses the setting from the last DEVICE

statement

Parameters

DATA = tables or variates Heights of the bars in each bar chart

ERRORBARS = scalars, tables or variates

Heights of error bars plotted above the bars of each bar

chart; default 0 i.e. none

LOWERERRORBARS = scalars, tables or variates

Heights of error bars plotted below the bars of each bar

chart; if any of these is omitted, the corresponding

setting of ERRORBARS is used as the default so that the

error bars will have equal heights above and below the

bars of the bar chart

GROUPS = factors Which factor of a 2-way table to use as the groups

factor; default uses the second classifying factor

PEN = scalars, tables or variates Pen number(s) for each bar chart; default * uses pens 2,

3, and so on for the successive structures specified by
DATA

PENERRORBARS = scalars, tables or variates

Pen number(s) for the error bars; default �11

DESCRIPTION = texts Annotation for key

BARCHART 45

Description

BARCHART plots high-resolution bar charts. You can plot a single bar chart by setting the DATA

parameter to a one-way table or a variate defining the heights of the bars. To plot several bar

charts on the same graph, you can set DATA to a list of one-way tables or variates. These must

all contain the same number of values, and any tables must be classified by the same factor.

Alternatively, you can set DATA to a two-way table. The GROUPS parameter then specifies

which of the two classifying factors is to be treated as the "groups" factor (by default this is the

second factor). BARCHART now plots a bar chart for every level of the GROUPS factors, with bars

defined by the other classifying factor.

Labels can be supplied for the bars, using the LABELS option. If this is not set, the labels will

be the labels or levels of the factor classifying the DATA tables, or the integers 1 upwards for a

DATA variate.

By default, if there are several bar charts, they are plotted with their bars alongside each other.

So BARCHART first plots the first bar of every bar chart, then the second bar, and so on.

Alternatively, you can set option APPEND=yes to stack the bars. The bottom portion of each bar

then corresponds to the first bar chart, and the top to the last bar chart.

You can include error bars in a single bar chart or when several bar charts are plotted

alongside each other, by specifying their heights with the ERRORBARS and LOWERERRORBARS

parameters. The error bars take the form of a horizontal line joined by a vertical line of the

specified height, above and below each bar. The ERRORBARS parameter specifies the heights of

the error bars above the bars of the bar chart, and the LOWERERRORBARS parameter specifies the

heights of the error bars below the bars. If LOWERERRORBARS is not specified, the error bars are

assumed to have the same heights below and above the bars. You can set ERRORBARS and

LOWERERRORBARS to a scalar if the heights are the same for every bar of a bar chart, or to a table

or variate if different bars have error bars with different heights.

The ORIENTATION option controls whether the bars of the bar chart are plotted vertically (the

default) or horizontally. When ORIENTATION=horizontal, the horizontal axis is taken to be

the y-axis, so the same XAXIS and YAXIS settings can be used however the bar chart is oriented.

By default, Genstat uses pen 2 for the first bar chart, pen 3 for the second bar chart, and so on,

so that a different colour is used for each one. Alternatively, you can define your own colours

or shading, using the PEN parameter. If you set PEN to a scalar, a single pen is used for all the

bars. Alternatively, you can specify a variate or a table to define a different pen for each bar. The

relevant aspects of the pens should be set in advance, if required, using the COLOUR parameters

of the PEN directive. Generally, however, the default attributes of the pens will be satisfactory.

Similarly, the PENERRORBARS parameter specifies the pen or pens to use for the error bars

(default �11).

The bars in a bar chart usually have equal widths, defined to fill the available space along the

x-axis. However, you can set your own widths by setting option BARWIDTH to either a scalar or

a variate or table with as many values as the number of bars. The BARCOVERING option indicates

what proportion of the space allocated along the x-axis each bar should occupy; the default is

0.8 (giving a gap between each bar).

The OUTLINE option controls whether lines are drawn around the bars or around the perimeter

of the bar chart. These are drawn using the pen specified by the PENOUTLINE option (default

�9). You can suppress all the outlines by setting OUTLINE=*.

The WINDOW option defines the window where the bar chart is plotted, and the KEYWINDOW

option similarly specifies where the key should appear. You can set either of these to zero if you

want to suppress the corresponding output. Titles can be added to the bar chart and key using the

TITLE and KEYDESCRIPTION options respectively.

The SCREEN option controls whether the graphical display is cleared before the bar chart is

plotted and the ENDACTION option controls whether Genstat pauses at the end of the plot.

The axes of the plot are formed automatically from the data. By default, the upper bound of

46 Directives in Release 22

the y-axis is set to be five percent greater than the height of the longest bar. If any of the bars has

a negative height the lower bound is adjusted in a similar way, otherwise it is set to zero. You

can control the form of the axes by using the XAXIS and YAXIS directives to set the required

attributes (such as titles) before the BARCHART directive is used. The YSCALING option controls

the scale used to label the y-axis, with settings absolute, proportion or percentage; the

default is absolute.

The key consists of the title, if set by KEYDESCRIPTION, followed information about each bar

chart. You can specify a description for each bar chart using the DESCRIPTION parameter. If the

DATA parameter was set to a list of one-way tables or variates, the default description takes the

identifier of the table or variate. If DATA was set to a two-way table, the default descriptions are

formed from the labels or levels of the GROUPS factor.

Options: TITLE, WINDOW, KEYWINDOW, BARWIDTH, BARCOVERING, LABELS, APPEND,

ORIENTATION, SCALING, OUTLINE, PENOUTLINE, SCREEN, KEYDESCRIPTION, ENDACTION.

Parameters: DATA, ERRORBARS, LOWERERRORBARS, GROUPS, PEN, PENERRORBARS,

DESCRIPTION.

See also

Directives: DHISTOGRAM, D3HISTOGRAM, DPIE, LPHISTOGRAM, FRAME, XAXIS, YAXIS,

PEN.

Procedures: TRELLIS, DBARCHART, DMASS, DOTHISTOGRAM, DOTPLOT, DCIRCULAR,

WINDROSE.

Genstat Reference Manual 1 Summary section on: Graphics.

BASSESS 47

BASSESS

Assesses potential splits for regression and classification trees.

Options

Y = variate or factor Response variate for a regression tree, or factor

specifying the groupings for a classification tree

SELECTED = dummy Returns the identifier of X variate or factor used in the

best split

TESTSPLIT = expression structure Logical expression representing the best split

MAXSPLITPOINT = scalar or variate

When SELECTED is a variate or a factor with ordered

levels this returns a scalar containing the boundary

between the two splits, when the SELECTED is a factor

with unordered levels it returns a variate containing the

levels allocated to the first split

MAXCRITERION = scalar Maximum value obtained for the selection criterion

NOSELECTION = scalar Returns the value 1 if no split has been selected,

otherwise 0

FMETHOD = string token Selection method to use when Y is a factor (Gini, MPI);

default Gini

ANTIENDCUTFACTOR = string token

Anti-end-cut factor to use when Y is a factor

(classnumber, reciprocalentropy); default * i.e.

none

WEIGHTS = variate Weights; default * i.e. all weights 1

TOLERANCE = scalar Tolerance multiplier used e.g. to check for equality of x-

values; default * i.e. set automatically for the

implementation concerned

Parameters

X = variates or factors Variables available to make the split

ORDERED = string tokens Whether factor levels are ordered (yes, no); default no

SPLITPOINT = scalars or variates Saves details of the best split found for each X variable;

when X is a variate or a factor with ordered levels this

returns a scalar containing the boundary between the two

splits, when the X is a factor with unordered levels it

returns a variate containing the levels allocated to the

first split

CRITERIONVALUE = scalars Saves the value of the selection criterion for the best

split found for each X variable

Description

BASSESS selects splits for use when constructing classification or regression trees. The Y option

specifies the factor defining the groupings for a classification tree, or the response variate for a

regression tree. The x-variables that are available to make the split are supplied by the X

parameter. They can be variates, or factors with either ordered or unordered levels as indicated

by the ORDERED parameter. For example, a factor called Dose with levels for example 1, 1.5, 2

and 2.5 would usually be treated as having ordered levels, whereas levels labelled 'Morphine',

'Amidone', 'Phenadoxone' and 'Pethidine' of a factor called Drug would be regarded

as unordered.

In a regression tree, the accuracy of each node is the squared distance of the values of the

48 Directives in Release 22

response variate from their mean for the observations at the node, divided by the total number

of observations. The potential splits are assessed by their effect on the accuracy, that is the

difference between the initial accuracy and the sum of the accuracies of the two successor nodes

resulting from the split.

For a classification tree, the FMETHOD option allows one of two selection criteria to be

requested, either Gini information or the MPI (mean posterior improvement) criterion of Taylor

& Silverman (1993). The default is to use Gini information. The ANTIENDCUTFACTOR option

allows you to request use of adaptive anti-end-cut factors as devised by Taylor & Silverman

(1993, Section 5). Further details are given in the Methods section. By default no adaptive

factors are used.

The SPLITPOINT parameter can be used to save details of the best split found for each X

variable. When X is a variate or a factor with ordered levels, this returns a scalar containing the

boundary between the two splits. Alternatively, when X is a factor with unordered levels, it

returns a variate containing the levels allocated to the first split. The CRITERIONVALUE

parameter saves the value of the selection criterion for the best split found for each X variable.

The SELECTED option can be set to a dummy to store the identifier of the X variate or factor

used in the best split, and the MAXSPLITPOINT option can save details of the best split, similarly

to the SPLITPOINT parameter. The MAXCRITERION option saves the maximum value obtained

for the selection criterion, and the NOSELECTION saves a scalar containing the value 0 if a split

could be selected or 1 if no further splitting was possible. You can save a logical expression

representing the best split using the TESTSPLIT option. So, for example, you can put

BASSESS [Y=Yvar; TESTSPLIT=Test; ...]
RESTRICT Yvar; #Test == 1
PRINT Yvar

to print the y-values of the individuals in the first successor set. BASSESS takes account of

restrictions on Y or on any of the X variates or factors. So you also could now use BASSESS to

find the best split on that set.

The WEIGHTS option can supply a variate of weights for the observations. This could be used

to supply prior probabilities, or to emphasize units that are perceived as being especially

important.

Finally, the TOLERANCE option can be used to modify the tolerance multiplier used internally

for example to check for equality of x-values. By default this is set automatically to a value

appropriate for the Genstat implementation concerned.

Options: Y, SELECTED, TESTSPLIT, MAXSPLITPOINT, MAXCRITERION, NOSELECTION,

FMETHOD, ANTIENDCUTFACTOR, WEIGHTS, TOLERANCE.

Parameters: X, ORDERED, SPLITPOINT, CRITERIONVALUE.

Method

Further general information about classification and regression trees can be found in Breiman

et al. (1984). The methods used by BASSESS for classification trees are based on Taylor &

Silverman (1993). The Gini setting of the FMETHOD option uses the change in Gini information:

G = (1 � �k ák
2) � (�k â1k) × (1 � �k â1k

2) � (�k â2k) × (1 � �k â2k
2)

where ák is the proportion of individuals in the original set that are in group k, and âik is the

proportion of individuals in successor set i (i = 1 or 2) that are in group k. The aim here is to split

the individuals into sets to maximize differences between the within-set group probabilities. An

equivalent formula (Taylor & Silverman 1993, Section 4) is

G = (p1 × p2) × { �k â1k
2 + �k â2k

2 � �k (â1k × â2k) }

where pi = �k âik. The alternative MPI (mean posterior improvement) criterion concentrates

more on making the group probabilities differ between the successor sets:

MPI = (p1 × p2) × { 1 � �k ((â1k × â2k) / (â1k + â2k)) }

BASSESS 49

Taylor & Silverman (1993) note that the term (p1 × p2) aims to generate successor sets of

similar size, and refer to it as the anti-end-cut factor because it aims to avoid sets being produced

with only a small number of individuals. They suggest that this should vary according to the

complexity of the problem, and instead become

min { p1 × p2, plow × (1 � plow) }

where plow is the reciprocal of the number of groups in the initial set for the classnumber

setting of the ANTIENDCUTFACTOR option, and

min { 0.5, 1 / (�k ák
2) }

for the reciprocalentropy setting. The idea is to encourage splits that lead to terminal modes

� and to take accounts of the fact that these are more likely to be generated as the number of

groups becomes small.

Action with RESTRICT

You can request that BASSESS operate on only a subset of the units by applying a restriction to

the Y variate or factor, or to any of the X variates or factors, or to the WEIGHTS variate.

References

Breiman, L., Friedman, J.H., Olshen, R.A. & Stone, C.J. (1984). Classification and Regression

Trees. Wadsworth, Monterey.

Taylor, P.C. & Silverman, B.W. (1993). Block diagrams and splitting criteria for classification

trees. Statistics and Computing, 3, 147-161.

See also

Directives: BCUT, BGROW, BIDENTIFY, BJOIN, TREE.

Procedures: BCONSTRUCT, BCLASSIFICATION, BGRAPH, BKEY, BPRINT, BPRUNE.

Genstat Reference Manual 1 Summary section on: Calculations and manipulation.

50 Directives in Release 22

BCUT

Cuts a tree at a defined node, discarding the nodes and information below it.

Option

RENUMBER = string token Whether or not to renumber the nodes of the tree (yes,

no); default no

Parameters

TREE = trees Trees to be cut

NODE = scalars Node at which to cut each tree

NEWTREE = trees New trees with the information cut; if unspecified, the

new tree replaces the original tree

CUTTREE = trees Tree formed from the branches cut from the original tree

OLDNODES = variates Mapping from old nodes to node numbers in a

renumbered new tree (as positive numbers) or to nodes

in the CUTTREE (as negative numbers)

NEWNODES = variates Mapping from new node numbers in a renumbered tree

to the original nodes

CUTNODES = variates Mapping from node numbers in the CUTTREE tree to the

original nodes

Description

BCUT provides the basic tree utility of removing an unwanted branch, which is used for example

by the BPRUNE procedure. Other tree utilities are described in the description of the TREE

directive (which declares and initializes a tree).

The tree to be cut is specified by the TREE parameter, and the NODE parameter indicates the

node at which the cut is to be made. The NEWTREE parameter can supply the identifier for the

new tree (after removing all the nodes below NODE); if this is not specified, the new tree replaces

the original tree. The subtree below NODE can also be saved (as a tree in its own right, with NODE

as the root) using the CUTTREE parameter.

The OLDNODES parameter can save a variate containing a mapping from the old nodes to the

new nodes. If the node is a member of the new tree the variate contains the number of that node

in the NEWTREE, while if it is one of the nodes that are deleted the variate contains �1 multiplied

by its number in the CUTTREE. As far as OLDNODES is concerned NODE is regarded as a member

of the NEWTREE.

The NEWNODES parameter can save a variate containing the converse mapping from the

NEWTREE to the original tree. There is an element for each new node, containing the number of

the equivalent node in the original tree. Similarly, the CUTNODES parameter can save a mapping

from the CUTTREE to the original tree.

Option: RENUMBER.

Parameters: TREE, NODE, NEWTREE, CUTTREE, OLDNODES, NEWNODES, CUTNODES.

See also

Directives: BCUT, BGROW, BJOIN, TREE.

Procedures: BCONSTRUCT, BCLASSIFICATION, BGRAPH, BKEY, BPRINT, BPRUNE.

Functions: BBELOW, BBRANCHES, BDEPTH, BMAXNODE, BNBRANCHES, BNEXT, BNNODES,

BPATH, BPREVIOUS, BSCAN, BTERMINAL.

Genstat Reference Manual 1 Summary section on: Calculations and manipulation.

BGROW 51

BGROW

Adds new branches to a node of a tree.

No options

Parameters

TREE = trees Trees to be extended

NODE = scalars Node at which to extend each tree

NBRANCHES = scalars Number of branches to add to each node; default 2

POSITION = scalars Position at which to add the branches to each node;

default * i.e. after all the current braches from the node

NEWNODES = variates Returns the number(s) allocated to the new nodes

Description

BGROW provides the basic tree utility of adding new branches at a node, which is used for

example by the BCONSTRUCT procedure. Other tree utilities are described in the description of

the TREE directive (which declares and initializes a tree).

The tree to be extended is specified by the TREE parameter, and the NODE parameter indicates

the node at which the new branches are to be added. The NBRANCHES parameter specifies the

number of branches to add. The POSITION specifies where to add them if the node is a non-

terminal node; by default they are added after all the branches currently from the node. The

NEWNODES parameter saves a variate containing the numbers of the new nodes (i.e. the terminal

nodes at the ends of the new branches).

Options: none.

Parameters: TREE, NODE, NBRANCHES, POSITION, NEWNODES.

See also

Directives: BASSESS, BCUT, BJOIN, TREE.

Procedures: BCONSTRUCT, BCLASSIFICATION, BGRAPH, BKEY, BPRINT, BPRUNE.

Functions: BBELOW, BBRANCHES, BDEPTH, BMAXNODE, BNBRANCHES, BNEXT, BNNODES,

BPATH, BPREVIOUS, BSCAN, BTERMINAL.

Genstat Reference Manual 1 Summary section on: Calculations and manipulation.

52 Directives in Release 22

BIDENTIFY

Identifies specimens using a tree.

Options

TREE = tree Specifies the tree

TESTELEMENT = scalar Specifies which element of the pointer of information

stored at each node of the tree contains the test to be

done there to determine which subsequent branch to take

TERMINALNODES = scalar, variate or pointer

Scalar or variate saving the number or numbers of the

terminal nodes reached by a single specimen, or pointer

of scalars or variates saving the numbers of the terminal

nodes reached by several specimens

Parameters

X = factors or variates Variables involved in the tests performed in the tree

VALUES = scalars, variates or texts Values of the variables for the specimens to be identified

Description

BIDENTIFY identifies specimens using a classification tree, or a regression tree, or an

identification key (as constructed by procedures BCLASSIFICATION, BREGRESSION or BKEY,

respectively).

The characteristics of the specimens are specified using the X and VALUES parameters. Each

X setting should be one of the factors or variates in the tree, and the corresponding VALUES

setting should be a scalar, variate or text defining its values for the specimens. If X is a variate,

VALUES may be a scalar if all the specimens have the same x-value (or if there is only one

specimen); it will be a variate if there are several specimens with different x-values. VALUES can

be also be a scalar or variate if X is a factor. Alternatively, VALUES may be a text (with one or

several values) if the factor X has labels.

The tree is supplied by the TREE option. The TESTELEMENT option indicates which element

of the pointer of information, stored at each node of the tree, contains the test to be done there.

For trees constructed by procedures BCLASSIFICATION, BREGRESSION or BKEY the test

element is the second element of the pointers. In trees constructed by BKEY the test is a factor

whose (ordinal) level number defines the branch to take from the node. Alternatively, the tests

in trees constructed by BCLASSIFICATION and BREGRESSION are simple logical expressions

like

X < 1

or

X .IN. !t(red,blue)

where a "true" result selects the first branch, and a "false" result selects the second. BIDENTIFY

allows for expressions containing a single relational operator from the following list:

equality .EQ. or ==

string equality .EQS.

non-equality .NE. or /= or <>

string non-equality .NES.

less than .LT. or <

less than or equals .LE. or <=

greater than .GT. or >

greater than or equals .GE. or >=

inclusion .IN.

BIDENTIFY 53

non-inclusion .NI.

If the factor or variate in the test is not in the list supplied by the X parameter, all the branches

from the node must be followed, and the specimen will reach several terminal nodes. All the

branches must also be taken if the specimen has a missing value for the X variable in the test.

The TERMINALNODES option saves the numbers of the terminal nodes that the specimens reach

in the tree. If there is a single specimen, TERMINALNODES will be a scalar or a variate. If there

are several specimens, it will be a pointer of scalars or variates.

Options: TREE, TESTELEMENT, TERMINALNODES.

Parameters: X, VALUES.

Action with RESTRICT

Any restrictions are ignored.

See also

Directives: BASSESS, BCUT, BGROW, BJOIN, TREE.

Procedures: BCONSTRUCT, BCLASSIFICATION, BGRAPH, BKEY, BPRINT, BPRUNE.

Genstat Reference Manual 1 Summary section on: Calculations and manipulation.

54 Directives in Release 22

BJOIN

Extends a tree by joining another tree to a terminal node.

No options

Parameters

TREE = trees Trees to be extended

NODE = scalars Node at which to join the tree

JOINTREE = trees Trees to be joined onto the tree

NEWNODES = variates New node numbers allocated to each node in JOINTREE

in the new tree

Description

BJOIN provides the basic tree utility of joining a tree to the terminal node of a tree. Other tree

utilities are described in the description of the TREE directive (which declares and initializes a

tree).

The tree to be extended is specified by the TREE parameter, and the NODE parameter indicates

the node at which the tree is to be joined. The JOINTREE parameter specifies the tree to be

joined onto the tree, and the NEWNODES parameter saves a variate containing the numbers of the

nodes of the JOINTREE in the new tree.

Options: none.

Parameters: TREE, NODE, JOINTREE, NEWNODES.

See also

Directives: BASSESS, BCUT, BGROW, TREE.

Procedures: BCONSTRUCT, BCLASSIFICATION, BGRAPH, BKEY, BPRINT, BPRUNE.

Functions: BBELOW, BBRANCHES, BDEPTH, BMAXNODE, BNBRANCHES, BNEXT, BNNODES,

BPATH, BPREVIOUS, BSCAN, BTERMINAL.

Genstat Reference Manual 1 Summary section on: Calculations and manipulation.

BLOCKSTRUCTURE 55

BLOCKSTRUCTURE

Defines the blocking structure of the design and hence the strata and the error terms.

No options

Parameter

formula Block model (defines the strata or error terms for

subsequent ANOVA statements)

Description

The BLOCKSTRUCTURE directive specifies the underlying (or blocking) structure of a design that

is to be analysed by ANOVA. However, this can be omitted for unstructured designs with a single

error term.

In many designs, the units are nested. The simplest is the randomized block design. Here the

units are grouped into sets, known as blocks, the aim being that units in the same block should

be more similar than those in different blocks. The allocation of the treatments is randomized

independently within each block. The design thus has two sources of random variation:

differences between blocks as a whole, and differences between the units within each block. For

example if the units are plots of land and the blocks are groupings of nearby plots we would have

two factors: Blocks to indicate the block to which each plot belonged, and Plot to identify the

plots within each block. The block model would then be

Blocks/Plots

indicating that the plots are nested within blocks, and thus that there is no special similarity, for

example, between the plot numbered 3 in block 1 and plot 3 of the other blocks. The formula is

expanded by Genstat to become

Blocks + Blocks.Plots

giving terms for the differences between blocks as a whole, and the differences between the units

within each block, as required.

In the simplest form of the randomized block design, there is a single treatment factor, each

of whose levels occurs once in every block. More complicated arrangements are possible, but

each treatment combination must still occur exactly the same number of times in every block.

This means that any differences found between the blocks cannot be caused by differences

between treatments. Thus the treatment terms are all estimated between the plots within the

blocks. If the blocks have been chosen successfully, the variation within the blocks should be

less than that between blocks, and so the treatment estimates will be less variable than if a

completely randomized design had been used. The analysis of variance will be split into two

components called strata. The Blocks stratum will contain the sums of squares between blocks;

this all arises from the variability between the blocks. The Blocks.Plots stratum will contain

the sum of squares for the plots within the blocks; this is partitioned into the sums of squares due

to each of the treatment terms, and a residual against which these can be assessed.

Thus, you can deduce the block model from the structure of the units, which should

correspond to the way in which the randomization has been done. Genstat expands the block

model to form the list of block (or error) terms, each of which defines a stratum corresponding

to one of the sources of variability in the design. Alternatively, if you prefer to deduce the error

terms by some other means, as for example if you follow the philosophy of fixed and random

effects, you can specify the block model to be the sum of these terms.

In the analysis, Genstat initially partitions the sums of squares according to the block model

alone. This gives the total sum of squares for each of the strata. Then it partitions each stratum

sum of squares into sums of squares for those treatment terms estimated in that stratum, and a

residual which provides an estimate of variability against which these treatment sums of squares

should be compared.

56 Directives in Release 22

In the randomized block design, the treatments are estimated only in the final (bottom)

stratum. You would thus get the same sums of squares if you omitted the BLOCKSTRUCTURE

statement and put Blocks at the start of the treatment model. However the use of

BLOCKSTRUCTURE better reflects the structure of the design, as it correctly identifies Blocks as

an error term. It also allows for the possibility of treatments being estimated between blocks, as

in a balanced incomplete-blocks design.

The simplest design in which the treatments are not all estimated in one stratum is the split-

plot design. This again has a nested structure and was devised originally for agricultural

experiments where some of the factors can be applied to smaller plots of land than others.

However, it also occurs in industrial experiments, in medical experiments and even in the study

of cake mixtures. An example is shown in Section 6 of the Genstat for Windows Introduction.

Here there are two treatment factors: three different varieties of oats, and four levels of nitrogen.

Because of limitations on the machines for sowing seed, different varieties cannot conveniently

be applied to plots as small as those that can be used for the different rates of fertilizer. So the

design was set up in two stages. First of all, the blocks were each divided into three plots of the

size required for the varieties, and the three varieties were randomly allocated to the plots within

each block (exactly as in the randomized blocks design). Then each of these plots, or whole-plots

as they are usually known, was split into four sub-plots (one for each rate of nitrogen), and the

allocation of nitrogen was randomized independently within each whole-plot. The design has

sub-plots nested within whole-plots, which are themselves nested within the blocks: that is,

BLOCKSTRUCTURE Blocks / Wplots / Subplots

This expands to

Blocks + Blocks.Wplots + Blocks.Wplots.Subplots

giving strata for variation between blocks, between whole-plots within the blocks, and for sub-

plots within the whole-plots (within blocks). Just as in the randomized block design, the blocks

all contain the same sets of treatments, and so no treatments are estimated in the Blocks

stratum. But varieties, which were applied to whole-plots, are estimated in the Blocks.Wplots

stratum; in conventional terminology this is called the stratum for whole-plots within blocks. The

variance ratio for varieties is calculated by dividing the Variety mean square by the

Blocks.Wplots residual mean square. It is easy to see that this is the correct thing to do. When

we look to see whether the varieties differ we are really trying to answer the question: "Do the

yields from the three sets of whole-plots, on the first of which the variety Victory was grown,

on the second Golden rain and on the third Marvellous, differ by more than the amount that we

would expect for any three randomly chosen sets of whole-plots?". Technically, variety is said

to be confounded with whole plots. The terms for Nitrogen, which was applied to sub-plots,

and for the Variety.Nitrogen interaction are both estimated in the stratum for sub-plots

within whole-plots (Blocks.Wplots.Subplots).

Because Genstat knows the structure of the design it is thus able to present appropriate

variance ratios for the treatment terms. It is also able, for example, to produce correct standard

errors and LSDs for tables of means.

There are some designs where the units have a crossed instead of a nested structure. A simple

example is the Latin square. This was devised for agricultural experiments to cater for situations

where there are fertility trends both along and across the field, but it can be used whenever there

are two independent ways of grouping the units: for example time of testing and batch of

material, or the litter of the rat and its order by weight within the litter. In field experiments, the

plots are arranged in a square, with blocking factors called Rows and Columns. These each have

the same number of levels as there are treatments. Values of the single treatment factor are

arranged so that each level occurs once in each row and once in each column. The block

structure has rows crossed with columns: that is,

BLOCKSTRUCTURE Rows*Columns

BLOCKSTRUCTURE 57

which expands to

Rows + Columns + Rows.Columns

The treatments are estimated only in the Rows.Columns stratum. Removing variation between

rows and between columns should make these estimates less variable.

More complicated designs may involve both crossing and nesting. For example nested Latin

squares have the structure

BLOCKSTRUCTURE Squares / (Rows * Columns)

which gives strata for squares, rows within squares, columns within squares and rows.columns

within squares:

Squares +Squares.Rows +Squares.Columns +Squares.Rows.Columns

Alternatively, a Latin square with split plots for which the structure is defined by

BLOCKSTRUCTURE (Rows * Colums) / Subplots

giving the strata of an ordinary Latin square plus an additional stratum for subplots within rows

and columns:

Rows + Colums + Rows.Colums + Rows.Colums.Subplots

If the factors in the block formula do not provide a unique index for every unit of the

experiment, the terms in the block model will not account for all the variation. Genstat must then

define a final stratum to contain the variation between the sets of units whose levels are the same

for each block factor. At the end of the block model, Genstat therefore sets up an extra term

containing all the block factors, together with an extra "factor", denoted *units*, which

numbers the units within each set. So, for the randomized block design, you could put just

BLOCKSTRUCTURE Blocks

which would then become

BLOCKSTRUCTURE Blocks + Blocks.*units*

Likewise, for the split-plot design,

BLOCKSTRUCTURE Blocks/Wplots

would become

BLOCKSTRUCTURE Blocks/Wplots + Blocks.Wplots.*units*

Consequently, if you define no block structure at all, Genstat assumes

BLOCKSTRUCTURE *units*

giving a single source of variation representing random differences between the units (this

defines a completely randomized design). However, you may prefer to define a more meaningful

labelling of the units, for example

BLOCKSTRUCTURE Unitcode

The factor Unitcode would be very easy to set up. To produce a factor equivalent to *units*

in more complicated situations, you can use procedure AFUNITS. For example

AFUNITS [BLOCKSTRUCTURE=Blocks/Wplots] Splot

to generate a factor Splots to index the units within Blocks and Wplots.

Options: none.

Parameter: unnamed.

See also

Directives: ANOVA, COVARIATE, TREATMENTSTRUCTURE, ADISPLAY, AKEEP.

Procedures: AFCOVARIATES, ASTATUS, AUNBALANCED.

Genstat Reference Manual 1 Summary section on: Analysis of variance.

58 Directives in Release 22

BREAK

Suspends execution of the statements in the current channel or control structure and takes

subsequent statements from the channel specified.

Option

CHANNEL = scalar Channel number; default 1

Parameter

expression Logical expression controlling whether or not the break

takes place

Description

The BREAK directive allows you to halt the execution of the current set of statements temporarily

so that you can execute some other statements. If the parameter is not set, the break will always

take place. Alternatively, you can specify a logical expression and then the break will take place

only if this produces a true (i.e. non-zero) result.

The CHANNEL option determines where the statements to be executed during the break are to

be found. Usually (and by default) they are in channel 1. The statements are read and executed,

one at a time, until an ENDBREAK statement is reached, at which point control returns to the

statements originally being executed.

BREAK also provides a convenient way of interrupting a loop or a procedure so that you can

read one set of output before the next is produced.

Option: CHANNEL.

Parameter: unnamed.

See also

Directives: ENDBREAK, DEBUG, CALCULATE.

Genstat Reference Manual 1 Summary section on: Program control.

CALCULATE 59

CALCULATE

Calculates numerical values for data structures.

Options

PRINT = string token Printed output required (summary); default * i.e. no

printing

ZDZ = string token Value to be given to zero divided by zero (missing,

zero); default miss

TOLERANCE = scalar If the scalar is non missing, this defines the smallest

non-zero number; otherwise it accesses the default value,

which is defined automatically for the computer

concerned

SEED = scalar Seed to use for any random number generation during

the calculation; default 0

INDEX = scalar If the calculation has a list of structures before the

assignment operator (=), the scalar indicates the position

within the list of the structure currently being evaluated

RESTRICTEDUNITS = variate Defines a "restriction" on the vectors in the expression;

if this is set the calculations on those vectors will take

place only on the units listed in the variate (and any

restrictions of their own will be ignored)

Parameter

expression Expression defining the calculations to be performed

Description

The CALCULATE directive allows you to perform transformations and other calculations. It has

the form:

CALCULATE expression

The expression specifies what calculation is to be done, and where the results are to be stored.

For example, the command

CALCULATE Area = Length * Breadth

specifies that the structure Area is to store the results of Length multiplied by Breadth. All

the usual arithmetic operators are available:

+ addition

- subtraction

* multiplication

/ division

** exponentiation (for example, X**2 stands for X2)

CALCULATE can operate on any numerical data structure and it will automatically declare the

structure to hold the results if you have not declared it already. So, if Area has not yet been

defined and Length and Breadth are scalars, Area will become a scalar too.

Generally the structures involved in the calculation must have the same "shape" (for example,

variates must have the same length) and the operators operate element-by-element over all their

values. So, if Length and Breadth were variates, Area would become a variate each of whose

units contained the product of the corresponding units of Length and Breadth. However,

scalars and ordinary numbers can be included with calculations on any type of data structure. So

CALCULATE Kilo = Pound / 2.2

would be valid whatever the type of the structures Kilo and Pound.

If any of the values involved in a numerical expression is missing, the result will be missing

60 Directives in Release 22

too.

Genstat has operators for relational tests:

== or .EQ. equality of numerical values

.EQS. equality of textual strings

>= or .GE. greater than or equal to

> or .GT. greater than

<= or .LE. less than or equal to

< or .LT. less than

/= or <> or .NE. not equal to

.NES. inequality of textual strings

.IS. identifier equivalence (to test whether a dummy contains

a particular identifier)

.ISNT. identifier non-equivalence

.IN. inclusion: X.IN.Vals gives result true for each value of

X that is equal to any one of the values of Vals

.NI. non-inclusion: the opposite of .IN.

These generate a result of zero if the test is false, and one if it is true. (In fact any non-zero value

is taken to represent a true value.) With most of these operators, a missing value in either

operand (or in both) will generate a missing result. The exceptions are .EQ. and .NE. (and their

synonyms), and .EQS. and .NES.: when both operands are missing .EQ. and .EQS. give a true

result, while .NE. and .NES. give a false result.

There are also logical operators that can be used to combine the results of expressions

involving relational operators.

.AND. and: a.AND.b true if both a and b are true

.EOR. either or: a.EOR.b is true if either a or b, but not both, is

true

.OR. or: a.OR.b is true if either a or b is true

.NOT. not: .NOT.a is true for a untrue

The precedence rules of the operators are very similar (but possibly not identical) to those in

computer languages like C or Fortran. The list below shows the order in which the operators are

evaluated when they are used in expressions, if brackets are not used to make the order explicit:

1) .NOT. Monadic �

2) .IS. .ISNT. .IN. .NI. *+

3) **

4) * /

5) + Dyadic �

6) < > == <= >= /= <> .LT. .GT. .EQ. .LE. .GE. .NE. .NES.

7) .AND. .OR. .EOR.

8) =

(Monadic minus means the use of the minus sign in a negative number: for example, �1.) Within

each class, operations are done from left to right within an expression, unless brackets are used

to indicate some other order. So

A > B+C/D*E

is the same as

A > (B + ((C/D) * E)

Expressions can contain lists, to specify that the same calculation is to be done for several sets

of structures. For example

CALCULATE Pay1,Pay2 = Hours1,Hours2 * Rate + Bonus

CALCULATE 61

This has the same effect as the two commands

CALCULATE Pay1 = Hours1 * Rate + Bonus
CALCULATE Pay2 = Hours2 * Rate + Bonus

Notice that, if any of the lists on the right-hand side of the expression is shorter than the list on

the left-hand side, the list is re-used. So the value of Bonus is used for both calculations. To take

a more complicated example

CALCULATE X,Y,Z = A,B,C + 1,2

is the same as the three calculations

CALCULATE X = A + 1
CALCULATE Y = B + 2
CALCULATE Z = C + 1

However, the lists on the right-hand side must not be longer than the list on the left-hand side.

When the calculation contains lists, you can set the INDEX option to a scalar which will

contain the index of the current calculation. For example

CALCULATE [INDEX=i] X,Y,X = i * A,B,C

is the same as the three calculations

CALCULATE X = 1 * A
CALCULATE Y = 2 * B
CALCULATE Z = 3 * C

as X and A are the first items of their lists, Y and B are the second, and Z and C are the third.

Genstat provides a wide range of functions for use in expressions. Many of these, known as

transformations, produce a result that is the same type of structure as the argument of the

function. For example,

CALCULATE Logsulph = LOG(Sulphur)

uses the LOG function to take natural logarithms of the values in the data structure Sulphur. If

Sulphur is a variate Logsulph will also be a variate with the same number of values.

Scalar functions produce a scalar summary of all the values in a structure. For example, we

can use the SUM function to calculate the total Sulphur values:

CALCULATE Totsulph = SUM(Sulphur)

There are also vector functions that produce summaries across the values of a set of variates

(or of scalars). The set of variates must be put into a pointer. So, we could form a variate M each

of whose units contains the mean of the values in the corresponding units of the variates A, B and

C by

POINTER [VALUES=A,B,C] Vars
CALCULATE M = VMEAN(Vars)

This can be done more succinctly using an unnamed pointer:

CALCULATE M = VMEAN(!p(A,B,C))

When a function has more than one argument, each is separated from the next by a semicolon.

For example

CALCULATE Corr = CORRELATION(X; Y)

calculates the correlation between the values in X and Y.

Function arguments can also be lists, running in parallel with the other lists in the expression.

For example, to calculate Corr1 as the correlation between X1 and Y1, and Cor2 as the

correlation between X2 and Y2:

CALCULATE Corr1,Corr2 = CORRELATION(X1,X2; Y1,Y2)

When a factor occurs in an expression on the right-hand side, Genstat usually works with its

levels. The exception is when the factor occurs as the first operand of the operators .IN. or

.NI. and the second operand is a text; the factor labels are then used instead. A factor can also

62 Directives in Release 22

occur on the left-hand side of an expression and receive the results of a calculation; an error is

reported if any of the resulting values is not one of the levels of the factor. Two functions are

provided especially for factors: NLEVELS(F) gives the number of levels of the factor F, and

NEWLEVELS(F; V) forms a variate from the factor F, using variate V to define values for the

levels.

Text structures are allowed only with the relational operators .EQS., .NES., .IN. and .NI.

or in the string functions. The result of any expression is a number, so you cannot create a text

with CALCULATE, even if the structures on which the operations are being done are texts.

All the arithmetic, relational and logical operators and transformation functions can also be

used with matrix structures, symmetric matrices and diagonal matrices. The basic rule when

using these with different types of matrix is that their dimensions must conform. This means that,

for each pair of matrices, row dimension must match row dimension, and column dimension

must match column dimension. So, for example, you can add a diagonal matrix to a matrix

structure provided the number of rows and columns of the matrix equals the number of rows (and

columns) of the diagonal matrix. The multiplication operator (*) performs element-by-element

multiplication of two matrices: for matrix multiplication, there is the compound operator *+ or

the function PRODUCT, which is one of the many specialised matrix functions.

You can use tables in expressions in much the same way as you would any other numerical

structure. Tables in expressions must be either all without margins or all with margins. If you try

to mix tables with and without margins, Genstat will report an error. Calculations with tables are

very straightforward when they have the same factors in their classifying sets. The tables then

have identical "shapes", and the arithmetic, relational, and logical operators and the

transformation functions act element-by-element, in the usual way. When tables have different

classifying sets, there are two cases to consider. The first case is when the table on the left-hand

side has a factor in its classifying set that is not in the classifying set of the table on the right-

hand side. In this case, the right-hand table is expanded to include that factor, by duplicating its

values across the levels of the factor and any margin. The second case is when the table on the

right-hand side has a factor in its classifying set that is not in the classifying set of the table on

the left-hand side. Now the values in the margin over that factor are taken for the left-hand table.

If the table has no margins, they must be calculated first. By default Genstat forms marginal

totals, but you can use the special table functions to form other types of margin.

Dummies can be used with the relational operators .IS. and .ISNT. which test whether or

not a dummy points to a particular identifier. For example, to store in Sca the result of a test to

check whether dummy D points to Va, you would put

CALCULATE Sca = D.IS.Va

while to test that D does not point to Vb, you would put

CALCULATE Sca = D.ISNT.Vb

There are also the functions SET and UNSET to test if a dummy has or has not been set to any

value. Other specialised functions include subset functions, statistical functions and random

number generation functions.

CALCULATE has four options: PRINT, ZDZ, TOLERANCE and SEED. If you set the PRINT option

to summary, Genstat will print some summary information every time that values are assigned

to a structure. The information has the same form as in the READ directive: identifier, minimum

value, mean value, maximum value, number of values, number of missing values, and whether

or not the set of values is skew.

If you try to use CALCULATE to do something invalid, such as the logarithm or the square root

of a negative number, Genstat generates a warning diagnostic and inserts a missing value in the

offending unit. The one exception is the division of zero by zero, which is regarded as deliberate.

Genstat thus does not print a diagnostic, but uses option ZDZ to determine whether the result

should be a missing value (ZDZ=missing) or zero (ZDZ=zero); the default is missing.

The SEED option provides the seed to generate random numbers for the functions GRBETA,

CALCULATE 63

GRBINOMIAL, GRCHISQUARE, GRF, GRGAMMA, GRHYPERGEOMETRIC, GRLOGNORMAL,

GRNORMAL, GRPOISSON, GRT and GRUNIFORM if these occur in the expression. The seed can be

any non-negative integer, but only the last six digits of its integer part are used. Thus the seeds

2144556 and 7144556.3 are both equivalent to the seed 144556. The default value of zero

continues an existing sequence of random numbers, if either these functions or the function

URAND (which has its own argument to set the seed) has already been used in the current Genstat

run. If, however, this is the first time that these functions have been used, Genstat picks a random

seed.

The RESTRICTEDUNITS option allows you to apply a "restriction" to the vectors in the

expression. Its setting is a variate containing a list of the units numbers on which you want the

calculation to be done (the other units are then ignored). This works in the same way as if you

had applied a restriction on one of these vectors explicitly, using the RESTRICT directive (see

below). However, if RESTRICTEDUNITS is set, restrictions on the vectors themselves are

ignored. By default, when RESTRICTEDUNITS is unset, CALCULATE will look for restrictions

in the vectors, as usual. Note, though, that you can set RESTRICTEDUNITS=* to make the

calculation work on all the units, regardless of whether any of the vectors is restricted.

Options: PRINT, ZDZ, TOLERANCE, SEED, INDEX.

Parameter: unnamed.

Action with RESTRICT

If you are calculating values for a variate or factor, you can restrict the operation to only a subset

of the units by applying a restriction to any of the variates, factors or texts involved in that

calculation. The values in the other units are left unchanged. If more than one of these vectors

is restricted, they must all be restricted in the same way. Note, though, that restrictions on a

variate within a scalar function (for example MEAN), or within the RESTRICTION function,

operate independently from the main calculation outside. Also, restrictions in the main

calculation are ignored if it contains qualified identifiers or the ELEMENTS function.

See also

Directives: EXPRESSION, SETCALCULATE, NAG, FLRV, QRD, SVD.

Genstat Reference Manual 1 Summary section on: Calculations and manipulation.

64 Directives in Release 22

CALLS

Lists library procedures called by a procedure.

No options

Parameter

identifiers Names of the called procedures

Description

CALLS is useful when you are building a suite of procedures. By default, when you define a

procedure, Genstat checks that any procedures that it calls are available in the program or in an

attached procedure library. However, this can create problems when procedures call each other.

For example, Genstat is happy to execute programs where a procedure, A say, calls other

procedures that themselves call procedure A. However, it is then impossible to decide on an order

in which to define the procedures.

Before CALLS became available, the solution was to define dummy procedures (with option

and parameter definitions but no executable statements) before any of the real procedures were

defined. A better solution now, though, is to specify a CALLS statement in each procedure, to list

the procedure that it calls. Genstat then regards these as a set of "trusted" sub-procedures, that

it assumes will be provided before the procedure is executed. (If not, you will get a fault

diagnostic then!)

The CALLS statement must come immediately after the option and parameter definitions (using

the OPTION and PARAMETER directives), and before any executable statements. It has a single

parameter, that lists the names of the procedures that are called.

Options: none.

Parameter: unnamed.

See also

Directives: PROCEDURE, OPTION, PARAMETER, ENDPROCEDURE.

Genstat Reference Manual 1 Summary section on: Program control.

CAPTION 65

CAPTION

Prints captions in standardized formats.

Option

PFIRST = string tokens What to print first (dots, page, outprint); default *

i.e. none

Parameters

TEXT = texts Contents of the captions

STYLE = string tokens Style for each caption (plaintext, stress, minor,

major, meta, note, status); default plai

Description

The CAPTION directive allows various types of caption to be printed in the standard Genstat

styles. The contents of the caption are supplied by the TEXT parameter. The STYLE parameter

specifies a string to indicate the caption style:

plaintext ordinary text,

stress text to be emphasized,

minor a minor caption signifying a sub-section in the output,

major a major caption signifying a section in the output,

meta a meta-caption to group several sections of output,

note a "note" to the user, and

status a "status" message.

The PFIRST option allows you to start the caption on a new page or to precede it by a line of

dots (or a horizontal "rule" if the output is formatted; see the OPEN directive). Alternatively, the

outprint setting generates the dots or new page according to the setting for the current output

channel (see the OUTPUT directive).

Option: PFIRST.

Parameters: TEXT, STYLE.

See also

Directives: PAGE, PRINT, SKIP, TXCONSTRUCT.

Genstat Reference Manual 1 Summary section on: Input and output.

66 Directives in Release 22

CASE

Introduces a "multiple-selection" control structure.

No options

Parameter

expression Expression which is evaluated to an integer, indicating

which set of statements to execute

Description

A multiple-selection control structure consists of several alternative blocks of statements. The

first of these is introduced by a CASE statement. This has a single parameter, which is an

expression that must yield a single number. Subsequent blocks are each introduced by an OR

statement. There can then be a final block, introduced by an ELSE statement. The whole structure

is terminated by an ENDCASE statement. Thus the general form is: first

CASE expression

 statements

then either none, one or several blocks of statements of the form

OR

 statements

then, if required, a block of the form

ELSE

 statements

and finally the statement

ENDCASE

Genstat rounds the expression in the CASE expression to the nearest integer, k say, and then

executes the kth block of statements. If there is no kth block present (as for example if k is

negative) the block of statements following the ELSE statement is executed, if there is such a

block; otherwise an error diagnostic is given.

This example prints the salient details about each day in the song The twelve days of

Christmas. The scalar Day indicates which day it is.

CASE Day
 PRINT 'a partridge in a pear tree'
OR
 PRINT 'two turtle doves and a partridge in a pear tree'
OR
 PRINT 'three French hens, two turtle doves \
 and a partridge in a pear tree'
OR
 PRINT 'four calling birds, three French hens ...'
OR
 PRINT 'five gold rings ...'
OR
 PRINT 'six geese a-laying ...'
OR
 PRINT 'seven swans a-swimming ...'
OR
 PRINT 'eight maids a-milking ...'
OR
 PRINT 'nine drummers drumming ...'
OR
 PRINT 'ten pipers piping ...'
OR
 PRINT 'eleven ladies dancing ...'

CASE 67

OR
 PRINT 'twelve lords a-leaping ...'
ELSE
 PRINT 'sorry, no delivery today'
ENDCASE

CASE statements can be nested to any depth.

Options: none.

Parameter: unnamed.

See also

Directives: OR, ELSE, ENDCASE, EXIT, IF, FOR, CALCULATE.

Genstat Reference Manual 1 Summary section on: Program control.

68 Directives in Release 22

CATALOGUE

Displays the contents of a backing-store file.

Options

PRINT = string tokens What to print (subfiles, structures); default subf,
stru

CHANNEL = scalar Channel number of the backing-store file; default 0, i.e.

the workfile

LIST = string token How to interpret the list of subfiles (inclusive,

exclusive, all); default incl

SAVESUBFILE = text To save the subfile identifiers; default *

UNNAMED = string token Whether to list unnamed structures (yes, no); default no

Parameters

SUBFILE = identifiers Identifiers of subfiles in the file to be catalogued

SAVESTRUCTURE = texts To save the identifiers of the structures in each subfile

Description

You can use CATALOGUE to obtain details of the subfiles contained in a backing-store file, or the

structures within an ordinary subfile, or the procedures within a procedure subfile. The file is

indicated by the CHANNEL option, and the SUBFILE parameter specifies the subfiles (of ordinary

structures or of procedures) that are to be catalogued.

The PRINT option specifies which catalogues are to be printed. The subfiles setting prints

the catalogue of subfiles in the backing-store file attached to the channel specified by the

CHANNEL option, while the structures setting prints the catalogue of structures or procedures

that are in the subfiles specified by the SUBFILE parameter. If you set option UNNAMED=yes the

unnamed structures in each subfile will also be listed, together with details of how the structures

depend on each other.

The LIST option controls how the SUBFILE list is interpreted. The default setting inclusive

simply catalogues the subfiles that have been listed. Alternatively, if you set LIST=all Genstat

will catalogue all the subfiles in the backing-store file. Finally, you can see LIST=exclusive

to catalogue everything that you have not included in the SUBFILE list.

The SAVESTRUCTURE parameter allows you to set up texts, one for each subfile in the

SUBFILE parameter. Each text contains the identifiers of all structures with an unsuffixed

identifier in the subfile. Each identifier is put on a separate line, and the characters ,\ are

appended to all but the last line. You would normally use these texts as a macro; the ,\ makes

them useable as lists of identifiers. If the text is used as a macro, it is subject to the restriction

on the length of statements. The SAVESUBFILE option allows you to save a similar text

containing the identifiers of all the subfiles in a backing-store file.

Options: PRINT, CHANNEL, LIST, SAVESUBFILE, UNNAMED.

Parameters: SUBFILE, SAVESTRUCTURE.

See also

Directives: STORE, RETRIEVE, MERGE.

Genstat Reference Manual 1 Summary section on: Input and output.

CLOSE 69

CLOSE

Closes files.

No options

Parameters

CHANNEL = scalars or texts Numbers of the channels to which the files are attached,

or identifiers of texts used for input (which, after

"closing", can then be re-read)

FILETYPE = string tokens Type of each file (input, output, unformatted,

backingstore, procedurelibrary, graphics);

default inpu

DELETE = string tokens Whether to delete the file on closure (yes, no); default
no

Description

Once you have finished using a file, CLOSE can be used to release the channel to which it is

attached, so that the channel is available for use with some other file. Parameters CHANNEL and

FILETYPE indicate the channel number and the type of file, as in the OPEN directive. The

DELETE parameter is useful if you are using files to store data temporarily, perhaps to release

workspace within Genstat. When you have finished with the file you can set DELETE=yes to

request that it be deleted on closure so that disk space is not wasted. For example,

OPEN 'temp.bin'; CHANNEL=3; FILETYPE=unformatted
PRINT [CHANNEL=3;UNFORMATTED=yes] \
 Surveys[1900,1910...1990]
DELETE Surveys[1900,1910...1990]

"... and later on when you wish to retrieve the data ..."
READ [CHANNEL=3;UNFORMATTED=yes] \
 Surveys[1900,1910...1990]
CLOSE 3; FILETYPE=unformatted; DELETE=yes

You cannot close a channel to which the keyboard or screen are attached, nor the current input

or output channels. Also you cannot use CLOSE to delete files that have been opened with

ACCESS=readonly or that are protected by the computer's file system. However, you do not

need to close every file before you stop running Genstat; files are automatically closed at the end

of every Genstat program.

Options: none.

Parameters: CHANNEL, FILETYPE, DELETE.

See also

Directives: OPEN, ENQUIRE, FCOPY, FDELETE, FRENAME.

Genstat Reference Manual 1 Summary section on: Input and output.

70 Directives in Release 22

CLUSTER

Forms a non-hierarchical classification.

Options

PRINT = string tokens Printed output required (criterion, optimum, units,

typical, initial, random); default * i.e. no printing

DATA = matrix or pointer Data from which the classification is formed, supplied as

a units-by-variates matrix or as a pointer containing the

variates of the data matrix

CRITERION = string token Criterion for clustering (sums, predictive, within,

Mahalanobis); default sums

INTERCHANGE = string token Permitted moves between groups (transfer, swop);

default tran (implies swop also)

START = factor Initial classification; default * splits the units, in order,

into NGROUPS classes of nearly equal size

NSTARTS = scalar Number of random starting configurations to be used;

default 0

SEED = scalar Seed for the random numbers used to form random

starting configurations; default 0

Parameters

NGROUPS = scalars Numbers of classes into which the units are to be

classified: note, the values of the scalars must be in

descending order

GROUPS = factors Saves the classification formed for each number of

classes

CRITERIONVALUE = scalars Saves the criterion values (representing within-class

homogeneity)

BCRITERIONVALUE = scalars Saves the subsidiary criterion values (representing

between-class heterogeneity for maximal predictive

classification)

MEANS = matrices Saves the variate means for the groups of each

classification

PREDICTORS = matrices Saves the group predictors from maximal predictive

classification

Description

Printed output is controlled by the PRINT option. This has the following possible settings.

criterion prints the optimal criterion value.

optimum prints the optimal classification.

units prints the data with the units ordered into the optimal

classes.

typical prints a typical value for each class: for maximal predictive

classification this is the class predictor; for the other

methods it is the class mean.

initial if this is set, the requested sections of output are also

printed for the initial classification.

random if this is set, the requested sections of output are also

printed for the optimum configuration obtained from every

random start.

The DATA option supplies the data to be classified. This specifies a single structure that must

CLUSTER 71

be either a matrix, with rows corresponding to the units and columns to the variables, or a pointer

whose values are the identifiers of the variates in the data matrix. Internally, CLUSTER operates

on a matrix, and so it will copy the variate values into a matrix if you supply a pointer as input;

thus, it is more efficient to supply a matrix, especially with large data sets.

The CRITERION option specifies which criterion CLUSTER is to optimize. The four available

settings are:

sums minimize the within-group sum of squares (and thus

maximize the between-group sum of squares);

predictive maximal predictive classification;

within minimize the determinant of the pooled within-class

dispersion matrix;

mahalanobis maximize the total Mahalanobis squared distance between

the groups.

The default is sums.

The INTERCHANGE option specifies which types of interchange (transfers or swops) are to be

used. The default is transfer, which is taken to imply that both transfers and swops are used,

since a swop is simply two transfers. If you set INTERCHANGE=swop, only swops are used. If

INTERCHANGE=* the algorithm does not attempt to improve the classification from the initial

classification; you might want this, in conjunction with the PRINT=initial setting, to display

the results for an existing classification which you do not wish to improve.

The START option can be used to supply a factor to define the initial classification. This might

be constructed using the CLASSIFY procedure. If there are k classes, CLASSIFY finds the k units

that are furthest apart in the multi-dimensional space defined by the data variates. These are then

used as the nuclei for the classes, with each remaining unit being allocated to the class containing

the nearest nucleus. The default splits the units, in order, into NGROUPS classes of nearly equal

size.

As an alternative to the use of CLASSIFY, the NSTARTS option allows you to specify a number

of random permutations of the initial classification to try. CLUSTER then saves the best

classification that it finds. By default, NSTARTS=0, i.e. no randomization is done. The SEED

option supplies the seed for the random numbers that are used to do the permutations. The

default of zero continues the existing sequence of random numbers, if CLUSTER has already been

used in the current Genstat job. If CLUSTER has not yet been used, Genstat picks a seed at

random.

The first parameter, NGROUPS, specifies the number of groups, or classes, to be formed. Often

you would want several classifications from a single data set, into different numbers of groups.

In this case, the NGROUPS parameter should be a list of scalars, defining the numbers of groups

in descending order. For the initial classification of the second classification, CLUSTER takes the

optimal classification from the first number of groups, and does some reallocation of units to

make a smaller number of groups. This is repeated, as often as required, to provide initial

classifications for all the later analyses; hence the need to specify the numbers in descending

order. Random starts are done only for the first number of groups.

The GROUPS parameter can specify a list of factors to save the optimal classifications. The

CRITERIONVALUE parameter can specify a list of scalars to save the criterion values for each

number of groups. The subsidiary criterion values involved in maximal predictive classification

can be saved (also in scalars) using the BCRITERIONVALUE parameter. The MEANS parameter

can save matrices containing the means of the variates within the groups of the classifications,

and the PREDICTORS parameter can save matrixes containing the group predictors from maximal

predictive classifications.

Options: PRINT, DATA, CRITERION, INTERCHANGE, START, NSTARTS, SEED.

Parameters: NGROUPS, GROUPS, CRITERIONVALUE, BCRITERIONVALUE, MEANS, PREDICTORS.

72 Directives in Release 22

Action with RESTRICT

Any restrictions, for example on the variates in a DATA pointer, are ignored.

See also

Directives: FSIMILARITY, HCLUSTER, HREDUCE.

Procedures: CLASSIFY, BCLASSIFICATION, CINTERACTION, HCOMPAREGROUPINGS,

MASCLUSTER.

Genstat Reference Manual 1 Summary section on: Multivariate and cluster analysis.

COKRIGE 73

COKRIGE

Calculates kriged estimates using a model fitted to the sample variograms and cross-

variograms of a set of variates.

Options

PRINT = string token Controls printed output (description, search,

weights, conditionalprobabilities,

quantiles, crossvalidations); default desc

Y = variate Variate to predict in the cokriging

METHOD = string token Type of kriging (Normal, LogNormal); default Norm

X1OUTER = variate Variate containing 2 values to define the bounds of the

region to be examined in the first direction; by default

the whole region is used

X2OUTER = variate Variate containing 2 values to define the bounds of the

region to be examined in the second direction; by default

the whole region is used

X3OUTER = variate Variate containing 2 values to define the bounds of the

region to be examined in the third direction; by default

the whole region is used

X1INNER = variate Variate containing 2 values to define the bounds of the

interpolated region in the first direction; no default

X2INNER = variate Variate containing 2 values to define the bounds of the

interpolated region in the second direction; no default

X3INNER = variate Variate containing 2 values to define the bounds of the

interpolated region in the third direction; no default

X1INTERVAL = scalar Distance between successive interpolations in the first

direction; default 1.0

X2INTERVAL = scalar Distance between successive interpolations in the second

direction; default 1.0

X3INTERVAL = scalar Distance between successive interpolations in the third

direction; default 1.0

POINTS = matrix Allows the point where predictions are required to be

specified explicitly if the X1-3INNER and X1-

3INTERVAL options are unset, otherwise if these are set,

saves the locations of the prediction points

BLOCKDIMENSIONS = variate or matrix

Dimensions of the block(s) in the 3 directions, a variate

defines identical blocks for each prediction point, a

matrix can be used to define different block sizes for

each point when the points are defined by the POINTS

option; default !(0,0,0) i.e. punctual kriging at every

point

POOLRADIUS = scalar Specifies the minimum distance for which points are

pooled; default * i.e. no pooling

SEARCHNEIGHBOURHOOD = string token

Search neighbourhood to be used (global, local);

default glob

MINPOINTS = scalars Minimum number of data points from which to compute

elements

MAXPOINTS = scalars Maximum number of data points in each direction from

which to compute elements

74 Directives in Release 22

RADII = scalars or variates Scalar defining the maximum distance between target

point in block and usable data for each variable in 1

dimension, or radii of the ellipse or ellipsoid enclosing

the usable points in 2 or 3 dimensions

ELLIPSEAXIS = scalar or variate Angle or angles defining the direction of the axis of the

ellipse or ellipsoid, scalar for 2 dimensions and variate

containing 3 values for 3 dimensions

DRIFT = string token Mean function for universal cokriging (constant,

linear, quadratic, polygon); default cons

X1EXV = variate Variate containing locations of the explanatory model in

the first dimension

X2EXV = variate Variate containing locations of the explanatory model in

the second dimension (if recorded in 2 or 3 dimensions)

X3EXV = variate Variate containing locations of the explanatory model in

the third dimension (if recorded in 3 dimensions)

TERMS = variates List of variates for explanatory model; default * i.e.

none

POLYGONCOORDINATES = pointer Pointer containing the coordinates of polygons in 2

variates and the map unit numbers within a factor

COORDSYSTEM = string token Coordinate system used for the geometry for discretizing

the lag (mathematical, geographical); default math

CPTHRESHOLD = scalar or variate Threshold(s) for calculating the conditional probabilities

PERCENTQUANTILES = scalar or variate

Percentage points for which quantiles are required;

default 5 and 95

LOGBASE = string token Base of antilog transformation to be applied to the

predictions and variances for lognormal (co)kriging

(ten, e); default * i.e. none

Parameters

DATA = variates Measurements as one or more variates

X1 = variates Locations of the measurements in the first dimension

X2 = variates Locations of the measurements in the second dimension

(if recorded in 2 or 3 dimensions)

X3 = variates Locations of the measurements in the third dimension (if

recorded in 3 dimensions)

PREDICTIONS = variate Kriged estimates

VARIANCES = variate Estimation variances

MEASUREMENTERROR = scalars Variance of measurement error for punctual (co)kriging

ESTIMATES = pointers Estimates for the model structure

CONDITIONALPROBABILITIES = pointers

Structure to save conditional probabilities

QUANTILES = pointers Structure to save estimated quantiles

SAMPLESUPPORT = scalars Sampling size (length, area or volume according to the

dimensionality of the data) of the data points

Description

The COKRIGE directive computes kriged estimates using a model fitted by MCOVARIOGRAM to

the sample auto- and cross-variograms of a set of variates. The data are supplied as a list of

variates using the DATA parameter. The target variable to predict is supplied using the Y option.

Note that the target variable must also be present in the list of variates supplied with the DATA

COKRIGE 75

parameter. The locations of the measurements are supplied using the parameters X1, X2 (for two

or three dimensions) and X3 (for three dimensions).

The METHOD option allows you to specify whether to perform Normal or logNormal cokriging.

The lognormal setting is only available for punctual cokriging. For logNormal cokriging the

LOGBASE option allows you to specify the base of the logarithms (ten or e) for back

transforming the kriged predictions and variances.

By default, Genstat uses global prediction where, for each prediction, all the data values are

used. However, it is often desirable to use a subset in a (spatial) neighbourhood around the

prediction location. This could be for computational reasons, or to assume local first-order

stationarity. You can choose whether to use a global or local search using the

SEARCHNEIGHBOURHOOD option.

You can select a subset of the data to be considered when forming the cokriging system by

specifying the area or volume defined by X1OUTER, X2OUTER and X3OUTER. Each of these

should be set to a variate with two values to define the lower and upper limits in each direction.

You can supply the positions at which the target variable is predicted (estimated) in two ways.

The first way is to generate the locations using the X1-3INNER and X1-3INTERVAL options.

X1INNER, X2INNER and X3INNER are set to variates with two values to define the lower and

upper limits in each direction, and the limits should not lie outside those of X1OUTER, X2OUTER

and X3OUTER. X1INTERVAL, X2INTERVAL and X3INTERVAL are set to scalars to define the

distance between the successive positions in the first, second and third direction. The intervals

should be specified using the same units as the data. You can save the generated locations by

supplying an identifier in the POINTS option. The second way is to explicitly supply the points

where predictions are required. If the X1-3INNER and X1-3INTERVAL options are unset then you

can use the POINTS option to supply a matrix of prediction locations.

By default the cokriging is punctual, i.e. at points that have the same size and shape as the

sample support. The BLOCKDIMENSIONS option can be used to specify block cokriging. You can

either specify a variate containing the dimensions of the block(s) in the three directions or

alternatively supply a matrix defining different block sizes for each point when points are

supplied using the POINTS option. For punctual cokriging, you can specify the variance of any

measurement error using the MEASUREMENTERROR parameter.

The minimum and maximum number of points used for the kriging are set by the MINPOINTS

and MAXPOINTS options, respectively.

The RADII option defines the maximum distance between the target point in a block and

usable data. For an isotropic search you should supply a scalar to define the maximum distance

or radii of the ellipse (two dimensions) or ellipsoid (three dimensions). For an anisotropic search

you should supply the distances for each axis of the ellipse of ellipsoid. For an anisotropic search

the angle or angles defining the direction of the axes of the ellipse or ellipsoid for the search are

supplied using the ELLIPSEAXIS option. For two dimensions you should supply a scalar

containing the angle for the first axis which is measured in degrees, counter-clockwise from East

if option COORDSYSTEM is set to mathematical, or clockwise from North if COORDSYSTEM is

set to geographical. For three dimensions the first value defines the angle for the first axis

which is measured in degrees, counter-clockwise from East if COORDSYSTEM is set to

mathematical, or clockwise from North if COORDSYSTEM is set to geographical. The

second value defines the dip angle for the first axis (rotation angle around the y-axis) which is

measured in degrees up from horizontal. The third value defines the rotation angle of the second

and third axis around the first axis (defined by the two previous angles).

The POOLRADIUS option allows you to specify a minimum distance for which points can be

pooled.

The ESTIMATES parameter allows you to specify an identifier of a data structure storing

estimates of the non-linear parameters, sill values and associated information. This structure

should be formed using the MCOVARIOGRAM directive.

76 Directives in Release 22

The PRINT option controls the printed output with settings:

description description of the length, area or volume being kriged and

the model that is used,

search the results of the search for data around each position that

is kriged,

weights the kriging weights at each position,

crossvalidation cross-validation statistics for punctual cokriging (the cross-

validation is calculated by estimating each sample point

from the data after excluding the sample value),

conditionalprobabilities conditional probabilities for the values specified by the

CPTHRESHOLD option,

quantiles quantiles for the values specified by the

PERCENTQUANTILES option.

Universal kriging may be invoked by setting the DRIFT option to linear or to quadratic,

i.e. to be of order 1 or 2. The default is DRIFT=constant, to give ordinary cokriging. You can

include explanatory variables in the mean function by listing explanatory variates with the

TERMS option, and their associated coordinates using the X1EXV, X2EXV and X3EXV options. For

two-dimensional cokriging, the DRIFT=polygon option allows you to specify categorical

variables defined by one or more closed polygons (map units). The map units and polygons

should be supplied in a pointer using the POLYGONCOORDINATES option. The pointer should

contain the coordinates of the polygons in two variates (x- and y-positions) and a factor where

each level defines a different map unit. If there is more than one polygon within a map unit these

should be separated with a row of missing values.

You can specify the sampling support size (length, area or volume) of the data points using

the SAMPLESUPPORT parameter.

The PERCENTQUANTILES option can specify percentage values for which to compute

quantiles for the conditional distributions. The quantiles can be saved using the QUANTILES

parameter.

The CPTHRESHOLD option allows you to specify thresholds for calculating conditional

probabilities. The conditional probabil i t ies can be saved using the

CONDITIONALPROBABILITIES parameter.

The kriged predictions and variances can be saved using the PREDICTIONS and VARIANCES

parameters. If a grid or volume of points has been generated using the X1-3INNER and X1-

3INTERVAL options, the corresponding prediction locations can be saved using the POINTS

option.

Options: PRINT, Y, METHOD, X1OUTER, X2OUTER, X3OUTER, X1INNER, X2INNER, X3INNER,

X1INTERVAL, X2INTERVAL, X3INTERVAL, POINTS, BLOCKDIMENSIONS, POOLRADIUS,

SEARCHNEIGHBOURHOOD, MINPOINTS, MAXPOINTS, RADII, ELLIPSEAXIS, DRIFT, X1EXV,

X2EXV, X3EXV, TERMS, POLYGONCOORDINATES, COORDSYSTEM, CPTHRESHOLD,

PERCENTQUANTILES, LOGBASE.

Parameters: DATA, X1, X2, X3, PREDICTIONS, VARIANCES, MEASUREMENTERROR, ESTIMATES,

CONDITIONALPROBABILITIES, QUANTILES, SAMPLESUPPORT.

See also

Directives: FCOVARIOGRAM, MCOVARIOGRAM, FVARIOGRAM, KRIGE.

Procedures: DCOVARIOGRAM, KCROSSVALIDATION, MVARIOGRAM, DVARIOGRAM,

DHSCATTERGRAM.

Genstat Reference Manual 1 Summary section on: Spatial statistics.

COLOUR 77

COLOUR

Defines the red, green and blue intensities to be used for the Genstat colours for certain

graphics devices.

Option

RESET = string token Whether to reset values to their defaults (yes, no);

default no

Parameters

NUMBER = scalars Numbers of the colours to be set

RED = scalars Red intensity of each colour (between 0 and 255)

GREEN = scalars Green intensity of each colour (between 0 and 255)

BLUE = scalars Blue intensity of each colour (between 0 and 255)

MATCH = scalars Number of a Genstat colour to define any unset values of

RED, GREEN or BLUE; default is to restore the original

values of the colour

SAVE = pointers Pointers each containing three scalars to save the red,

green and blue intensities of the colours

Description

The COLOUR directive allows you to redefine the standard Genstat colours. In Releases prior to

Release 11 these standard colours were used in directives like PEN to define the colours of the

various components of the graph. In Release 11, however, colours in these directives are defined

by default by setting them explicitly to an RGB value (see PEN). However, you can arrange to

use the old method by specifying the statement

SET [CMETHOD=standard]

Genstat uses the RGB colour system to define each standard colour (numbered from 0 to 256)

in terms of its red, green and blue components. These are specified as integer values in the range

[0,255]. Thus black is represented by (0,0,0), white by (255,255,255), red by (255,0,0), and so

on. For compatibility with earlier releases, fractional values between 0 and 1 will be multiplied

by 255. The COLOUR directive can be used in three ways. Firstly you can define a colour in RGB

terms. For example, you could put

COLOUR 1; RED=255; BLUE=0; GREEN=255

to define colour 1 as yellow. Points plotted in colour 1 would then appear as yellow.

Alternatively, the MATCH parameter allows a colour to take its RGB values from the current

settings of another colour. For example,

COLOUR 2; MATCH=1

will set colour 2 also to be yellow. Note that if colour 1 is changed again, colour 2 will not be

altered. Finally a colour can be returned to its initial default settings by specifying only the

colour number. For example,

COLOUR 1,2

will set colours 1 and 2 back to their original values. The background colour may be altered by

changing the definition of colour 0.

The exact effects of the COLOUR directive will vary for different graphics devices. For

monochrome devices, the colour (0,0,0) is taken as the background colour, and any other

combination is taken as the foreground colour.

By default any parameters that are not mentioned explicitly in the statement are left

unchanged, but you can specify option RESET=yes to reset them back to their initial default

settings.

78 Directives in Release 22

Option: RESET.

Parameters: NUMBER, RED, GREEN, BLUE, MATCH, SAVE.

See also

Directive: PEN.

Procedure: GETRGB.

Genstat Reference Manual 1 Summary section on: Graphics.

COMBINE 79

COMBINE

Combines or omits "slices" of a multi-way data structure (table, matrix or variate).

Options

OLDSTRUCTURE = identifier Structure whose values are to be combined; no default

i.e. this option must be set

NEWSTRUCTURE = identifier Structure to contain the combined values; no default i.e.

this option must be set

Parameters

OLDDIMENSION = factors or scalars

Dimension number or factor indicating a dimension of

the OLDSTRUCTURE

NEWDIMENSION = factors or scalars

Dimension number or factor indicating the

corresponding dimension of the NEWSTRUCTURE; this

can be omitted if the dimensions are in numerical order,

while zero settings (each in conjunction with a single

OLDPOSITION) allows a slice of an old table to be

mapped into a new table with fewer dimensions

OLDPOSITIONS = pointers, texts, variates or scalars

These define positions in each OLDDIMENSION: pointers

are appropriate for matrices whose rows or columns are

indexed by a pointer; texts are for matrices indexed by a

text, variates with a textual labels vector, or tables whose

OLDDIMENSION factor has labels; and variates either

refer to levels of table factors or numerical labels of

matrices or variates, if these are present, otherwise they

give the (ordinal) number of the position. If omitted, the

positions are assumed to be in (ordinal) numerical order.

Margins of tables are indicated by missing values

NEWPOSITIONS = pointers, texts, variates or scalars

These define positions in each NEWDIMENSION,

specified similarly to OLDPOSITIONS; these indicate

where the values from the corresponding

OLDDIMENSION positions are to be entered (or added to

any already entered there)

WEIGHTS = variates Define weights by which the values from each

OLDDIMENSION coordinate are to be multiplied before

they are entered in the NEWDIMENSION

Description

Sometimes you may wish to reclassify a table to have factors different from those that you used

in its declaration. COMBINE allows you to omit or to combine levels of the classifying factors.

Furthermore, if you want to take just one level of a factor, you can copy the values into a table

with one less dimensions.

You specify the original table using the OLDSTRUCTURE option, and a table to contain the

reclassified values using the NEWSTRUCTURE option; if you have not already declared the new

table, it will be declared implicitly. You must specify both of these options.

You can modify several of the classifying factors at a time. You list the factors of the original

table with the OLDDIMENSION parameter, and the equivalent factors of the new table with

80 Directives in Release 22

NEWDIMENSION. An alternative way of doing this is to give a dimension number, specifying the

position of the factor in the classifying set of the table; for the NEWDIMENSION list, this requires

that you have already declared the new table. You can even omit the list of dimensions if they

would be in ascending numerical order. NEWDIMENSION can also be set to 0 (to imply no

corresponding new factor), allowing you to extract a single slice of a table into a table with fewer

dimensions.

You use the OLDPOSITIONS and NEWPOSITIONS parameters to specify how this combining

is to be done. These parameters specify a pair of vectors for each pair of old and new

dimensions, listing positions within the old dimension and the corresponding positions to which

they are mapped in the new dimension. The positions can be defined in terms of either the levels

or the labels of the factor that classifies the dimension. If you omit the vector for one of the

dimensions, it is assumed to contain each value once only, taken in the order in which they occur

in the levels vector of the factor. You indicate a margin of the table by a missing value in a

variate, or by a null string in a text. Values in the original table can be allocated to more than one

place. In parallel with the vectors of positions, you can also use the WEIGHTS parameter to

specify a variate of weights by which the values are multiplied before being entered into the new

table.

Although the main way in which you will use COMBINE is likely to be for tables, you can also

use it on rectangular matrices and even variates. For these, the dimensions can only be numbers:

number 1 refers to the rows of a matrix, and 2 to the columns; number 1 refers to the rows (or

units) of a variate. The position vectors refer to the labels vectors of matrices, which can be

variates, texts or pointers; or they refer to the unit labels of a variate, which can be held in either

a variate or a text. If a dimension has no labels vector, you use a variate to specify its positions;

then each value of the variate gives the number of a row, column or unit. You can do the same

also if the labels vector is something other than a variate: that is, a text or a pointer.

Options: OLDSTRUCTURE, NEWSTRUCTURE.

Parameters: OLDDIMENSION, NEWDIMENSION, OLDPOSITIONS, NEWPOSITIONS, WEIGHTS.

Action with RESTRICT

Any restrictions, for example on OLDPOSITIONS or NEWPOSITIONS variates, are ignored.

See also

Directives: TABLE, TABULATE, MARGIN.

Procedures: MTABULATE, PERCENT, SVSTRATIFIED, SVTABULATE, TABINSERT, TABMODE,

TABSORT.

Genstat Reference Manual 1 Summary section on: Calculations and manipulation.

COMMANDINFORMATION 81

COMMANDINFORMATION

Provides information about whether (and how) a command has been implemented.

No options

Parameters

NAME = texts Single-line texts supplying the names of the commands

IMPLEMENTATION = texts Single-line texts set to 'directive', 'procedure' or

a null string ('') according to the type of command

CHANNEL = scalars Saves the channel for a procedure from a procedure

library

PRESENTNOW = scalars Logical set to one if the command is now present, or

zero otherwise

Description

COMMANDINFORMATION enables you to discover whether a command is present in your version

of Genstat and, if so, whether it is a directive or a procedure.

The name of the command must be supplied in a single-value text, using the NAME parameter.

The IMPLEMENTATION parameter can save another single-valued text, which is set to

'directive' or 'procedure' according to the type of command. If the command is not

present, it is set to a null string ('') .

The PRESENTNOW parameter provides another, possibly simpler, way of discovering whether

the directive or procedure is currently present within Genstat. This saves a scalar containing the

value one if the command is present, or zero otherwise.

For procedures accessed from a procedure library, the CHANNEL option can save a scalar with

the number of the channel to which the library is attached. This contains a missing value if the

command is not present as a procedure. It contains zero if the procedure was created in this job

(using the PROCEDURE directive). The channel number for the official procedure library is 12,

and the channel for the local procedure library is 11.

Parameters: NAME, IMPLEMENTATION, CHANNEL, PRESENTNOW.

See also

Directives: OPEN, PROCEDURE, SYNTAX.

Procedures: SPSYNTAX.

Genstat Reference Manual 1 Summary section on: Program control.

82 Directives in Release 22

CONCATENATE

Concatenates and truncates lines (units) of text structures; allows the case of letters to be

changed.

Options

NEWTEXT = text Text to hold the concatenated/truncated lines; default is

the first OLDTEXT vector

CASE = string token Case to use for letters (given, lower, upper,

changed); default give leaves the case of each letter as

given in the original string

Parameters

OLDTEXT = texts Texts to be concatenated

WIDTH = scalars or variates Number of characters to take from the lines of each text,

a negative value takes all the (unskipped) characters

other than trailing spaces; if * or omitted, all the

(unskipped) characters are taken

SKIP = scalars or variates Number of characters to skip at the left-hand side of the

lines of each text, a negative value skips all initial

spaces; if * or omitted, no characters are skipped

Description

The CONCATENATE directive joins lines of several texts together, side by side, to form a new

text. You can specify the identifier of this text by the NEWTEXT option, in which case it need not

already have been declared as a text. If you do not specify NEWTEXT, Genstat places the new

textual values into the first text in the OLDTEXT parameter list (replacing its existing values).

The texts to be concatenated are specified by OLDTEXT; they should all contain the same

number of lines, unless you want to insert an identical series of characters into every line of the

new text: a series of characters that is to be duplicated within every line can be specified either

as a string, or in a single-valued text.

If you give a variate in the SKIP list, then it must contain a value for each line of the text in

the OLDTEXT list; the value indicates the number of characters to be omitted at the beginning of

that line. Alternatively, you can give a scalar if the same number of characters is to be omitted

at the start of every line. Similarly the WIDTH parameter specifies how many characters are to

be taken, after omitting any initial characters as specified by SKIP.

CONCATENATE also provides easy ways of removing spaces at the beginning or the end of

strings. A negative value of the SKIP parameter deletes all the spaces at the start of a string,

while a negative value of the WIDTH parameter deletes all the spaces at the end of a string.

The CASE option enables you to change the case of letters. By default, CASE=given to leave

the case of each letter as given in the existing text. To change all letters to upper case (or

capitals) you can put CASE=upper, or CASE=lower to change all letters to lower case.

Alternatively, CASE=changed puts lower-case letters into upper case, and upper-case letters into

lower case!

Options: NEWTEXT, CASE.

Parameters: OLDTEXT, WIDTH, SKIP.

Action with RESTRICT

CONCATENATE takes account of restrictions on any of the vectors that occur in the statement. If

more than one vector is restricted, then each such restriction must be the same. The values of the

units that are excluded by the restriction are left unchanged.

CONCATENATE 83

See also

Directives: TEXT, EDIT, TXBREAK, TXCONSTRUCT, TXFIND, TXPOSITION, TXREPLACE.

Procedure: APPEND, SUBSET, STACK, UNSTACK.

Functions: CHARACTERS, GETFIRST, GETLAST, GETPOSITION, POSITION.

Genstat Reference Manual 1 Summary section on: Calculations and manipulation.

84 Directives in Release 22

CONTOUR

Produces contour maps of two-way arrays of numbers on the terminal or line printer (synonym

of LPCONTOUR).

Options

CHANNEL = scalar Channel number of output file; default is current output

file

INTERVAL = scalar Contour interval for scaling; default * i.e. determined

automatically

TITLE = text General title; default *

YTITLE = text Title for y-axis; default *

XTITLE = text Title for x-axis; default *

YLOWER = scalar Lower bound for y-axis; default 0

YUPPER = scalar Upper bound for y-axis; default 1

XLOWER = scalar Lower bound for x-axis; default 0

XUPPER = scalar Upper bound for x-axis; default 1

YINTEGER = string token Whether y-labels integral (yes, no); default no

XINTEGER = string token Whether x-labels integral (yes, no); default no

LOWERCUTOFF = scalar Lower cut-off for array values; default *

UPPERCUTOFF = scalar Upper cut-off for array values; default *

Parameters

GRID = identifiers Pointers (of variates representing the columns of a data

matrix), matrices or two-way tables specifying values on

a regular grid

DESCRIPTION = texts Annotation for key

Description

The CONTOUR directive has been replaced by the LPCONTOUR directive, and may be removed in

a future release or modified to produce high-resolution plots instead of character-based plots.

A contour plot provides a way of displaying three-dimensional data in a two-dimensional plot.

The data values are supplied as a rectangular array of numbers that represent the values of the

variable in the third dimension, often referred to as height or the z-axis. The first two dimensions

(x and y) are the rows and columns indexing the array; the complete three-dimensional data set

is referred to as a surface or grid. Contours are lines that are used to join points of equal height,

and usually some form of interpolation is used to estimate where these points lie. The resulting

contour plot is not necessarily very "realistic" when compared to perspective plots produced by

DSURFACE, but it has the advantage that the entire surface can easily be examined, without the

danger of some parts being obscured by high points or regions.

You might use contour plots for example when you have data sampled at points on a regular

grid, such as the concentrations of a trace element or nutrient in the soil. Contours are also very

useful when fitting nonlinear models, when they can be used to study two-dimensional slices of

the likelihood surface, to help find good initial estimates of the parameters.

The CONTOUR directive produces output for a line printer by using cubic interpolation between

the grid points to estimate a z-value for each character position in the plot. Each value is reduced

to a single digit in the range 0 ... 9, according to the rules described below. To produce the

contour plot only the even digits are printed: you can then see the contours as the boundaries

between the blank areas and the printed digits.

The GRID parameter can be set to a matrix, a two-way table (with the first factor defining the

rows), or a pointer to a set of variates each containing a column of data. We explain the

conventions in terms of a matrix as input, but similar rules apply to the other structures. When

CONTOUR 85

reading or printing a matrix the origin of the rows and columns (row 1, column 1) appears at the

top left-hand corner. However, in forming the contour plot the rows are reversed in order so that

the first row of the matrix is placed at the bottom of the contour; thus the origin of the contour

is located, according to the usual conventions, at the bottom left-hand corner of the plot. The

DCONTOUR directive also reverses the rows of the grid in the same way.

CONTOUR scales the grid values by dividing by the contour interval. The scaled grid values are

then converted to single digits by taking the remainder modulo 10 and truncating the fractional

part. The INTERVAL option allows you to set the contour interval. For example, if the grid values

range from 17 to 72 and the interval is set to 10, contour lines (the boundaries between blank

space and printed digits) will occur at grid values of 20, 30, 40, 50, 60 and 70. By default, the

interval is determined from the range of the data in order to obtain 10 contours.

The UPPERCUTOFF and LOWERCUTOFF options can be used to define a window for the grid

values that will form the contours. All values above or below these are printed as X. Setting

either UPPERCUTOFF or LOWERCUTOFF will change the default contour interval, as the range of

data values is effectively curtailed.

You can use the TITLE, YTITLE and XTITLE option to annotate the contour plot. If you

specify several grids, these will be plotted in separate frames and the text of the TITLE option

will appear at the top of each one. You should thus use TITLE only to give a general description

of what the contours represent. The DESCRIPTION parameter can be used to add specific

descriptions to be printed at the bottom of each individual plot.

The YUPPER and YLOWER options allow you to set upper and lower bounds for the y-axis; thus

generating axis labels that reflect the range of values over which the grid was observed or

evaluated. Setting YINTEGER=yes will ensure the labels are printed as integers, if possible. The

default axis bounds are 0.0 and 1.0. The options XLOWER, XUPPER and XINTEGER similarly

control labelling of the x-axis.

Options: CHANNEL, INTERVAL, TITLE, YTITLE, XTITLE, YLOWER, YUPPER, XLOWER, XUPPER,

YINTEGER, XINTEGER, LOWERCUTOFF, UPPERCUTOFF.

Parameters: GRID, DESCRIPTION.

Action with RESTRICT

CONTOUR takes account of restrictions on any of the variates in a GRID pointer.

See also

Directives: DCONTOUR, LPCONTOUR.

Genstat Reference Manual 1 Summary section on: Graphics.

86 Directives in Release 22

COPY

Forms a transcript of a job.

Option

PRINT = string tokens What to transcribe (statements, output); default
stat

Parameter

scalar Channel number of output file

Description

The COPY directive can be used to save a copy of either input statements, or output, or both, in

an output file. For example

OPEN 'GEN.REC','GEN.OUT'; CHANNEL=2,3; FILETYPE=output
COPY [PRINT=statements] 2
COPY [PRINT=output] 3

will keep a record of all the statements in the file GEN.REC and of all the output in the file

GEN.OUT.Setting PRINT=* stops any copying to the specified channel. For example

COPY [PRINT=*] 2

stops copying to GEN.REC.

You can thus obtain output in more than one style (for example RTF and HTML as well as plain-

text) by opening, and then copying, to files in the required styles (see OPEN).

Option: PRINT.

Parameter: unnamed.

See also

Directives: OPEN, PRINT, READ.

Genstat Reference Manual 1 Summary section on: Input and output.

CORRELATE 87

CORRELATE

Forms correlations between variates, autocorrelations of variates, and lagged

cross-correlations between variates.

Options

PRINT = string tokens What to print (correlations, autocorrelations,

partialcorrelations, crosscorrelations);

default *

GRAPH = string tokens What to display with graphs (autocorrelations,

partialcorrelations, crosscorrelations);

default *

MAXLAG = scalar Maximum lag for results; default * i.e. value inferred

from variates to save results

CORRELATIONS = symmetric matrix

Stores the correlations between the variates specified by

the SERIES parameter

Parameters

SERIES = variates Variates from which to form correlations

LAGGEDSERIES = variates Series to be lagged to form crosscorrelations with first

series

AUTOCORRELATIONS = variates To save autocorrelations, or to provide them to form

partial autocorrelations if SERIES=*

PARTIALCORRELATIONS = variates

To save partial autocorrelations

CROSSCORRELATIONS = variates To save crosscorrelations

TESTSTATISTIC = scalars To save test statistics

VARIANCES = variates To save prediction error variances

COEFFICIENTS = variates or matrices

To save prediction coefficients: in a variate to keep only

those for the maximum lag, or in a matrix to keep the

coefficients for all lags up to the maximum

Description

The most straightforward use of the CORRELATE directive is to calculate correlation coefficients

between a set of variates. For example this would display the correlations between the variates

Age, Height and Weight as a lower-triangular matrix.

CORRELATE [PRINT=correlations; CORRELATIONS=Corr] \
 Age,Height,Weight

The correlations are also saved in the symmetric matrix Corr using the CORRELATIONS option.

Note that, if there are missing values, CORRELATE uses only those units where none of the

variates is missing.

CORRELATE can also be used to obtain autocorrelations of a time series, that is the correlations

between values in the series lagged by particular time intervals. The set of autocorrelations for

all possible lags is the autocorrelation function. You can derive the partial autocorrelation

function from these. To look at the relationship between two series, you should use the cross-

correlation function between one series and the other lagged by the various intervals. The sample

autocorrelation function of a series can be displayed either as a table of numbers, or as a graph

� called a correlogram. In either case, you must specify the maximum lag for which the

autocorrelation is to be calculated, m say. You can do this either by setting the MAXLAG option

to m, or by pre-defining the length of a variate to be m+1 and including it in the

88 Directives in Release 22

AUTOCORRELATIONS parameter to store the calculated values. Genstat includes the

autocorrelation at lag 0 in the autocorrelation function; this is always unity. The formula used

for the sample autocorrelation at lag k is

rk = (1 � k/n) × Ck / C0

where

Ck = (1 / nk) �i = 1 ... n�k {(yt � mean(y)) (yt+k � mean(y))}
The number nk is the number of terms included in the sum. The series can contain missing

values, but the calculation excludes any product that involves any missing values at all. You can

restrict a series, but the restricted set must consist of a contiguous set of units. Thus, you can

look at the autocorrelation function derived from just the first section of a series, or from just the

last section, or from a section in the middle; but you cannot use restriction to exclude a section

from the middle of the series, or to exclude just individual observations.

The AUTOCORRELATIONS parameter allows you to save the calculated autocorrelations. If you

want to display a correlogram in a different form from the standard one produced by the GRAPH

option, you must save the autocorrelations and plot them explicitly using either the GRAPH or

DGRAPH directives. You will then need to define the variate of lags from 0 to m.

The TESTSTATISTIC parameter of CORRELATE allows you to save a statistic that can be used

to test the hypothesis that the true autocorrelation is zero for positive lags. It is defined as

S = n �k=1 ... m { rk
2)

Provided n (the number of data values) is large and m (the maximum lag) is much smaller than

n, then under the null hypothesis, the statistic has a chi-square distribution with m degrees of

freedom. Thus, a large value provides evidence of autocorrelation in a time series.

You can calculate autocorrelation functions for several series in one statement by specifying

several variates with the SERIES parameter.

Genstat forms partial autocorrelations from an autocorrelation function. The value at lag k is

defined as

corr(yt, yt�k * yt�1, yt�2 ... yt�k+1)

representing the excess correlation between values separated by k timepoints that is not

accounted for by the intermediate points; it is denoted by ök,k because it is also the value of the

last in the set of coefficients in the autoregressive prediction equation:

yt = c + ök,1yt�1 + ... + ök,kyt�k + ek,t

Genstat calculates these coefficients recursively for k=1...m by

ök,k = (rk � ök�1,1rk�1 � ... � ök�1,k�1r1) / vk�1

ök,j = ök�1,j � ök,kök�1,k�j , j=1...k�1

vk = vk�1 (1 � ök,k
2)

It starts with v0=1, the quantity vk being the kth order prediction error variance ratio

variance(ek,t) / variance(yt).

Partial correlations provide a valuable alternative way of displaying the autocorrelation structure

of a series. You can display the partial autocorrelation function either as a table of numbers, or

as a graph. Two methods are available for doing this. You can supply the series using the

SERIES parameter, in which case the autocorrelations are formed first, automatically, and the

partial autocorrelations are then derived from them. Alternatively, you can set SERIES=*, and

provide the autocorrelations using the AUTOCORRELATIONS parameter. You can specify the

maximum lag, either by setting the MAXLAG option, or by pre-defining the length of a variate

specified for either the AUTOCORRELATIONS or the PARTIALCORRELATIONS parameter.

You can save the partial autocorrelation function using the PARTIALCORRELATIONS

parameter. You can set the VARIANCES and COEFFICIENTS parameters to variates to save the

prediction-error variances v0...vm, and the prediction coefficients 1, öm,1 ... öm,m for the maximum

lag m. Genstat sets the first coefficient to 1, and also the first element of the partial

autocorrelation sequence to 1: you should find this to be a useful convention for the lag 0 values.

Alternatively, if the COEFFICIENTS parameter is set to a matrix structure, the rows of this

CORRELATE 89

matrix will be used to save the prediction coefficients for all the orders up to the maximum lag.

CORRELATE will print a warning if you include missing values in an autocorrelation function

that you have supplied, or if for some other reason the autocorrelations are invalid. In particular,

if a partial autocorrelation value is obtained outside the range (�1, 1), Genstat will truncate the

sequence at the previous lag.

You can calculate cross-correlations between two series by specifying one series with the

SERIES parameter and the other with the LAGGEDSERIES parameter. You must define the

maximum lag, as for autocorrelations, and you can again plot or tabulate the resulting function.

Missing values are allowed, as for autocorrelations. Genstat calculates the sample cross-

correlation between the first series xt and the lagged series yt at lag k using:

rk = (1 � k/n) Ck / (sx sy)

where

Ck = (1 / nk) �i = 1 ... n�k {(xt � mean(x)) (yt+k � mean(y))}

The series xt and yt may be of different lengths. The summation includes all possible terms, but

excludes any product containing missing values; the number nk is the number of terms included

in the sum. The values x� and y� are the sample means, and sx, sy are the sample standard

deviations. The number n is the minimum of the number of values of x and of y, excluding

missing values. You can restrict either series to a set of contiguous units: if both are restricted,

their restrictions must match.

You can save the cross-correlation function using the CROSSCORRELATIONS parameter. You

can also save a test statistic using the TESTSTATISTIC parameter; this is used similarly to the

statistic to test for lack of lagged cross-correlation in one direction of the relationship between

two series. However the test is valid only if each of the series has a zero autocorrelation function.

Cross-correlations take precedence in the storage. Thus if you request both autocorrelations and

cross-correlations in a single CORRELATE statement, the stored test statistic will relate to the

cross-correlations: that for the autocorrelations will not be stored.

Options: PRINT, GRAPH, MAXLAG, CORRELATIONS.

Parameters: SERIES, LAGGEDSERIES, AUTOCORRELATIONS, PARTIALCORRELATIONS,

CROSSCORRELATIONS, TESTSTATISTIC, VARIANCES, COEFFICIENTS.

Action with RESTRICT

You can restrict the units involved in the calculation of the correlations by restricting either the

SERIES variate, or the LAGGEDSERIES variate (if present). For the calculation of

autocorrelations, partial-correlations or cross-correlations, the restriction must define a

contiguous set of units. If SERIES and LAGGEDSERIES are both restricted, they must be

restricted in exactly the same way.

See also

Directives: FSSPM, TSM.

Procedures: DCORRELATION, FCORRELATION, PRCORRELATION, PARTIALCORRELATIONS,

FVCOVARIANCE.

Functions: CORRELATION, COVARIANCE. VARIANCE.

Genstat Reference Manual 1 Summary sections on: Basic and nonparametric statistics,

Calculations and manipulation, Time series.

90 Directives in Release 22

COUNTER

Increments a multi-digit counter using non base-10 arithmetic.

Options

NREQUIRED = scalar Specifies the number of values required for the counter;

default 2

NFOUND = scalar Saves the number of counter values that could be formed

DIRECTION = string token Specifies the direction of the sequence of increments to

the counter (ascending, descending); default asce

Parameters

START = scalars Provides the starting values for the digits in the counter

END = scalars Can provide values to define the end of the sequence of

counter values

STEP = scalars Specifies the amount by which to increment each digit of

the counter

BASE = scalars Specifies the base of the numbers used for each digit

DIGITSEQUENCE = variates Saves the sequence of values generated for each digit

Description

COUNTER is useful if you want to increment a counter made up of several digits that recycle to

limits that may be different from ten. For example, times in seconds, minutes and hours, or

measurements in inches, feet and yards.

The parameters provide details of the digits in the counter, all in scalars. The BASE parameter

specifies the base of the numbers used for each digit (e.g. 60 for seconds and minutes, and 24

for hours). The START parameter supplies the starting values of the digits, ranging from zero to

BASE minus one. The STEP parameter specifies the size of the increment for each digit. The

digits are updated from the right-hand side and, when one goes beyond its limit, the next one is

incremented by an extra value of one for an ascending sequence, or minus one for a descending

sequence. The DIGITSEQUENCE saves the sequence of values formed for each digit of the

counter, in variates.

The END parameter can specify values to define the end of the sequence. If a value is specified

for every digit, the sequence ends when the next set of digits would go beyond those supplied

by END: above END for an ascending sequence, or below for a descending sequence. (See the

DIRECTION option.) Otherwise, the sequence ends when all the digits would go beyond their

limits: BASE minus one for an ascending sequence, or zero for a descending sequence.

The NREQUIRED option specifies the number of values that are required for the counter. The

default is 2, i.e. START and one other. The NFOUND option can save the number of values that

have been formed. The DIRECTION option controls whether the sequence of counter values

should be regarded as ascending or descending, when checking for the end of the sequence. The

default is ascending.

Options: NREQUIRED, NFOUND, DIRECTION.

Parameters: START, END, STEP, BASE. DIGITSEQUENCE.

See also

Genstat Reference Manual 1 Summary section on: Program control.

COVARIATE 91

COVARIATE

Specifies covariates for use in subsequent ANOVA statements.

No options

Parameter

variates or pointers Covariates

Description

To perform analysis of covariance you need to define the treatment model (using

TREATMENTSTRUCTURE) and the underlying structure of the design (using BLOCKSTRUCTURE)

as in ordinary analysis of variance, and then simply specify the required covariates using the

COVARIATE directive. You can then do the analysis by ANOVA, get further output by ADISPLAY

and so on, in the usual way.

In the simplest form of the COVARIATE directive, its (unnamed) parameter just contains a list

of the variates that are to be used as covariates. Alternatively, you can group some of the variates

into pointers. The analysis-of-variance table will then contain a line for each group instead of

the individual covariates in that group (see below).

You can use covariates to incorporate any quantitative information about the units into the

model. In field experiments there may often be linear trends in fertility. These can be estimated

and removed by fitting a covariate of the position of the plot along the direction of the trend. For

example

COVARIATE Location

For a quadratic trend, you would also include a covariate containing the squares of the positions.

CALCULATE Quadtrend = Location**2
COVARIATE Location,Quadtrend

In experiments on animals, you may wish to use measurements such as the original weight.

However the assumption is always that the y-variate is linearly related to the covariates.

Covariates are incorporated into the model as terms for a linear regression. Genstat fits the

covariates, together with the treatments, in each stratum. This should explain some of the

variability of the units in the stratum, and so decrease the stratum residual mean square.

Each treatment combination will have been applied to units whose mean value for each

covariate differs from that of other treatment combinations; so even in the absence of any

treatment effects, the y-values recorded for the different combinations would not be identical.

A further effect of the analysis is to adjust the treatment estimates for the covariates, to correct

for this. This adjustment causes some loss of efficiency in the treatment estimation. The

remaining efficiency is measured by the covariance efficiency factor, shown for each treatment

term in the "cov. ef." column of the analysis-of-variance table. The values are in the range zero

to one. A value of zero indicates that the treatment contrasts are completely correlated with the

covariates: after the covariates have been fitted there is no information left about the treatments.

A value of one indicates that the covariates and the treatment term are orthogonal. Usually the

values will be around 0.8 to 0.9. A low value should be taken as a warning: either the

measurements used as covariates have been affected by the treatments, which can occur when

the measurements on covariates are taken after instead of before the experiment, or the random

allocation of treatments has been unfortunate in that some treatments are on units with generally

low values of the covariates while others are on generally high ones. The covariance efficiency

factor is analogous to the efficiency factor printed for non-orthogonal treatment terms; details

of its derivation can be found in Payne & Tobias (1992).

For a residual line in the analysis of variance, the value in the "cov. ef." column measures how

much the covariates have improved the precision of the experiment. This is calculated by

dividing the residual mean square in the unadjusted analysis (which excludes the covariates) by

92 Directives in Release 22

its value in the adjusted analysis.

The covariance efficiency factor is used by Genstat in the calculation of standard errors for

tables of effects; if you want to calculate the net effect of the analysis of covariance on the

precision of the estimated effects of a treatment term, you should multiply the covariance

efficiency factor of the term by the value printed in the residual line of the stratum where the

term is estimated. Where a term has more than one degree of freedom, the adjustment given by

the covariance efficiency factor is an average over all the comparisons between the effects of the

term. However this adjustment should not differ by much from those required for any particular

comparison unless the randomization has been especially unfortunate. For a table of means

classified by several factors, Genstat combines the covariance efficiency factors of the effects

from which the means are calculated into a harmonic mean, weighted according to the numbers

of degrees of freedom of each term.

The adjusted analysis-of-variance table has an extra line in each stratum, giving the sum of

squares due to the covariates. This is the extra sum of squares that is removed by the covariates

after eliminating all that can be explained by the treatments. It thus lets you assess whether there

is any evidence that the covariates are required in the model. If there are several covariates

Genstat will also print their individual contributions to that sum of squares, giving first the sum

of squares that can be explained by the first covariate in the COVARIATE list, then the extra sum

of squares that can be accounted for by fitting the second covariate, and so on. However, if some

of the covariates were grouped together into a pointer in the COVARIATE list, their contributions

will be pooled into a single line.

The line for each treatment term in the analysis-of-variance table contains the sum of squares

eliminating the covariates. It indicates whether there is evidence of any effects of that term, after

taking account of the differences in the values of the covariates on the units to which each

treatment was applied.

The method that Genstat uses for analysis of covariance essentially reproduces the method that

you would use if you were doing the calculations by hand. First of all, it analyses each covariate

according to the block and treatment models. You can print information from these analyses

using the CPRINT option of either ANOVA or ADISPLAY. As ADISPLAY does not constrain you

to list save structures that were all produced by the same ANOVA, CPRINT will produce

information about the covariate analyses from every save structure that you list; duplicate

information will thus be produced if several of the save structures are for analyses involving the

same covariates. The output from CPRINT, particularly the analysis-of-variance table, gives you

another way of assessing the relationship between treatments and covariates: a large variance

ratio for a treatment term in the analysis of one of the covariates would indicate either that the

treatment had affected the covariate or that the randomization had been unfortunate (as discussed

in the description of cov. ef. above).

Genstat then analyses each y-variate in turn. First of all it does the usual analysis ignoring the

covariates. You can control output from this unadjusted analysis by the UPRINT option of ANOVA

and ADISPLAY. (So the whole of the output given for the example could have been produced by

a single ANOVA statement.) Then the covariates are fitted by linear regression and the full,

adjusted, analysis is calculated. Output from the adjusted analysis is controlled by the PRINT

option of ANOVA and ADISPLAY. This option has an extra setting, not available for UPRINT and

CPRINT: PRINT=covariates prints the regression coefficients of the covariates as estimated

in each stratum.

Options: none.

Parameter: unnamed.

COVARIATE 93

Reference

Payne, R.W. & Tobias, R.D. (1992). General balance, combination of information and the

analysis of covariance. Scandinavian Journal of Statistics, 19, 3-23.

See also

Directives: ANOVA, BLOCKSTRUCTURE, TREATMENTSTRUCTURE, ADISPLAY, AKEEP.

Procedures: AFCOVARIATES, ASTATUS, AUNBALANCED.

Genstat Reference Manual 1 Summary section on: Analysis of variance.

94 Directives in Release 22

CVA

Performs canonical variates analysis.

Options

PRINT = string tokens Printed output required (roots, loadings, means,

residuals, distances, tests); default * i.e. no

printing

NROOTS = scalar Number of latent roots for printed output; default *

requests them all to be printed

SMALLEST = string token Whether to print the smallest roots instead of the largest

(yes, no); default no

Parameters

WSSPM = SSPMs Within-group sums of squares and products, means etc

(input for the analyses)

LRV = LRVs Saves loadings, roots and trace from each analysis

SCORES = matrices Saves canonical variate means

RESIDUALS = matrices Saves distances of the means from the dimensions fitted

in each analysis

DISTANCES = symmetric matrices Saves inter-group-mean Mahalanobis distances

ADJUSTMENTS = matrices Saves the adjustment terms

SAVE = pointers Saves details of the analysis; if unset, an unnamed save

structure is saved automatically (and this can be

accessed using the GET directive)

Description

You specify the input for CVA using its first parameter, WSSPM, this may contain a list of

structures, in which case Genstat repeats the analysis for each of them. The input must be an

SSPM structure, declared with the GROUPS option of the SSPM directive set to a factor giving the

grouping of the units. If the variates used to form this SSPM structure are restricted, then the

SSPM is restricted in the same way, and so the CVA directive takes account of the restriction. The

SSPM contains information on the within-group sums of squares and products, pooled over all

the groups; it also contains the group means and group sizes, from which Genstat can derive the

between-group sums of squares and products. CVA finds linear combinations of the original

variables that maximize the ratio of between-group to within-group variation, thereby giving

functions of the original variables that can be used to discriminate between the groups. The

squares of the printed distances between group means are Mahalanobis D2 statistics when all the

dimensions are used; otherwise they are approximations. You can form exact Mahalanobis

distances with the PCO directive.

The three options of the CVA directive control the printed output. By default there is no printed

output, and so you should set the PRINT option to indicate which sections you want. Results can

be printed for a subset of the latent roots by setting the NROOTS and SMALLEST options of CVA.

NROOTS specifies the number of roots for which you want the results to be printed. By default

these will be the largest roots, unless you set SMALLEST=yes; then the results will be printed for

the smallest non-zero roots. When you print a subset of the results, residuals can be formed and

printed from the dimensions that are not displayed.

The significance tests that are printed are for a significant dimensionality greater than k, that

is for the joint significance of the first, second, ..., (k+1)th latent roots. This test is printed for

k=0, 1, ... min(g�1, v)�1. If the test is "not significant" for k=r, then the values of chi-square for

k>r should be ignored as the indication is that the remaining dimensions have no interesting

structure. The test statistic (Bartlett 1938) is asymptotically distributed as chi-square with

CVA 95

(v�k)×(g�k�1) degrees of freedom. Here n is the number of units, g is the number of groups, v

is the number of variables, and li is the ith latent root. If the coefficient [n�g�½(v�g)] is less than

zero, there are too few units for the statistics to be calculated and a message is printed to this

effect. In any case, the tests should be treated with caution unless n�g is very much larger than

v.

The latent vectors, or loadings, are scaled in such a way that the average within-group

variability in each canonical variate dimension is 1: thus the within-group variation is equally

represented in each dimension. Since the latent roots are the successive maxima of the ratio of

between-group to within-group variation, loadings corresponding to roots less than 1 are for

dimensions in the canonical variate space that exhibit more within-group variation than between-

group variation.

The scores for the means are arranged so that their centroid, weighted by group size, is at the

origin. This is done by subtracting a constant term, for each canonical variate dimension, from

the scores initially formed as a linear combination of the group means of the original variables.

These adjustments can be saved, in a matrix of size one by number of groups, using the

ADJUSTMENTS parameter.

If you ask for distances, they are formed from the group mean scores for the canonical variate

dimensions that are printed. If results are printed for the full dimensionality, the distances will

be Mahalanobis distances between the groups.

The LRV parameter allows you to save the loadings, latent roots and their sum (the trace) in

an LRV structure, while the SCORES parameter saves the canonical variate means. If you have

declared the LRV already, its number of rows must be the same as the number of variates

involved in forming the input SSPM. The number of rows of the SCORES matrix, if previously

declared, must be equal to the number of groups.

The number of columns of the LRV and of the SCORES matrix corresponds to the number of

dimensions to be saved from the analysis, and this must be the same for both of them. If the

structures have been declared already, Genstat will take the larger of the numbers of columns

declared for either, and declare (or redeclare) the other one to match. If neither has been declared

and option SMALLEST retains the default setting no, Genstat takes the number of columns from

the setting of the NROOTS option. Otherwise, Genstat saves results for the full set of dimensions.

The trace saved as the third component of the LRV structure, however, will contain the sums of

all the latent roots, whether or not they have all been saved. Procedure LRVSCREE can be used

to produce a "scree" diagram which can be helpful in deciding how many dimensions to save.

The RESIDUALS parameter allows you to save the distances of the means from the dimensions

fitted in the analysis in a matrix with number of rows equal to the number of groups and one

column. If the latent roots and vectors (loadings) are saved from the analysis, the residuals will

correspond to the dimensions not saved; the same applies if you save scores. If neither the LRV

nor scores are saved, the saved residuals will correspond to the smallest latent roots not printed.

The DISTANCES parameter allows you to save the inter-group-mean Mahalanobis distances

in a symmetric matrix.

The SAVE parameter can supply a pointer to save a multivariate save structure contining all

the details of the analysis. If this is unset, an unnamed save structure is saved automatically (and

this can be accessed using the GET directive). Alternatively, you can set SAVE=* to prevent any

save structure being formed if, for example, you have a very large data set and want to avoid

committing the storage space.

Options: PRINT, NROOTS, SMALLEST.

Parameters: WSSPM, LRV, SCORES, RESIDUALS, DISTANCES, ADJUSTMENTS, SAVE.

96 Directives in Release 22

Reference

Bartlett, M.S. (1938). Further aspects of the theory of multiple regression. Proceedings of the

Cambridge Philosophical Society, 34, 33-40.

See also

Directives: FCA, MDS, PCO, PCP, ROTATE, FSSPM, SSPM.

Procedures: CVASCORES, CVAPLOT, LRVSCREE, DBIPLOT, DMST, DISCRIMINATE, MANOVA,

QDISCRIMINATE, RMULTIVARIATE, SDISCRIMINATE.

Genstat Reference Manual 1 Summary section on: Multivariate and cluster analysis.

DBITMAP 97

DBITMAP

Plots a bit map of RGB colours.

Options

TITLE = text General title; default *

WINDOW = scalar Window number for the graph; default 1

YORIENTATION = string token Y-axis orientation of the plot (reverse, normal);

default reve

GRIDMETHOD = string token How to draw a grid around the elements of the matrix

(present, complete); default * i.e. none

PENGRID = scalar Pen to use for the grid; default �7

SCREEN = string token Whether to clear the screen before plotting or to

continue plotting on the old screen (clear, keep);

default clea

ENDACTION = string token Action to be taken after completing the plot (continue,

pause); default * uses the setting from the last DEVICE

statement

Parameters

BITMAP = symmetric matrix, matrix, table, pointer to variates or variate

Data to be plotted

ROWS = variate Row indexes for a BITMAP variate

COLUMNS = variate Column indexes for a BITMAP variate

Description

DBITMAP plots a 2-dimensional bit map of RGB colours. These use a standard way of

representing a colour, as a single number whose bits are partitioned into three ranges to record

the three component colours of red, blue and green (see the PEN directive for more details). They

can be read in to Genstat from devices such as scanners, or calculated using the RGB function.

The data are specified by the BITMAP parameter. Data values in a regular two-way grid can

be specified by supplying their RGB colours in either a matrix, a symmetric matrix, a 2-way

table or a pointer to a set of variates. Alternatively, you can specify irregular data by setting

BITMAP to a variate of colours, and the ROWS and COLUMNS parameters to variates defining their

row and column indexes.

The GRIDMETHOD option allows you to draw an outline around each element of the plot. The

present setting produces an outline for all values that are present; i.e. it ignores missing values.

This is suitable where data have been sampled over an irregularly shaped area. Alternatively,

with the complete setting, an outline is drawn around every element. By default, no grid is

drawn. The PENGRID option specifies which pen to use to draw the grid. The default is to use

pen �7.

The YORIENTATION option controls the orientation of the y-axis. By default this is reversed,

so that the data are in the same order as they would take if the data matrix were printed.

The TITLE, WINDOW, SCREEN and ENDACTION options are used to specify a title, the plotting

window, whether the screen should be cleared first, and whether there should be a pause once

the plotting is finished; as in other graphics directives (see, for example, DGRAPH).

Options: TITLE, WINDOW, YORIENTATION, GRIDMETHOD, PENGRID, SCREEN, ENDACTION.

Parameters: BITMAP, ROWS, COLUMNS.

Action with RESTRICT

DBITMAP takes account of restrictions on any of the variates in a BITMAP pointer.

98 Directives in Release 22

See also

Directives: DCONTOUR, DSHADE, DSURFACE, D3HISTOGRAM, FRAME, XAXIS, YAXIS, PEN,

MATRIX, POINTER, SYMMETRICMATRIX, TABLE.

Functions: BLUE, GREEN, GRAY, GREY, RED, RGB.

Genstat Reference Manual 1 Summary section on: Graphics.

DCLEAR 99

DCLEAR

Clears a graphics screen.

Options

DEVICE = scalar Device whose screen is to be cleared; default is to clear

the screen of the current graphics device

ENDACTION = string token Action to be taken after clearing the screen (continue,

pause); default * uses the setting from the last DEVICE

statement

No parameters

Description

DCLEAR clears the screen of a graphics device so that the next plot produced on this device by

any of the high-resolution graphics or procedures will be drawn onto an empty screen. All

information about the current display, for example axis mappings, is also cleared from memory.

The DEVICE option indicates the device to be cleared; by default this is the current graphics

device (as set by the DEVICE directive). The ENDACTION option controls what happens after

clearing the screen. The default action is the setting specified by the most recent DEVICE

statement.

Options: DEVICE, ENDACTION.

Parameters: none.

See also

Directives: DEVICE, DSTART, DFINISH, DKEEP, DDISPLAY.

Genstat Reference Manual 1 Summary section on: Graphics.

100 Directives in Release 22

DCONTOUR

Draws contour plots on a plotter or graphics monitor.

Options

TITLE = text General title; default *

WINDOW = scalar Window number for the plots; default 1

KEYWINDOW = scalar Window number for the key (zero for no key); default 2

YORIENTATION = string token Y-axis orientation of the plot (reverse, normal);

default reve

ANNOTATION = string token How to annotate the contours (levels, ordinals);

default ordi if there is a key, and leve if there is no

key

SCREEN = string token Whether to clear the screen before plotting or to

continue plotting on the old screen (clear, keep);

default clea

KEYDESCRIPTION = text Overall description for the key

ENDACTION = string token Action to be taken after completing the plot

(continue, pause); default * uses the setting from

the last DEVICE statement

Parameters

GRID = identifier Pointer (of variates representing the columns of a data

matrix), matrix or two-way table specifying values on a

regular grid

PENCONTOUR = scalar Pen number to be used for the contours; default 1

PENFILL = scalar or variate Pen number(s) defining how to fill the areas between

contours, or 0 to leave the areas in the background

colour; default 3

PENHIGHLIGHT = scalar Pen number to use for highlighted contours; default 0 i.e.

no highlighting

HIGHLIGHTFREQUENCY = scalar Frequency at which contours are to be highlighted;

default 10

NCONTOURS = scalar Number of contours; default 10

CONTOURS = variate Positions of contours

INTERVAL = scalar Interval between contours

DESCRIPTION = text Annotation for key

Description

The contours to be plotted are defined by a grid of z-values or heights. The grid can be a

rectangular matrix, a two-way table or a pointer to a set of variates; the y-dimension is

represented by the rows of the structure and the x-dimension by the columns. In each case there

must be at least three rows and three columns of data (after allowing for any restrictions on a set

of variates). Missing values are not permitted; that is, only complete grids can be displayed. If

the grid is supplied as a table with margins, these will be ignored when plotting the surface. The

YORIENTATION option controls the orientation of the y-axis. By default this is reversed, so that

the grid is in the same order as it would be if it were printed.

The WINDOW option defines the window where the contours are plotted, and the KEYWINDOW

option similarly specifies where the key should appear. The grid axes are scaled so that the y-

and x-dimensions (rows and columns respectively) will match the dimensions of the specified

window: if you wish to preserve the "shape" of the grid you should use the FRAME directive to

define a window whose y- and x-dimensions are in the same proportions as the grid dimensions.

DCONTOUR 101

Titles can be added to these windows using the TITLE and KEYDESCRIPTION options. The

SCREEN option controls whether the graphical display is cleared before the histogram is plotted

and the ENDACTION option controls whether Genstat pauses at the end of the plot.

The heights of the contour lines are determined using the NCONTOURS, CONTOURS or

INTERVAL parameters. The first possibility is to define the contours explicitly using the

CONTOURS parameter. Alternatively, if CONTOURS is unset, INTERVAL can set the required

interval between each contour. Or, if both CONTOURS and INTERVAL are unset, NCONTOURS

defines the required number of lines. Genstat then partitions the range of data values accordingly

to give NCONTOURS evenly-spaced contours (or fewer contours if there are insufficient distinct

grid values).

The ANNOTATION option controls how the contours are labelled. The default is to label them

by integers (ordinals) if there is a key, and by the actual heights (levels) if there is no key.

Contour lines that are very short will not be labelled but their height can be determined from

adjacent contours. Each line of the key occupies a space of height 0.02 (in normalized device

coordinates), and the key window by default has room for a heading and nine contour levels. If

necessary, the size of the window can be redefined using the FRAME directive.

The way in which the contour lines are drawn is determined by the pen that has been defined

by the PENCONTOUR parameter of DCONTOUR; the default is to use pen 1. The relevant aspects

of the pen should be set in advance, if required, using the METHOD, COLOUR, LINESTYLE and

THICKNESS parameters of the PEN directive.

If the PENCONTOUR parameter is not used, the plotting method will be line, so that individual

contours are made up of straight line segments. If curves are required, METHOD should be set to

monotonic to use the method of Butland (1980), or open (or closed) to use the method of

McConalogue (1970). Both these methods produce curves that are fitted to independent sets of

interpolated points and can thus produce contour lines that cross, particularly if the supplied grid

of data is coarse or in a region where the contour height is changing rapidly. If METHOD is set to

other values, straight lines will be used to draw the contours.

The PENHIGHLIGHT parameter can specify a pen to use to highlight particular contours. The

frequency of the highlighting is then determined by the HIGHLIGHTFREQUENCY parameter; by

default every tenth contour is highlighted.

The PENFILL parameter defines how to shade the areas between the contours. If PENFILL is

set to zero, there is no shading i.e. the areas between the contours are left in the background

colour. If PENFILL is set to a scalar, the shades are defined in increasing intensities of the colour

of the specified pen. Alternatively, if PENFILL is set to a variate of length two, the pens are

taken to define the shades at the minimum and maximum heights, and the other shades are

interpolated between them. Finally, if PENFILL is set to a variate with more than two values, the

shading uses the pens in the order in which they are given in the variate (recycling if insufficient

pens are defined for the total number of contours). By default, PENFILL=3.

By default, the axis bounds are determined from the grid. Normally the lower bound for each

axis will be 1.0 and the upper bound will be the number of rows of the grid for the y-axis, and

the number of columns for the x-axis. If a matrix is used to specify the grid, its row and column

labels can be set to variates whose values will then be used to determine the axis bounds. The

XAXIS and YAXIS directives can be used to control how the axes are drawn or, by setting

ACTION=hide, to suppress them altogether.

Options: TITLE, WINDOW, KEYWINDOW, YORIENTATION, ANNOTATION, SCREEN,

KEYDESCRIPTION, ENDACTION.

Parameters: GRID, PENCONTOUR, PENFILL, PENHIGHLIGHT, HIGHLIGHTFREQUENCY,

NCONTOURS, CONTOURS, INTERVAL, DESCRIPTION.

102 Directives in Release 22

Action with RESTRICT

DCONTOUR takes account of restrictions on any of the variates in a GRID pointer.

References

Butland, J. (1980). A method of interpolating reasonably-shaped curves through any data.

Proceedings of Computer Graphics, 80, 409-422.

McConalogue, D.J. (1970). A quasi-intrinsic scheme for passing a smooth curve through a

discrete set of points. Computer Journal, 13, 392-396.

See also

Directives: DBITMAP, DSHADE, DSURFACE, D3HISTOGRAM, FRAME, XAXIS, YAXIS, PEN,

MATRIX, POINTER, TABLE.

Procedure: DXYDENSITY.

Genstat Reference Manual 1 Summary section on: Graphics.

DDISPLAY 103

DDISPLAY

Redraws the current graphical display.

Options

DEVICE = scalar Device on which to redraw the display (on some systems

it may only be possible to redisplay the picture on an

interactive graphics device); default uses the current

graphics device

ENDACTION = string token Action to be taken after completing the plot (continue,

pause); default * uses the setting from the last DEVICE

statement

No parameters

Description

This directive is provided to allow additional control of some interactive devices. In some of

these, such as PC's operating in full-screen DOS mode, the screen can operate in either text mode

or graphics mode. Genstat will automatically switch the screen into the appropriate mode when

starting or finishing a graph. Having returned to text mode after examining a graph you may later

wish to have another look at the graph that was plotted. DDISPLAY will switch the screen back

to graphics mode, thus re-displaying the graph. The ENDACTION option controls what happens

after re-displaying the graph; normally with this type of device you would want to pause. The

default action for DDISPLAY is the setting specified by the most recent DEVICE statement.

DDISPLAY has no effect when output is directed to a graphics file. For devices that do not

operate in this dual-mode fashion, for example a graphics window under X-windows, DDISPLAY

has no effect on the graphical display itself. It will however generate a pause if ENDACTION is

set to request one.

Note that DDISPLAY does not actually re-plot the graphical output; it merely switches the

screen into graphics mode, and assumes that your system has preserved the graphics image.

Options: DEVICE, ENDACTION.

Parameters: none.

See also

Directives: DCLEAR, DEVICE, DKEEP.

Genstat Reference Manual 1 Summary section on: Graphics.

104 Directives in Release 22

DEBUG

Puts an implicit BREAK statement after the current statement and after every NSTATEMENTS

subsequent statements, until an ENDDEBUG is reached.

Options

CHANNEL = scalar Channel number; default 1

NSTATEMENTS = scalar Number of statements between breaks; default 1

FAULT = string token Whether to invoke DEBUG only at the next fault (yes,

no); default no

No parameters

Description

The straightforward use of DEBUG causes an immediate break, and then further breaks at regular

intervals until you issue an ENDDEBUG statement. Alternatively, by setting option FAULT=yes,

you can arrange for Genstat to continue until the next fault diagnostic, and then break. The

interval before each further break is specified by the NSTATEMENTS option; by default, breaks

take place after every statement.

During the breaks, Genstat takes statements from the channel specified by the CHANNEL

option; by default they are taken from channel 1. Each individual break is terminated by an

ENDBREAK, exactly like a break invoked explicitly by the BREAK directive.

Options: CHANNEL, NSTATEMENTS, FAULT.

Parameters: none.

See also

Directives: ENDDEBUG, BREAK, CALCULATE.

Genstat Reference Manual 1 Summary section on: Program control.

DECLARE 105

DECLARE

Declares one or more customized data structures.

Options

TYPE = text Single-valued text defining the type of structure to

declare

MODIFY = string token Whether to modify (instead of redefining) existing

structures (yes, no); default no

Parameters

IDENTIFIER = identifiers Identifiers of the structures

VALUES = pointers Values for each structure

EXTRA = texts Extra text associated with each identifier

Description

DECLARE is used to set up compound data structures of a customized type. The form of each

customized type is defined using the STRUCTURE directive. So, for example, after defining a

complex_number type, by

STRUCTURE [NAME='complex_number'] 'real','imaginary'; \
 TYPE='scalar'

we can declare a complex number C by

DECLARE [TYPE='complex_number'] C; VALUES=!p(3,2)

The VALUES parameter allows values to be defined for the structure, similarly to the VALUES

parameter of the POINTER directive. So, here, the real part of the number C['real'] is given

the value 3, and the imaginary part C['imaginary'] has the value 2. The EXTRA parameter is

also used as in the POINTER directive, allowing extra text to be associated with the structure for

annotation, and the MODIFY option allows an existing structure to be modified.

Options: TYPE, MODIFY.

Parameters: IDENTIFIER, VALUES, EXTRA.

See also

Directives: STRUCTURE, POINTER, LRV, SSPM, TSM.

Genstat Reference Manual 1 Summary section on: Data structures.

106 Directives in Release 22

DELETE

Deletes the attributes and values of structures.

Options

REDEFINE = string token Whether or not to delete the attributes of the structures

so that the type etc can be redefined (yes, no); default
no

LIST = string token How to interpret the list of structures (inclusive,

exclusive, all); default incl

PROCEDURE = string token Whether the list of identifiers is of procedures instead of

data structures (yes, no); default no

NSUBSTITUTE = scalar Number of times n to substitute a dummy in order to

determine which structure to delete; default * i.e. full

substitution

REMOVE = string token Whether or not to remove the structures from Genstat

completely i.e. to delete their identifiers as well as their

attributes and values (yes, no); default no

Parameter

identifiers Structures whose values (and attributes, if requested) are

to be deleted

Description

The DELETE directive allows values and attributes of data structures to be deleted so that Genstat

can recover the space that they occupy. This may also make the program execute more efficiently

as Genstat will then need to keep track of less information. By default only the values are deleted

but, if the REDEFINE option is set to yes, the attributes of the structures are also deleted. The

only information that is still stored is then the identifier and the internal reference number of the

structure. Alternatively, you can set option REMOVE=yes to delete the identifier and reference

number as well as the attributes and values, so that no trace of the structure remains.

You may want to delete the attributes merely to save further space. However, the main

advantage is that the structures can then be redefined to be of different types.

For example, suppose we have defined a variate Dose by

VARIATE [VALUES=0,0,2,2,4,4] IDENTIFIER=Dose

This gives Dose the values 0, 0, 2, 2, 4 and 4. If we then put

DELETE Dose

only the values of Dose are deleted; so we could now assign a new set: for example

READ Dose
2 4 0 4 2 0 :

Dose remains a variate but now has the values 2, 4, 0, 4, 2 and 0.

Alternatively, if we set REDEFINE=yes in the above example, we could then redefine Dose

as (for example) a text with seven values.

DELETE [REDEFINE=yes] Dose
TEXT [VALUES=none,double,standard,double,\
 none,standard,none] Dose

Once you have defined the type of a structure in a job (as variate, factor or whatever), you

cannot redeclare it as a structure of any other type unless you have first used DELETE to delete

its values and attributes. The only exception to this rule is that the GROUPS directive also has a

REDEFINE option, which allows a variate or text to be redefined as a factor.

The LIST option defines how the parameter list is to be interpreted. With the default setting,

DELETE 107

LIST=inclusive, attributes or values are deleted only for the structures in the list.

LIST=exclusive means that the parameter list is the complement of the set of structures that

are deleted: that is, all named structures that are not in the list are deleted. LIST=all causes the

attributes or values of all structures to be deleted. Thus, if LIST=all, any parameter list is

ignored; and LIST=exclusive with no parameter is equivalent to LIST=all.

The NSUBSTITUTE option is relevant when the list of structures to delete contains dummies.

The default setting, missing value, requests all dummies to be replaced by the structures to which

they point (so that those are the structures that are deleted). NSUBSTITUTE allows you to delete

dummies instead. If you set NSUBSTITUTE=0, no dummies are substituted. So the deleted

structures are the actual dummies that you have listed. A positive setting n>0 is useful if you

have dummies pointing to other dummies, in a chain. Each dummy in the list is then substituted

n times in order to determine which structure in each chain to delete.

Each time that DELETE is used, Genstat will also remove any unnamed structures that are no

longer required and recover any space that has been used for temporary storage. This sort of

tidying of workspace will happen automatically if Genstat sees in time that the space is becoming

short. However, to avoid unnecessary computation, this does not occur after every statement.

Thus, if the space appears to be exhausted, it may be worth using DELETE, even if you have no

named structures to delete.

Options: REDEFINE, LIST, PROCEDURE, NSUBSTITUTE, REMOVE.

Parameter: unnamed.

See also

Genstat Reference Manual 1 Summary sections on: Data structures, Calculations and

manipulation.

108 Directives in Release 22

DEVICE

Switches between (high-resolution) graphics devices.

No options

Parameters

NUMBER = scalar Device number

ENDACTION = string token Action to be taken after completing each plot

(continue, pause)

ORIENTATION = string token Orientation of the pictures, if relevant (landscape,

portrait); default * retains the current setting for this

device

PALETTE = string token How to represent colour (monotone, greyscale,

grayscale, colour); default * retains the current

setting for this device

RESOLUTION = scalar Specifies the height of the image for hard-copy output,

in pixels

ACTION = string token How to create graphs for file types such as .emf, .jpg,

.tif or .png (asynchronous, synchronous);

default asyn

Description

High-resolution graphics can be generated principally in two forms by Genstat: either on a screen

that can operate in graphics mode or by sending output to a file. The screen-based operation is

for use in interactive sessions, whereas file output is designed for later use outside Genstat:

either to produce hard-copy on a plotter or laser-printer, or to re-display graphics on the screen,

if appropriate software is available. Usually there is a choice of various kinds of screen type or

file format. Each type of output, whether screen or file, is referred to as a device; thus, the first

step in producing graphical output is selecting a device within Genstat that is appropriate for the

hardware that you have available. Genstat has built-in interfaces to several different graphics

devices. These vary according to the Genstat implementation. However, a list of the devices and

their associated numbers can be obtained using the DHELP procedure.

The output device is selected by the DEVICE statement. For example

DEVICE 4

selects the fourth available device.

If you have selected a file-based device you also need to open a file to receive the output,

using the OPEN directive. This can be done before or after selecting the device, so long as the file

has been opened before any output is generated. You can close the file when the graphics are

complete; if you want to store separate items of graphical output in individual files you can use

a sequence of OPEN and CLOSE statements. When opening or closing files for graphical output

the CHANNEL parameter of the OPEN and CLOSE statements should be set to the device number

specified by the DEVICE statement. For example:

OPEN 'Plot.jpg'; CHANNEL=7; FILETYPE=graphics
DEVICE 7
DGRAPH Y; X
CLOSE 7; FILETYPE=graphics

The default device, selected automatically when you start Genstat, is device 1: sometimes you

may be able to specify an alternative device number and associated output file on the command

line used to start Genstat (the local Genstat documentation should explain if this is possible).

You may get strange results if you try to generate graphics on a screen that is not designed for

displaying graphics, or if you specify the wrong device type, as Genstat is not always able to

DEVICE 109

detect the type of device or screen.

There should be little difference in the use of Genstat graphics on different devices, as all the

plotting symbols and character output are software-generated by default, using built-in graphics

definitions and font files that are supplied with Genstat. The aspects of graphical output that may

depend on particular capabilities of the graphics device are identified in Section 6.9 of Part 1 of

the Guide to the Genstat Command Language; for example, different defaults may apply to

colour and monochrome devices. It may sometimes be advantageous to use particular features

of the hardware; for example, other fonts may be available. These device-specific features are

usually selected by negative parameter settings (for example, SYMBOL=-3). Naturally, selection

of device-specific attributes may lead to some differences in appearance of the output on

different devices.

The ENDACTION parameter, with settings continue and pause, controls the action taken by

default at the end of each plot. When using a graphics terminal interactively it may be convenient

to pause at the end of a plot to examine the screen. When you are ready to continue, pressing

carriage-return or some equivalent key will switch the terminal back to text mode and the

Genstat prompt will appear. The DKEEP directive can provide the precise details for each

particular device. For some interactive devices, for example PCs or workstations with separate

graphics windows, it may not be necessary to pause. Each device is initialized to either pause

or continue when you start Genstat, according to the particular implementation. If you are

running in batch mode the default will always be to continue.

You can repeat the DEVICE statement and set ENDACTION to pause or continue at any time

that you wish to change the default action. Alternatively, each graphical directive has an

ENDACTION option that controls the device at the end of that directive, without altering the

general default setting. For example, if you wish to build up a complex display using several

DGRAPH statements with option SCREEN=keep, you could set ENDACTION=continue in the

DEVICE statement, then put ENDACTION=pause in the final DGRAPH statement.

The ORIENTATION parameter can be used to specify landscape or portrait orientation

of graphical output on PostScript and Interacter raster devices; portrait is the default.

PALETTE can be set to monotone, to force all colours to be mapped to colour 1; this is the

default for PostScript. Alternatively, PALETTE=colour produces colour PostScript output, and

enables the use of the COLOUR directive to specify exactly the composition of the colours. The

additional setting PALETTE=greyscale is as for monotone except that area filling (as in

histograms) are shaded in grey tones, using the RED parameter of COLOUR to define the grey

intensity.

The RESOLUTION parameter specifies the height of the image for hard-copy output, in pixels.

(This is equivalent to setting the image resolution in the Options menu of the Genstat Graphics

Viewer.)

The ACTION parameter controls how graphs are created for the file types .emf, .jpg, .tif,

.png, .gmf and .bmp. The setting synchronous creates the graph before executing another

command, whereas the setting asynchronous allows subsequent commands to be executed

whilst the graph is created.

Options: none,

Parameters: NUMBER, ENDACTION, ORIENTATION, PALETTE, RESOLUTION, ACTION.

See also

Directives: OPEN, CLOSE, DDISPLAY, DKEEP.

Procedures: DHELP, SETDEVICE.

Genstat Reference Manual 1 Summary section on: Graphics.

110 Directives in Release 22

DFINISH

Ends a sequence of related high-resolution plots.

No options or parameters

Description

This directive is relevant when a sequence of high-resolution graphics commands (such as

DGRAPH and DHISTOGRAM) is to be used to build up a complicated plot. The start of the sequence

is indicated using the DSTART directive. The information from each command is accumulated

by Genstat, with no high-resolution plots being drawn until the DFINISH command is received.

Options: none.

Parameters: none.

See also

Directives: DSTART, DCLEAR.

Genstat Reference Manual 1 Summary section on: Graphics.

DFONT 111

DFONT

Defines the default font for high-resolution graphics.

No options

Parameter

text specifies or saves the default graphics font

Description

The Genstat Graphics Viewer can include textual information in a variety of fonts. A graphics

pen can be asked to use a specific font family, by using the FONT parameter of the PEN directive.

If this is not done, the pen is assumed to use the default graphics font. When Genstat is first

installed, the default font is set automatically to Arial. However, it can be modified either by

using menus in the Genstat Client or Graphics Viewer, or by using the DFONT directive.

DFONT has a single, unnamed, parameter, which can be set to text structure containing a single

string. If that string is not missing (or null), it specifies the name of the font family to be used

as the default. For example,

DFONT 'Calibri'

The name can be specified in upper or lower case, or in any mixture. You can find out the

available fonts by looking at any of the controls for specifying fonts in the Client or Graphics

Viewer.

If the text contains a missing string, it is redefined to contain the name of the font family

currently used as the default. It is also defined as a text containing the current default, if you

specify either a text with no values or an undeclared data structure.

Finally, if you specify DFONT without setting the parameter, it sets the default font back to the

standard Genstat font i.e. Arial.

The change takes effect only when information about the new default is received by the

Graphics Viewer. Afterwards this will be used in any graphs with the default font that are

displayed or redisplayed, including those that have been stored in Genstat graphics meta files

(i.e. files with the gmf suffix).

Options: none.

Parameter: unnamed.

See also

Directive: PEN.

Genstat Reference Manual 1 Summary section on: Graphics.

112 Directives in Release 22

DGRAPH

Draws graphs on a plotter or graphics monitor.

Options

TITLE = text General title; default *

WINDOW = scalar Window number for the graphs; default 1

KEYWINDOW = scalar Window number for the key (zero for no key); default 2

SCREEN = string token Whether to clear the screen before plotting or to

continue plotting on the old screen (clear, keep,

resize); default clea

KEYDESCRIPTION = text Overall description for the key; default *

ENDACTION = string token Action to be taken after completing the plot (continue,

pause); default * uses the setting from the last DEVICE

statement

HOTMENU = matrices Defines sets of "hot" components for the user to select as

shown or hidden by a menu in the Graphics Viewer

HOTCHOICE = string token Whether one or several "hot" components can be

displayed at a time (one, several); default seve

Parameters

Y = identifiers Vertical coordinates

X = identifiers Horizontal coordinates

PEN = scalars, variates or factors Pen number for each graph (use of a variate or factor

allows different pens to be defined for different sets of

units); default * uses pens 1, 2, and so on for the

successive graphs

DESCRIPTION = texts Annotation for key

YLOWER = identifiers Lower values for vertical bars

YUPPER = identifiers Upper values for vertical bars

XLOWER = identifiers Lower values for horizontal bars

XUPPER = identifiers Upper values for horizontal bars

YBARPEN = scalars, variates or factors

Pens to use to draw the vertical bars; default �11

XBARPEN = scalars, variates or factors

Pens to use to draw the horizontal bars; default �11

LAYER = scalars "Layer" of the plot

UNITNUMBERS = identifiers Specifies unit numbers to be used when points are

selected in the graphics viewer; default * uses the actual

unit numbers of the values in the X and Y structures

DISPLAY = string tokens Whether to display each component initially in the graph

(show, hide); default show

HOTCOMPONENT = scalars Allows components of the graph (specified by pairs of Y

and X settings) to be defined as "hot" components that

can be shown or hidden through their association with

"hot" points or using a menu in the Graphics Viewer

HOTDEFINITION = matrices Define how to use points defined by the Y and X

parameters as "hot" points in the Graphics Viewer to

allow the user to decide whether other components of

the graph are shown or hidden

DGRAPH 113

Description

The DGRAPH directive draws high-resolution graphs, containing points, lines or shaded polygons.

The graph is produced on the current graphics device which can be selected using the DEVICE

directive. The WINDOW option defines the window, within the plotting area, in which the graph

is drawn; by default this is window 1.

The Y and X parameters specify the coordinates of the points to be plotted; they must be

numerical structures (scalars, variates, factors, matrices or tables) of equal length. If any of the

variates or factors is restricted, only the subset of values specified by the restriction will be

included in the graph. The restrictions are applied to the Y and X variates or factors in pairs, and

do not carry over to all the variates or factors in a list. For example, suppose the variate Y1 is

restricted but the variate Y2 is not. The statement

DGRAPH Y1,Y2; X

will plot the subset of values of Y1 against X, but all the values of Y2 against X. Conversely, if

X were restricted the subset would be plotted for both Y1 and Y2. Any associated structures, like

variates specified by the PEN parameter or factors used to provide labels for the points, must be

of the same length as Y and X.

Each pair of Y and X structures has an associated pen, specified by the PEN parameter. By

default, pen 1 is used for the first pair, pen 2 for the second, and so on. The type of graph that

is produced is determined by the METHOD setting of that pen. This can be point, to produce a

point plot or scatterplot; line to join the points with straight lines; monotonic, open or

closed to plot various types of curve through the points; or fill to produce shaded polygons.

In the initial graphics environment, all the pens are defined to produce point plots. This can be

modified using the METHOD option of the PEN directive. Other attributes of the pen can be used

to control the colour, font, symbols and labels.

With METHOD=fill, the points defined by the Y and X variates are joined by straight lines to

form one or more polygons which are then filled in the colours specified for the pen. The JOIN

parameter of PEN determines the order in which the points are joined; with the default,

ascending, the data are sorted into ascending order of x-values, while with JOIN=given they

are left in their original order. There should be at least three points when using this method.

A warning message is printed if the data contain missing values. The effect of these depends

on the type of graph being produced, as follows. If the method is point there will be no

indication on the graph itself that any points were missing (but obviously none of the points with

missing values for either the y- or x-coordinate can be included in the plot). If a line or curve is

plotted through the points there will be a break wherever a missing value is found; that is, line

segments will be omitted between points that are separated by missing values. When using

METHOD=fill missing values will, in effect, define subsets of points, each of which will be

shaded separately. Note, however, that the position of the missing values within the data will

differ according to whether or not the data values have been sorted; this is controlled by the

JOIN parameter of PEN, as described above. If the data are sorted, units with missing x-values

are all moved to the beginning (and are thus ignored).

The PEN parameter can also be set to a variate or factor, to allow different pens to be used for

different subsets of the units. With a factor, the units with each level are plotted separately, using

the pen defined by the ordinal number of the level concerned. If PEN is set to a variate, its values

similarly define the pen for each unit. For example, if you fit separate regression lines to some

grouped data, you can easily plot the fitted lines in just two statements, one to set up the pens

and one to plot the data:

PEN 1...Ngroups; METHOD=line; SYMBOL=0
DGRAPH Fitted; X; PEN=Groups

By default, Genstat calculates bounds on the axes that are wide enough to include all the data;

the range of the data is extended by five percent at each end, and the axes are drawn on the left-

hand side and bottom edge of the graph. This can all be changed by the XAXIS and YAXIS

114 Directives in Release 22

directives using the LOWER and UPPER parameters to set the bounds, and YORIGIN and

XORIGIN to control the position of the axes. Other parameters allow you to control the axis

labelling and style. If the axis bounds are too narrow, some points may be excluded from the

graph, so that clipping occurs. If the plotting method is point, Genstat ignores points that are

out of bounds. For other settings of METHOD, lines are drawn from points that are within bounds

towards points that are out of bounds, terminating at the appropriate edge. Clipping may also

occur if the method is monotonic, open or closed and you have left Genstat to set default axis

bounds, because these methods fit curves that may extend beyond the boundaries. If this occurs

you should use the XAXIS and YAXIS directives to provide increased axis bounds. When you use

several DGRAPH statements with SCREEN=keep to build up a complex graph, the axes are drawn

only the first time, and the same axes bounds are then used for the subsequent graphs. You

should then define axis limits that enclose all the subsequent data. Alternatively, if you set

SCREEN=resize, the axes and their bounds will be adjusted, if necessary, to enclose the

additional information. Axes are drawn only if SCREEN=clear, or the specified window has not

been used since the screen was last cleared, or the window has been redefined by a FRAME

statement.

DGRAPH allows error bars to be included in the plot. You might want to use these, for

example, to show confidence limits on points that have been fitted by a regression. Error bars

are requested by setting the YLOWER and YUPPER parameters to variates defining the lower and

upper values for the error bar to be drawn at each point. For example, if you know the standard

error for each point, you might calculate and plot the bounds as follows:

CALCULATE Barlow = Y - 1.96 * Err
& Barhigh = Y + 1.96 * Err
DGRAPH Y; X; YLOWER=Barlow; YUPPER=Barhigh

(this would give a 95% confidence interval assuming that the y-values come from a Normal

distribution). The error bar is drawn from the lower point to the upper point at the associated x-

position; the bar will be drawn even if the corresponding y-value (or y-variate) is missing. If the

lower value is missing, or the YLOWER parameter is not set, only the upper section of the bar is

drawn; likewise if the upper value is missing only the lower section is drawn. Similarly,

parameters XLOWER and XUPPER allow you to plot horizontal bars at each point.

The YBARPEN and XBARPEN parameters define the pens to be used for the vertical and

horizontal bars, respectively, with the default to use pen �11. Similarly to the PEN parameter,

they can be set to either scalars, factors or variates. For each group of units defined by the setting

of PEN, DGRAPH will use the first pen that it finds for that group in the setting supplied by

YBARPEN and XBARPEN. (So YBARPEN and XBARPEN cannot define more detailed groupings of

the points than those defined by PEN.) For example:

VARIATE [VALUES=1,1,2,2,3,3] Pvar
& [VALUES=4,4,5,5,6,6] Ybvar
& [VALUES=7,7,8,8,9,10] Xbvar
DGRAPH Y; X; PEN=Pvar; YLOWER=Ylow; YUPPER=Yupp;\
 XLOWER=Xlow; XUPPER=Xupp;\
 YBARPEN=Ybpen; XBARPEN=Xbpen

The first two points here will be plotted in pen 1 with vertical bar in pen 4 and horizontal bar in

pen 7. The third and fourth points will be plotted in pen 2 with vertical bar in pen 5 and

horizontal bar in pen 8. The fifth and sixth points will be plotted in pen 3 with vertical bar in pen

6 and horizontal bar in pen 9. Notice, that the horizontal bar for the sixth point will be plotted

in pen 9 not pen 10, as it is in the same PEN group as the (earlier) fifth point which has pen 9 for

the horizontal bar. However, if PEN is not set to a factor or variate, the YBARPEN and XBARPEN

settings define the groups.

The KEYWINDOW option specifies the window in which the key appears; by default this is

window 2. Alternatively, you can set KEYWINDOW=0 to suppress the key. The key contains a line

of information for each pair of Y and X structures, written with the associated pen. This will

DGRAPH 115

indicate the symbol used, the line style (for a plotting method of line or curve) or a block to

illustrate colour (when METHOD=fill), the name of the structure (if any) defined by the LABELS

parameter of PEN, and a description indicating the identifiers of the data plotted (for example

Residuals v Fitted). Alternatively, you can supply your own key, using the DESCRIPTION

parameter, and you can specify a title for the key using the KEYDESCRIPTION option. If you

draw several graphs using SCREEN=keep or SCREEN=resize and the same key window, each

new set of information is appended to the existing key, until the window is full.

If you have set the PEN parameter to a variate or factor in order to plot independent subsets

of the data, the key will contain information for each subset.

If the LABELS parameter of PEN has been used to specify labels for the points, each line of the

key will contain the label corresponding to the first value of the subset, rather than the identifier

of the labels structure itself.

The TITLE option can be used to provide a title for the graph. You can also put titles on the

axes by using the TITLE parameter of the XAXIS and YAXIS directives. The SCREEN option

controls whether the graphical display is cleared before the graph is plotted and the ENDACTION

option controls whether Genstat pauses at the end of the plot.

The components of the graph defined by each pair of Y and X parameter settings are assumed

to form separate, successive "layers" on the plot. So, if an area of the plot contains information

(lines, symbols or labels) from several pairs of Y and X settings, the information from the later

settings will overlay the information from earlier settings. You can control the orders of the

layers by using the LAYER parameter to assign an explicit layer number to each pair of Y and X

settings. The pairs of Y and X settings are then plotted in ascending order of layer numbers.

These layer numbers also work across DGRAPH statements when you add to a plot by setting

option SCREEN=keep or SCREEN=resize. So, for example, you can specify lower layer

numbers to plot the new information "below" the layers formed by the earlier DGRAPH

statement(s).

Usually all these components of the graph are shown when the graph is plotted. In Genstat for

Windows, the Graphics Editor (which can be opened from the Edit menu on the menu bar of the

Graphics Viewer) allows you to show or hide components, and the DISPLAY parameter of

DGRAPH allows you to define whether a component should be shown or hidden in the initial

graph displayed by the Graphics Viewer.

Alternatively, the Graphics Viewer itself can allow components to be shown or hidden, either

by using their association with some "hot" points that have been defined on the graph, or by

using a menu on its menu bar. These "hot" components are identified by defining a unique

integer number for each one, using the HOTCOMPONENT parameter; if the component is not to be

treated as "hot", HOTCOMPONENT should be left unset or given a missing value. Several pairs of

Y and X parameter settings can be given the same number, so you can build up a "hot" component

from more than one type of graphical item (e.g. from plotted points and shaded areas). "Hot"

points are plotted within the graph using the Y, X and other parameters (e.g. PEN) in the usual

way, as described above. The extra information, to define them as "hot", is supplied by setting

the HOTDEFINITION parameter to a matrix with a row for each "hot" point, and a column for

each type of "hot" component. The elements of the matrix specify the "hot" components to be

associated with each "hot" point, using the numbers defined by the HOTCOMPONENT parameter.

The menus in the Graphics Viewer can be made more informative, by defining textual labels for

the rows and columns of the matrix (see the MATRIX directive); these are then used as annotation

in the menus. Alternatively, if you set the HOTMENU option to a similar matrix, the Graphics

Viewer will include a menu on its menu bar to allow users to choose whether "hot" components

are shown or hidden. By default, users will be allowed to display several "hot" components at

a time. However, you can set option HOTCHOICE=one to indicate that only one can be shown

at a time. (The DISPLAY parameter should then be used to indicate which one, if any, should be

shown on the initial graph.)

116 Directives in Release 22

The Graphics Viewer also has a tool that allows you to select points, and copy their unit

numbers onto the clipboard. Usually these numbers are simply the locations of the plotted values

in the X and Y structures. However, you can use the UNITNUMBERS parameter to supply other

numbers. (This may be useful if, for example, you are plotting sorted values.)

Options: TITLE, WINDOW, KEYWINDOW, SCREEN, KEYDESCRIPTION, ENDACTION, HOTMENU,

HOTCHOICE.

Parameters: Y, X, PEN, DESCRIPTION, YLOWER, YUPPER, XLOWER, XUPPER, YBARPEN,

XBARPEN, LAYER, UNITNUMBERS, DISPLAY, HOTCOMPONENT, HOTDEFINITION.

Action with RESTRICT

You can arrange to plot only a subset of the points specified by a particular pair of Y and X

vectors and associated PEN vector, by restricting any one of them. If more than one of these is

restricted, then they must all be restricted in exactly the same way.

See also

Directives: D3GRAPH, BARCHART, DHISTOGRAM, LPGRAPH, FRAME, XAXIS, YAXIS, AXIS,

PEN.

Procedures: DCIRCULAR, DFUNCTION, DMSCATTER, DSCATTER, DTEXT, DFRTEXT,

DXYDENSITY, TRELLIS.

Genstat Reference Manual 1 Summary section on: Graphics.

DHISTOGRAM 117

DHISTOGRAM

Draws histograms or bar charts on a plotter or graphics monitor.

Options

TITLE = text General title; default *

WINDOW = scalar Window number for the histograms; default 1

KEYWINDOW = scalar Window number for the key (zero for no key); default 2

LIMITS = variate Variate of group limits for classifying DATA variates into

groups; default *

LOWER = scalar For a DATA variate, this specifies the lower limit of the

first bar; default * takes the minimum value of the

variate

UPPER = scalar For a DATA variate, this specifies the upper limit of the

last bar; default * takes the maximum value of the

variate

NGROUPS = scalar When LIMITS and BINWIDTH are not specified, this

defines the number of groups into which a DATA variate

is to be classified; default is then 10, or the integer value

nearest to the square root of the number of values in the

variate if that is smaller

BINWIDTH = scalar When LIMITS is unset the range of a DATA variate is

split into equal intervals known as "bins" to form the

groups, this option can set the bin widths (alternative is

to set the number of groups using NGROUPS)

FIXEDBARWIDTH = string token Whether to plot the histogram with bars of equal width

(yes, no); default no

BARCOVERING = scalar What proportion of the space allocated along the x-axis

each bar should occupy; default * gives proportion 1 for

a DATA variate, and 0.8 for a factor or table (thus giving

a gap between each bar)

BARSCALE = scalar Width of bar for which one unit of bar length represents

one unit of data; default * uses the width of the

narrowest bar

LABELS = text Group labels; default *

APPEND = string token Whether or not the bars of the histograms are appended

together (yes, no); default no

ORIENTATION = string token Direction of the plot (horizontal, vertical); default
vert

OUTLINE = string token Where to draw outlines (bars, perimeter); default
bars

PENOUTLINE = scalar Pen to use for the outlines; default �8

SCREEN = string token Whether to clear the screen before plotting or to

continue plotting on the old screen (clear, keep);

default clea

KEYDESCRIPTION = text Overall description for the key; default *

ENDACTION = string token Action to be taken after completing the plot (continue,

pause); default * uses the setting from the last DEVICE

statement

Parameters

DATA = identifiers Data for the histograms; these can be either a factor

118 Directives in Release 22

indicating the group to which each unit belongs, a

variate whose values are to be grouped, or a one-way

table giving the height of each bar

NOBSERVATIONS = tables One-way table to save numbers in the groups

GROUPS = factors Factor to save groups defined from a variate

PEN = scalars or variates Pen number(s) for each histogram; default * uses pens 2,

3, and so on for the successive structures specified by
DATA

DESCRIPTION = texts Annotation for key

Description

DHISTOGRAM plots high-resolution histograms or bar charts, depending on the input supplied by

the DATA parameter: either a list of variates, a list of factors or a list of one-way tables. For a

DATA variate, a histogram is produced. This summarizes the distribution of the variate by

counting the number of values within a set of intervals defined by the LIMITS, NGROUPS or

BINWIDTH options. The histogram contains a "bar" for each interval, with area proportional to

the number of values found there. You can define the boundaries between each interval using

the LIMITS option. Alternatively, instead of setting LIMITS, you can specify the width of each

interval using the BINWIDTH option. Or, instead of setting LIMITS or BINWIDTH, you can

specify the number of groups using the NGROUPS option. Finally, if none of these options is set,

Genstat defines the number of groups to be 10, or the integer value nearest to the square root of

the number of values in the first DATA variate if that is smaller. The range of the histogram is

specified by the LOWER and UPPER options. LOWER defines the lower limit of the first interval;

by default this is set by making the width of the first bar equal to the width of the second bar, or

it is the minimum value of the variates if that would otherwise be below the first bar. UPPER

defines the upper limit of the last interval; by default this is set by making the width of the final

bar equal to the width of the last-but-one bar, or it is the maximum value of the variates if that

would otherwise be above the final bar. The bars are perpendicular to the x-axis, and this is

labelled with the positions of the interval boundaries.

If you set DATA to factors or tables, bar charts are produced. However, these can be plotted

more conveniently by the BARCHART directive. Bar charts differ from histograms in that there

is no longer the concept of dividing the x-axis into a set of contiguous intervals. Instead we have

a set of bars located at various positions along the x-axis. The bars are spaced equally along the

x-axis. If DATA is set to a list of factors, the bars are labelled by the labels, if available, or

otherwise the levels of the first factor. If DATA is set to a list of tables, the labelling is given by

the levels/labels of the factor classifying the first table. A DATA table defines the heights of each

bars directly (from the value in the corresponding cell of the table). With a factor, Genstat first

constructs a table giving the replications of the factor levels. So the height of each bar is equal

to the number of units of the factor with the corresponding level of the factor.

The bars in a bar chart always have equal widths. With a histogram, the default is for the bar

widths to be equal to the widths of the underlying intervals. However, you can request equal bar

widths by setting option FIXEDBARWIDTH=yes. The BARCOVERING option indicates what

proportion of the space allocated along the x-axis each bar should occupy. For a histogram the

default is 1, while for bar charts it is 0.8 (thus giving a gap between each bar).

The BARSCALE option controls how the lengths of the bars correspond to units of data. The

length of each bar is calculated as (data-value × BARSCALE)/bar-width. By default, BARSCALE

is set to the width of the narrowest bar. So for that bar, the length will correspond directly to the

data units.

The WINDOW option defines the window where the histogram is plotted, and the KEYWINDOW

option similarly specifies where the key should appear. You can set either of these to zero if you

want to suppress the corresponding output. Titles can be added to the histogram and key using

DHISTOGRAM 119

the TITLE and KEYDESCRIPTION options respectively.

The APPEND option controls the form of display to be used when the DATA parameter specifies

a list of structures. These parallel histograms can be produced in one of two styles. By default

(APPEND=no), the histogram contains a set of bars for each structure, drawn in parallel groups.

Alternatively, if you set APPEND=yes, the bars for the structures are concatenated into a single

bar for each group. The bottom portion of each bar then corresponds to the first structure, and

the top to the last structure.

The ORIENTATION option controls whether the bars of the histogram are plotted vertically

(the default) or horizontally. When ORIENTATION=horizontal, the horizontal axis is taken

to be the y-axis, so the same XAXIS and YAXIS settings can be used however the histogram is

oriented.

The bars for each structure are all shaded according to the pen or pens that have been specified

for that structure, using the PEN parameter. You can set PEN to a scalar to define a single pen to

be used for all the bars, or to a variate to define a different pen for each bar. If PEN is not set,

Genstat uses the pens in turn, pen 2 for the first structure, pen 3 for the second structure, and so

on, so that a different shading is used for each structure. The relevant aspects of the pens should

be set in advance, if required, using the COLOUR parameters of the PEN directive. Generally,

however, the default attributes of the pens will be satisfactory.

The OUTLINE option controls whether lines are drawn around the bars or around the perimeter

of the histogram. These are drawn using the pen specified by the PENOUTLINE option (default

�8). You can suppress all the outlines by setting OUTLINE=*.

The axes of the histogram are formed automatically from the data. By default, the upper bound

of the y-axis is set to be five percent greater than the height of the longest bar. If any of the bars

has a negative height the lower bound is adjusted in a similar way, otherwise it is set to zero. As

already mentioned, when the histogram is formed from a variate, the x-axis markings are set to

indicate the limits of each bar or set of bars; when the data are provided in a factor the factor

labels or levels are used to label the histogram bars, and when the bar heights are provided

directly in a table the classifying factor of the table is used. You can control the form of the axes

by using the XAXIS and YAXIS directives to set the required attributes before the DHISTOGRAM

directive is used.

The WINDOW parameter of XAXIS and YAXIS should be set to the window in which the

histogram is to be plotted (controlled by the WINDOW option of DHISTOGRAM). The TITLE,

LOWER, UPPER, MARKS and LABELS parameters control annotation. The UPPER parameter of

YAXIS is particularly useful when you are plotting a series of histograms; by setting UPPER to

a value larger than any of the bars in any of the histograms, you can ensure that they are all

plotted on the same scale.

The histogram key consists of the title, if set by KEYDESCRIPTION, followed by a legend for

each structure plotted. This consists of a small rectangle that is drawn in the same colour as that

used in the histogram, followed by the identifier name or the piece of text specified by the

DESCRIPTION parameter.

The SCREEN option controls whether the graphical display is cleared before the histogram is

plotted and the ENDACTION option controls whether Genstat pauses at the end of the plot.

Options: TITLE, WINDOW, KEYWINDOW, LIMITS, LOWER, UPPER, NGROUPS, BINWIDTH,

FIXEDBARWIDTH, BARCOVERING, BARSCALE, LABELS, APPEND, ORIENTATION, OUTLINE,

PENOUTLINE, SCREEN, KEYDESCRIPTION, ENDACTION.

Parameters: DATA, NOBSERVATIONS, GROUPS, PEN, DESCRIPTION.

Action with RESTRICT

You can restrict a DATA variate or factor to form a histogram for only a subset of the units.

However, the restriction does not carry over to any other variates or factors listed by the DATA

120 Directives in Release 22

parameter.

See also

Directives: BARCHART, D3HISTOGRAM, DPIE, LPHISTOGRAM, FRAME, XAXIS, YAXIS, PEN.

Procedures: TRELLIS, DOTHISTOGRAM, DOTPLOT, DCIRCULAR, WINDROSE.

Genstat Reference Manual 1 Summary section on: Graphics.

DIAGONALMATRIX 121

DIAGONALMATRIX

Declares one or more diagonal matrix data structures.

Options

ROWS = scalar, vector, pointer or text

Number of rows, or labels for rows (and columns);

default *

VALUES = numbers Values for all the diagonal matrices; default *

MODIFY = string token Whether to modify (instead of redefining) existing

structures (yes, no); default no

IPRINT = string tokens Information to be used by default to identify the diagonal

matrices in output (identifier, extra); if this is not

set, they will be identified in the standard way for each

type of output

Parameters

IDENTIFIER = identifiers Identifiers of the diagonal matrices

VALUES = identifiers Values for each diagonal matrix

DECIMALS = scalars Number of decimal places for printing

EXTRA = texts Extra text associated with each identifier

MINIMUM = scalars Minimum value for the contents of each structure

MAXIMUM = scalars Maximum value for the contents of each structure

DREPRESENTATION = scalars or texts

Default format to use when the contents represent dates

and times

Description

Diagonal matrices are square matrices that have zero entries except on their leading diagonals:

for example,

2 0 0
0 1 0
0 0 3

Another example is the identity matrix, which has a diagonal of values equal to 1. To save space,

Genstat has a special structure for diagonal matrices, and these can be declared using the

DIAGONALMATRIX directive.

Because a diagonal matrix is square, Genstat requires you to specify only the number of rows.

This is done using the ROWS option. The simplest method is to use a scalar to define the number

of rows explicitly. Alternatively, you can set ROWS to a variate, text or pointer, whose length then

defines the number of rows and whose values will then be used as labels, for example when the

matrix is printed. Finally, if you specify a factor, the number of levels defines the number of

rows and the labels if available, or otherwise the levels, are used for labelling.

When you give the values of a diagonal matrix, either in a declaration or when its values are

read, you should specify only the diagonal elements. (Genstat does not store the off-diagonal

elements, but assumes them to be zero.) Similarly, when a diagonal matrix is printed it appears

as a column of numbers; Genstat omits the off-diagonal zeros. For example:

DIAGONALMATRIX [ROWS=3; VALUES=2,1,3] D

declares the diagonal matrix D and gives it the values shown above.

Values can be assigned to the diagonal matrices by either the VALUES option or the VALUES

parameter. The option defines a common value for all the matrices in the declaration, while the

parameter allows them each to be given a different value. If both the option and the parameter

are specified, the parameter takes precedence.

122 Directives in Release 22

If the MODIFY option is set to yes any existing attributes and values of the diagonal matrices

are retained (if still appropriate); otherwise these are lost.

The DECIMALS parameter allows you to define a number of decimal places to be used by

default when each diagonal matrix is printed. You can associate a text of extra annotation with

each diagonal matrix using the EXTRA parameter. The MINIMUM and MAXIMUM parameters allow

you to define lower and upper limits on the values in each diagonal matrix. Genstat then prints

warnings if any values outside that range are allocated to the matrix. The DREPRESENTATION

parameter allows a scalar or a single-valued text to be specified for each diagonal matrix to

indicate that the matrix stores dates and times, and to define a format to be used for these, by

default, when they are printed; details are given in the description of the PRINT directive.

The IPRINT option can be set to specify how the diagonal matrices will be identified in

output. If IPRINT is not set, they will be identified in whatever way is usual for the section of

output concerned. For example, the PRINT directive generally uses their identifiers (although

this can be changed using the IPRINT option of PRINT itself).

Options: ROWS, VALUES, MODIFY, IPRINT.

Parameters: IDENTIFIER, VALUES, DECIMALS, EXTRA, MINIMUM, MAXIMUM,

DREPRESENTATION.

See also

Directives: LRV, MATRIX, SYMMETRICMATRIX, SSPM.

Genstat Reference Manual 1 Summary section on: Data structures.

DISPLAY 123

DISPLAY

Prints, or reprints, diagnostic messages.

Options

PRINT = string token What information to print (diagnostic); default diag

CHANNEL = identifier Channel number of file, or identifier of a text to store

output; default current output file

FAULT = text Specifies the fault message to print (for example,

FAULT='VA 4' prints the message "Values not set");

default is to print the last diagnostic message

No parameters

Description

By default, DISPLAY reprints the most recent diagnostic. Alternatively, you can use the FAULT

option of DISPLAY to print any particular Genstat diagnostic. The CHANNEL option controls

where the information is printed; the default is the current output file.

Options: PRINT, CHANNEL, FAULT.

Parameters: none.

See also

Directives: FAULT, GET.

Genstat Reference Manual 1 Summary section on: Program control.

124 Directives in Release 22

DISTRIBUTION

Estimates the parameters of continuous and discrete distributions.

Options

PRINT = string tokens Printed output required from each individual fit

(parameters, samplestatistics, fittedvalues,

proportions, monitoring); default para, samp,
fitt

CBPRINT = string tokens Printed output required from a fit combining all the input

data (parameters, samplestatistics,

fittedvalues, proportions, monitoring); default
*

DISTRIBUTION = string token Distribution to be fitted (Poisson, geometric,

logseries, negativebinomial, NeymanA,

PolyaAeppli, PlogNormal, PPascal, Normal,

dNvequal, dNvunequal, logNormal, exponential,

gamma, Weibull, b1, b2, Pareto); default * i.e. fit

nothing

CONSTANT = string token Whether to estimate a location parameter for the gamma,

logNormal, Pareto or Weibull distributions (estimate,

omit); default omit

LIMITS = variate Variate to specify or save upper limits for classifying the

data into groups; default *

NGROUPS = scalar When LIMITS is not specified, this defines the number

of groups (of approximately equal size) into which the

data are to be classified; default is the integer value

nearest to the square root of the number of data values

XDEVIATES = variate Variate to specify points up to which the

CUMPROPORTIONS are to be estimated

JOINT = string token Requests joint estimates from the combined fit to be

used for a re-fit to the separate data sets (dispersion,

variancemeanratio, Poissonindex); default *

PARAMETERS = variate Estimated parameters from the combined fit

SE = variate Standard errors for the estimated parameters of the

combined fit

VCOVARIANCE = symmetric matrix Variance-covariance matrix for the estimated parameters

of the combined fit

CUMPROPORTIONS = variate Estimated cumulative proportions of the combined

distribution up to the values specified by the

XDEVIATES option

MAXCYCLE = scalar Maximum number of iterations; default 30

TOLERANCE = scalar Convergence criterion; default 0.0001

Parameters

DATA = variates or tables Data values either classified (table) or unclassified

(variate)

NOBSERVATIONS = tables One-way table to save the data classified into groups

RESIDUALS = tables Residuals from each (individual) fit

FITTEDVALUES = tables Fitted values from each fit

PARAMETERS = variates Estimated parameters from each fit

SE = variates Standard errors of the estimates

DISTRIBUTION 125

VCOVARIANCE = symmetric matrices

Variance-covariance matrix for each set of estimated

parameters

CUMPROPORTIONS = variates Estimated cumulative proportions of each distribution up

to the values specified by the XDEVIATES option

CBRESIDUALS = tables Residuals from the combined fit

CBFITTEDVALUES = tables Fitted values from the combined fit

STEPLENGTH = variates Initial step lengths for each fit

INITIAL = variates Initial values for each set fit

Description

The DISTRIBUTION directive is used to fit an observed sample of data to a theoretical

distribution function, in order to obtain maximum-likelihood estimates of the parameters of the

distribution and test the goodness of fit. The data consists of observations xi of a random variable

X, which has a distribution function F(x) defined by F(x)=Pr(X�x). A selection of both discrete

and continuous distributions are available; full details are given below.

For discrete distributions X may take non-negative integer values only, except for the log-

series distribution where only positive integer values are allowed. For continuous distributions

the random variable X may take any values, subject to constraints for certain distributions, for

example, data values must be strictly positive in order to fit a log-Normal distribution.

Constraints are detailed with the individual distributions described below.

The data can be supplied to DISTRIBUTION as a variate or as a one-way table of counts. If

the raw data are available, then these should be supplied (as a variate), since the raw data

contains more information than grouped data.

If raw data are not available, then a one-way table of counts, or frequencies, should be given.

The factor classifying the table must have its levels vector declared explicitly, since the levels

are used to indicate the boundary values of the raw data used to create the grouping. For

example, if the discrete variable X takes the values 0...8, with numbers of observations

2,6,7,4,2,1,0,1,0 respectively, a table of counts can be declared by

FACTOR [LEVELS=!(0...8)] F
TABLE [CLASSIFICATION=F; VALUES=2,6,7,4,2,1,0,1,0] T

The factor levels do not have to specify single data values: often it will be desirable to group

certain values together, and indeed for continuous data this is the only sensible way to proceed.

In general, for a classifying factor with levels l1, l2, ... , lf, the count nk for the kth cell of the table

will be the number of observations xi such that

xi � l1, k=1

lk�1 < xi � lk, 2�k�f�1

lf�1 < xi, k=f

This means that for all except the last cell of the table, the factor level represents the upper limit

on values in that cell. The final class of the table is termed the tail; it is formed by combining

the frequencies for all values of X greater than lf�1, and the upper limit on values in the tail is

infinity. For continuous distributions with no lower bound, the first class will be the lower tail.

You will often want to form the tail(s) by amalgamating groups with low numbers of counts. In

the example above, you might amalgamate the groups for values 6-8:

FACTOR [LEVELS=!(0...5,99)] F2
TABLE [CLASSIFICATION=F2; VALUES=2,6,7,4,2,1,1] T2

Note that the final factor level, for the tail, can be given a dummy value of 99 to indicate that it

has no upper limit, since this value is never used in calculations.

When data are supplied as a table instead of as a variate, the computed log-likelihood is only

an approximation to the full log-likelihood and the solution obtained will depend to some extent

126 Directives in Release 22

on the choice of class limits. More reliable results will be achieved with a larger number of

classes, since this gives more information on the data distribution, so only classes with very few

observations should be amalgamated. In general, care should be taken to choose class limits that

give a reasonable number of counts in each class, but with none of the individual classes holding

a disproportionately large number of observations.

The DISTRIBUTION option should be set to indicate which distribution is to be fitted to the

data. The following distributions are available:

Discrete Continuous

Binomial (as a special case Normal

 of the negative binomial) Double Normal (equal variances)

Poisson Double Normal (unequal variances)

Geometric Log-Normal

Log-series Exponential

Negative binomial Gamma

Neyman type A Weibull

Pólya-Aeppli Beta type I and type II

Poisson-log-Normal Pareto

Poisson-Pascal

Note: the parameterization for the gamma distribution differs from that used in the gamma

probability functions. DISTRIBUTION uses the shape parameter k and the rate parameter b,

while the functions use the shape parameter k and the scale parameter t, which is the reciprocal

of the rate (t=1/b).

The first step of the fitting process is to compute and print various sample statistics.

Examining these may help in the selection of appropriate distributions for fitting � properties

of the various distributions are listed at the end of this section. The setting DISTRIBUTION=*

can be used to produce this output without any model fitting. The following sample statistics are

calculated:

Sample size n

Sample mean m = Ó xi/n

Sample variance s2 = Ó xi
2/n � m2 discrete distributions

s2 = Ó (xi�m)2 / (n�1) continuous distributions

Sample skewness g1 = Ó (xi�m)3 / (n�1)s3

 = m3/s
3x

Sample kurtosis g2 = Ó{(xi�m)4/(n�1)s4} � 3 continuous distributions only

Sample quartiles xp: F(xp)=p

Poisson index (s2�m)/m2 discrete distributions only

Negative binomial

index

m(m3�3s2+2m)/(s2�m)2 discrete distributions only

If the original data are not available, the sample statistics are calculated by substituting class

mid-points in place of the data. For the lower tail, the class "mid-point" is taken to be l1�½(l2�l1)

and for the upper tail, lf�1+½(lf�1�lf�2). No corrections are made for groupings. When a

distribution has been fitted to data, the relevant theoretical statistics of that distribution are

printed for comparison with the sample statistics, as a check on the appropriateness of the model

for the data.

A summary is given of the fit: the parameter estimates are printed with their standard errors

and correlations, including the working parameters, which are stable functions of the parameters

defining the distribution and are used in the internal algorithm. The goodness of fit to the chosen

distribution is indicated by the residual deviance which has an asymptotic chi-square distribution

with the specified degrees of freedom. The deviance is also the preferred statistic for comparison

DISTRIBUTION 127

of nested models, for example the double Normal distribution with equal and unequal variances.

This is followed by a table of observed and fitted values (expected frequencies), together with

weighted residuals. If raw data are supplied, by default this table is formed by dividing the data

into �n groups of approximately equal observed frequency, which are therefore likely to be of

unequal widths. The NGROUPS option may be used to set the number of groups for this table. If

data are supplied as a table, the fitted values use the classification from that table. In either case

the LIMITS option may be used to supply a different set of limits; with the constraint that if

tabulated data are analysed these limits should be a subset of the original limits so that the new

groups are formed by aggregation.

The NOBSERVATIONS, RESIDUALS and FITTEDVALUES parameters can be used to save the

number of observations in each cell, the fitted number, and the residual respectively (all in

tables). The parameter estimates and their standard errors can be saved in variates specified by

PARAMETERS and SE. The variance-covariance matrix for the estimated parameters can be saved

as a symmetric matrix using the VCOVARIANCE parameter.

Having fitted the required distribution, the estimated cumulative distribution function (CDF)

can be evaluated at specified values of X. These are defined using the XDEVIATES option. The

values of the CDF can be printed (by selecting PRINT=proportions) or saved in a variate by

setting the CUMPROPORTION parameter.

If you have several sets of data you may be interested in fitting the distribution individually

to each set; this can be done by setting the DATA parameter to a list of identifiers. A separate

analysis is then performed for each set of data, but of course any option settings are common to

all the data sets. The data sets should all be specified in the same way, either as raw data or as

tabulated counts. For tabulated counts, the same categories must be used for defining every table.

You can also carry out one final fit to the combined data set, in order to investigate whether the

data can be adequately modelled as coming from a single population. This combined fit is

produced if any of the options relating to the combined fit have been set (that is, options

CBPRINT, PARAMETERS, SE, VCOVARIANCE or CUMPROPORTION which print or save

information from the combined analysis). For each individual data set you can also save fitted

values and residuals based on the parameters estimated from the combined data set, using the

CBRESIDUALS and CBFITTEDVALUES parameters. The JOINT option can be used to specify that

certain parameters should be held constant at their estimated values from the combined analysis

during refits to the individual data sets. For continuous distributions only, a common dispersion

parameter can be requested; for discrete distributions a common value can be requested for either

the Poisson index or the ratio of variance to mean. An analysis of deviance is printed to compare

the nested models.

If the original data are available, the full log-likelihood is used in the optimization algorithm.

Otherwise, an approximate log-likelihood is optimized, using representative values for each

class. For some distributions, it is necessary to use stable working parameters in the optimization

algorithm (Ross 1990), and the defining parameters for the distribution are then evaluated by a

simple transformation.

The deviance and corresponding degrees of freedom that are printed as part of the model

summary are based on the table of fitted values, and thus may be affected by the choice of limits.

The residuals computed are deviance residuals (McCullagh & Nelder 1989), and the deviance

is therefore the sum of squared residuals. The degrees of freedom are n�p�1, where n is the

number of cells in the table of fitted values and p is the number of parameters estimated in the

model. The default limits for grouping the raw data are designed to avoid small expected

frequencies (for example in the tail cells) which can have an inflationary affect on the deviance;

however, if the tails are important, because of the origin of the data, it may be important to

specify the limits explicitly.

An iterative Gauss-Newton optimization method is used to estimate the parameters of the

distribution. The parameterization is chosen for each model so that the optimization is stable, but

128 Directives in Release 22

if there are any problems with particular data sets it may be necessary to control this process.

The MAXCYCLE and TOLERANCE options allow you to increase the number of iterations and alter

the convergence criterion for data sets that fail to converge. You can also specify initial values

and step lengths for the parameters for each set of data using the STEPLENGTH and INITIAL

parameters. These parameters should be set to variates of length appropriate for the distribution

being fitted; for example, if DISTRIBUTION=Poisson they should have just one value. Another

use of INITIAL and STEPLENGTH is to constrain a parameter to a particular value; for example

when fitting a double Normal the proportion parameter p could be fixed at 0.5 by setting the

initial value to 0.5 and the step length to 0, thus fitting a double Normal in equal proportions.

Note that the degrees of freedom are not adjusted to take account of this.

Options: PRINT, CBPRINT, DISTRIBUTION, CONSTANT, LIMITS, NGROUPS, XDEVIATES,

JOINT, PARAMETERS , SE, VCOVARIANCE, CUMPROPORTIONS, MAXCYCLE, TOLERANCE.

Parameters: DATA, NOBSERVATIONS, RESIDUALS, FITTEDVALUES, PARAMETERS, SE,

VCOVARIANCE, CUMPROPORTIONS, CBRESIDUALS, CBFITTEDVALUES, STEPLENGTH,

INITIAL.

Action with RESTRICT

You can restrict the units of a DATA variate to fit a distribution to a subset of its values.

References

McCullagh, P. & Nelder, J.A. (1989). Generalized Linear Models (second edition). Chapman

and Hall, London.

Ross, G.J.S. (1990). Nonlinear Estimation. Springer-Verlag, New York.

See also

Procedures: BBINOMIAL, CUMDISTRIBUTION, DPROBABILITY, EDFTEST, FDRMIXTURE,

KERNELDENSITY, NORMTEST, WSTATISTIC, RSURVIVAL.

Functions: CLBETA, CLBINOMIAL, CLBVARIATENORMAL, CLCHISQUARE, CLF, CLGAMMA,

CLHYPERGEOMETRIC, CLINVNORMAL, CLLOGNORMAL, CLNORMAL, CLOGLOG, CLPOISSON,

CLSMMODULUS, CLSRANGE, CLT, CLUNIFORM, CUBETA, CUBINOMIAL,

CUBVARIATENORMAL, CUCHISQUARE, CUF, CUGAMMA, CUHYPERGEOMETRIC,

CUINVNORMAL, CULOGNORMAL, CUNORMAL, CUPOISSON, CUSMMODULUS, CUSRANGE, CUT,

CUUNIFORM, EDBETA, EDBINOMIAL, EDCHISQUARE, EDF, EDGAMMA,

EDHYPERGEOMETRIC, EDINVNORMAL, EDLOGNORMAL, EDNORMAL, EDPOISSON,

EDSMMODULUS, EDSRANGE, EDT, EDUNIFORM, GRBETA, GRBINOMIAL, GRCHISQUARE,

GRF, GRGAMMA, GRHYPERGEOMETRIC, GRLOGNORMAL, GRNORMAL, GRPOISSON,

GRSAMPLE, GRSELECT, GRT, GRUNIFORM, PRBETA, PRBINOMIAL, PRCHISQUARE, PRF,

PRGAMMA, PRHYPERGEOMETRIC, PRINVNORMAL, PRLOGNORMAL, PRNORMAL, PRPOISSON,

PRSMMODULUS, PRSRANGE, PRT, PRUNIFORM.

Genstat Reference Manual 1 Summary section on: Basic and nonparametric statistics.

DKEEP 129

DKEEP

Saves information from the last plot on a particular device.

No options

Parameters

DEVICE = scalars The devices for which information is required, if the

scalar is undefined or contains a missing value, this

returns the current device number

WINDOW = scalars Window about which the information is required; default

* gives information about the last window

XLOWER = scalars Lower bound for the x-axis in last graph in the specified

device and window

XUPPER = scalars Upper bound for the x-axis in last graph in the specified

device and window

YLOWER = scalars Lower bound for the y-axis in last graph in the specified

device and window

YUPPER = scalars Upper bound for the y-axis in last graph in the specified

device and window

ZLOWER = scalars Lower bound for the z-axis in last graph in the specified

device and window

ZUPPER = scalars Upper bound for the z-axis in last graph in the specified

device and window

FILE = scalars Returns the value 1 or 0 to indicate whether a file is

required for this device

DESCRIPTION = texts Description of the device

DREAD = scalars Returns the value 1 or 0 to indicate whether graphical

input is possible from this device

ENDACTION = texts Returns the current ENDACTION setting ('continue' or

'pause')

Description

DKEEP provides information that can be used in general programs and procedures to control the

graphical output. For the specified device you can determine whether it generates screen output

or uses a file, whether graphical input is possible, a description of the device, the current

ENDACTION setting, and details of the axis bounds.

The device for which the information is required is specified by the DEVICE parameter. If you

specify a scalar containing a missing value, this will be set to the number of the current graphics

device. You can then test whether an output file is needed and open one accordingly.

When writing a procedure you can find out if axes bounds have been set explicitly, using the

SAVE parameter of XAXIS, YAXIS and ZAXIS. This information may then be used when setting

up the axes for other graphs. However, if the bounds were not set, but have been evaluated from

the data (or if the axes have subsequently been redefined) the information in the save structure

will not be of any use. The actual values used when plotting are recorded internally, for each

window of each device, and can be accessed using the XLOWER, XUPPER, YLOWER, YUPPER,

ZLOWER and ZUPPER, parameters of DKEEP.

Options: none.

Parameters: DEVICE, WINDOW, XLOWER, XUPPER, YLOWER, YUPPER, ZLOWER, ZUPPER, FILE,

DESCRIPTION, DREAD, ENDACTION.

130 Directives in Release 22

See also

Directives: DEVICE, DLOAD, DSAVE, XAXIS, YAXIS, ZAXIS, PEN.

Procedure: DHELP.

Genstat Reference Manual 1 Summary section on: Graphics.

DLOAD 131

DLOAD

Loads the graphics environment settings from an external file.

No options

Parameter

text File from which to lead the environment settings

Description

DLOAD allows you to (re)load the graphics environment settings into Genstat, from an external

file saved earlier by the DSAVE directive. If the parameter is unset, Genstat restores the default

graphics environment.

Options: none.

Parameter: unnamed.

See also

Directives: DSAVE, FRAME, XAXIS, YAXIS, ZAXIS, PEN, DEVICE, COLOUR.

Procedures: DHELP, FFRAME, GETRGB.

Genstat Reference Manual 1 Summary section on: Graphics.

132 Directives in Release 22

DPIE

Draws a pie chart on a plotter or graphics monitor.

Options

TITLE = text General title; default *

WINDOW = scalar Window number for the pie chart; default 1

KEYWINDOW = scalar Window number for the key (zero for no key); default 2

ANNOTATION = string token How to annotate each slice (description,

percentage); default desc, perc

OUTLINE = string token Where to draw outlines (slices, perimeter); default
slices

PENOUTLINE = scalar Pen to use for the outlines; default �10

SCREEN = string token Whether to clear the screen before plotting or to

continue plotting on the old screen (clear, keep);

default clea

KEYDESCRIPTION = text Overall description for the key

ENDACTION = string token Action to be taken after completing the plot (continue,

pause); default * uses the setting from the last DEVICE

statement

Parameters

SLICE = scalars Amounts in each of the slices (or categories)

PEN = scalars Pen number for each slice; default * uses pens 1, 2, and

so on for the successive slices

DESCRIPTION = texts Description of each slice

Description

A pie chart is formed by taking the values of the scalars in the SLICE parameter, in order, and

representing them by segments of a circle starting at "three o'clock" and working in an anti-

clockwise direction. The angle subtended by each segment (and thus the area of the segment) is

proportional to the value of the corresponding scalar. The values may be raw data or can be

expressed as percentages (by ensuring they total 100).

The colour used for each segment can be controlled using the PEN parameter. By default, pen

1 is used for the first segment, pen 2 for the second segment, and so on. The default colours

differ from pen to pen, and can be modified using the PEN directive.

Individual segments can be displaced outwards from the centre, to obtain an "exploded" pie

chart. The chosen segments are indicated by setting the corresponding scalars in the SLICE

parameter list to negative values.

The WINDOW and KEYWINDOW options specify the windows in which the pie chart and key are

to be displayed. The shape of the pie chart is determined by the dimensions of the window; if it

is not square the resulting pie chart will be elliptical.

Titles can be added using the TITLE and KEYDESCRIPTION options. The key produced for

the pie chart is similar to that produced by the DHISTOGRAM directive. A shaded block is drawn

for each segment, followed by the annotation requested using the settings of the ANNOTATION

option:

description the text supplied by the DESCRIPTION parameter or, if this

is not set, the identifier of the SLICE scalar;

percentage the percentage contained in the slice.

The OUTLINE option controls whether lines are drawn around the slices or around the

perimeter of the pie chart. These are drawn using the pen specified by the PENOUTLINE option

(default �10). You can suppress all the outlines by setting OUTLINE=*.

DPIE 133

The SCREEN option controls whether the graphical display is cleared before the histogram is

plotted and the ENDACTION option controls whether Genstat pauses at the end of the plot.

Options: TITLE, WINDOW, KEYWINDOW, ANNOTATION, OUTLINE, PENOUTLINE, SCREEN,

KEYDESCRIPTION, ENDACTION.

Parameters: SLICE, PEN, DESCRIPTION.

See also

Directives: BARCHART, DHISTOGRAM, D3HISTOGRAM, LPHISTOGRAM, FRAME, XAXIS,

YAXIS, PEN.

Procedures: TRELLIS, DOTHISTOGRAM, DOTPLOT, DCIRCULAR, WINDROSE.

Genstat Reference Manual 1 Summary section on: Graphics.

134 Directives in Release 22

DREAD

Reads the locations of points from an interactive graphical device.

Options

PRINT = string tokens What to print (data, summary); default summ

CHANNEL = scalar Number of the graphics device from which to read;

default * takes the current graphics device

WINDOW = scalar Window from which to read; default 1

CURSORTYPE = scalar Type of cursor; default 1

SETNVALUES = string token Whether to set number of values of structures from the

number of values read (yes, no); default no causes the

number of values to be set only for structures whose

lengths are not defined already

ENDACTION = string token Action to be taken after completing the plot (continue,

pause); default * uses the setting from the last DEVICE

statement

Parameters

Y = variates Variate to receive the y-values that have been read

X = variates Variate to receive the x-values that have been read

YGIVEN = variates Y-coordinates of points that may be located on the graph

XGIVEN = variates X-coordinates of points that may be located

SAVESET = variates Unit numbers of the located points

PEN = scalars Pen number to use to echo points; default 0

YSAVE = variates Variate to receive the y-coordinates of the located points

XSAVE = variates Variate to receive the x-coordinates of the located points

Description

The DREAD directive allows you to input information about the positions of points on interactive

graphical terminals. The exact details of how this directive operates will vary slightly from one

system to another, so this section attempts to outline the basic principles involved. If you

encounter any difficulties using DREAD you should refer to the Users' Note supplied with your

version of Genstat.

When you type DREAD, a cursor should appear on the graphics screen. This can be moved to

the chosen position by using the cursor keys or a mouse; the coordinates of this point can then

be read by pressing a key or mouse button (normally the left hand mouse button). The cursor can

then be moved to another position to read the next point. You can use graphical input within any

window that contains a graph or contour plot, but you cannot input data from an "empty"

window or one containing other forms of graphical output. In addition you can identify particular

points from those plotted on an existing graph and you can mark the points that you have read.

The CHANNEL and WINDOW options are used to specify the device and the window from which

the information is to be read; the default is to read from window 1 of the current device. The

values that are read are converted to the scale of the data that was previously plotted in that

window, and are then stored in the pair of variates specified by the Y and X parameters.

Any number of points may be read in one DREAD statement. If the required number of points

is known in advance, the Y and X variates can be declared with the appropriate length, and the

input will terminate automatically when sufficient points have been read. Alternatively, if the

lengths of the variates have not been defined in advance, points are read until you terminate the

input, and the variates are defined accordingly. This action can be requested explicitly by setting

option SETNVALUES=yes; the existing variate lengths are then ignored and points are read until

the input is terminated. Graphical input can usually be terminated in two ways, either by pressing

DREAD 135

a mouse button (usually the right button) or a key that has been specifically defined for this

purpose, or by attempting to read a point lying outside the current axes. In case of difficulty you

should refer to the Users' Note which will explain how to terminate the input on specific devices.

The final point read as a terminator is not included in the Y and X variates. If you try to terminate

input prematurely when a set number of values is to be read, the corresponding Y and X values

are set to missing values.

The PRINT option of DREAD is similar to the PRINT option of READ. Putting PRINT=data

lists the y- and x-values of the points that have been read, while PRINT=summary generates the

usual summary of mean, minimum, maximum and number of values.

Several types of cursor may be available; again this will depend on the graphics device. The

cursor is selected by setting the CURSORTYPE option to an integer between 1 and 10. Normally

cursors 1, 2 and 3 are different graphics cursors; for example, large cross-hair, arrow and small

cross. Cursors 4 and 5 may be set up to provide special functions called rubber-band and rubber-

rectangle.

A rubber-band cursor works by reading one point in the normal way (as if CURSORTYPE was

set to 1). This defines an anchoring point for a line whose other end is attached to the cursor. As

you move the cursor, the line will change direction and contract or expand, but always linking

the fixed point to the current cursor position: hence the term "rubber-band". When you read the

next point this will become the anchor point for a new rubber-band segment which you use

whilst locating a third point, and so on until the required number of points have been read.

The rubber-rectangle works in a similar way, with the first point being read with a normal

cursor. This defines the fixed point and the cursor is now regarded as being attached to the

diagonally opposite corner of a rectangle which will contract and expand as you move the cursor

around the screen. Reading the second point terminates the input; with a rubber-rectangle cursor

Genstat will always read exactly two values, ignoring the SETNVALUES option and any

predefined length of Y and X.

The rubber-band and rubber-rectangle types of cursors may not be available on all devices,

in which case setting CURSORTYPE to 4 or 5 will use one of the simpler cursors. However, setting

CURSORTYPE to 5 will always read just two points, regarded as being diagonally opposite

corners of a rectangle, whether or not the rubber-rectangle appears on the screen.

Some devices may have more than one method of manipulating the graphics cursor, for

example by use of a joystick or mouse. In this case, cursor-types 1 to 5 will be set up as

described above for the joystick, say, and types 6 to 10 will be the same types of cursor but

controlled by the mouse. Usually, however, there will be only one method of control, in which

case cursor-types 6 to 10 will be the same as types 1 to 5.

The PEN parameter of DREAD can be used to specify a pen which will be used to plot each

point as its position is read. The various attributes of this pen determine how the points are

plotted; these can be modified, in the usual way, using the PEN directive. If the pen method is

set to line, monotonic, open or closed, then straight line segments will be drawn between

the points; otherwise just the points themselves are plotted. If the points are to be joined by lines

and a rubber-rectangle cursor is being used, the rectangle will be drawn rather than the diagonal

line. If labels are set for the pen, they will be used in turn to mark the points as they are read; if

the number of points exceeds the number of labels the labels will be recycled.

The YGIVEN and XGIVEN parameters allow you to identify points that have been plotted in an

existing graph. They should be set to the y- and x-variates that were plotted on the graph. Each

point that is read by DREAD is then located within this pair of variates, by finding the original

point that is physically nearest to the new point, ignoring any differences in the scales of the y-

and x-values. The unit number of the located points can be saved in a variate specified by the

SAVESET parameter, and their coordinates in a pair of variates supplied by the YSAVE and XSAVE

parameters. The length of the variates is defined in the same way as for the Y and X variates. The

variates saved by YSAVE and XSAVE contain the actual coordinates of the plotted points that were

136 Directives in Release 22

selected by DREAD; whereas the Y and X variates contain the coordinates of the exact position

of the cursor. The SAVESET variate indicates the unit numbers of the selected points. This

information could be used, for example, in CALCULATE or RESTRICT statements to refer to the

units that have been identified on the graph. For example,

DREAD U; V; YGIVEN=Y; XGIVEN=X; SAVESET=SS
RESTRICT Y,X; .NOT.EXPAND(SS; NVALUES(X))

would have the effect of excluding the points identified by DREAD; in this example the exact

cursor locations recorded in U and V are not of interest.

When the PEN parameter is being used to mark the points that are read, you may want to pause

at the end of the read so that you can inspect the modified graph. This is controlled by the

ENDACTION parameter.

Options: PRINT, CHANNEL, WINDOW, CURSORTYPE, SETNVALUES, ENDACTION.

Parameters: Y, X, YGIVEN, XGIVEN, SAVESET, PEN, YSAVE, XSAVE.

See also

Directive: DEVICE.

Genstat Reference Manual 1 Summary section on: Graphics.

DROP 137

DROP

Drops terms from a linear, generalized linear, generalized additive or nonlinear model.

Options

PRINT = string tokens What to print (model, deviance, summary,

estimates, correlations, fittedvalues,

accumulated, monitoring, confidence); default
mode, summ, esti

NONLINEAR = string token How to treat nonlinear parameters between groups

(common, separate, unchanged); default unch

CONSTANT = string token How to treat the constant (estimate, omit,

unchanged, ignore); default unch

FACTORIAL = scalar Limit for expansion of model terms; default * i.e. that in

previous TERMS statement

POOL = string token Whether to pool ss in accumulated summary between all

terms fitted in a linear model (yes, no); default no

DENOMINATOR = string token Whether to base ratios in accumulated summary on rms

from model with smallest residual ss or smallest residual

ms (ss, ms); default ss

NOMESSAGE = string tokens Which warning messages to suppress (dispersion,

leverage, residual, aliasing, marginality ,

df, inflation); default *

FPROBABILITY = string token Printing of probabilities for variance and deviance ratios

(yes, no); default no

TPROBABILITY = string token Printing of probabilities for t-statistics (yes, no); default
no

SELECTION = string tokens Statistics to be displayed in the summary of analysis

produced by PRINT=summary, seobservations is

relevant only for a Normally distributed response, and

%cv only for a gamma-distributed response

(%variance, %ss, adjustedr2, r2,

seobservations, dispersion, %cv,

%meandeviance, %deviance, aic, bic, sic); default

%var, seob if DIST=normal, %cv if DIST=gamma, and

disp for other distributions

PROBABILITY = scalar Probability level for confidence intervals for parameter

estimates; default 0.95

AOVDESCRIPTION = text Description for line in accumulated analysis of variance

(or deviance) table when POOL=yes

Parameter

formula List of explanatory variates and factors, or model

formula

Description

DROP deletes terms from the current regression model, which may be linear, generalized linear,

generalized additive, standard curve or nonlinear. It is best to give a TERMS statement before

investigating sequences of models using DROP, in order to define a common set of units for the

models that are to be explored. If no model has been fitted since the TERMS statement, the current

model is taken to be the null model.

The model fitted by DROP will include a constant term if the previous model included one, and

138 Directives in Release 22

will not include one if the previous model did not. You can, however, change this using the

CONSTANT option.

The options of DROP are the same as those of the FIT directive, but with the extra NONLINEAR

option which is relevant when fitting curves. For example, if we have a variate Dilution and

a factor Solution, the program below will fit curves with separate linear and nonlinear

parameters for the different solutions.

MODEL Density
TERMS Dilution * Solution
FITCURVE [PRINT=model,estimates; CURVE=logistic; \
 NONLINEAR=separate] Dilution * Solution

If we then put

DROP [NONLINEAR=common]

the curves will be constrained to have common nonlinear parameters, but all linear parameters

will still be estimated separately for each group.

Options: PRINT, NONLINEAR, CONSTANT, FACTORIAL, POOL, DENOMINATOR, NOMESSAGE,

FPROBABILITY, TPROBABILITY, SELECTION, PROBABILITY, AOVDESCRIPTION.

Parameter: unnamed.

See also

Directives: MODEL, TERMS, FIT, FITCURVE, FITNONLINEAR, ADD, SWITCH, TRY.

Functions: COMPARISON, POL, REG, LOESS, SSPLINE.

Genstat Reference Manual 1 Summary section on: Regression analysis.

DSAVE 139

DSAVE

Saves the current graphics environment settings to an external file.

No options

Parameters

FILENAME = text File in which to save the environment settings

DESCRIPTION = text Description for these settings

Description

High-resolution graphics in Genstat takes place in a "graphics environment" that specifies

exactly how the display is produced. So it controls aspects like whether or not boxes are drawn

around the plots, the positioning of the plots on the graphics frame, the styles of axes, and the

colours and symbols of points. There are commands to modify all of these aspects, so that you

can customize your graphs as required for a particular situation:

FRAME defines the positions of the plotting windows within the

graphics frame (or screen)

XAXIS defines the x-axis in a window

YAXIS defines the y-axis in a window

ZAXIS defines the z-axis in a window

PEN defines properties of the graphics "pens"

COLOUR defines the colour map

To simplify the future plotting of graphs in the same style, the DSAVE directive allows you to

save the current settings of the graphics environment to an external file. You can then use the

DLOAD directive to read them back into Genstat, so that you can produce similar plots in future.

The FILE parameter gives the name of the file in which to save the settings. You can also set

the DESCRIPTION parameter to a text containing a one-line description of the settings. This

could be used, for example, to note that they were designed for a particular type of publication

or report.

Options: none.

Parameters: FILENAME, DESCRIPTION.

See also

Directives: DLOAD, FRAME, XAXIS, YAXIS, ZAXIS, PEN, DEVICE, COLOUR.

Procedures: DHELP, FFRAME, GETRGB.

Genstat Reference Manual 1 Summary section on: Graphics.

140 Directives in Release 22

DSHADE

Plots a shade diagram of 3-dimensional data.

Options

TITLE = text General title; default *

WINDOW = scalar Window number for the graph; default 1

KEYWINDOW = scalar Window number for the key (0 for no key); default 2

YORIENTATION = string token Y-axis orientation of the plot (reverse, normal);

default reve

GRIDMETHOD = string token How to draw a grid around the elements of the matrix

(present, complete); default pres

PENGRID = scalar Pen to use for the grid; default �7

SCREEN = string token Whether to clear the screen before plotting or to

continue plotting on the old screen (clear, keep);

default clea

KEYDESCRIPTION = text Overall description for the key

ENDACTION = string token Action to be taken after completing the plot (continue,

pause); default * uses the setting from the last DEVICE

statement

Parameters

GRID = symmetric matrix, matrix, table or pointer to variates

Data to be plotted

PEN = scalar or variate How to draw each shade

LIMITS = variate Boundary values for changes in shade

NGROUPS = scalar Number of groups to form from the data values (i.e.

number of different shades)

INTERVAL = scalar Interval between changes in shade

DESCRIPTION = text Annotation for key

Description

DSHADE produces a shaded representation of a rectangular or symmetric matrix using high-

resolution graphics. Each element of the data matrix is represented by a shaded rectangle

indicating the value at that location, using its colour. This type of display is often used in a

cluster analysis to display a similarity matrix, but it is also useful for the graphical display of

spatial data.

The data are specified by the GRID parameter, in either a matrix, a symmetric matrix (e.g. of

similarities), a 2-way table or a pointer to a set of variates.

The range of data values corresponding to each shade are determined using the NGROUPS, the

LIMITS or the INTERVAL parameter. The first possibility is to set LIMITS to a variate defining

the boundaries on the data values where the shades change. Alternatively, if LIMITS is unset,

NGROUPS can be used to define the required number of shades; Genstat then partitions the range

of data values into that number of equal intervals (and shades each interval in a different way).

Or, if both NGROUPS and LIMITS are unset, INTERVAL can set the interval between each change

in shade. Finally, if none of these parameters is set, Genstat uses a different shade for each

distinct data value. Missing values are ignored, thus leaving blank areas in the plot.

By default, the shades are drawn using pens 1, 2 onwards, with pen 1 being used for the lowest

data values. Alternatively, you can specify the pen or pens explicitly, using the PEN parameter.

If PEN is set to a scalar, the shades are defined in increasing intensities of the colour of the

specified pen. Alternatively, if PEN is set to a variate of length two, the pens are taken to define

the shades of the minimum and maximum data values, and the other shades are interpolated

DSHADE 141

between them. Finally, you can set PEN to a variate with more than two values, and the shades

use the pens in the order in which they are given in the variate (recycling if insufficient pens are

defined for the total number of shades).

The shades are controlled by the current COLOUR settings of the pens. If the default settings

do not produce a suitable display, these attributes should be set by a PEN statement before using

DSHADE.

The GRIDMETHOD option specifies whether an outline should be drawn around each element

of the matrix. The default setting, present, produces an outline for all values that are present;

i.e. it ignores missing values. This is suitable where data have been sampled over an irregularly

shaped area. Alternatively, with the complete setting, an outline is drawn around every

element. Setting GRIDMETHOD=* stops the grid being drawn, which may be preferable if there

are a large number of elements in the input data. The PENGRID option specifies which pen to use

to draw the grid. The default is to use pen �7.

The YORIENTATION option controls the orientation of the y-axis. By default this is reversed,

so that the data are in the same order as they would take if the data matrix were printed.

The TITLE, WINDOW, SCREEN and ENDACTION options are used to specify a title, the plotting

window, whether the screen should be cleared first, and whether there should be a pause once

the plotting is finished; as in other graphics directives (see, for example, DGRAPH). Similarly, the

KEYWINDOW and KEYDESCRIPTION options and the DESCRIPTION parameters allow a key to

be defined, if feasible for these plots with the current graphics device.

Options: TITLE, WINDOW , KEYWINDOW , YORIENTATION, GRIDMETHOD, PENGRID, SCREEN,

KEYDESCRIPTION, ENDACTION.

Parameters: GRID, PEN, LIMITS, NGROUPS, INTERVAL, DESCRIPTION.

Action with RESTRICT

DSHADE takes account of restrictions on any of the variates in a GRID pointer.

See also

Directives: DBITMAP, DCONTOUR, DSURFACE, D3HISTOGRAM, FRAME, XAXIS, YAXIS, PEN,

MATRIX, POINTER, SYMMETRICMATRIX, TABLE.

Procedure: DXYDENSITY.

Genstat Reference Manual 1 Summary section on: Graphics.

142 Directives in Release 22

DSTART

Starts a sequence of related high-resolution plots.

Options

TITLE = text Overall title for the plots

PEN = scalar Pen to use for the title; if this is not set, pen �12 is used

Description

This directive is relevant when a sequence of high-resolution graphics commands (such as

DGRAPH and DHISTOGRAM) is to be used to build up a complicated plot. The information from

each command is then accumulated by Genstat, but no high-resolution plots are drawn until a

DFINISH command is received. The TITLE option can specify an overall title, and PEN can

specify the pen to use. If PEN is not set, the title is plotted using pen �12.

Options: TITLE, PEN.

Parameters: none.

See also

Directives: DFINISH, DCLEAR.

Genstat Reference Manual 1 Summary section on: Graphics.

DSURFACE 143

DSURFACE

Produces perspective views of a two-way arrays of numbers.

Options

TITLE = text General title; default *

WINDOW = scalar Window number for the plots; default 1

KEYWINDOW = scalar Window number for the key (zero for no key); default 2

ELEVATION = scalar The elevation of the viewpoint relative to the surface;

default 25 (degrees)

AZIMUTH = scalar Rotation about the horizontal plane; the default of 225

degrees ensures that, with a square matrix M, the element

M$[1;1] is nearest to the viewpoint

DISTANCE = scalar Distance of the viewpoint from the centre of the grid on

the base plane; default * gives a distance of 100 times

the maximum of the x-range and the y-range

ZSCALE = scalar defines the scaling of the z-axis relative to the horizontal

(x-y) axes; default 1

SCREEN = string token Whether to clear the screen before plotting or to

continue plotting on the old screen (clear, keep);

default clea

KEYDESCRIPTION = text Overall description for the key; default *

ENDACTION = string token Action to be taken after completing the plot (continue,

pause); default * uses the setting from the last DEVICE

statement

Parameters

GRID = identifier Pointer (of variates representing the columns of a data

matrix), matrix or two-way table specifying values on a

rectangular grid

PEN = scalar Pen number to be used for the plot; default 1

PENFILL = scalar or variate Pen number(s) defining how to fill the areas between

contours (0 or * leaves the areas in the background

colour); default 3

PENMESH = scalar Pen number to use to draw the mesh (omitted if set to 0

or *); default 1

PENSIDE = scalar Pen number to use to shade the sides of the surface

(omitted if set to 0 or *); default *

NCONTOURS = scalar Number of contours; default 10

CONTOURS = variate Positions of contours

INTERVAL = scalar Interval between contours

DESCRIPTION = text Annotation for key

Description

The DSURFACE directive produces a perspective (or conical) projection of a surface, showing

the view from a particular viewpoint. The surface is represented by a grid of z-values or heights.

The grid can be a rectangular matrix, a two-way table or a pointer to a set of variates; the y-

dimension is represented by the rows of the structure and the x-dimension by the columns. In

each case there must be at least three rows and three columns of data (after allowing for any

restrictions on a set of variates). Missing values are not permitted; that is, only complete grids

can be displayed. If the grid is supplied as a table with margins, these will be ignored when

plotting the surface.

144 Directives in Release 22

The position of the viewpoint is specified in polar coordinates, using the options ELEVATION,

DISTANCE and AZIMUTH. These define the angle of elevation, in degrees, above the base plane

of the surface, distance from the centre of this plane, and angular position relative to the vertical

z-axis, respectively. The default settings of ELEVATION, DISTANCE and AZIMUTH have been

chosen to produce a reasonable display of most surfaces; but if, for example, some parts of the

surface are obscured by high points they can be modified to obtain a better view. Altering the

value of AZIMUTH will, in effect, rotate the surface in the horizontal plane about a vertical axis

drawn through the centre of the grid; the default value of 225 degrees ensures that the element

in the first row and column of the grid is at the corner nearest the viewpoint. Small values of

DISTANCE produce a perspective view; larger values, like the default of 100 times the maximum

of the x-range and the y-range, effectively put the viewpoint at infinity to produce an

"orthographic parallel projection".

The ZSCALE option specifies a scaling factor for the z-axis (or vertical axis) of the plotted

surface. Generally values between 0.5 and 2.0 are most successful; large values result in a flatter

surface, while smaller values produce a steep surface, accentuating changes in the data.

The TITLE, WINDOW, SCREEN and ENDACTION options are used to specify a title, the plotting

window, whether the screen should be cleared first, and whether there should be a pause once

the plotting is finished; as in other graphics directives (see, for example, DGRAPH). Similarly, the

KEYWINDOW and KEYDESCRIPTION options and the DESCRIPTION parameters allow a key to

be defined, if feasible for these plots with the current graphics device.

The PEN parameter specifies the pen to be used to plot the surface (by default, pen 1). The PEN

directive can be used to modify the colour and the thickness of the pen, but the other attributes

of the pen are ignored.

The NCONTOURS, CONTOURS and INTERVAL parameters control the contours drawn on the

surface, if these are available on the current graphics device. The first possibility is to define the

contours explicitly using the CONTOURS parameter. Alternatively, if CONTOURS is unset,

INTERVAL can set the required interval between each contour. Or, if both CONTOURS and

INTERVAL are unset, NCONTOURS defines the required number of lines. Genstat then partitions

the range of data values accordingly to give NCONTOURS evenly-spaced contours (or fewer

contours if there are insufficient distinct grid values).

The PENFILL parameter defines how to shade the areas between the contours. If this is set to

a scalar, the shades are defined in increasing intensities of the colour of the specified pen.

Alternatively, if PENFILL is set to a variate of length two, the pens are taken to define the shades

at the minimum and maximum heights, and the other shades are interpolated between them.

Finally, you can set PENFILL to a variate with more than two values, and the shading uses the

pens in the order in which they are given in the variate (recycling if insufficient pens are defined

for the total number of contours). The default is to use pen 3. However, if you set PENFILL to

0 or to a missing value, there will be no shading (that is, the areas between the contours will be

in the background colour).

The PENMESH parameter specifies a pen to be used to draw a mesh on the surface. This

consists of lines marking the points of the surface that lie above a rectangular grid on the xy

plane. By default pen 1 is used, but if you set PENMESH to 0 or to a missing value the mesh is

omitted.

The PENSIDE parameter defines the pen to use to shade the sides of the surface. There is no

shading if this is set to 0 or a missing value, which is the default. The CFILL setting of the pen

(see the PEN directive) specifies which colour is used.

Simple axes are drawn to indicate the directions in which x and y increase. The TITLE

parameter of the XAXIS and YAXIS directives can be used to add further annotation.

Options: TITLE, WINDOW, KEYWINDOW, ELEVATION, AZIMUTH, DISTANCE, ZSCALE, SCREEN,

KEYDESCRIPTION, ENDACTION.

DSURFACE 145

Parameters: GRID, PEN, PENFILL, PENMESH, PENSIDE, NCONTOURS, CONTOURS, INTERVAL,

DESCRIPTION.

Action with RESTRICT

DSURFACE takes account of restrictions on any of the variates in a GRID pointer.

See also

Directives: DBITMAP, DCONTOUR, DSHADE, D3HISTOGRAM, FRAME, XAXIS, YAXIS, ZAXIS,

PEN, MATRIX, POINTER, TABLE.

Genstat Reference Manual 1 Summary section on: Graphics.

146 Directives in Release 22

DUMMY

Declares one or more dummy data structures.

Options

VALUE = identifier Value for all the dummies; default *

MODIFY = string token Whether to modify (instead of redefining) existing

structures (yes, no); default no

IPRINT = string tokens Information to be used by default to identify the

dummies in output (identifier, extra); if this is not

set, they will be identified in the standard way for each

type of output

Parameters

IDENTIFIER = identifiers Identifiers of the dummies

VALUE = identifiers Value for each dummy

EXTRA = texts Extra text associated with each identifier

Description

The IDENTIFIER parameter lists the identifiers of the dummies that are to be declared.

Dummies store the identifiers of other structures. These are particularly useful when you want

the same series of statements to be used with several different data structures. By using a dummy

structure within the statements, you can make them apply to whichever structure you require.

The dummy structure is like a plug which can be connected to the structure that you need; the

important point is that you can then connect another structure without changing the statements

themselves. In nearly all identifier lists Genstat will replace a dummy by the identifier that it

stores. The only exceptions are the IDENTIFIER parameter of the DUMMY directive itself, the

STRUCTURE parameter of ASSIGN, the parameters of FOR, and in the UNSET function in

expressions. (The most obvious occasions where this is useful are in loops and procedures, and

there the dummies are declared automatically.)

Values can be assigned to the dummies by either the VALUE option or the VALUE parameter.

The option defines a common value for all the structures in the declaration, while the parameter

allows the structures each to be given a different value. If both the option and the parameter are

specified, the parameter takes precedence.

You can associate a text of extra annotation with each dummy using the EXTRA parameter.

If MODIFY is set to yes any existing attributes and values of the dummies are retained;

otherwise these are lost. The IPRINT option can be set to specify how the dummies will be

identified in output. If IPRINT is not set, they will be identified in whatever way is usual for the

section of output concerned.

Options: VALUE, MODIFY, IPRINT.

Parameters: IDENTIFIER, VALUE, EXTRA.

See also

Directives: ASSIGN, FOR, PROCEDURE.

Genstat Reference Manual 1 Summary section on: Data structures.

DUMP 147

DUMP

Prints information about data structures, and internal system information.

Options

PRINT = string tokens What information to print about structures

(attributes, values, identifiers, space); default
attr

CHANNEL = identifier Channel number of file, or identifier of a text to store

output; default current output file

INFORMATION = string tokens What information to print for each structure (brief,

full, extended); default brie

TYPE = string tokens Which types of structure to include in addition to those

in the parameter list (all, ASAVE, diagonalmatrix,

dummy, expression, factor, formula, LRV, matrix,

pointer, RSAVE, scalar, SSPM, symmetricmatrix,

table, text, tree, TSAVE, TSM, variate, VSAVE);

default * i.e. none

SYSTEM = string token Whether to display Genstat system structures (yes, no);

default no

UNNAMED = string token Whether to display unnamed structures (yes, no);

default no

Parameter

identifiers or numbers Identifier or reference number of a structure whose

information is to be printed

Description

The structures for which the information is to be displayed are specified by the parameter of

DUMP. The PRINT option indicates what is to be presented: you can ask for just the identifiers,

or values and identifiers, or attributes (the identifier is itself an attribute), or for all three. For

example, to get all three for the structures A and B you would put:

DUMP [PRINT=attributes,values] A,B

There is also a setting, space, which provides information about the current use of workspace

within Genstat.

If the CHANNEL option is set to a scalar, this specifies the output channel to which the

information is sent. Alternatively, if you specify the identifier of a text structure, the lines of

information will be stored in the text instead of being printed; likewise if you specify the

identifier of a structure that has not yet been declared, it will be defined automatically as a text

to store the information. If CHANNEL is not specified, the information is displayed on the current

output channel.

The INFORMATION option selects which attributes are presented. The default setting brief

selects only the most important ones. The setting full causes all the attributes to be presented,

and the setting extended also gives details of the structures associated with listed structures.

Some of the attributes may be set to unnamed structures. You can obtain further information

about these by setting option UNNAMED=yes. Alternatively, you can dump a specific unnamed

structure by giving its (negative) reference number (as displayed by DUMP when indicating its

association with another structure) in the parameter list. This is likely to be useful mainly to

advanced users.

The TYPE option lets you display, in addition, lists of all structures of a particular type, or of

several types. For example, if you had forgotten the identifier of a factor, you could give the

statement

148 Directives in Release 22

DUMP [TYPE=factor; PRINT=identifiers]

This lists all the current factors. When PRINT=attributes or values (or both), the setting

TYPE=all provides a list of all named and unnamed structures, except system structures. Setting

PRINT=identifiers with TYPE=all lists only named structures.

The SYSTEM option allows all the system structures to be dumped: there are many of these,

so it is not a good idea to set this option frivolously.

Options: PRINT, CHANNEL, INFORMATION, TYPE, SYSTEM, UNNAMED.

Parameter: unnamed.

See also

Directives: GETATTRIBUTE, LIST.

Genstat Reference Manual 1 Summary section on: Data structures.

DUPLICATE 149

DUPLICATE

Forms new data structures with attributes taken from an existing structure.

Options

ATTRIBUTES = string tokens Which attributes to duplicate (all, nvalues, values,

nlevels, levels, labels (of factors or pointers),

extra, decimals, characters, rows, columns,

classification, margins, suffixes, minimum,

maximum, restriction, referencelevel); default
all

REDEFINE = string token Whether or not to delete the attributes of the new

structures beforehand so that their types can be redefined

(yes, no); default no

Parameters

OLDSTRUCTURE = identifiers Data structures to provide attributes for the new

structures

NEWSTRUCTURE = identifiers Identifiers of the new structures

VALUES = identifiers Values for each new structure

DECIMALS = scalars Number of decimals for printing numerical structures

CHARACTERS = scalars Number of characters for printing texts or labels of a

factor

EXTRA = texts Extra text associated with each identifier

MINIMUM = scalars Minimum value for numerical structures

MAXIMUM = scalars Maximum value for numerical structures

Description

The DUPLICATE directive allows you to define new data structures with attributes like those of

existing structures. The attributes to be duplicated are defined by the ATTRIBUTES option. The

structures from which the attributes are to be taken are specified by the OLDSTRUCTURES

parameter, while the structures that are to be defined are specified by the NEWSTRUCTURES

parameter. The other parameters allow some of the more important attributes to be reset at the

same time. For example, here the factor Species2 takes its levels (and thus its number of levels)

from the factor Species1. However, the labels are not transferred, and other values are defined

using the VALUES parameter.

FACTOR [LEVELS=!(0,1); LABELS=!T(absent,present); \
 VALUES=0,1,1,0,0,0,1] Species1
DUPLICATE [ATTRIBUTES=levels] Species1; \
 NEWSTRUCTURE=Species2; VALUES=!(1,0,1,1,0,1,0)

You can set option REDEFINE=yes, to allow DUPLICATE to change the type of any pre-defined

new structure, if necessary, to have the same type as the corresponding old structure. Otherwise,

DUPLICATE will report a fault if the new structure has previously been defined to have a

different type.

Options: ATTRIBUTES, REDEFINE.

Parameters: OLDSTRUCTURE, NEWSTRUCTURE, VALUES, DECIMALS, CHARACTERS, EXTRA,

MINIMUM, MAXIMUM.

150 Directives in Release 22

See also

Directive: RENAME.

Procedure: PDUPLICATE.

Genstat Reference Manual 1 Summary section on: Data structures.

D3GRAPH 151

D3GRAPH

Plots a 3-dimensional graph.

Options

TITLE = text General title; default *

WINDOW = scalar Window number for the plots; default 1

KEYWINDOW = scalar Window number for the key (zero for no key); default 2

ELEVATION = scalar The elevation of the viewpoint relative to the surface;

default 25 (degrees)

AZIMUTH = scalar Rotation about the horizontal plane; the default of 225

degrees ensures that a point at the minimum x- and y-

value is nearest to the viewpoint

DISTANCE = scalar Distance of the viewpoint from the centre of the grid on

the base plane; default * ensures that the data points fill

the viewing area

SCREEN = string token Whether to clear the screen before plotting or to

continue plotting on the old screen (clear, keep,

resize); default clea

KEYDESCRIPTION = text Overall description for the key; default *

ENDACTION = string token Action to be taken after completing the plot (continue,

pause); default * uses the setting from the last DEVICE

statement

Parameters

X = identifiers X-coordinates

Y = identifiers Y-coordinates

Z = identifiers Z-coordinates

PEN = scalars or variates or factors Pen number for each graph (use of a variate or factor

allows different pens to be defined for different sets of

units); default * uses pens 1, 2, and so on for the

successive graphs

DESCRIPTION = texts Annotation for key

UNITNUMBERS = identifiers Specifies unit numbers to be used when points are

selected in the graphics viewer; default * uses the actual

unit numbers of the values in the X and Y structures

Description

The D3GRAPH directive produces high-resolution graphs, containing points, lines or filled shapes

in three dimensions. The graph is produced on the current graphics device which can be selected

using the DEVICE directive. The WINDOW option defines the window, within the plotting area,

in which the graph is drawn; by default this is window 1.

The position of the viewpoint is specified in polar coordinates, using the options ELEVATION,

DISTANCE and AZIMUTH. These define the angle of elevation, in degrees, above the base plane

of the surface, distance from the centre of this plane, and angular position relative to the vertical

z-axis, respectively.

The default settings of ELEVATION, DISTANCE and AZIMUTH have been chosen to produce

a reasonable display of most situations; but if, for example, some parts of the plot are obscured

they can be modified to obtain a better view. Altering the value of AZIMUTH will, in effect, rotate

the plot in the horizontal plane about a vertical axis drawn through the centre of the plot; the

default value of 225 degrees ensures that a point with the minimum x- and y-value would be at

the corner nearest the viewpoint.

152 Directives in Release 22

The X, Y and Z parameters specify the coordinates of the points to be plotted; they must be

numerical structures (scalars, variates, factors, matrices or tables) of equal length. If any of the

variates or factors is restricted, only the subset of values specified by the restriction will be

included in the graph. The restrictions are applied to the X, Y and Z variates or factors in parallel

sets, and do not carry over to all the variates or factors in a list. Any associated structures, like

variates specified by the PEN parameter or factors used to provide labels for the points, must be

of the same length as X, Y and Z.

Each set of X, Y and Z structures has an associated pen, specified by the PEN parameter. By

default, pen 1 is used for the first set, pen 2 for the second, and so on. The type of graph that is

produced is determined by the METHOD setting of that pen. This can be point, to produce a point

plot or scatterplot; line to join the points with straight lines; or fill to produce shaded objects.

In the initial graphics environment, all the pens are defined to produce point plots. This can be

modified using the METHOD option of the PEN directive. Other attributes of the pen can be used

to control the colour, font, symbols and labels.

With METHOD=fill, the points defined by the X, Y and Z variates are joined by straight lines

to form one or more polygons or polyhedrons which are then filled in the colour specified for

the pen. The JOIN parameter of PEN is ignored for this directive. The points are plotted in the

order in which they occur in the data.

A warning message is printed if the data contain missing values. The effect of these depends

on the type of graph being produced, as follows. If the method is point there will be no

indication on the graph itself that any points were missing (but obviously none of the points with

missing values for either the x-, y- or z-coordinate can be included in the plot). If a line is plotted

through the points there will be a break wherever a missing value is found; that is, line segments

will be omitted between points that are separated by missing values. When using METHOD=fill

missing values will, in effect, define subsets of points, each of which will be shaded separately.

The PEN parameter can also be set to a variate or factor, to allow different pens to be used for

different subsets of the units. With a factor, the units with each level are plotted separately, using

the pen defined by the level concerned. If PEN is set to a variate, its values similarly define the

pen for each unit. For example, if you fit separate regression lines to some grouped data, you can

easily plot the fitted lines in just two statements, one to set up the pens and one to plot the data:

PEN 1...Ngroups; METHOD=line; SYMBOL=0
D3GRAPH Fitted; X1; X2; PEN=Groups

By default, Genstat calculates bounds on the axes that are wide enough to include all the data;

the range of the data is extended by five percent at each end, and the axes are drawn on the left-

hand side and bottom edge of the graph. This can all be changed by the XAXIS, YAXIS and

ZAXIS directives using the LOWER and UPPER parameters to set the bounds, and XORIGIN,

YORIGIN and ZORIGIN to control the positions of the axes. Other parameters allow you to

control the axis labelling and style. If the axis bounds are too narrow, some points may be

excluded from the graph, so that clipping occurs. If the plotting method is point, Genstat

ignores points that are out of bounds. For other settings of METHOD, lines are drawn from points

that are within bounds towards points that are out of bounds, terminating at the appropriate edge.

Clipping may also occur if the method is monotonic, open or closed and you have left

Genstat to set default axis bounds, because these methods fit curves that may extend beyond the

boundaries. If this occurs you should use the relevant axis directive to provide increased axis

bounds. When you use several D3GRAPH statements with SCREEN=keep to build up a complex

graph, the axes are drawn only the first time, and the same axes bounds are then used for the

subsequent graphs. You should then define axis limits that enclose all the subsequent data.

Alternatively, if you set SCREEN=resize, the axes and their bounds will be adjusted, if

necessary, to enclose the additional information. Axes are drawn only if SCREEN=clear, or the

specified window has not been used since the screen was last cleared, or the window has been

redefined by a FRAME statement.

D3GRAPH 153

The KEYWINDOW option specifies the window in which the key appears; by default this is

window 2. Alternatively, you can set KEYWINDOW=0 to suppress the key. The key contains a line

of information for each pair of Y and X structures, written with the associated pen. This will

indicate the symbol used, the line style (for a plotting method of line or curve) or a shaded

block to illustrate the colour (when METHOD=fill), the name of the structure (if any) defined

by the LABELS parameter of PEN, and a description indicating the identifiers of the data plotted

(for example Residuals v Fitted). Alternatively, you can supply your own key, using the

DESCRIPTION parameter, and you can specify a title for the key using the KEYDESCRIPTION

option. If you draw several graphs using SCREEN=keep or SCREEN=resize and the same key

window, each new set of information is appended to the existing key, until the window is full.

If you have set the PEN parameter to a variate or factor in order to plot independent subsets

of the data, the key will contain information for each subset. If the LABELS parameter of PEN has

been used to specify labels for the points, each line of the key will contain the label

corresponding to the first value of the subset, rather than the identifier of the labels structure

itself.

The Graphics Viewer has a tool that allows you to select points, and copy their unit numbers

onto the clipboard. Usually these numbers are simply the locations of the plotted values in the

X and Y structures. However, you can use the UNITNUMBERS parameter to supply other numbers.

(This may be useful if, for example, you are plotting sorted values.)

The TITLE option can be used to provide a title for the graph. You can also put titles on the

axes by using the TITLE parameters of the XAXIS, YAXIS and ZAXIS directives. The SCREEN

option controls whether the graphical display is cleared before the graph is plotted, and the

ENDACTION option controls whether Genstat pauses at the end of the plot.

Options: TITLE, WINDOW, KEYWINDOW, ELEVATION, AZIMUTH, DISTANCE, SCREEN,

KEYDESCRIPTION, ENDACTION.

Parameters: X, Y, Z, PEN, DESCRIPTION, UNITNUMBERS.

Action with RESTRICT

You can arrange to plot only a subset of the points specified by a particular set of X, Y and Z

vectors and associated PEN vector, by restricting any one of them. If more than one of these is

restricted, then they must all be restricted in exactly the same way.

See also

Directives: DGRAPH, D3HISTOGRAM, FRAME, XAXIS, YAXIS, ZAXIS, PEN.

Procedures: DSCATTER, DXYDENSITY, TRELLIS.

Genstat Reference Manual 1 Summary section on: Graphics.

154 Directives in Release 22

D3HISTOGRAM

Plots three-dimensional histograms.

Options

TITLE = text General title; default *

WINDOW = scalar Window number for the plots; default 1

KEYWINDOW = scalar Window number for the key (zero for no key); default 2

ELEVATION = scalar The elevation of the viewpoint relative to the surface;

default 25 (degrees)

AZIMUTH = scalar Rotation about the horizontal plane; the default of 225

degrees ensures that, with a square matrix M, the element

M$[1;1] is nearest to the viewpoint

DISTANCE = scalar Distance of the viewpoint from the centre of the grid on

the base plane; default * gives a distance of 100 times

the maximum of the x-range and the y-range

SCREEN = string token Whether to clear the screen before plotting or to

continue plotting on the old screen (clear, keep);

default clea

KEYDESCRIPTION = text Overall description for the key; default *

ENDACTION = string token Action to be taken after completing the plot (continue,

pause); default * uses the setting from the last DEVICE

statement

Parameters

GRID = identifier Pointer (of variates representing the columns of a data

matrix), matrix or two-way table specifying values on a

regular grid

PEN = scalar Pen number to be used for the plot; default 3

DESCRIPTION = texts Annotation for key

Description

D3HISTOGRAM plots a surface as a three-dimensional (or bivariate) histogram. The surface is

represented by a grid of z-values or heights. The grid can be a rectangular matrix, a two-way

table or a pointer to a set of variates; the y-dimension is represented by the rows of the structure

and the x-dimension by the columns. In each case there must be at least three rows and three

columns of data (after allowing for any restrictions on a set of variates). Missing values are not

permitted; that is, only complete grids can be displayed. If the grid is supplied as a table with

margins, these will be ignored when plotting the surface.

The position of the point from which the histogram is viewed is specified in polar coordinates,

using the options ELEVATION, DISTANCE and AZIMUTH. These define the angle of elevation,

in degrees, above the base plane of the surface, distance from the centre of this plane, and

angular position relative to the vertical z-axis, respectively, similarly to the DSURFACE directive.

The TITLE, WINDOW, SCREEN and ENDACTION options are used to specify a title, the plotting

window, whether the screen should be cleared first, and whether there should be a pause once

the plotting is finished; as in other graphics directives (see, for example, DGRAPH). Similarly, the

KEYWINDOW and KEYDESCRIPTION options and the DESCRIPTION parameters allow a key to

be defined, if feasible for these plots with the current graphics device.

The PEN parameter specifies the pen to be used to plot the histogram (by default, pen 3). The

PEN directive can be used to modify the colour and the thickness of the pen, but the other

attributes of the pen are ignored.

Simple axes are drawn to indicate the directions in which x and y increase. The TITLE

D3HISTOGRAM 155

parameter of the XAXIS and YAXIS directives can be used to add further annotation.

Options: TITLE, WINDOW, KEYWINDOW, ELEVATION, AZIMUTH, DISTANCE, SCREEN,

KEYDESCRIPTION, ENDACTION.

Parameters: GRID, PEN, DESCRIPTION.

Action with RESTRICT

D3HISTOGRAM takes account of restrictions on any of the variates in a GRID pointer.

See also

Directives: DBITMAP, DCONTOUR, DSHADE, DSURFACE, D3GRAPH, BARCHART, DHISTOGRAM,

DPIE, LPHISTOGRAM, FRAME, XAXIS, YAXIS, ZAXIS, PEN, MATRIX, POINTER, TABLE.

Procedures: TRELLIS, DBARCHART, DOTHISTOGRAM, DOTPLOT, DCIRCULAR, WINDROSE.

Genstat Reference Manual 1 Summary section on: Graphics.

156 Directives in Release 22

EDIT

Edits text vectors.

Options

CHANNEL = scalar or text Text structure containing editor commands or a scalar

giving the number of a channel from which they are to

be read; default is the current input channel

END = text Character(s) to indicate the end of the commands read

from an input channel; default is the character colon (:)

WIDTH = scalar Limit on the line width of the text; default *

SAVE = text Text to save the editor commands for future use; default
*

Options

Parameters

OLDTEXT = texts Texts to be edited

NEWTEXT = texts Text to store each edited text; if any of these is omitted,

the corresponding OLDTEXT is used

Description

The EDIT directive edits each text in the OLDTEXT list, storing the results in the corresponding

structure in the NEWTEXT list. It both edits and stores each text before moving on to the next. If

you have not already declared any of the texts in the NEWTEXT list, it will be declared implicitly.

If you give a missing identifier (*) in the NEWTEXT list, the edited version simply replaces the

values of the original: thus the old text will be overwritten by the new text. You can also omit

a text from the OLDTEXT list; you might do this if you wanted to form the values of the new text

entirely from within the editor.

The CHANNEL option tells Genstat where to find the editing commands. A scalar specifies the

number of an input channel from which the commands are to be read. Alternatively, you can

specify a text structure containing the commands. In either case the commands should be

terminated by the string specified by the END option. The end string can be more that one

character; the default is the single character colon (:). Genstat gives a warning if you have

forgotten to specify the end string in a text of commands. The default for the CHANNEL option

is to take input from the current input channel.

The WIDTH option specifies the maximum line length for vectors of commands and of text, the

default being 80 and the maximum being 255.

The SAVE option allows you to specify a text structure to store the edit commands, so that you

can save them for future EDIT statements.

Commands for the editor can be given in either upper or lower case. You can put as many

commands as you like on a line, subject only to the width restriction set by the WIDTH option.

Commands must be separated by at least one space. You cannot put spaces into the middle of

a command, unless they are part of a character string (or part of a sequence of commands).

The character that separates the parts of a command is written here as /, but you can use any

character for this other than a space or a digit.

Genstat puts the lines from the old text into an internal buffer, where they are modified

according to the commands that you specify. While you are editing, Genstat moves a notional

marker around the buffer. The marker can be moved backwards or forwards along a line or

between lines. So you can move around the text and modify the lines in any order. Some

commands move the marker automatically, as explained in the definitions below. If the marker

is before the first line of text it is at the [start] position; if it is after the last line of text it is

at the [end] position. The line that currently contains the marker is called the current line.

EDIT 157

Genstat does not write anything to the new text until the edit has been completed (so if you use

the Q command, the new text is left unaltered).

Some commands allow you to specify a number: for example Dn deletes the next n lines.

Genstat gives a warning message if this number is zero or is not an integer.

The commands are as follows.

A Insert the next line of text from the buffer, immediately after the marker within the current

line.

B Break the current line at the marker position. Text before the marker is written as a new

line to the internal buffer and text after the marker becomes the new current line with the

marker at character position 1.

C Cancel edits performed on the current line by restoring it to the form in which it was most

recently read from the buffer. Note that if you have previously edited the line and then

moved to some other line, it is the previously edited form that will be given, not the form

as originally in the old text; also, if you have given any A or B commands during your

modification of the current line, their effects are not negated, so for example any lines that

have been inserted into the current line by A will be lost.

D Delete the current line, and make the next line the current line with the marker at character

position 1.

Dn Delete the next n lines (including the current line), making the next line after that the

current line with the marker at position 1.

D+n Synonymous with Dn.

D+ is a synonym for D or D+1.

D+* Delete from the current line to end of text. The current line is then [end].

D* Synonymous with D+*.

D� Delete the current line, making the previous line the current line with the marker at

character position 1.

D�n Delete the current and previous n lines, making the line before that the current line with

the marker at character position 1.

D� is a synonym for D�1.

D�* Delete the current line and all previous lines, the current line is then [start].

D/s/ Delete from the current line to the line with the next occurrence of the character string s.

The marker is placed immediately before the character string s in the located line. If s

occurs after the marker on the current line, the marker is moved up to s and no lines are

deleted.

D�/s/ The same as D/s/, except that it moves backwards through the text, deleting all lines

from and including the current one until the first occurrence of a line containing the

character string s. The marker is placed immediately before the located character string

s. If s occurs before the marker on the current line, the marker placed before s and no

lines are deleted.

F/i/ Inserts the contents of the text structure with identifier i immediately before the current

line. The marker is not moved.

G+/s/t/ substitutes string t for all occurrences of string s found after the marker on the

current and subsequent lines, and moves the marker to the end of the text.

G/s/t/ is a synonym for G+/s/t/.

G�/s/t/ substitutes string t for all occurrences of string s found before the marker on the

current and previous lines, and moves the marker to the start of the text.

I/s/ Inserts the string s as a new line immediately before the current line. The marker is not

moved.

L Moves the marker to the start of the next line, which can be [end].

Ln Moves the marker to the start of the nth line after the current line. So L1 gives the next

line.

158 Directives in Release 22

L+n Is synonymous with Ln.

L+ Is synonymous with L or L+1.

L+* Moves the marker to [end].

L* is a synonym for L+*.

L�n Moves the marker to the start of the nth line before the current line, which can be

[start]. L�1 gives the line immediately before the current line.

L� Is synonymous with L�1.

L�* Moves the marker to [start].

L+/s/ Moves the marker to the position immediately before the next occurrence of the

character string s after the current marker position; this occurrence need not be on the

current line. If the string s is not found, the marker will be located at [end].

L�/s/ Moves the marker to the position immediately before the first occurrence of the string

s before the current marker position; this occurrence need not be on the current line. If the

string s is not found, the marker will be located at [start].

P moves the marker one character to the right along the current line.

P+n Moves the marker n characters to the right of the current position within the current line.

You cannot move the marker beyond the maximum line length (which will vary between

computers, but is normally the same as the width of your local line�printer).

P+ is a synonym for P or P+1.

P+* Moves the marker to the position immediately after the last non-blank character in the

current line. This can be to the left of the current marker position.

P�n Moves the marker n characters to the left of the current position within the current line.

The marker cannot be moved to the left of character position 1.

P� is a synonym for P�1.

P�* Moves the marker to the position immediately before the first non-blank character after

character position 1. This can be to the right of the current marker position.

Pn Moves the marker to the character position n within the current line, counting from the

left and starting at 1. The maximum value of n varies between computers but is normally

the same as the width of your local line-printer.

Q Abandons the current edit, leaving the original text unaltered.

R+/s/t/ substitutes character string t for the next occurrence of character string s after the

marker on the current or subsequent lines, and moves the marker to the position

immediately after t.

R/s/t/ is a synonym for R+/s/t/.

R�/s/t/ substitutes string t for the nearest occurrence of string s before the marker on the

current or previous lines; the marker moves to be immediately before string t.

S/s/t/ Substitutes the string t for the next occurrence of string s after the marker within the

current line. The marker is moved to the character position immediately after the last

character in t. If s is null (when the command is S//t/) then t is inserted immediately

after the marker. If t is null (when the command is S/s//), then s is deleted from the

line.

V Turns on the verification mode. Then, if you are working interactively, the current line

will be displayed each time that Genstat prompts you for commands. By default the

marker is indicated by the character > but you can change this by the command Vc or V+c.

Vc Turns on the verification mode (see V), and changes the marker character to c.

V+c Is synonymous with Vc.

V� Turns verification mode off (see V).

(cseq)n Repeats the command sequence, cseq, n times. The command sequence cseq can

be any valid combination of editing commands, each separated by at least one space. The

complete sequence, including brackets and repeat count, must all be on a single line. You

can nest sequences up to a depth of 10.

EDIT 159

(cseq)* Repeats the command sequence cseq until [end] or [start] is encountered. In all

other respects (cseq)* behaves exactly as (cseq)n; so it would be equivalent to putting

n equal to some very large number.

Options: CHANNEL, END, WIDTH, SAVE.

Parameters: OLDTEXT, NEWTEXT.

Action with RESTRICT

If any of the old texts are restricted, they must all be restricted to exactly the same set of units.

Then only those units will be involved in the edit. When a restriction is in force, you cannot add

or delete any units (or lines).

See also

Directives: TEXT, CONCATENATE, EQUATE, TXBREAK, TXCONSTRUCT, TXFIND,

TXPOSITION, TXREPLACE.

Procedure: APPEND, SUBSET, STACK, UNSTACK.

Functions: CHARACTERS, GETFIRST, GETLAST, GETPOSITION, POSITION.

Genstat Reference Manual 1 Summary section on: Calculations and manipulation.

160 Directives in Release 22

ELSE

Introduces the default set of statements in block-if or in multiple-selection control structures.

No options or parameters

Description

The use of ELSE in block-if structures is explained in the description of the IF directive. Its use

in multiple-selection control structures is explained in the description of CASE.

Options: none.

Parameters: none.

See also

Directives: CASE, OR, ENDCASE, IF, ELSIF, ENDIF, EXIT.

Genstat Reference Manual 1 Summary section on: Program control.

ELSIF 161

ELSIF

Introduces a set of alternative statements in a block-if control structure.

No options

Parameter

expression Logical expression to indicate whether or not the set of

statements is to be executed.

Description

A block-if structure consists of one or more alternative sets of statements. The first of these is

introduced by an IF statement. There may then be further sets introduced by ELSIF statements.

Then you can have a final set introduced by an ELSE statement, and the whole structure is

terminated by an ENDIF statement. Full details are given in the description of the IF directive.

Options: none.

Parameter: unnamed.

See also

Directives: IF, ELSE, EXIT, ENDIF, CALCULATE.

Genstat Reference Manual 1 Summary section on: Program control.

162 Directives in Release 22

ENDBREAK

Returns to the original channel or control structure and continues execution.

No options or parameters

Description

ENDBREAK ends breaks instigated by the BREAK directive, where more details are given.

Options: none.

Parameters: none.

See also

Directives: BREAK, DEBUG.

Genstat Reference Manual 1 Summary section on: Program control.

ENDCASE 163

ENDCASE

Indicates the end of a "multiple-selection" control structure.

No options or parameters

Description

A multiple-selection control structure consists of several alternative blocks of statements. The

first of these is introduced by a CASE statement. This has a single parameter, which is an

expression that must yield a single number. Subsequent blocks are each introduced by an OR

statement. There can then be a final block, introduced by an ELSE statement, as in the block-if

structure. The whole structure is terminated by an ENDCASE statement. Full details are given in

the description of the CASE directive.

Options: none.

Parameters: none.

See also

Directives: CASE, OR, ELSE, EXIT.

Genstat Reference Manual 1 Summary section on: Program control.

164 Directives in Release 22

ENDDEBUG

Cancels a DEBUG statement.

No options or parameters

Description

ENDDEBUG ends a debugging session instigated by the DEBUG directive, where more details are

given.

Options: none.

Parameters: none.

See also

Directives: DEBUG, BREAK.

Genstat Reference Manual 1 Summary section on: Program control.

ENDFOR 165

ENDFOR

Indicates the end of the contents of a loop.

No options or parameters

Description

Loops are introduced by the FOR directive, where full details are given.

Options: none.

Parameters: none.

See also

Directives: FOR, EXIT.

Genstat Reference Manual 1 Summary section on: Program control.

166 Directives in Release 22

ENDIF

Indicates the end of a block-if control structure.

No options or parameters

Description

A block-if structure consists of one or more alternative sets of statements. The first of these is

introduced by an IF statement. There may then be further sets introduced by ELSIF statements.

Then you can have a final set introduced by an ELSE statement, and the whole structure is

terminated by an ENDIF statement. Full details are given in the description of the IF directive.

Options: none.

Parameters: none.

See also

Directives: IF, ELSIF, ELSE, EXIT.

Genstat Reference Manual 1 Summary section on: Program control.

ENDJOB 167

ENDJOB

Ends a Genstat job.

No options or parameters

Description

A Genstat program can be split up into individual jobs. These can each be terminated by the

ENDJOB directive. Full details are given in the description of the JOB directive, which can be

used to start a new job.

Options: none.

Parameters: none.

See also

Directives: JOB, STOP.

Genstat Reference Manual 1 Summary section on: Program control.

168 Directives in Release 22

ENDPROCEDURE

Indicates the end of the contents of a Genstat procedure.

No options or parameters

Description

ENDPROCEDURE ends the definition of a Genstat procedure. Full details are given in the

description of the PROCEDURE directive

Options: none.

Parameters: none.

See also

Directives: PROCEDURE, OPTION, PARAMETER, CALLS.

Genstat Reference Manual 1 Summary section on: Program control.

ENQUIRE 169

ENQUIRE

Provides details about files opened by Genstat.

No options

Parameters

CHANNEL = scalars Channel numbers to enquire about; for

FILETYPE=input or output, a scalar containing a

missing value will be set to the number of the current

channel of that type and a negative value can be used to

check the existence of a file that is not yet connected to a

channel

FILETYPE = string tokens Type of each file (input, output, unformatted,

backingstore, procedurelibrary, graphics);

default inpu

OPEN = scalars To indicate whether or not the corresponding channels

are currently open (0=closed, 1=open)

NAME = texts External name of the file, if channel is open

EXIST = scalars To indicate whether files on corresponding channels

currently exist (0=not yet created, 1=exist)

WIDTH = scalars Maximum width of records in each file (only relevant

for input and output files, set to * for other types)

PAGE = scalars Number of lines per page (relevant only for output files)

ACCESS = texts Allowed type of access: set to 'readonly',

'writeonly' or 'both'

LINE = scalars Number of the current line (input files only)

STYLE = texts Underlying style of an output channel: set to

'plaintext', 'html', 'rtf', or 'latex' (see

OPEN)

OUTSTYLE = texts Current style of an output channel: set to 'plaintext'

or 'formatted' (see OUTPUT)

SIZE = texts Size of the file, in bytes

Description

ENQUIRE allows you to ascertain whether a particular channel is already in use and, if so, what

properties are defined for aspects like the width of each line or the number of lines per page (see

the OPEN and OUTPUT directives). This is likely to be of most use within general programs and

procedures.

You specify the channel using the parameters CHANNEL and FILETYPE; the other parameters

allow you to save the required information in data structures of the appropriate type.

ENQUIRE can also be used to discover whether a file exists. You simply set the CHANNEL

option to a negative number. The result of the enquiry is saved by the EXIST parameter. So, for

example

ENQUIRE CHANNEL=-1; NAME='lost.dat'; EXIST=Found

will set the scalar Found to one if the file lost.dat exists, or to zero otherwise. Similarly, the

SIZE parameter can provide the size of the file (in bytes): for example

ENQUIRE CHANNEL=-1; NAME='lost.dat'; SIZE=Nbytes

A missing value is returned if the file does not exist.

170 Directives in Release 22

Options: none.

Parameters: CHANNEL, FILETYPE, OPEN, NAME, EXIST, WIDTH, PAGE, ACCESS, LINE, STYLE,

OUTSTYLE.

See also

Directives: OPEN, CLOSE, FCOPY, FDELETE, FRENAME.

Genstat Reference Manual 1 Summary section on: Input and output.

EQUATE 171

EQUATE

Transfers data between structures of different sizes or types (but the same modes i.e.

numerical or text) or where transfer is not from single structure to single structure.

Options

OLDFORMAT = variate Format for values of OLDSTRUCTURES; within the

variate, a positive value n means take n values, �n means

skip n values and a missing value means skip to the next

structure; default * i.e. take all the values in turn

NEWFORMAT = variate Format for values of NEWSTRUCTURES; within the

variate, a positive value n means fill the next n positions,

�n means skip n positions and a missing value means

skip to the next structure; default * i.e. fill all the

positions in turn

FREPRESENTATION = string token How to interpret factor values (labels, levels,

ordinals); default leve

Parameters

OLDSTRUCTURES = identifiers Structures whose values are to be transferred; if values

of several structures are to be transferred to one item in

the NEWSTRUCTURES list, they must be placed in a

pointer

NEWSTRUCTURES = identifiers Structures to take each set of transferred values; if

several structures are to receive values from one item in

the OLDSTRUCTURES list, they must be placed in a

pointer

Description

The EQUATE directive copies values from one set of data structures to another. For example, you

may wish to copy the values from a one-way table into a variate, or from a matrix into a set of

variates (one variate for each row, or for each column), or the other way round, from variates

into a matrix. Alternatively, you may want to append values from several data structures into a

single one. The only constraint is that the structures in the respective sets must all contain the

same kind of values.

The general idea with EQUATE is that the values in the structures in the OLDSTRUCTURES list

are copied into the structures in the NEWSTRUCTURES list. Each item in OLDSTRUCTURES list

specifies a single data structure, or a single set of data structures, containing the values to be

transferred. A single structure can be a factor, or a text, or any one of the structures that contain

numbers (scalar, variate, rectangular matrix, diagonal matrix, symmetric matrix or table). If you

want to give a set of structures you must put them into a pointer. As already mentioned, all the

structures in the set must contain the same kind of values: that is, they must all be texts, or all

factors, or must all contain numbers (but they need not all be the same kinds of numerical

structure � they could, for example, be a mixture of variates and matrices).

The corresponding entry in the NEWSTRUCTURE list indicates where the transferred data are

to be placed. It is either a single structure or a pointer to a set of structures; the structures must

be of a type suitable to store the values to be transferred.

Except with a format Genstat ignores where each structure within a set from the

OLDSTRUCTURES list ends and another one begins: that is, it treats the set as being a

concatenated list of values. Similarly, it treats the structures in each NEWSTRUCTURES set as an

unstructured list of positions that are to receive values. The old values are repeated as often as

is necessary to traverse all the new positions.

172 Directives in Release 22

You can use the OLDFORMAT and NEWFORMAT options to control how the old values and new

positions are traversed. The setting for each of these is a variate whose values are interpreted as

follows:

(a) a positive integer n means take the next n values (OLDFORMAT) or fill the next n positions

(NEWFORMAT);

(b) a negative integer �n means skip the next n values or positions;

(c) a missing value * means skip to the end of the structure.

As usual, Genstat recycles when it runs out of values. That is, if the contents of one of the

variates is exhausted before all the NEWSTRUCTURES positions have either been filled or skipped,

then that variate is repeated.

If you are transferring values between factors, Genstat will check that each value to be

transferred is valid for the factor in the NEWSTRUCTURES list. By default, Genstat will try to

match the values using the levels of the factors, but you can set option

FREPRESENTATION=labels to match by their labels, or FREPRESENTATION=ordinals to

match them merely according to the ordinal position in the levels vector of each factor.

The values of factors that have labels can be copied into texts. In addition, values of texts can

be copied into factors, provided all the strings are valid labels for the factor concerned.

Factor values can also be copied into variates; the FREPRESENTATION option controls

whether Genstat uses the levels or the ordinal values.

Options: OLDFORMAT, NEWFORMAT, FREPRESENTATION.

Parameters: OLDSTRUCTURES, NEWSTRUCTURES.

Action with RESTRICT

Any restrictions on vectors in an EQUATE statement are ignored.

See also

Directive: CALCULATE.

Procedures: APPEND, STACK, UNSTACK, SUBSET, VEQUATE.

Genstat Reference Manual 1 Summary section on: Calculations and manipulation.

ESTIMATE 173

ESTIMATE

Estimates parameters in Box-Jenkins models for time series (synonym of TFIT).

Options

PRINT = string tokens What to print (model, summary, estimates,

correlations, monitoring); default
mode,summ,esti

LIKELIHOOD = string token Method of likelihood calculation (exact,

leastsquares, marginal); default exac

CONSTANT = string token How to treat the constant (estimate, fix); default
esti

RECYCLE = string token Whether to continue from previous estimation (yes, no);

default no

WEIGHTS = variate Weights; default *

MVREPLACE = string token Whether to replace missing values by their estimates

(yes, no); default no

FIX = variate Defines constraints on parameters (ordered as in each

model, tf models first): zeros fix parameters, parameters

with equal numbers are constrained to be equal; default
*

METHOD = string token Whether to carry out full iterative estimation, to carry

out just one iterative step, to perform no steps but still

give parameter standard deviations, or only to initialize

for forecasting by regenerating residuals (full,

onestep, zerostep, initialize); default full

MAXCYCLE = scalar Maximum number of iterations; default 15

TOLERANCE = scalar Criterion for convergence; default 0.0004

SAVE = identifier To name save structure, or supply save structure with

transfer-functions; default * i.e. transfer-functions taken

from the latest model

Parameters

SERIES = variate Time series to be modelled (output series)

TSM = TSM Model for output series

BOXCOXMETHOD = string token How to treat transformation parameter in output series

(fix, estimate); default fix

RESIDUALS = variate To save residual series

Description

ESTIMATE was renamed as TFIT in Release 14 to emphasize its status as a time-series command.

The earlier name (ESTIMATE) was retained to allow previous programs to continue to run, but

this may be removed in a future release.

The main use of ESTIMATE is to fit parameters to time-series models, although you can also

use it to initialize for the FORECAST directive, even when the model parameters are already

known. You need to define a TSM structure beforehand, for use as input to the TSM parameter.

You may also wish to give a TRANSFERFUNCTION statement for example if you wish to specify

explanatory variables for regression with ARIMA errors or to define transfer-function models.

In many applications of estimating a univariate ARIMA model, you will need only a simple form

of the directive, such as:

ESTIMATE Daylength; TSM=Erp

The SERIES parameter specifies the variate holding the time series data to which the model

174 Directives in Release 22

is to be fitted.

The TSM parameter specifies the ARIMA model that is to be fitted to the time-series data. This

TSM must already have been declared and its ORDERS must have been set. If the LAGS parameter

of the TSM has been set, the lags must have been given values. However, if the PARAMETERS

of the TSM model have been set, these need not have been declared previously nor given values.

When the parameter values are not set, default values are used: these are all zero, except for the

transformation parameter, which is set to 1.0 if it is not to be estimated (see BOXCOXMETHOD and

FIX below). Any parameter values that you do specify will be used as initial values for the

parameters in the model; Genstat replaces any missing values by the default values. If any group

of autoregressive or moving-average parameters do not satisfy the required conditions for

stationarity or invertibility, all the parameters to be estimated are reset by Genstat to the default

values. After ESTIMATE, the parameters of the TSM contain the estimated parameter values.

The BOXCOXMETHOD parameter allows you to estimate the transformation parameter ë.

The RESIDUALS parameter saves the estimated innovations (or residuals). The residuals are

calculated for t=t0...N, where t0=1+p+d�q for a simple ARIMA model. If t0>1, missing values

will be inserted for t=1...t0�1.

The PRINT option controls printed output. If you specify monitoring, then at each cycle of

the iterative process of estimation, Genstat prints the deviance for the current fitted model,

together with the current estimates of model parameters. The format is simple with the minimum

of description, to let you judge easily how quickly the process is converging. The other settings

of PRINT control output at the end of the iterative process. If you specify model, the model is

briefly described, giving the identifier of the series and the time-series model, together with the

orders of the model. If you specify summary, the deviance of the final model is printed, along

with the residual number of degrees of freedom. If you specify estimates, the estimates of the

model parameter are printed in a descriptive format, together with their estimated standard errors

and reference numbers. If you specify correlations, the correlations between estimates of

parameters are printed, with reference numbers to identify the parameters.

The LIKELIHOOD option specifies the criterion that Genstat minimizes to obtain the estimates

of the parameters: this is described in the next section. The default setting exact is

recommended for most applications.

You can use the CONSTANT option to specify whether Genstat is to estimate the constant term

c in the model. If CONSTANT=fix, the constant is held at the value given in the initial parameter

values; this need not be zero.

The RECYCLE option allows a previous ESTIMATE statement to continue; this can save

computing time. If RECYCLE=yes, the most recent ESTIMATE statement is continued, unless the

SAVE option has been set to the save structure from some other ESTIMATE statement. The

SERIES and TSM settings are then taken from this previous ESTIMATE statement: Genstat

ignores any specified in the current statement. Most of the settings of other parameters and

options are carried over from the previous statement, and new values are ignored. However, there

are some exceptions. You can change the RESIDUALS variate, you can reset MAXCYCLE to the

number of further iterations you require, and you can change the settings of TOLERANCE and

PRINT. You can also change the values of the variate in the WEIGHTS option; you can thus get

reweighted estimation. You can change the values of the SERIES itself, although you cannot

change missing values; if the MVREPLACE option was previously set to yes, you must put the

original missing values back into the SERIES variate before the new ESTIMATE statement.

The WEIGHTS option includes in the likelihood a weighted sum-of-squares term

�t = t0 ... N { wt at
2 }

where wt, t=1...N are provided by the WEIGHTS variate. The values of wt must be strictly positive.

If t0<1, where t0=1+d+p�q, then wt is taken as 1 for t<1.

The MVREPLACE option allows you to request any missing values in the time-series to be

replaced by their estimates after estimation. Genstat will always estimate the missing values,

ESTIMATE 175

irrespective of the setting of MVREPLACE; so you can also obtain these estimates later from

TKEEP.

The FIX option allows you to place simple constraints on parameter values throughout the

estimation. The units of the FIX variate correspond to the parameters of the TSM, excluding the

innovation variance. The values of the FIX variate are used to define the parameter constraints

and must be integers. If an element of the FIX variate is set to 0, the corresponding parameter

is constrained to remain at its initial setting. If an element is not 0, and the value is unique in the

FIX variate, the parameter is estimated without any special constraint. If two or more values are

equal, the corresponding parameters are constrained to be equal throughout the estimation. The

number that you give to a parameter by FIX will appear as the reference number of the parameter

in the printed model and correlation matrix. This option overrides any setting of CONSTANT and

BOXCOXMETHOD.

The MAXCYCLE option specifies the maximum number of iterations to be performed.

The TOLERANCE option specifies the convergence criterion. Genstat decides that convergence

has occurred if the fractional reduction in the deviance in successive iterations is less than the

specified value, provided also that the search is not encountering numerical difficulties that force

the step length in the parameter space to be severely limited. You can use monitoring to judge

whether, for all practical purposes, the iterations have converged. Genstat gives warnings if the

specified number of iterations is completed without convergence, or if the search procedure fails

to find a reduced value of the deviance despite a very short step length. Such an outcome may

be due to complexities in the likelihood function that make the search difficult, but can be due

to your specifying too small a value for TOLERANCE.

The SAVE option allows you to save the time-series save structure produced by ESTIMATE.

You can use this in further ESTIMATE statements with RECYCLE=yes, or in FORECAST

statements. It can also be used by the TDISPLAY and TKEEP directives. Genstat automatically

saves the structure from the most recent ESTIMATE statement, but this is over-written when the

next ESTIMATE statement is executed, unless you have used SAVE to give it an identifier of its

own. You can access the current time-series save structure by the SPECIAL option of the GET

directive, and reset it by the TSAVE option of the SET directive.

The METHOD option has four possible settings. The default setting is full which gives the

usual estimation to convergence or until the maximum number of iterations has been reached.

With the setting METHOD=initialize, ESTIMATE carries out only the residual regeneration

steps (that is, calculation of at for t=t0...N) which are needed before FORECAST can be used. If

the model has just been estimated using the default full setting, this is unnecessary. The setting

initialize is useful when the time series is supplied with a known model and a minimal

amount of calculation is wanted to prepare or initialize for forecasting. None of the model

parameters are changed, and no standard errors of parameter estimates are available. Missing

values in the series are estimated so this setting provides an efficient way of getting their values

when the time series model is known; they can then be obtained using TKEEP. The deviance

value is also available from TKEEP. This setting is therefore useful for efficient calculation of

deviance values when you want to plot the shape of the deviance as a function of parameter

values.

With the setting METHOD=zerostep the effect is the same as for initialize except that

ESTIMATE also calculates the standard errors of the parameters as if they had just been

estimated. These can be used together with other quantities available from TKEEP to construct

confidence intervals and carry out tests on the parameter values, which remain unchanged except

that the innovation variance in the ARIMA model is replaced by its estimate conditional on all

other parameters.

The setting METHOD=onestep gives the same results as specifying the option MAXCYCLE=1

in ESTIMATE. It is convenient for carrying out quick tests of model parameters.

To explain the LIKELIHOOD option, we need to describe the estimation of ARIMA models

176 Directives in Release 22

in more detail. You may want to skip this if you are doing fairly routine work.

The first step in deriving the likelihood for a simple model is to calculate

wt = �dyt � c , t = 1+d ... N

This has a multivariate Normal distribution with dispersion matrix Vóa
2, where V depends only

on the autoregressive and moving-average parameters. The likelihood is then proportional to

{ óa
2m*V* } �½ exp{ �w�V�1w/2óa

2 }
where m=N�d. In practice Genstat evaluates this by using the formula

w� V�1 w = W + �t = t0 ... N { at
2 } = S

where t0=1+d+p�q. The term W is a quadratic form in the p values w1+d�q ... wp+d�q: it takes

account of the starting-value problem for regenerating the innovations at, and avoids losing

information as would happen if the process used only a conditional sum-of-squares function. If

q>0, Genstat introduces unobserved values of w1+d�q ... wd in order to calculate the sum S. Genstat

uses linear least-squares to calculate these q starting values for w, thus minimizing S. We shall

call them back-forecasts, though if p>0 they are actually computationally convenient linear

functions of the proper back-forecasts. We shall call S the sum-of-squares function: it is the sum

of the quadratic form and the sum-of-squares term, and is identical to the value expressed by Box

& Jenkins (1970) as

�t = �� ... N { at
2 }

using infinite back-forecasting; that is, using:

W = �t = �� ... t0�1 { at
2 }

The values at for t=t0...N agree precisely with those of Box and Jenkins.

To clarify all this, consider examples with no differencing; that is, d=0. If p=0 and q=1 then

W=0 and t0=0, and one back-forecast w0 is introduced. If p=1 and q=0 then W=(1�ö1
2)w1

2 and

t0=2, and no back-forecasts are needed. If p=q=1 then W=(1�ö1
2)w0

2 and t0=1, and so one back-

forecast w0 is needed. In this case the proper back-forecast is in fact w0 /(1�è1ö1).

The value of *V* is a by-product of calculating W and the back-forecast. For example, if p=0

and q=1, then

V = (1 + è1
2 + ... + è1

2N)

If p=1 and q=0,

V = 1 / (1 � ö1
2)

and if p=q=1,

V = 1 + (ö1 � è1)
2 (1 + è1

2 + ... + è1
2N�2) / (1 � ö1

2)

Concentrating the likelihood over óa
2 by setting óa

2=S/m yields a value proportional to { *V*1/m

S }�m/2.

The default setting of the LIKELIHOOD option is exact. In this case the concentrated

likelihood is maximized, by minimizing the quantity

D = *V*1/m S

which is called the deviance.

The setting leastsquares specifies that Genstat is to minimize only the sum-of-squares term

S. This criterion corresponds to the back-forecasting sum-of-squares used by Box & Jenkins

(1970), and will in many cases give estimates close to those of the exact likelihood. However,

some discrepancy arises if the series is short or the model is close to the invertibility boundary.

This is because of limitations on the back-forecasting procedure, as described in the algorithms

of Box & Jenkins (1970). The deviance value D that Genstat prints is, with this setting, simply

S.

When you use exact likelihood, the factor *V*1/m reduces bias in the estimates of the

parameter; you would get bias if you used leastsquares instead. However, *V*1/m is generally

close to one, unless the series is short or the model is either seasonal or close to the boundaries

of invertibility or stationarity. The leastsquares setting is therefore adequate for most long,

non-seasonal sets of data; using it may reduce the computation time by up to 50%. When you

specify that Genstat is to estimate the parameter ë of the Box-Cox transformation, Genstat also

ESTIMATE 177

includes the Jacobian of the transformation in the likelihood function. The result is an extra

factor G�2(ë�1) in the definition of the deviance, G being the geometric mean of the data,

G = (�t = 1 ... N { yt }) ** (1 / N)

Note that this is not included unless ë is being estimated, even if ë�1.

You can treat differences in Nlog(D) as a chi-square variable in order to test nested models:

this is supported by asymptotic theory, and by experience with models that have moderately

large sample sizes. Similarly, you can select between different models by using Nlog(D)+2k as

an information criterion, k being the number of estimated parameters. But both of these test

procedures are questionable if the estimated models are close to the boundaries of invertibility

or stationarity. Provided all the models that are being compared have the same orders of

differencing, with the differenced series being of length m, it is recommended that mlog(D) be

used rather than Nlog(D) in these tests since mlog(D) is precisely minus two multiplied by the

log-likelihood as defined above.

The setting marginal is relevant mainly when ESTIMATE is used for regression with ARIMA

errors. (This requires a TRANSFERFUNCTION statement beforehand to specify the explanatory

variables.) The likelihood for the model is defined as that of the univariate error series et which

is defined in general by

et = yt � b1x1,t � ... � bmxm,t

(the xi being m explanatory variables). The constant term therefore appears in the model after any

differencing of et; for example

�et = c + (1 � è1B)at

You can get bias in the estimates of the parameters of an ARIMA model because the regression

is estimated at the same time. You can guard against this by specifying

LIKELIHOOD=marginal. This can be particularly important if the series are short or if you use

many explanatory variables (Tunnicliffe Wilson 1989). The deviance is now defined as

D = S (*X�V�1X* *V*)1/m

where m is reduced by the number of regressors (including the constant term) and the columns

of X are the differenced explanatory series: the other terms are as in the exact likelihood.

You can use the marginal setting also for univariate ARIMA modelling, when the constant

term is the only explanatory term. Furthermore, Genstat deals with missing values in the

response variate by doing a regression on indicator variates; these too are included in the X

matrix. However, you cannot use marginal likelihood and estimate a transformation parameter

in either the transfer-function model or an ARIMA model. Neither can you use it if you set the

FIX option in ESTIMATE. In these cases Genstat automatically resets the LIKELIHOOD option

to exact.

At every iteration with the setting LIKELIHOOD=marginal, the regression coefficients are

the maximum-likelihood estimates conditional upon the estimated values of the parameters of

the ARIMA model: these are also the generalized least-squares estimates, conditioned in the

same way. This is so even if MAXCYCLE=0; that is, the coefficients of the regression are re-

estimated even at iteration 0. Therefore you must not use the marginal setting with the option

METHOD=initialize to initialize for FORECAST. You can compare deviance values that were

obtained using marginal likelihood only for models with the same explanatory variables and the

same differencing structure in the error model.

Options: PRINT, LIKELIHOOD, CONSTANT, RECYCLE, WEIGHTS, MVREPLACE, FIX , METHOD,

MAXCYCLE, TOLERANCE, SAVE.

Parameters: SERIES, TSM, BOXCOXMETHOD, RESIDUALS.

Action with RESTRICT

The SERIES variate can be restricted, but this must be to a contiguous set of units.

178 Directives in Release 22

References

Box, G.E.P. & Jenkins, G.M. (1970). Time Series Analysis, Forecasting and Control. Holden-

Day, San Francisco.

Tunnicliffe Wilson, G. (1989). On the use of marginal likelihood in time-series model

estimation. Journal of the Royal Statistical Society, Series B, 51, 15-27.

See also

Directive: TFIT.

Genstat Reference Manual 1 Summary section on: Time series.

EXECUTE 179

EXECUTE

Executes the statements contained within a text.

No options

Parameter

texts Statements to be executed

Description

EXECUTE allows a set of Genstat statements placed in a text to be executed, for example inside

loops or procedures.

Options: none.

Parameter: unnamed.

Action with RESTRICT

Any restrictions on the texts are ignored.

See also

Directives: TEXT, PROCEDURE, FOR.

Genstat Reference Manual 1 Summary section on: Program control.

180 Directives in Release 22

EXIT

Exits from a control structure.

Options

NTIMES = scalar Number of control structures, n, to exit (if n exceeds the

number of control structures of the specified type that

are currently active, the exit is to the end of the outer

one; while for n negative, the exit is to the end of the

�n'th structure in order of execution); default 1

CONTROLSTRUCTURE = string token

Type of control structure to exit (job, for, if, case,

procedure); default for

REPEAT = string token Whether to go to the next set of parameters on exit from

a FOR loop or procedure (yes, no); default no

EXPLANATION = text Text to be printed if the exit takes place; default *

Parameter

expression Logical expression controlling whether or not an exit

takes place

Description

Sometimes you may want simply to abandon part of a program: you may be unable to do any

further calculations or analyses. For example, if you are examining several subsets of the units,

you would wish to abandon the analysis of any subset that turned out to contain no observations.

Another example would be if you wanted to abandon the execution of a procedure whenever an

error diagnostic has appeared. The EXIT directive allows you to exit from any control structure.

In its simplest form EXIT has no parameter setting, and the exit is unconditional: Genstat will

always exit from the control structure or structures concerned. You are most likely to use this

as part of an ELSE block of a block-if or multiple-selection structure. For example

IF N.GT.0
 CALCULATE Percent = R * 100 / N
ELSE
 PRINT [IPRINT=*] 'Incorrect value ',N,' for N.'
 EXIT [CONTROLSTRUCTURE=procedure]
ENDIF

prints an appropriate warning message for a zero or negative value of N, and then exits from a

procedure.

If the warning message is simply a text or string, the EXPLANATION option can be used to

print it on exit. For example

EXIT [CONTROLSTRUCTURE=procedure; \
 EXPLANATION='Incorrect value for N.'] N.LE.0
CALCULATE Percent = R * 100 / N

has the same effect except that the actual value of N is no longer printed.

The CONTROLSTRUCTURE option specifies the type of control structure from which to exit.

The default setting is for, causing an exit from a FOR loop. For the other settings: if causes an

exit from a block-if structure (as introduced by the IF directive), case exits from a multiple-

selection structure (as introduced by CASE), procedure exits from a procedure (see the

PROCEDURE directive), and job causes the entire job to be abandoned (see JOB). Sometimes, to

exit from one type of control structure, others must be left too. To exit from the procedure in the

above example, requires Genstat to exit also from the block-if structure. Generally, Genstat does

these nested exits automatically, as required. However, inside a procedure, you can exit only

from FOR loops and block-if or multiple-selection structures that are within the procedure. You

EXIT 181

cannot put, for example,

EXIT [CONTROLSTRUCTURE=if]

within a part of the procedure where there is no block-if in operation, and then expect Genstat

to exit both from the procedure and from a block-if structure in the outer program from which

the procedure was called. Genstat regards a procedure as a self-contained piece of program.

The NTIMES option indicates how many control structures of the specified type to exit from.

If you ask Genstat to exit from more structures than are currently in operation in your program,

it will exit from as many as it can and then print a warning. If NTIMES is set to zero or to missing

value no exit takes place. If NTIMES is set to a negative value, say �n, the exit is to the end of

the nth structure of the specified type, counting them in the order in which their execution began.

Consider this example:

FOR I=A[1...3]
 FOR J=B[1...3]
 FOR K=C[1...3]
 FOR L=D[1...3]
 "contents of the inner loop, including:"
 EXIT [NTIMES=Nexit]
 "amongst other statements"
 ENDFOR "end of the loop over D[]"
 ENDFOR "end of the loop over C[]"
 ENDFOR "end of the loop over B[]"
ENDFOR "end of the loop over A[]"

If the scalar Nexit has the value 2, the exit is to the end of the loop over C[]; so the two exits

are from the loop over D[] and the loop over C[]. But if Nexit has the value �2 the exit is to

the end of the loop over B[], as this is the second loop to have been started.

A further possibility when EXIT is used within a FOR loop is that you can choose either to go

right out of the loop and continue by executing the statement immediately after the ENDFOR

statement, or to go to ENDFOR and then repeat the loop with the next set of parameter values. To

repeat the loop, you need to set option REPEAT=yes. For example, suppose that variates Height

and Weight contain information about children of various ages, ranging from five to 11. The

RESTRICT statement causes the subsequent GRAPH statement to plot only those units of Height

and Weight where the variate Age equals Ageval. The EXIT statement ensures that the graph

is not plotted if there are no units of a particular age; the program then continues with Ageval

taking the next value in the list.

FOR Ageval=5,6,7,8,9,10,11
 RESTRICT Height,Weight; CONDITION=Age.EQ.Ageval
 EXIT [REPEAT=yes] NVALUES(Height).EQ.0
 GRAPH Height; X=Weight
ENDFOR

The REPEAT option can also be used within a procedures to ask Genstat to call the procedure

with the next set of parameter settings.

The example of the heights and weights of children also illustrates the use of the parameter

of EXIT, to make the effect conditional. The parameter is an expression which must evaluate to

a single number which Genstat interprets as a logical value. If the value is zero, the condition is

false and no exit takes place; for other values the condition is true and the exit takes effect as

specified. This is particularly useful for controlling the convergence of iterative processes: for

example

CALCULATE Clim = X/10000
FOR [NTIMES=999]
 CALCULATE Previous = Root
 & Root = (X/Previous + Previous)/2
 PRINT Root,Previous; DECIMALS=4
 EXIT ABS(Previous-Root) < Clim
ENDFOR

182 Directives in Release 22

will calculate the square root of X to four significant figures.

Options: NTIMES, CONTROLSTRUCTURE, REPEAT, EXPLANATION.

Parameter: unnamed.

See also

Directives: FOR, CASE, IF, FAULT, CALCULATE.

Genstat Reference Manual 1 Summary section on: Program control.

EXPRESSION 183

EXPRESSION

Declares one or more expression data structures.

Options

VALUE = expression Value for all the expressions; default *

MODIFY = string token Whether to modify (instead of redefining) existing

structures (yes, no); default no

IPRINT = string tokens Information to be used by default to identify the

expressions in output (identifier, extra); if this is

not set, they will be identified in the standard way for

each type of output

Parameters

IDENTIFIER = identifiers Identifiers of the expressions

VALUE = expression structures Expression data structures providing values for the

expressions

EXTRA = texts Extra texts associated with the identifiers

Description

The IDENTIFIER parameter lists the identifiers of the expressions that are to be declared. The

expression data structure stores a Genstat expression, for example

Hours = Minutes/60

Usually you will find it easiest to type out an expression like this explicitly whenever you need

it. The main use, then, for this rather specialized data structure is to supply an expression as the

argument of a procedure.

Values can be assigned to the expressions by either the VALUE option or the VALUE parameter.

The option defines a common value for all the structures in the declaration, while the parameter

allows the structures each to be given a different value. If both the option and the parameter are

specified, the parameter takes precedence.

You can associate a text of extra annotation with each expression using the EXTRA parameter.

If MODIFY is set to yes any existing attributes and values of the expressions are retained;

otherwise these are lost.

Here are two examples using the VALUE option:

EXPRESSION [VALUE=Length*Width*Height] Vcalc
EXPRESSION [VALUE=Dose=LOG10(Dose)] Dtrans

These put the expression Length*Width*Height into the identifier Vcalc, and the expression

Dose=LOG10(Dose) into Dtrans. Both expressions could be declared simultaneously, using

the VALUE parameter, by putting

EXPRESSION Vcalc,Dtrans; VALUE=!E(Length*Width*Height), \
 !E(Dose=LOG10(Dose))

!E(Length*Width*Height), for example, is an unnamed expression.

The IPRINT option can be set to specify how the expressions will be identified in output. If

IPRINT is not set, they will be identified in whatever way is usual for the section of output

concerned. For example, the PRINT directive generally uses their identifiers (although this can

be changed using the IPRINT option of PRINT itself).

Options: VALUE, MODIFY, IPRINT.

Parameters: IDENTIFIER, VALUE, EXTRA.

184 Directives in Release 22

See also

Directives: CALCULATE, FARGUMENTS, SETCALCULATE.

Procedure: DFUNCTION.

Genstat Reference Manual 1 Summary sections on: Data structures, Calculations and

manipulation.

EXTERNAL 185

EXTERNAL

Declares an external function in a DLL for use by the OWN function.

Options

LIBRARY = text Name of DLL file containing the function

Parameters

FUNCTION = text Name of the function entry point in the DLL

NAME = text Name for the function to be used in the OWN function;

default uses the name set in FUNCTION

RESULTS = string token The type of result returned from the function (summary,

transformation); default tran

NPARAMETERS = scalar The number of parameters in the function call; default 0

ERRORS = scalar or variate Error codes returned from the function; default * i.e. no

error codes

MESSAGES = text Messages for the corresponding error codes

Description

Genstat can execute external functions, stored in DLLs, using the OWN function. You first need

to create the DLLs by compiling Fortran or C programs. You can then use EXTERNAL to define

the link to Genstat. For example:

EXTERNAL [LIBRARY='CurveFuncs.dll'] FUNCTION='PCNORMAL'; NPAR=0
CALCULATE EX = OWN(X; 'PCNORMAL')
EXTERNAL [LIBRARY='CurveFuncs.dll'] FUNCTION='PEAKRISE'; NPAR=1
CALCULATE P = OWN(X; 'PEAKRISE'; 10)
EXTERNAL [LIBRARY='CurveFuncs.dll'] FUNCTION='HWA';\
 RESULTS=summary; NPAR=5
CALCULATE SS = OWN(X; 'HWA'; a; b; g; n; s)

defines three functions in CurveFuncs.dll and then uses these in calculations. The first two

return variates with the same length as the first argument X, and the third returns a scalar. The

functions have zero, one and five parameters respectively. The parameters in the OWN function

follow the data and name arguments, and must be scalars.

The LIBRARY option specifies the name of the file. If the full path to the DLL is not provided,

the user add-ins folder is searched first. If the file is not found there, the system add-ins folder

is searched. An FI 11 fault is generated if the file is not found.

The FUNCTION parameter gives the name of the entry point in the DLL for the function, and

is case insensitive. The entry point must be exported when the program library is compiled. For

example, in a C program the function declaration should contain __declspec(dllexport)

or its equivalent. If the function entry point is not found in the program library, an FI 12 fault

is generated. If you wish to refer to the function in the OWN function by a different name to its

entry-point name, you can define that name with the NAME parameter.

The RESULTS parameter indicates what type of result is returned: summary returns a scalar

and transformation (default) returns a structure of the same type and size as the first

argument.

The NPARAMETERS parameter defines the number of scalar parameters that follow the function

name in the OWN function. By default there are none.

The ERRORS, and MESSAGES parameters can be used to set up user-defined fault codes and

text for the corresponding error messages for the external functions. If you are using several

external functions in a program, you should use different error codes in the different functions,

unless the meaning of the code is common to all functions, as the error code/message table is

combined over all functions. This allows you to specify just one set of error codes/messages over

a set of functions in a library. So, for example, all functions could return a common code 9 if

186 Directives in Release 22

they run out of memory.

The function declaration in C takes the form:
long NAME(double* X, int* NX, double* P, int* NP, double* R, int* NR)

where

X is an array of the input data from the first argument in the OWN function,

NX is the number of elements in X,

P is a pointer to an array of the parameters in OWN function,

NP is the number of parameters,

R is a pointer to the array to hold the results, and

NR is the number of elements in the result array.

NR must be 1 if RESULTS = summary and NX otherwise. The passed array P is NP+1 long, and the

last element is the value that Genstat uses to represent a missing value. The function should return

zero if it completes successfully, and a positive error code if there is a fault. The error code will

be translated to the text in MESSAGES if the error code matches one set up by ERRORS.

For a Fortran program, the declaration would be:

INTEGER FUNCTION NAME(X,NX,P,NP,R,NR)
 INTEGER NX,NP,NR
 REAL*8 X(*),P(*),R(*)
 !DIR$ ATTRIBUTES REFERENCE X,NX,P,NP,R,NR

There are example programs in Fortran (OwnFunction.f90) and C (OwnFunction.c) in the

Genstat Source folder. These can be compiled to a DLL library using the appropriate compiler

and linker settings. A DLL created from these (OwnFunction.dll) is included in the Genstat

system AddIns folder should you want to test this. The function OwnFunction in this DLL

calculates the sine of an argument in degrees rather than the usual radians in the standard SIN

function. Note, however that these simple examples do not test for missing values in the input

data.

Any numeric structure (scalar, variate, matrix, symmetric matrix or diagonal matrix) can be

passed to the OWN function and, when RESULTS = transformation, the returned result will be

the same type and size of structure (e.g. passing a 3 by 4 matrix will return a 3 by 4 matrix). If you

need to pass multiple variates to the function, these could be stacked by the APPEND procedure,

and the number of variates could be passed as a parameter. Within the function you would extract

the stacked values back into 3 arrays and process these individually. If a single variate is to be

returned, you would set just the first NX values in R, and then use its first NX values in Genstat to

create the resulting variate. For example:

EXTERNAL [LIBRARY=VarFunc.dll] FUNCTION='XYZFUNC'; NPAR=1
APPEND [V3] X,Y,Z
CALCULATE V = OWN(V3; 'XYZFUNC'; 3)
CALCULATE N = NVALUES(X)
CALCULATE R = V$[!(1...N)]

Option: LIBRARY.

Parameters: FUNCTION, NAME, RESULTS, NPARAMETERS, ERRORS, MESSAGES.

See also

Directives: CALCULATE, PASS, SUSPEND, OWN.

Functions: OWN .

Genstat Reference Manual 1 Summary section on: Calculations and manipulation.

FACROTATE 187

FACROTATE

Rotates factor loadings from a principal components, canonical variates or factor analysis.

Options

PRINT = string tokens Printed output required (communalities, loadings,

orthogonalrotationmatrix, rotation); default *

i.e. no printing

METHOD = string token Criterion (varimax, quartimax); default vari

NROOTS = scalar Sets the number of dimensions to rotate from the

original loadings; default * i.e. all

Parameters

OLDLOADINGS = matrices Original loadings

NEWLOADINGS = matrices Rotated loadings for each set of OLDLOADINGS

COMMUNALITIES = matrices Communalities of the variables in each rotation

ROTATION = matrices Saves the orthogonal rotation from the original solution

to the rotated space

Description

FACROTATE rotates factor loadings from a principal components, canonical variates or factor

analysis (see the PCP, CVA and FCA directives, respectively). The first parameter, OLDLOADINGS,

specifies a list of matrices, that contain the loadings for the original dimensions. These can be

obtained from the first element of the LRV structures, that can be saved by the LRV parameter

of PCP, CVA and FCA. The matrices to save the new loadings are specified by the NEWLOADINGS

parameter. The ROTATION parameter can save the orthogonal rotations from the original

solutions to the rotated spaces.

Principal components and canonical variates and factor analyses all define a set of dimensions

(sometimes called axes) that are linear combinations of the original variables. The individual

coefficients of these combinations are called loadings, and can be used to interpret the

dimensions. With principal components analysis, the loadings must lie in the range [�1, +1]; this

is the situation that we discuss initially. The situation with canonical variates and factor analysis

is slightly different and is described later.

When several dimensions are considered it is possible to define an equivalent set of new

dimensions, whose loadings are linear combinations of the original loadings. If the absolute

values of the loadings for a new dimension are either close to 0 or close to 1, you can interpret

the dimension as mainly representing only those original variables with large positive (or

negative) loadings. You may sometimes want new dimensions determined by loadings like these,

because they are easier to interpret. The methods by which these new dimensions can be

obtained are generally known collectively as factor rotation because the new dimensions

represent a rotation of the axes of the original dimensions. The FACROTATE directive provides

two methods of orthogonal factor rotation: varimax rotation and quartimax rotation (Cooley &

Lohnes 1971). The default method, varimax rotation, maximizes the variance of the squares of

the loadings within each new dimension: the effect of this rotation should be to spread out the

squared-loadings to the extremes of their range. Quartimax rotation uses the fourth power of the

loadings instead of the second power.

Under either method of factor rotation, the total contribution of each of the original variables

always remains the same as in the input set of loadings (for mathematical reasons). These

contributions are called the communalities of the variables, and can be expressed as the sum of

the squared loadings: they indicate how much of the variation of each of the original variables

is retained in either set of dimensions (whether the original set from the principal component

analysis, or the new set from the rotation). They can be saved using the COMMUNALITIES

188 Directives in Release 22

parameter. If you keep all the loadings from a principal components analysis, each of the

variables will have communality 1. Factor rotation in this case will simply give a set of new

loadings, each of which will represent just one of the variables, with loading 1. Thus factor

rotation is sensible only if you keep merely the higher-dimensional loadings.

The loadings from canonical variates analysis are not constrained to lie in the range [�1, +1].

The factor rotation methods operate in a similar manner as for principal component loadings.

Again, the objective is to obtain loading values, such that each is either relatively small or

relatively large. Also the communalities of the variables remain the same in the rotated loadings

as in the original loadings, and the new loadings are obtained as an orthogonal rotation of the old

loadings. However, the complete set of loadings can generally be retained from canonical variate

analysis and used for factor rotation, without giving meaningless results. This is because the

original dimensions from the canonical variates analysis do not contain all the dimensionality

of the original variables, unless the number of variables is less than the number of groups. So a

factor rotation of all the dimensions will not merely recover the original variables, as would

happen with loadings from principal components analysis. Likewise, loadings from the full set

of available dimensions in a factor analysis can be also be retained for rotation without

recovering the original variables.

Printed output is controlled by the PRINT option, with the following settings:

communalities to print the communalities;

loadings to print the rotated loadings, under the caption "Rotated

factors";
orthogonalrotationmatrix

to print the rotation matrix;

rotation this is the original setting used to print the rotated

loadings. It is retained as a synonym of loadings to allow

earlier programs to run. However, in view of the confusion

with the ROTATION parameter, it may be deleted in a

future release.

By default, nothing is printed.

The NROOTS option sets the number of dimensions to rotate from the original loadings (the

other dimensions are left unchanged). The default is to rotate them all.

Options: PRINT, METHOD, NROOTS.

Parameters: OLDLOADINGS, NEWLOADINGS, COMMUNALITIES, ROTATION.

Reference

Cooley, W.W. & Lohnes, P.R. (1971). Multivariate Data Analysis. Wiley, New York.

See also

Directives: CVA, FCA, PCP, ROTATE.

Procedures: GENPROCRUSTES, PCOPROCRUSTES.

Genstat Reference Manual 1 Summary section on: Multivariate and cluster analysis.

FACTOR 189

FACTOR

Declares one or more factor data structures.

Options

NVALUES = scalar or vector Number of units, or vector of labels; default * takes the

setting from the preceding UNITS statement, if any

LEVELS = scalar or vector Number of levels, or series of numbers which will be

used to refer to levels in the program; default *

VALUES = numbers Values for all the factors, given as levels; default *

LABELS = text Labels for levels, for input and output; default *

MODIFY = string token Whether to modify (instead of redefining) existing

structures (yes, no); default no

REFERENCELEVEL = scalar Defines the reference level used e.g. to define the

parameterization of regression models

IPRINT = string tokens Information to be used by default to identify the factors

in output (identifier, extra); if this is not set, they

will be identified in the standard way for each type of

output

Parameters

IDENTIFIER = identifiers Identifiers of the factors

VALUES = identifiers Values for each factor, specified as levels or labels

DECIMALS = scalars Number of decimals for printing levels

CHARACTERS = scalars Number of characters for printing labels

EXTRA = texts Extra text associated with each identifier

DREPRESENTATION = scalars or texts

Default format to use when the contents represent dates

and times

Description

Factors are used to indicate groupings of units. The commonest occurrence is in designed

experiments. For example, suppose you had 12 observations in an experiment, the first four on

one treatment, the next four on a second treatment, and the last four on a third. Then you could

record which treatment went with which observation by declaring a factor with the values

1,1,1,1,2,2,2,2,3,3,3,3

Thus a factor is a vector that has only a limited set of possible values, one for each group; this

limitation distinguishes factors from variates and texts. In Genstat, the groups are referred to by

numbers known as levels. Unless otherwise specified these are the integers 1 up to the number

of groups, as in our example; however, you can specify any other numbers by the LEVELS option

of the FACTOR directive. You can also give textual labels to the groups, using the LABELS option

of FACTOR: these might, for example, be mnemonics for the biochemical names of treatments

in an experiment.

Use of the VALUES parameter to assign values has the advantage that you can refer either to

labels or to levels; the VALUES option lets you refer only to levels. So, to summarize, the LEVELS

and LABELS options list the groups that can occur, while the VALUES option or parameter

specifies which groups actually do occur, and in what pattern over the units.

Our simple explanatory example would therefore be:

FACTOR [LEVELS=3; VALUES=4(1...3)] Treatment

Other examples are:

FACTOR [LEVELS=!(2,4,8,16); VALUES=8,4,2,16,4,2,16,8,2] Dose

190 Directives in Release 22

FACTOR [LABELS=!T(male,female)] Sex;VALUES=!T(4(male,female))
FACTOR [LEVELS=!(0,2.5,5); LABELS=!T(none,standard,double)]\
 Rate; VALUES=!(0,5,2.5,5,0,2.5)

Notice that if we had assigned the values using the VALUES option in the second of these, we

would have needed to use the (numerical) levels:

FACTOR [LABELS=!T(male,female); VALUES=4(1,2)] Sex

Conversely, in the VALUES parameter in the declaration of Rate, we can use either the labels or

the levels; so the following statement gives Rate exactly the same values:

FACTOR [LEVELS=!(0,2.5,5); LABELS=!T(none,standard,double)]\
 Rate; VALUES=!T(none,double,standard,double,none,standard)

The DECIMALS parameter allows you to define a number of decimal places to be used by

default when the levels of each factor are printed. The CHARACTERS parameter allows you to

define the number of characters to be printed by default when the labels of each factor are

printed. You can associate a text of extra annotation with each factor using the EXTRA parameter.

The DREPRESENTATION parameter allows a scalar or a single-valued text to be specified for

each factor to indicate that the factor stores dates and times, and to define a format to be used

for these, by default, when they are printed; details are given in the description of the PRINT

directive.

In some contexts Genstat needs to treat one of the levels of a factor as a reference level. For

example, in regression with groups, the parameterization used by Genstat usually involves

comparisons of the second and subsequent levels of the grouping factor with its first level. This

can be changed by setting the REFERENCELEVEL option to a level other than the first level when

the grouping factor is declared.

If the MODIFY option is set to yes any existing attributes and values of the factors are retained

if still appropriate; otherwise these are lost.

The IPRINT option can be set to specify how the factors will be identified in output. If

IPRINT is not set, they will be identified in whatever way is usual for the section of output

concerned. For example, the PRINT directive generally uses their identifiers (although this can

be changed using the IPRINT option of PRINT itself).

Options: NVALUES, LEVELS, VALUES, LABELS, MODIFY, REFERENCELEVEL, IPRINT.

Parameters: IDENTIFIER, VALUES, DECIMALS, CHARACTERS, EXTRA, DREPRESENTATION.

See also

Directives: GENERATE, GROUPS, VARIATE, TEXT, UNITS.

Procedures: FACAMEND, FACDIVIDE, FACEXCLUDEUNUSED, FACGETLABELS, FACPRODUCT,

FACSORT, FACLEVSTANDARDIZE, FACUNIQUE, FMFACTORS, FFREERESPONSEFACTOR,

FACCOMBINATIONS, PFACLEVELS, QFACTOR.

Genstat Reference Manual 1 Summary section on: Data structures.

FARGUMENTS 191

FARGUMENTS

Forms lists of arguments involved in an expression.

Options

EXPRESSION = expression structure

Expression whose arguments are required

NRESULTS = scalar Number of results generated by the expression

NCALCULATIONS = scalar Number of calculations in the expression

Parameters

ICALCULATION = scalars The calculation from which to save the result and

arguments

RESULT = dummies Stores the result structure for calculation
ICALCULATION

ARGUMENTS = pointers Stores the arguments in calculation ICALCULATION

Description

The FARGUMENTS directive allows you to access the data structures involved in a Genstat

expression. For example, the expression

P = R / N

defines a calculation involving the data structures R and N, and stores the results in the data

structure P. An expression can contain lists, to define several calculations. For example,

P1,P2 = R1,R2 / N1,N2

has two results, P1 and P2, that are calculated as R1/N1 and R2/N2 respectively. Some

expressions may have no results, for example

LOG(P1/(1-P1))

This could then be used as part of a CALCULATE statement, as in the following program

EXPRESSION [VALUE=LOG(P1/(1-P1))] Transformation
CALCULATE Y = #Transformation

If you are writing a procedure that takes an expression as one of its inputs, you may want to

know what results it is generating and what data structures it is using to calculate them. The

FARGUMENTS allows you to find this out.

The expression to study is specified by the EXPRESSION option. The NRESULTS option can

save the number of results, and the NCALCULATIONS option can save the number of calculations.

The parameters of FARGUMENTS allow you to save information about each of the calculations

in the expression: the ICALCULATION parameter specifies the number of the calculation, the

RESULT parameter can specify a dummy to be set to the structure that is given the result, and the

ARGUMENTS parameter can specify a pointer to save the arguments.

Options: EXPRESSION, NRESULTS, NCALCULATIONS.

Parameters: ICALCULATION, RESULT, ARGUMENTS.

See also

Directives: EXPRESSION, DUMMY, POINTER, SCALAR, FCLASSIFICATION.

Genstat Reference Manual 1 Summary section on: Calculations and manipulation.

192 Directives in Release 22

FAULT

Checks whether to issue a diagnostic, i.e. a fault, warning or message.

Options

DIAGNOSTIC = string token Severity of the diagnostic (fault, warning, message);

default faul

FAULT = text Diagnostic code; default 'UF 1' for fault, 'UF 2' for

warning

EXPLANATION = text Explanatory information

Parameter

expression Logical expression to test whether or not to give the

diagnostic

Description

FAULT can be used to generate a Genstat fault, warning or message, as requested by the

DIAGNOSTIC option. The diagnostic is printed in the standard Genstat format. So, for example,

faults and warnings are recognised by Genstat for Windows, and added to the Event Log. Also,

the diagnostic will be suppressed (like those from Genstat directives) if that has been requested

by the DIAGNOSTICS option of the SET directive.

There is a single parameter, which supplies a logical expression to decide whether or not to

give the diagnostic; if this is omitted, the diagnostic is always given. The FAULT option defines

the code to identify a fault or warning; this has a default of 'UF 1' for a fault and 'UF 2' for

a warning. (Messages always begin with the standard prefix "Message: ".) The EXPLANATION

option allows you to supply some explanatory information.

FAULT is particularly useful in procedures. For example, in a regression procedure, you might

put

FAULT [DIAGNOSTIC=fault; FAULT='VA 6';\
 EXPLANATION='Y-variate must contain at least 2 values']\
 NOBSERVATIONS(Y) < 2

Then, if the y-variate has less than two non-missing values, Genstat will give a "VA 6" fault, and

execution of the procedure will stop. The available Genstat faults are listed in the on-line help.

Options: DIAGNOSTIC, FAULT, EXPLANATION.

Parameter: unnamed.

See also

Directives: DISPLAY, EXIT, PROCEDURE, CALCULATE.

Genstat Reference Manual 1 Summary section on: Program control.

FCA 193

FCA

Performs factor analysis.

Options

PRINT = string tokens Printed output required (communalities, loadings,

coefficients, scores, residuals, cresiduals,

vresiduals, tests); default * i.e. no printing

NDIMENSIONS = scalar Number of factors to fit; no default, must be specified

METHOD = string token Whether to use correlations or variances and covariances

(correlation, vcovariance,

variancecovariance); default vcov

MAXCYCLE = scalar Maximum number of iterations; default 50

TOLERANCE = scalar Minimum value to assume for the unique component øi
2

of each observed variable; default 10�6

Parameters

DATA = pointers or matrices or symmetric matrices or SSPMs

Pointer of variates forming the data matrix, or matrix

storing the variate values by columns, or symmetric

matrix storing their variances and covariances, or SSPM

giving their sums of squares and products

NUNITS = scalars When DATA is set to a symmetric matrix of variances

and covariances, NUNITS must specify the number of

units from which they were calculated if tests are

required

LRV = LRVs Saves the loadings, latent roots and trace from each

analysis

SSPM = SSPMs Saves the SSPM formed from a DATA matrix or pointer

COMMUNALITIES = variates Saves the communalities

COEFFICIENTS = matrices Saves the factor score coefficients

SCORES = matrices or pointers Saves the factor analysis scores

RESIDUALS = matrices or pointers Saves residuals from the dimensions fitted in the

analysis

CRESIDUALS = symmetric matrices Saves the residual correlation or covariance matrix

VRESIDUALS = variates Saves the residual variances

Description

Factor analysis aims to find a set of "latent" (or unobservable) variables {z1...zk} that account for

the variances and covariances S between a set of p observed variables {x1...xp}. In the

terminology of factor analysis, the latent variables {zi} are known as factors. However, they are

continuous variables, and thus are represented in Genstat by variate rather than by factor data

structures. So to avoid confusion, when we refer to the latent variables below, factor will be

printed in italic font.

The data for a factor analysis consists of observed measurements on the variables {xi} made

on a set of subjects. The assumption is that, for each subject, the values of the observed variables

are related to the factors by a linear model

x = ì + Ã z + å

where x is the vector of observed variables,

z is the vector of factors,

ì is a vector of means for the observed variables,

Ã is a matrix of loadings defining the relationship between observed and latent variables,

194 Directives in Release 22

and

å is a vector of residuals.

The elements of the residual vector å are assumed to have mean zero and to be uncorrelated, i.e.

the dispersion matrix of å is assumed to be diagonal

cov(å) = Ø = diag(ø1
2, ... øp

2)

(They thus differ from the residuals formed in a principal components analysis, which will be

correlated; see e.g. Krzanowski 1988 Section 16.2 for more details). The factors themselves are

assumed to have variance one and to be uncorrelated, i.e.

cov(z) = I.

So the correlations between the observed variables {xi} arise only through their relations with

the factors, and not because of any correlation between the residuals or between the factors.

The DATA parameter specifies the data for the factor analysis. You can supply either a pointer

containing a set of variates, one for each observed variable {xi}, or a matrix storing the observed

variables by columns, or a symmetric matrix containing variances and covariances between the

variables, or an SSPM structure (formed using FSSPM from the variates of observed

measurements). When DATA specifies a symmetric matrix of variances and covariances, you

must also set the NUNITS parameter to specify the number of units from which they were

calculated if you want FCA to print tests.

The METHOD option has settings vcovariance (with synonym variancecovariance) and

correlation, to control whether FCA forms a matrix of variances and covariances or a matrix

of correlations for the analysis. The same factors will be obtained if you use a correlation matrix,

but the loadings will be scaled to be between zero and one. The number of factors, q, to fit must

be specified by the NDIMENSIONS option. Arising from the numbers of parameters in the model

(see Krzanowski 1988 Section 16.2.2) this is subject to the constraint

(p � q)2 	 p + q.

The PRINT option controls printed output, with settings:

communalities the proportion of variation explained by the factors for

each observed variable, (var(xi) � øi
2) / var(xi);

loadings the matrix of factor loadings Ã;

coefficients the factor score coefficients;

scores the factor scores calculated from the model for each

subject;

residuals the vectors of residuals å,

cresiduals the residual correlation or covariance matrix i.e. a

symmetric matrix showing the amount of unexplained

correlation or covariance between each pair of variables;

vresiduals the residual variances; and

tests a chi-square goodness of fit test for the model.

By default nothing is printed. Note, however, that scores and residuals cannot be produced when

DATA is set to a symmetric matrix of variances and covariances.

The communalities, factor coefficients, scores, residuals, residual correlations or covariances

and residual variances can also be saved using the COMMUNALITIES, COEFFICIENTS, SCORES,

RESIDUALS, CRESIDUALS and VRESIDUALS parameters, respectively. The LRV parameter

allows an LRV structure to be saved, with the loadings in the ['vectors'] component, and the

eigenvalues of the matrix Ø�½ S Ø
�½ in the ['roots'] component; the loadings are scaled

eigenvectors of Ø�½ S Ø
�½. (Remember, S is the matrix of variances and covariances of the

observed variables {xi}.) The SSPM parameter can save the SSPM structure constructed from a

DATA pointer for the analysis. A particularly convenient instance is when you have supplied an

SSPM structure as input but, for example, have set METHOD=correlation: the SSPM that is

saved will then contain correlations instead of sums of squares and products.

FCA 195

Options: PRINT, NDIMENSIONS, METHOD, MAXCYCLE, TOLERANCE.

Parameters: DATA, NUNITS, LRV, SSPM, COMMUNALITIES, COEFFICIENTS, SCORES,

RESIDUALS, CRESIDUALS, VRESIDUALS.

Method

FCA estimates the parameters of the model by maximum likelihood, assuming multivariate

Normality, using subroutines G03CAF and G03CCF from the NAG Library. The MAXCYCLE

option sets a limit on the number of iterations (default 50). The TOLERANCE option specifies the

minimum value to assume for the unique component øi
2 of each observed variable so that the

communality is always less than one; the default is 10�6.

Action with RESTRICT

If any of the variates in a DATA pointer is restricted, only the defined subset of the units will be

used in the analysis.

References

Krzanowski, W.J. (1988). Principles of Multivariate Analysis: a User's Perspective. Oxford

University Press, Oxford.

See also

Directives: CVA, MDS, PCO, PCP, ROTATE, SSPM.

Procedures: LRVSCREE, DMST, PLS, RIDGE.

Genstat Reference Manual 1 Summary section on: Multivariate and cluster analysis.

196 Directives in Release 22

FCLASSIFICATION

Forms a classification set for each term in a formula, breaks a formula up into separate

formulae (one for each term), and applies a limit to the number of factors and variates in the

terms of a formula.

Options

FACTORIAL = scalar Limit on the number of factors and variates in each term;

default * i.e. no limit

NTERMS = scalar Outputs the number of terms in the formula

CLASSIFICATION = pointer Saves a list of all the factors and variates in the TERMS

formula

OUTFORMULA = formula structure Identifier of a formula to store a new formula, omitting

terms with too many factors and variates

INCLUDEFUNCTIONS = string token

Whether to include functions in the formulae saved by

the OUTFORMULA option or the OUTTERMS parameter

(yes, no); default no

REORDER = string token When to reorder the terms in the model (always,

standard, never); default stan

DROPTERMS = string token Whether to include only terms that can be dropped

individually from the formula (yes, no); default no

CHECKFUNCTIONS = scalar Indicator, set to one if the TERMS formula contains any

functions, and zero if it contains none

FUNCTIONDEFINITIONS = pointer Saves details of the functions defined for each factor and

variate in the TERMS formula

EXCLUDEPSEUDOTERMS = string token

Whether to omit pseudo-terms from the number of terms

and the formulae saved by the OUTFORMULA option and

OUTTERMS parameter (yes, no); default no

Parameters

TERMS = formula Formula from which the classification sets, individual

model terms and so on are to be formed

CLASSIFICATION = pointers Identifiers for pointers to store the factors and variates

composing each model term of the TERMS formula

OUTTERMS = formula structures Identifiers for formulae to store each individual term of

the TERMS formula

MAINTERMS = formula structures Identifiers for formulae to store the main term for each

individual term of the TERMS formula

Description

If you are writing procedures, for example for statistical analyses, the model to be fitted will

often be specified by a Genstat formula structure. Unless the algorithm within the procedure

merely involves straightforward use of one of Genstat's statistical directives, you may wish to

know more about the formula: how many model terms does it contain, which factors do they

involve, and so on. The FCLASSIFICATION directive is designed to provide the answers to these

questions. The formula is specified using the TERMS parameter.

When Genstat uses a formula in a statistical analysis, it is expanded into a series of model

terms, linked by the operator +. FCLASSIFICATION allows you to save this expanded form, in

another formula, using the OUTFORMULA option.

You can use the FACTORIAL option to apply a limit to the number of factors and variates in

FCLASSIFICATION 197

the resulting terms, similarly to the FACTORIAL option in the ANOVA, FIT or REML directives.

The number of terms in the formula can be saved (in a scalar) using the NTERMS option, and a

list of the factors and variates that occur in the formula can be saved (in a pointer) using the

CLASSIFICATION option.

The other parameters allow you to save information about the individual model terms in the

formula. The identifiers in the lists that they specify are taken in parallel with the model terms

in the expanded form of the formula. For each model term, the corresponding identifier in the

list for the CLASSIFICATION parameter is defined as a pointer storing the factors that occur in

the term. The identifier in the OUTTERMS list is defined as a formula containing just that model

term.

The MAINTERMS parameter is useful if the formula contains pseudo-factors. Its identifiers save

formula structures containing the "main term" for each of the model terms. If the term is a

pseudo-term, this will be the model term to which the pseudo-term is linked. Otherwise, it will

be the term itself. For example, in the model

Variety//(A+B)

in Example 4.7.3c in the Guide to Genstat, Part 2 Statistics, there are two pseudo-terms, A and

B, with Variety as their main term.

You can set option EXCLUDEPSEUDOTERMS = yes to omit pseudo-terms from the saved

information (number of terms, OUTFORMULA or OUTTERMS).

By default any functions such as POL or REG are omitted from the formulae saved by

OUTFORMULA or OUTTERMS, but these will be included if you set option

INCLUDEFUNCTIONS=yes. The CHECKFUNCTIONS option allows you to save a scalar containing

one if the TERMS formula contains any functions, and zero if it does not.

The FUNCTIONDEFINITIONS option allows you to obtain details of the functions. This saves

a pointer which contains a pointer for each factor and variate in the formula (in the same order

as in the CLASSIFICATION pointer). If the factor or variate has no function, its pointer contains

just a text with a single missing value (''). Otherwise the first element of the pointer is a text

containing the name of the function (either 'POL', 'POLND', 'REG', 'REGND', 'COMP',

'SSPLINE' or 'LOESS'). It then contains elements to store the second and subsequent

arguments of the function (if any).

Model terms involving several factors are regarded by Genstat as representing all the joint

effects of these factors that are not removed by earlier terms in the formula. So, in the formula

A + B + A.B

A.B is the interaction of factors A and B, as both main effects occur earlier in the formula.

Alternatively, in the formula

A.B + A + B

A.B still represents all the joint effects of factors A and B, and the later terms A and B are

redundant as they are now "contained" in A.B. Thus FCLASSIFICATION usually deletes any

term in the model that is contained in an earlier term. However, if you set option

REORDER=always, the model is reordered after applying any operator (including plus). The

reordering arranges the terms so that they contain increasing numbers of identifiers. Terms with

the same number of identifiers are then put into lexicographical order with respect to the order

in which the identifiers first occurred in the formula itself. Each term will therefore come before

any term that would contain it. So the model would again be

A + B + A.B

The default setting, REORDER=standard, applies the standard Genstat rules, which reorder the

terms only after a dot, slash or star operator. The final setting REORDER=never specifies that

no reordering should take place. (Before Release 19.2, the ORTHOGONAL option had settings no

and yes, corresponding to standard and always. Options and parameters with settings yes

and no should not have any other settings. So these were renamed in Release 19.2, when the

198 Directives in Release 22

setting never was added. However, no and yes are retained as synonyms, so that earlier

programs will still run.)

The rules about terms that contain other terms are also relevant when you are dropping terms

from a model, for example in a regression analysis. You cannot drop a term, for example using

the DROP directive, until all the terms that contain it have been dropped. To simplify the process,

if you set option DROPTERMS=yes, the formulae saved by OUTFORMULA or OUTTERMS will

contain only terms that are not contained in any other terms (i.e. only the terms that can be

dropped).

Options: FACTORIAL, NTERMS, CLASSIFICATION, OUTFORMULA, INCLUDEFUNCTIONS,

REORDER , DROPTERMS , CHECKFUNCTIONS , FUNCTIONDEFINITIONS ,

EXCLUDEPSEUDOTERMS.

Parameters: TERMS, CLASSIFICATION, OUTTERMS, MAINTERMS.

See also

Directives: FORMULA, FARGUMENTS, REFORMULATE, SETCALCULATE, SETRELATE,

SET2FORMULA.

Genstat Reference Manual 1 Summary section on: Calculations and manipulation.

FCOPY 199

FCOPY

Makes copies of files.

No options

Parameters

OLD = texts Name of each file to copy

NEW = texts Name for the new copy of each file

OVERWRITE = string tokens Whether to overwrite any existing files (yes, no);

default no

Description

FCOPY allows you to make a copy of an external file. The names of the original files are

specified, in texts, but the OLD parameter. The file names for the copies are specified by the NEW

parameter. If no path is included in the file name, it is assumed to be in the current working

directory (which can be defined by the WORKINGDIRECTORY option of the SET directory). If you

need to define the path, remember that the character \ is the continuation symbol in Genstat. So

this character needs to be duplicated in a string to avoid Genstat interpreting it as a continuation:

for example

FCOPY 'Today.Dat'; NEW='D:\\April\\18.dat'

copies the file Today.dat to the file 18.dat in the directory (or folder) D:\April. As a more

convenient alternative, the PC version of Genstat allows you to use / instead: i.e. you could put

FCOPY 'Today.Dat'; NEW='D:/April/18.dat'

By default FCOPY gives a fault if the new file already exists, but you can set parameter

OVERWRITE=yes to overwrite it.

Options: none.

Parameters: OLD, NEW, OVERWRITE.

See also

Directives: FDELETE, FRENAME, CLOSE, ENQUIRE, OPEN.

Genstat Reference Manual 1 Summary section on: Input and output.

200 Directives in Release 22

FCOVARIOGRAM

Forms a covariogram structure containing auto-variograms of individual variates and cross-

variograms for pairs from a list of variates.

Options

PRINT = string token Controls printed output (statistics, variograms,

autovariograms); default stat

METHOD = string token Specifies what to do when the measurements are not all

made at the same locations (allwithcrossnugget,

allnocrossnugget, commonpoints); default comm

COVARIOGRAM = pointer Pointer to store the variograms, cross-variograms and

associated information for use in MCOVARIOGRAM

MAXLAG = scalar Maximum lag in all directions

STEPLENGTHS = scalar or variate Length of the step or steps in which lag is incremented

DIRECTIONS = scalar or variates Directions along which to form the variogram, scalar for

a single direction in 2 dimensions, variate for several

directions in 2 dimensions, and pairs of variates for 3

dimensional data

SEGMENTS = scalar Angle subtended by each segment along the
DIRECTIONS

COORDSYSTEM = string token Coordinate system used for the geometry for discretizing

the lag (mathematical, geographical); default math

MAXCONEDIAMETER = scalar Diameter at which the segments over which averaging is

to be done should cease to expand; default * implies no

limit

MINCOUNT = scalar Minimum number of points required at a particular lag

point for the cross-variogram to be estimated there;

default 1

DRIFT = string token Mean function (constant, linear, quadratic);

default cons

Parameters

DATA = variates Measurements as a variate

X1 = variates Locations of each set of measurements in the first

dimension

X2 = variates Locations of each set of measurements in the second

dimension (if recorded in more than 1 dimension)

X3 = variates Locations of each set of measurements in the third

dimension (if recorded in 3 dimensions)

Description

The FCOVARIOGRAM directive forms a covariogram structure containing auto- and cross-

variograms for pairs from a list of variates.

The data are supplied as a list of variates using the DATA parameter, where each variate

contains the measurements for each variable. The locations of the measurements are supplied

using parameters X1, X2 (for two or three dimensions) and X3 (for three dimensions) parameters.

The METHOD option specifies how to calculate the cross-variograms. The setting

commonpoints specifies that only those points observed in common in every sample are to be

included; the method described in Section 8.3.4 of Part 2 of the Guide to the Genstat Command

Language are then used. Alternatively, the setting allnocrossnugget can be used when the

sampling locations do not match. This uses an algorithm outlined in Künsch, Papritz & Bassi

FCOVARIOGRAM 201

(1997) that performs least-squares fitting of the cloud of products of differences to estimate the

expected value of these products. If there are no common points, the nugget variance cannot be

calculated. However, if there is partial sampling (i.e. some common points), the setting

allwithcrossnugget can be used to shift the cross-variograms by the semivariance at the

origin to estimate the nugget effect.

The maximum lag distance in all directions to which the variograms are calculated is set by

the MAXLAG option. The increments in distance are set by the STEPLENGTH option, where you

can supply a scalar to define equally-spaced steps or a variate to specify the steps themselves.

The directions along which to form the variograms are supplied in degrees using the

DIRECTIONS option. The geometry used for the directions is given by the COORDSYSTEM option:

the setting mathematical specifies directions counter-clockwise from east, and

geographical specifies clockwise from north (for the first direction only in three dimensions).

Each direction is at the centre of an angular range. The angle is the same in every direction, and

is defined by the SEGMENTS option. For a single direction in two dimensions the DIRECTIONS

option should be set to a scalar, while for several directions it should be set to a variate. For

directions in three dimensions, DIRECTIONS should specify a pair of variates. The

MAXCONEDIATMETER option can be used to specify a diameter at which the segments cease to

expand. For cross-variograms that are formed using all points the minimum number of points

required at each lag can be specified using the MINCOUNT option.

The DRIFT option can be used to calculate the variograms after removing a systematic

component. Setting the DRIFT option to linear or quadratic will fit a regression to the

observations and then form the variograms on the residuals.

The COVARIOGRAM option allows you to specify pointer to save the auto-variograms, cross-

variograms and associated information. Its elements contain:

1 a matrix with columns of variograms and cross-variograms and rows indexed by lags

within directions;

2 a variate of counts at the lags in each direction;

3 distances of the lags in each direction;

4 horizontal angles;

5 vertical angles;

6 variances;

7 distance classes;

8 method;

9 pointer containing identifiers of the DATA variates;

10 number of dimensions.

This structure provides the information required to fit models to the covariogram using the

directive MCOVARIOGRAM.

The PRINT option can be set to statistics to display statistics for each of the variates. The

setting variograms displays each of the auto- and cross-variograms, while the setting

autovariogram displays only the auto-variograms.

Options: PRINT, METHOD, COVARIOGRAM, MAXLAG, STEPLENGTHS, DIRECTIONS, SEGMENTS,

COORDSYSTEM, MAXCONEDIAMETER, MINCOUNT, DRIFT.

Parameters: DATA, X1, X2, X3.

Action with RESTRICT

Restrictions are ignored.

Reference

Künsch, H.R., Papritz, A. & Bassi, F. (1997) Generalized cross-covariances and their estimation.

Mathematical Geology, 29, 779-799.

202 Directives in Release 22

See also

Directives: MCOVARIOGRAM, COKRIGE, FVARIOGRAM, KRIGE.

Procedures: DCOVARIOGRAM, KCROSSVALIDATION, MVARIOGRAM, DVARIOGRAM,

DHSCATTERGRAM.

Genstat Reference Manual 1 Summary section on: Spatial statistics.

FDELETE 203

FDELETE

Deletes files.

No options

Parameter

NAME = texts Names of the files to delete

Description

FDELETE allows you to delete external file. The names of the files are specified, in texts. These

can include the wildcards * (to mean any sequence of characters) and ? (to mean any single

character). If no path is included in the file name, it is assumed to be in the current working

directory (which can be defined by the WORKINGDIRECTORY option of the SET directory). If you

need to define the path, remember that the character \ is the continuation symbol in Genstat. So

this character needs to be duplicated in a string to avoid Genstat interpreting it as a continuation:

for example

FDELETE 'D:\\Data\\Tempfile.dat'

deletes the file Tempfile.dat in the directory (or folder) D:\Data. As a more convenient

alternative, the PC version of Genstat allows you to use / instead: i.e. you could put

FDELETE 'D:/Data/Tempfile.dat'

Options: none.

Parameter: NAME.

See also

Directives: FCOPY, FRENAME, CLOSE, ENQUIRE, OPEN.

Genstat Reference Manual 1 Summary section on: Input and output.

204 Directives in Release 22

FILTER

Filters time series by time-series models (synonym of TFILTER).

Option

PRINT = string tokens What to print (series); default *

Parameters

OLDSERIES = variates Time series to be filtered

NEWSERIES = variates To save filtered series

FILTER = TSMs Models to filter with respect to

ARIMA = TSMs ARIMA models for time series

Description

FILTER was renamed as TFILTER in Release 14 to emphasize its status as a time-series

command. The earlier name (FILTER) was retained to allow previous programs to continue to

run, but this may be removed in a future release.

Filtering is a means of processing a time series so as to produce a new series. The purpose is

usually to reveal some features and remove other features of the original series. Filters in Genstat

are one-sided: that is, each value in the new series depends only on present and past values of

the original series. However, you can do two-sided filtering by using the SHIFT and REVERSE

functions of CALCULATE.

The OLDSERIES and NEWSERIES parameters of FILTER specify respectively the time series

to be filtered, and the series that result from filtering. A new series must not have the same

identifier as the series from which it was calculated. Genstat interprets any missing values in the

old series as zero. But if you use the ARIMA parameter (see below), Genstat replaces them by

interpolated values when it calculates the filtered series; the missing values remain in the old

series.

The FILTER parameter specifies the TSMs to be used for filtering. If the TSM is a transfer-

function model, the new series yt is calculated from the old series xt by

yt = { ù(B)Bb / ä(B)�d } xt.

The filter does not use the power transformation nor the reference constant. This lets you

apply a single filter conveniently to a set of time series, for which different transformations and

different constants might be appropriate. You can always use the CALCULATE directive to apply

a transformation to a series before using FILTER.

If the TSM is an ARIMA model, then the new series at is calculated from the old series yt by

at = { ö(B)�d / è(B)} yt.

Note that the TSM does not have to be the model appropriate for yt. Again, Genstat ignores the

parameters ë, c and óa
2; you can set them to 1,0,0, for example.

The ARIMA parameter specifies a time-series model for the old series. The purpose is to reduce

transient errors that arise in the early part of the new series: these arise because Genstat does not

know the values of the old series that came before those that have been supplied. If you do not

use this parameter, then Genstat takes these earlier values to be zero. This can cause

unacceptable transients which can only be partially removed by procedures such as mean-

correcting the old series. If you do use the ARIMA parameter, then Genstat uses the specified

model to estimate (or back-forecast) the values of the old series earlier than those that have been

supplied.

You do not have to have a good ARIMA model for the old series in order to achieve

worthwhile reductions in the transients. Thus a model with orders (0,1,1) and parameters

(1,0,0,0.7) would estimate the prior values to be constant, at a level that is a backward EWMA

of the early values of the series.

For a seasonal monthly time series, an appropriate ARIMA model could have orders

FILTER 205

(0,1,1,0,1,1,12) and parameters (1,0,0,0.7,0.7). However you must give the supplied model a

transformation parameter ë=1. Any other value for ë breaks the assumption of linearity that

underlies the calculations for correcting the transients. The constant term in the ARIMA model

can be non-zero, and should be if that is appropriate for the old series. Note that the ARIMA

model does not define the filter.

If you specify the ARIMA parameter, Genstat uses this model to interpolate any missing values

in the old series before it calculates the new series. Suppose for example that the filter is the

identity, defined by a transfer-function model with orders (0,0,0,0) and parameters (1,0,0); then

the new series will be the old series with any missing values replaced.

Option: PRINT.

Parameters: OLDSERIES, NEWSERIES, FILTER, ARIMA.

Action with RESTRICT

The OLDSERIES variate can be restricted, but this must be to a contiguous set of units.

See also

Directive: TFILTER.

Genstat Reference Manual 1 Summary section on: Time series.

206 Directives in Release 22

FIT

Fits a linear, generalized linear, generalized additive or generalized nonlinear model.

Options

PRINT = string tokens What to print (model, deviance, summary,

estimates, correlations, fittedvalues,

accumulated, monitoring, grid, confidence);

default mode, summ, esti or grid if NGRIDLINES is

set

CALCULATION = expression structures

Calculation of explanatory variates involving nonlinear

parameters

OWN = scalar Option setting for OWN directive if this is to be used

rather than CALCULATE to calculate explanatory variates

CONSTANT = string token How to treat the constant (estimate, omit, ignore);

default esti

FACTORIAL = scalar Limit for expansion of model terms; default as in

previous TERMS statement, or 3 if no TERMS given

POOL = string token Whether to pool ss in accumulated summary between all

terms fitted in a linear model (yes, no); default no

DENOMINATOR = string token Whether to base ratios in accumulated summary on rms

from model with smallest residual ss or smallest residual

ms (ss, ms); default ss

NOMESSAGE = string tokens Which warning messages to suppress (dispersion,

leverage, residual, aliasing, marginality ,

vertical, df, inflation); default *

FPROBABILITY = string token Printing of probabilities for variance and deviance ratios

(yes, no); default no

TPROBABILITY = string token Printing of probabilities for t-statistics (yes, no);

default no

SELECTION = string tokens Statistics to be displayed in the summary of analysis

produced by PRINT=summary, seobservations is

relevant only for a Normally distributed response, and

%cv only for a gamma-distributed response

(%variance, %ss, adjustedr2, r2,

seobservations, dispersion, %cv,

%meandeviance, %deviance, aic, bic, sic); default

%var, seob if DIST=normal, %cv if DIST=gamma, and

disp for other distributions

PROBABILITY = scalar Probability level for confidence intervals for parameter

estimates; default 0.95

NGRIDLINES = scalar Number of values of each nonlinear parameter for a grid

of function evaluations

SELINEAR = string token Whether to calculate s.e.s for linear parameters when

nonlinear parameters are also estimated (yes, no);

default no

INOWN = identifiers Setting to be used for the IN parameter of OWN if used to

calculate explanatory variates

OUTOWN = identifiers Setting to be used for the OUT parameter of OWN if used

to calculate explanatory variates

AOVDESCRIPTION = text Description for line in accumulated analysis of variance

FIT 207

(or deviance) table when POOL=yes

Parameter

formula List of explanatory variates and factors, or model

formula

Description

A FIT statement must always be preceded by a MODEL statement, though not necessarily

immediately. You can give several FIT statements after a single MODEL statement; for example,

to try out different explanatory variables.

The parameter of the FIT directive specifies the explanatory variables in the model. In simple

regression, it consists of the identifier of a single explanatory variate. If you omit the parameter,

Genstat fits a null model; that is, a model consisting of just one parameter, the overall mean. In

multiple regression the parameter consists of a list of explanatory variates, and factors may also

appear to include the main effects of qualitative explanatory variables.

More generally, the parameter may be in the form of a model formula, including interactions

between explanatory variables and functions of explanatory variables. The interaction between

two or more variates is interpreted as another variate formed from the product of the constituent

variates. The interaction between factors is interpreted as in the TREATMENTSTRUCTURE

directive; and in general the expansion of model formulae is controlled by the FACTORIAL

option in the same way as in the ANOVA directive. The interaction between a variate and a factor

represents differential responses for the variate at each level of the factor, and similarly if several

variates or factors are involved. A formula may also include POL, REG and COMPARISON

functions of variates or factors, representing polynomial contrasts (up to order 4), orthogonalized

regression or polynomial contrasts (up to order 8) and non-orthogonalized regression contrasts

(up to order 8) respectively. Variates may also appear in SSPLINE functions, representing cubic

smoothing spline effects with specified numbers of degrees of freedom or specified smoothing

parameters. Similarly, variates may appear in LOESS functions, representing smoothed effects

from locally weighted regressions. Multi-dimensional smoothing can be achieved by supplying

a pointer containing up to four variates as the first argument of LOESS. Models including such

terms are called additive or generalized additive models (Hastie & Tibshirani 1990). Smoothed

variates may also appear in interactions, where they represent the same effects as if the variate

did not appear in the SSPLINE function; the model then fits a common smooth effect in addition

to the usual linear effects for each combination of factor levels.

The CALCULATION option allows you to specify one or more expressions to be evaluated

before carrying out the linear or generalized linear fit. This is only done if an RCYCLE statement

has been given to list nonlinear parameters. The expressions can then make use of the current

values of the nonlinear parameters to derive components of the fitted model. At each stage of the

nonlinear search for the best estimates of these parameters, the linear or generalized linear model

is fitted after evaluating the expressions with the current values of these parameters. Models of

this kind are referred to as generalized nonlinear models (Lane 1996).

The PRINT option controls output. You can give several settings at the same time, to provide

reports on several aspects of the analysis. The model setting gives a description of the model,

including response and explanatory variates.

The output from the summary setting is a summary analysis of variance, or analysis of

deviance in generalized linear models. The summary includes F-probabilities if option

FPROBABILITY=yes, but the interpretation of these probabilities depends on the usual

assumptions of regression analysis, and they are only approximate in generalized linear models.

Following the analysis of variance further information is presented about the fit of the model,

the contents of which are controlled by the SELECTION option. By default, for models with the

Normal distribution, this consists of the percentage variance accounted for and the standard error

208 Directives in Release 22

of the observations. The Percentage variance accounted for is the adjusted R2 statistic, expressed

as a percentage: 100 × (1 � (Residual m.s.)/(Total m.s.)). The standard error of the observations

is estimated by the square root of the residual mean square. For the gamma distribution, the

default is to display the coefficient of variation instead, while for other distributions the default

is to display the dispersion. The setting aic presents the Akaike information criterion, and the

settings bic and sic are synonyms that present the Schwarz (Bayesian) information criterion

(see Koehler & Murphree 1988 for a comparison); the values calculated by Genstat omit some

constant terms that depend on the data rather than the model, so it is the differences between

values for different models that should be of interest rather than the absolute values. There may

also be messages in the output, produced as a result of several checks made by Genstat on the

adequacy of the model. Extreme residuals and leverage values are reported, and simple checks

are made on constancy of variance and systematic departure from the fitted model. You can

prevent these messages appearing by using the NOMESSAGE option. They will not appear in any

case if you have set option RMETHOD=* in the MODEL statement.

The estimates setting produces the estimates of parameters in the model. The standard

errors of the estimates are based by default on the residual mean square. Alternatively, you can

supply an estimate of variance by using the DISPERSION option of MODEL; if you do this,

Genstat will print a reminder about the basis of the standard errors. You can prevent this

reminder appearing by setting the NOMESSAGE option. T-statistics are also displayed, allowing

you to test whether each parameter differs significantly from zero, keeping the other parameters

fixed; these probabilities too depend on the usual assumptions of regression analysis. The

number of degrees of freedom for such a test appears in the column heading. If the estimate of

variance is supplied, then the "t-statistics" actually have a standard Normal distribution,

indicated by the column heading "t(*)". If the TPROBABILITY option is set, the corresponding

probabilities are displayed. You can also display confidence intervals for the parameters by

including the confidence setting. The probability value for the intervals is set by the

PROBABILITY option; default 0.95.

The variance inflation factor is calculated for each parameter, and a message is generated if

any is greater than 100, to warn that some explanatory terms are nearly aliased and that the

standard errors of their parameters are consequently inflated. The parameters involved in the

relationship are listed with the inflation factors. The variance inflation factor is defined to be the

current diagonal value of the inverse matrix (XTX)-1 corresponding to the parameter, multiplied

by the corrected sum of squares of the variate or dummy variate corresponding to the parameter.

This can be interpreted as the ratio of the variance of the parameter estimate in the current model

compared with that of the estimate in a model containing just that parameter and the constant.

The check will not be made if the current model contains any POL submodels, or any term

involving interaction between a variate and a factor, because the dummy variates generated to

represent these effects are very likely to be nearly aliased with each other. The check is also

omitted if the constant term is excluded from the model. When a generalized linear model is

fitted with a log or logit link function, the antilogs of the parameters are also displayed, to

summarize their multiplicative effects on the natural or odds scale respectively.

For a linear model with Normally distributed response, the accumulated setting displays an

analysis attributing the variance of the explanatory terms in the order in which they are given in

the parameter of FIT; no subdivision is available for generalized linear or nonlinear models

unless terms are explicitly added or dropped one at a time using further directives such as ADD,

DROP or SWITCH. The subdivision is also not made if the POOL option is set to yes. The

denominator of the ratios in the analysis can be controlled by setting the DENOMINATOR option.

The lines of the accumulated table are usually labelled by the names of the model terms that have

been added or dropped. When POOL=yes, however, this may become rather too long or

complicated, so you can then use the AOVDESCRIPTION option to supply your own description.

If you supply a null text (containing just a single, empty line), the line is omitted from the table.

FIT 209

The deviance setting produces an abbreviated summary of the analysis. The correlations

setting gives a correlation matrix of the parameter estimates. The fitted setting displays a table

of unit labels, values of response variate, fitted values, standardized residuals and leverages. The

monitoring setting reports the progress of any iterative search, as used in generalized linear,

additive and nonlinear models. Finally, the grid setting is relevant only for generalized

nonlinear models when the NGRIDLINES option is set, as in FITNONLINEAR.

The CONSTANT option controls whether the constant parameter is included in the model. In

simple linear regression, this parameter is the intercept, in other words the estimate of the

response variable when the explanatory variable is zero. In models containing factors, the

constant will be the parameter corresponding to the reference level of the factor or factors, and

the estimates printed for other levels will be differences between the parameter for those levels

and that for the reference level (for more details, see the Guide to the Genstat Command

Language, Part 2, Section 3.3.2). Consequently, the constant should then not be omitted unless

the FULL option of TERMS has been set to ensure that the model contains a parameter for every

level of the factor. If you set CONSTANT=omit for a model containing factors without setting

FULL=yes in TERMS, Genstat gives a failure diagnostic. The diagnostic can be suppressed by

setting CONSTANT=ignore instead, but this should be done only in special circumstances (as,

for example, inside the procedure HGANALYSE which fits hierarchical generalized linear models).

The NOMESSAGE option controls printing of messages. The aliasing setting suppresses

messages about aliasing of parameters, and the marginality setting suppresses reports of

violation of marginality principles when fitting interactions between explanatory variables. The

leverage setting prevents messages about large leverages, and residual prevents messages

about large residuals or non-constant variance or systematic pattern in the residuals. The

inflation setting suppresses messages about the variance inflation factor, and the

dispersion setting prevents reminders appearing about the basis of the standard errors (as can

be produced by the estimates setting of the PRINT option).

The OWN, INOWN and OUTOWN options are as in the FITNONLINEAR directive, and allow the

model calculations for a generalized nonlinear model to be specified in a lower-level language,

such as Fortran. The NGRIDLINES and SELINEAR options are also relevant to these models only,

and provide a grid of functions values and standard errors of linear parameters, respectively, as

in FITNONLINEAR.

After fitting a regression using FIT, the model can be modified using the ADD, DROP, STEP,

SWITCH and TRY directives, further output can be displayed using the RDISPLAY directive, and

results can be copied into Genstat data structures using the RKEEP directive. The fit can be

assessed graphically using the procedures RGRAPH and RCHECK.

Options: PRINT, CALCULATION, OWN, CONSTANT, FACTORIAL, POOL, DENOMINATOR,

NOMESSAGE, FPROBABILITY, TPROBABILITY, SELECTION, PROBABILITY, NGRIDLINES,

SELINEAR, INOWN, OUTOWN, AOVDESCRIPTION.

Parameter: unnamed.

Action with RESTRICT

You can restrict the units that Genstat will use for the regression by putting a restriction on any

of the vectors involved in the MODEL statement (response variates, weight variate, offset variate,

grouping factor or variate of binomial totals), or on any explanatory variate or factor. However,

you are not allowed to have different restrictions on the different vectors.

References

Hastie, T.J. & Tibshirani, R.J. (1990). Generalized Additive Models. Chapman and Hall, London.

Koehler, A.B. & Murphree, E.S. (1988). A comparison of the Akaike and Schwarz criteria for

selecting model order. Applied Statistics, 37, 187-195.

210 Directives in Release 22

Lane, P.W. (1996). Generalized nonlinear models. COMPSTAT 1996 Proceedings in

Computational Statistics (ed. Prat, A.), 331-336.

See also

Directives: MODEL, TERMS, RDISPLAY, PREDICT, RKEEP, RKESTIMATES, ADD, DROP,

SWITCH, STEP, TRY, FITCURVE, FITNONLINEAR, RCYCLE, RFUNCTION.

Procedures: RCHECK, RGRAPH, RPERMTEST, RWALD, FITINDIVIDUALLY,

FITMULTINOMIAL, GLMM, HGANALYSE, RAR1.

Functions: COMPARISON, POL, REG, LOESS, SSPLINE.

Genstat Reference Manual 1 Summary section on: Regression analysis.

FITCURVE 211

FITCURVE

Fits a standard nonlinear regression model.

Options

PRINT = string tokens What to print (model, deviance, summary,

estimates, correlations, fittedvalues,

accumulated, monitoring); default mode, summ,
esti

CURVE = string token Type of curve (exponential, dexponential,

cexponential, lexponential, logistic,

glogistic, gompertz, ldl, qdl, qdq, fourier,

dfourier, gaussian, dgaussian, emax, gemax);

default expo

SENSE = string token Sense of curve (right, left); default righ

ORIGIN = scalar Constrained origin; default *

NONLINEAR = string token How to treat nonlinear parameters between groups

(common, separate); default comm

CONSTANT = string token How to treat the constant (estimate, omit); default
esti

FACTORIAL = scalar Limit for expansion of model terms; default as in

previous TERMS statement, or 3 if no TERMS given

POOL = string token Whether to pool ss in accumulated summary between all

terms fitted in a linear model (yes, no); default no

DENOMINATOR = string token Whether to base ratios in accumulated summary on rms

from model with smallest residual ss or smallest residual

ms (ss, ms); default ss

NOMESSAGE = string tokens Which warning messages to suppress (dispersion,

leverage, residual, aliasing, marginality,

vertical); default *

FPROBABILITY = string token Printing of probabilities for variance ratios (yes, no);

default no

SELECTION = string tokens Statistics to be displayed in the summary of analysis

produced by PRINT=summary (%variance, %ss,

adjustedr2, r2, seobservations, dispersion,

%cv, %meandeviance, %deviance, aic, bic, sic);

default %var, seob

Parameter

formula Explanatory variate, list of variate and factor, or

variate*factor

Description

FITCURVE provides a convenient way of fitting various standard curves. The response variate

must be specified beforehand, using the MODEL directive in the usual way. The parameter of

FITCURVE can be set just to a variate that supplies the x-values for the curve, if you simply want

to fit a single curve. You can also include a factor if you want to fit separate curves for different

groups of the observations: these are then parallel curves. The interaction between the variate

and the factor can also be included, representing curves constrained to have common nonlinear

parameters but separate linear parameters for each level of the factor. Finally, if the NONLINEAR

option is set to separate as well as including the interaction, separate curves are fitted for each

level, with only the estimate of variability being pooled.

212 Directives in Release 22

The CURVE option specifies which of the standard curves is to be fitted. For some of these, the

SENSE option lets you choose between alternative forms. Before describing the curves in detail,

here is a list for convenient reference:

Exponential

exponential y = á + â × ñx + å

dexponential y = á + â × ñx + ã × óx + å

cexponential y = á + (â + ã × x) × ñx + å

lexponential y = á + â × ñx + ã × x + å

Logistic

logistic y = á + ã / (1 + exp(�â × (x � ì))) + å

glogistic y = á + ã / (1 + ô × exp(�â × (x � ì)))1/ô + å

gompertz y = á + ã × exp(�exp(�â × (x � ì))) + å

emax y = á + ã / (1 + exp(�â × (log(x) � ì))) + å

gemax y = á + ã / (1 + ô × exp(�â × (log(x) � ì)))1/ô + å

Rational functions

ldl y = á + â / (1 + ä × x) + å

qdl y = á + â / (1 + ä × x) + ë × x + å

qdq y = á + (â + ã × x)/(1 + ä × x + ç × x2) + å

Fourier

fourier y = á + â × sin(2ð × (x � ç) / ù) + å

dfourier y = á + â × sin(2ð × (x � ç) / ù)

 + ã × sin(4ð × (x � ç) / ù) + å

Gaussian

gaussian y = á + (â / �(2ðó2)) × exp(�(x � ì)2/(2ó2)) + å

dgaussian y = á + (â / �(2ðó2)) × exp(�(x � ì)2/(2ó2))

 + (ã / �(2ðó2)) × exp(�(x � í)2/(2ó2)) + å

The four exponential curves each arise as solutions of linear ordinary differential equations.

These represent processes that increase exponentially with time, for example, or that increase

with a law of diminishing returns (that is, for which the rate of increase decreases with time).

The default setting of the CURVE option is exponential, corresponding to the "asymptotic

regression" or Mitscherlich curve. The model has only one nonlinear parameter, ñ, which defines

the rate of exponential increase or decrease. FITCURVE estimates the other parameters by linear

regression at each stage of an iterative search for the best estimate of ñ. The values of the

explanatory variate are automatically scaled to avoid any computational problems near the

boundary of the allowed values of ñ. By default, ñ is restricted to the range 0<ñ<1, giving a curve

corresponding to the law of diminishing returns. The alternative is ñ>1, which can be requested

by setting the SENSE option to left: for all the exponential curves, SENSE=left corresponds

to a curve whose asymptote is to the left � that is, as X decreases to ��. If Genstat finds that a

better fit is obtained by the opposite sense to the one specified, the sense is reversed and a

warning is printed. The parameter á is the asymptote � to the right if ñ<1 and to the left if ñ<1;

â is the range of the curve between the value at X=0 and the asymptote.

The double exponential curve also has two forms: you can choose either 0<ñ<1 and 0<ó<1

or ñ>1 and ó>1, by using the SENSE option as for the exponential curve. The fitting process is

unlikely to find a satisfactory solution for this curve unless there are enough data to estimate

both components separately: there should be at least four points for which the fast component

is larger than the slow component; the fast component corresponds to the smaller of ñ and ó

when SENSE=right, or to the larger of ñ and ó when SENSE=left.

Two limiting cases of the double exponential are provided as special curves. The critical

exponential curve can take a variety of shapes like the double exponential, whereas the line-plus-

exponential curve is an exponential curve with a non-horizontal asymptote. Again here, the

FITCURVE 213

constraint on the parameter ñ depends on the setting of the SENSE option as for the exponential

curve.

Another type of standard curve is sigmoid and monotonic, and is often used to model the

growth of biological subjects. There are five types of these growth curves in Genstat, each a

logistic of some sort. The first type is the generalized logistic without any constraints. In the

equation above, á is one asymptote, to the right or to the left according to whether â is positive

or negative; ì is the point of inflexion for the explanatory variable; â is a slope parameter; ô is

a power-law parameter; and á+ã is the other asymptote. To fit this curve you need data for the

steep central part and for both flat parts.

There are two special cases of the generalized logistic. The ordinary logistic curve is

sometimes known as the autocatalytic or inverse exponential curve. The same curve can be

rewritten in several different forms, so you should be alert for concealed equivalences of

apparently different curves: otherwise you might be tempted to use FITNONLINEAR, which

would be less efficient. The other special case is the Gompertz curve. It is non-symmetrical about

the inflexion, X=ì, and has asymptotes at Y=á and Y=á+ã.

You can fit these three growth curves to data in which Y decreases as X increases. For the

logistic and generalized logistic curves, you are not allowed to constrain the sense of the curve

by the SENSE option. This is because the sense depends on both the parameters â and ã. In fact,

the logistic curve with parameters á, â, ã and ì is the same as the logistic curve with parameters

(á+ã), �â, �ã and ì; Genstat will report only one of the two possible versions. For the Gompertz

curve, you can set SENSE=left to specify the upside-down Gompertz curve corresponding to

ã<0; otherwise ã is constrained to be positive. When the sign of ã is changed for a response Y

that increases with X, the sign of â will also change so that the curve remains an ascending one,

and similarly for descending curves. The interpretation of SENSE=left thus depends on the

shape of the data; for ascending curves it means that the asymptote is reached more slowly to the

left than to the right, but for descending curves it means the opposite.

The final two sigmoid curves, Emax and generalized Emax, are similar to the logistic and

generalized logistic except that their equations involve log(x) instead of x. They are usually used

to model decreasing relationships with the parameter â in the equation negative, but Genstat will

allow increasing relationships with these curves too.

The three rational functions are ratios of polynomials. The linear-divided-by-linear curve is

a rectangular hyperbola, which occurs for example as the Michaelis-Menten law of chemical

kinetics. The quadratic-divided-by-linear curve is a hyperbola with a non-horizontal asymptote.

The quadratic-divided-by-quadratic curve is a cubic curve having an asymmetric maximum

falling to an asymptote. The SENSE option is ignored for all three rational functions.

Fourier curves are trigonometric functions, involving the sine function in Genstat's

implementation, used to model periodic behaviour. Sometimes the wavelength or period ù is a

known constant, such as 2ð radians (or 360 degrees), 24 hours or 12 months; the models are then

linear and should be fitted by linear regression using the FIT directive, instead of by FITCURVE.

The parameters â and ã are the amplitudes of the components of the curve. The SENSE option

is ignored for Fourier curves.

The Gaussian curve is a bell-shaped curve like the Normal probability density. The double

Gaussian is a sum of two overlapping curves of this type, and arises for example in spectography.

The parameter á is usually called the background, and the parameters ì and í are the peaks. The

parameter ó is the standard deviation: for the double Gaussian, FITCURVE can deal only with

the case of equal standard deviation for the two components. The parameters â and ã represent

the strength of a spectrographic signal in each component, excluding the background. The SENSE

option is ignored for Gaussian curves.

The PRINT, FACTORIAL, POOL, DENOMINATOR, NOMESSAGE and FPROBABILITY options are

as for the FIT directive, and SELECTION differs only because FITCURVE caters only for the

Normal distribution.

214 Directives in Release 22

You can constrain the exponential and rational curves to pass through a given point. The

ORIGIN option specifies a value for the response variate corresponding to a zero value of the

explanatory variate; to specify the response for another value of the explanatory variate you

would need to modify the explanatory variate beforehand.

Another way of constraining the curves is by setting the CONSTANT option to omit the constant

term. This parameter represents an asymptote of each curve. To constrain the asymptote to be

other than 0, you should put the value that you require into every element of the variate in the

OFFSET option of the MODEL directive. The constant cannot be omitted from the Gompertz fitted

with SENSE=left, nor (for any curve) if the origin is constrained, nor if parallel curves are

fitted.

You can use the WEIGHTS option of the MODEL directive to supply a variate of weights for the

units. You can also supply a symmetric matrix of weights, for example to allow for covariances

between units. However, if the model contains an explanatory factor, pairs of units with different

factor levels must have zero covariances.

You can modify a model fitted by FITCURVE by using the ADD, DROP or SWITCH directives

as for models fitted by the FIT directive, provided the alterations produce a model that would

be allowed in FITCURVE: that is, it must contain one variate, or one variate and one factor, or

one variate and one factor and their interaction. The NONLINEAR options of the ADD, DROP and

SWITCH directives have the same effect as the NONLINEAR option of FITCURVE. Thus you can

compare curves between groups of a factor, assessing for example whether they are parallel. The

accumulated setting of the PRINT option of these directives allows you to summarize the

results. The RDISPLAY directive can be used to display further output following FITCURVE, and

results can be copied into Genstat data structures using the RKEEP directive.

If you have group and fit models with common values of the nonlinear parameters across the

groups, FITCURVE is unable provide standard errors for the linear parameters. If you need these,

you can use the procedure RCURVECOMMONNONLINEAR.

Options: PRINT, CURVE, SENSE, ORIGIN, NONLINEAR, CONSTANT, FACTORIAL, POOL,

DENOMINATOR, NOMESSAGE, FPROBABILITY, SELECTION.

Parameter: unnamed.

Action with RESTRICT

You can restrict the units that Genstat will use for fitting the curve by putting a restriction on the

response or offset variates (defined by the MODEL directive), or on the explanatory variate or

factor in the FITCURVE statement. However, you are not allowed to have different restrictions

on the different vectors.

See also

Directives: MODEL, TERMS, RDISPLAY, RKEEP, RKESTIMATES, RCYCLE, RFUNCTION, ADD,

DROP, SWITCH, FIT, FITNONLINEAR.

Procedures: RCHECK, RCURVECOMMONNONLINEAR, RGRAPH, RDESTIMATES,

MICHAELISMENTEN, NLAR1, HGNONLINEAR, RQNONLINEAR, RQUADRATIC, RSCHNUTE,

DFUNCTION.

Genstat Reference Manual 1 Summary section on: Regression analysis.

FITNONLINEAR 215

FITNONLINEAR

Fits a nonlinear regression model or optimizes a scalar function.

Options

PRINT = string tokens What to print (model, deviance, summary,

estimates, correlations, fittedvalues,

accumulated, monitoring, grid); default mode,

summ, esti or grid if NGRIDLINES is set

CALCULATION = expression structures

Calculation of fitted values or of explanatory variates

involving nonlinear parameters; default * (valid only if

OWN set)

OWN = scalar Option setting for OWN directive if this is to be used

rather than CALCULATE; default * requests CALCULATE

to be used

CONSTANT = string token How to treat the constant (estimate, omit); default
esti

FACTORIAL = scalar Limit for expansion of model terms; default as in

previous TERMS statement, or 3 if no TERMS given

POOL = string token Whether to pool ss in accumulated summary between all

terms fitted in a linear model (yes, no); default no

DENOMINATOR = string token Whether to base ratios in accumulated summary on rms

from model with smallest residual ss or smallest residual

ms (ss, ms); default ss

NOMESSAGE = string tokens Which warning messages to suppress (dispersion,

leverage, residual, aliasing, marginality,

vertical, df); default *

FPROBABILITY = string token Printing of probabilities for variance and deviance ratios

(yes, no); default no

SELECTION = string tokens Statistics to be displayed in the summary of analysis

produced by PRINT=summary, seobservations is

relevant only for a Normally distributed response, and

%cv only for a gamma-distributed response

(%variance, %ss, adjustedr2, r2,

seobservations, dispersion, %cv,

%meandeviance, %deviance, aic, bic, sic); default

%var, seob if DIST=normal, %cv if DIST=gamma, and

disp for other distributions

NGRIDLINES = scalar Number of values of each parameter for a grid of

function evaluations; default *

SELINEAR = string token Whether to calculate s.e.s for linear parameters (yes,

no); default no

INOWN = identifiers Setting to be used for the IN parameter of OWN if used in

place of CALCULATE; default *

OUTOWN = identifiers Setting to be used for the OUT parameter of OWN if used

in place of CALCULATE; default *

Parameter

formula List of explanatory variates and/or one factor to be used

in linear regression, within nonlinear optimization

216 Directives in Release 22

Description

FITNONLINEAR can fit nonlinear regression models, or optimize a general function. However,

you should check first that the model is not included in the linear and generalized linear models

that can be fitted by FIT or the standard curves provided by FITCURVE, for these are much more

efficient. Because the methods used by FITNONLINEAR are very general, they are neither as

robust nor as automatic as, for example, the method that is used for fitting linear models.

It is better also to use FIT for nonlinear models with separable linear parameters (generalized

nonlinear models), because there are fewer constraints on the model specification. FIT differs

from FITNONLINEAR as follows. FIT takes account of the settings of the LINK and EXPONENT

options of MODEL (but FITNONLINEAR does not). Furthermore, in FIT the parameter may be set

to a general model formula, including more than one factor, interactions and functions. However,

FIT cannot be used for optimisation of general functions, nor for models with no linear

parameters.

 Nonlinear methods make use of iterative optimization algorithms, designed to search for the

minimum value of a function as the parameters vary; for nonlinear regression models, the

function involved is the deviance, or minus twice the log-likelihood ratio, so the algorithm

searches for the maximum-likelihood solution. It is often necessary to provide the algorithm with

good starting values, to set bounds on the parameter values, and sometimes even to define the

initial direction of search. Optimization is easiest with few parameters, approximately quadratic

functions, small correlations between parameters, and good initial parameter estimates. Where

possible, you can effectively reduce the number of parameters to be optimized by separating

linear and nonlinear ones: that is, you can first fit the linear parameters, and treat the resulting

residual sums of squares as functions of the nonlinear parameters alone. Problems with

optimization methods are most likely to arise if you neglect the parameterization of the function.

You can often transform the parameters to make the function nearly quadratic; after finding a

solution, you can then use the RFUNCTION directive to estimate the original parameters. Another

source of difficulty is if you try to fit inappropriately many parameters. For advice on

reformulating functions to speed up optimization, see Ross (1990).

Before using FITNONLINEAR you must use the MODEL directive with either the Y parameter

set to response variate, or the FUNCTION option set to a scalar that is to store the value of a

general function to be optimized. You must also use the RCYCLE directive to specify the

nonlinear parameters. The TERMS directive can be used as in linear regression, to list the

explanatory variables to be used in modelling. The model calculations themselves are provided

in expression structures which are supplied by the CALCULATION option of FITNONLINEAR.

You can modify the model using the ADD, DROP and SWITCH directives as usual, except that you

must give a TERMS statement first. You can use the RDISPLAY and RKEEP directives to display

or save the results. The RCHECK procedure can be used to assess the fit of the model, and

RGRAPH can display the fit with respect to some specified variate.

Genstat fits nonlinear regression models by maximum likelihood. The likelihood is usually

from a distribution in the exponential family; this is specified using the DISTRIBUTION option

of the MODEL directive. The settings of the LINK and EXPONENT options of the MODEL directive

are ignored, and you are not allowed to set the GROUPS option; other options and parameters are

as in linear regression.

The RCYCLE directive allows you to select the algorithm (of the three available) to be used to

fit the model; these work with numerical differences and so do not require you to specify

derivatives. The default algorithm is a modified Gauss-Newton method. This takes advantage

of the fact that the likelihood function can be expressed as a sum of squares. However, you

cannot use it for minimizing a general function. The second algorithm, a modified Newton

method, is requested by setting option METHOD=Newton in the RCYCLE statement. This can be

used for any nonlinear model. The third algorithm is a modified Fletcher-Powell method,

specified by setting METHOD=Fletcher. In fact, this is similar to the Newton method, with an

FITNONLINEAR 217

occasional step in the search being determined by the Fletcher-Powell algorithm rather than by

the Newton algorithm. The modification in all these methods is to use estimated numerical

differences instead of evaluating derivatives. In nonlinear regression problems, particularly ones

with separable linear parameters, specification of the derivatives would be very complex, and

so it is much more convenient to estimate them numerically.

You must set the PARAMETER parameter of RCYCLE to the identifiers of scalars that will be

used to represent the nonlinear parameters in the model calculations. There must be at least one

nonlinear parameter. There is no formal upper limit on the number of nonlinear parameters, but

the greater the number of parameters the longer the time required for the search and the smaller

the chance of finding a satisfactory solution.

You can set the LOWER and UPPER parameters of RCYCLE to provide fixed bounds for each

parameter. By default, the values ±109 are used. Where possible you should always set bounds,

particularly to avoid such problems as attempting to take the log of a negative number. You can

incorporate more general constraints as logical functions within the calculations. For example

you could compute an extra term

(Constr > 0) * K * Constr

to impose a penalty on exceeding the constraint, controlled by setting different values of K.

Often, the best way to impose a constraint is to reparameterize. For example, if a parameter á

must be positive, you could replace á by exp(â), and allow â to take any value.

The STEPLENGTH parameter of RCYCLE can be used to provide initial step lengths for the

search. By default the step length is 0.05 times the initial value of the corresponding parameter,

or precisely 1.0 if the initial value is zero. If you set a step length to zero, Genstat treats the

corresponding parameter as being fixed at its initial value. This allows complex problems in

many dimensions to be tackled in stages, optimizing some parameters with others fixed, and then

optimizing the others in turn.

By default, the initial value of a parameter is taken to be the current value of the scalar that

represents it in the calculation, or 1.0 if the value is missing. Other values can be specified using

the INITIAL parameter of RCYCLE.

If you can calculate a range within which you expect a parameter to lie, you should choose a

step length of about 1% of the width of the range. If the steps are too small, numerical

differencing may not work; if they are too large, gradients may be unreliable and you may get

premature convergence. Genstat tests convergence by the relationship of final adjustments to

step lengths.

The more parameters there are to estimate, and the more scattered are the data, the more

iterations are required to find the optimum. The maximum number of iterations is set to 30 by

default, but you can reset this with the MAXCYCLE option of RCYCLE. However, if convergence

fails with a given setting of MAXCYCLE, you should check the data and consider reparameterizing

the model before you indiscriminately increase the number of iterations.

Genstat prints a warning when convergence fails. The only sections of output that are then

available are the residual degrees of freedom, the residual deviance, the fitted values, and the

parameter estimates (without standard errors) for the current cycle. The EXIT parameter of the

RKEEP directive allows you to obtain a numerical code indicating why convergence failed.

Many of the options of FITNONLINEAR are the same as those of FIT: PRINT, CONSTANT,

FACTORIAL, POOL, DENOMINATOR, NOMESSAGE, FPROBABILITY and SELECTION are all as in

FIT. The grid setting of PRINT is used with the NGRIDLINES option. If you set NGRIDLINES

to n, say (with n	2), FITNONLINEAR evaluates the likelihood at a grid of values of the nonlinear

parameters, and does not search for an optimum. For each parameter, the distance between the

upper and lower bounds (set by the RCYCLE directive) will be divided into (n�1) equal parts,

defining a rectangular grid with n gridlines in each dimension. By setting some upper and lower

bounds equal, you can look at the behaviour of the function with respect to a few parameters at

a time. The default setting of the PRINT option is grid in this case, and produces a display of

218 Directives in Release 22

the function values. Other settings of the PRINT option are then ignored. The calculated grid of

values is available from the GRID parameter of the RKEEP directive, and can be used to produce

pictures of the surface for example with the DCONTOUR or DSURFACE directives.

You must set one of the CALCULATION and OWN options to define how the nonlinear

parameters are included in the model. The CALCULATION option does this by a list of one or

more expressions. The expressions are evaluated in turn at every step of the estimation process,

just as if they had been given in a sequence of CALCULATE statements. For example:

EXPRESSION Diffuse[1]; \
 VALUE=!E(Xl,Xr=NORMAL((H+1,�1*X)/SQRT(2*D*T))
& Diffuse[2]; VALUES=!E(Z=Xl+Xr�1)
FITNONLINEAR [CALCULATION=Diffuse[1,2]] Z

Here, the CALCULATION option is set to the two expressions Diffuse[1] and Diffuse[2],

to define a model for one-dimensional diffusion. Alternatively, you can set the OWN option to

specify that the calculation is to be done by executing your own source code, called by a version

of the subroutine G5XZXO, as for the OWN directive. Generally, using OWN is likely to be

worthwhile only when calculations are very extensive, or when a particular function is needed

often. The setting of the OWN option will be passed to G5XZXO in the same way as the setting

of the SELECT option of the OWN directive is passed to G5XZXO. The INOWN and OUTOWN

options then define data structures to provide the input and store the output from

FITNONLINEAR.

There are three ways of using FITNONLINEAR. The first provides the most efficient method

when the model is linear in some of the parameters. However, this can be used only if the data

are Normally distributed, or if they follow a Poisson distribution and the model contains only

one explanatory variable and no constant term. The linear parameters are fitted by a linear

regression of the response variate (specified by the parameter of the MODEL statement) on the

variates listed by the parameter of FITNONLINEAR. At least one of these variates must depend

on the nonlinear parameters in the model but they need not all do so. You can define how to

calculate the variates from the nonlinear parameters either by the CALCULATION option or by

the OWN, INOWN and OUTOWN options of FITNONLINEAR. The parameter of FITNONLINEAR may

include variates that are not changed by the calculations as well as those that are. One factor may

also be included so that a separate constant is fitted for each level, giving a set of parallel

nonlinear regressions. You cannot include interactions between a variate and a factor, as is

allowed with FIT or FITCURVE; nor can you include POL, REG, COMPARISON, SSPLINE or

LOESS functions, nor interactions between variates as allowed with FIT. However, procedure

FITPARALLEL allows you to assess the various ways in which nonlinear models can be non-

parallel. If there is a constant in the linear regression, as specified by the CONSTANT option, the

factor will be parameterized in terms of differences from the first level � as in linear regression.

If you set CONSTANT=omit, the actual constants are fitted; there is no need to set option FULL

of the TERMS directive which is ignored in nonlinear models. If you have specified an offset

variate using the MODEL directive, its values can also be modified by the calculations, and depend

on the parameters. By default, standard errors are calculated only for nonlinear parameters. To

obtain standard errors for the linear parameters as well, you can set option SELINEAR=yes.

Then, after the optimum has been found, Genstat increases the number of dimensions to include

the linear parameters and estimates the rate of change of the likelihood in all the dimensions.

If there are no linear parameters in the model, or if the distribution is not Normal or Poisson,

you should no longer use the parameter of FITNONLINEAR. Instead you should set the

FITTEDVALUES parameter in the MODEL statement to the identifier of a variate that is to contain

the fitted values for any set of values of the nonlinear parameters. Then define how to calculate

the fitted values from the nonlinear parameters and the explanatory variates, using either the

CALCULATION or the OWN option of FITNONLINEAR. The distribution can now be any of those

available from the DISTRIBUTION option of the MODEL directive, taking account of the settings

FITNONLINEAR 219

of the DISPERSION and WEIGHTS options of the MODEL directive. The multinomial distribution

is used rather differently from the others: it is for fitting distributions. The DISTRIBUTION

directive provides a wide range of standard distributions, and is more convenient and efficient

than FITNONLINEAR for these; but FITNONLINEAR allows you to fit other distributions. To

specify and fit your own distribution, you should supply as response variate a set of counts of

observations falling into a series of groups; the fitted values should then be a set of expected

counts for the groups, calculated from the distribution being considered. The resulting

multinomial likelihood is the same as that of the Poisson distribution, but with the constraint

Ófi=M, where M is the sum of the counts.

The third method allows you to minimize a general function. (You can still use this to fit

statistical models by supplying the deviance, which is minus twice the log-likelihood ratio.) To

minimize a function, you need to start with a MODEL statement that has no response variate, but

where the FUNCTION option is set to a scalar. You then specify the parameters with the RCYCLE

directive as before, and perform the minimization with FITNONLINEAR, supplying an expression

that calculates the function from the parameters and places the result into the scalar. When you

are minimizing a general function in this way, some of the output from FITNONLINEAR is

different. Genstat ignores the accumulated and fittedvalues settings of the PRINT option,

and the deviance and summary settings display only the minimum function value. The

correlation setting displays the inverse of the estimated matrix of second derivatives of the

function with respect to the parameters, scaled by the diagonal values. Similarly, in place of the

standard errors usually displayed by the estimates setting, Genstat prints the square roots of

the diagonal values of twice the inverse of the second-derivative matrix. These can give a useful

indication of the form of the function near the minimum. If the function is a deviance you can

interpret these as asymptotic standard errors and correlations (not scaled by an estimate of

dispersion). For a general function, the "s.e." can be interpreted as the approximate change in a

parameter required to increase the function by 1.0 starting from the minimum. Genstat ignores

the CONSTANT option of the FITNONLINEAR directive for general functions, and you must not

set the parameter. Similarly, the WEIGHTS and OFFSET options of the MODEL directive are

ignored, and the GROUPS option must not be set. The only parameters of the RKEEP directive that

are available are ESTIMATES, SE, INVERSE, EXIT, GRADIENTS and GRID. The minimum value

of the function is of course available in the scalar specified by the FUNCTION option of the

MODEL directive.

Options: PRINT, CALCULATION, OWN, CONSTANT, FACTORIAL, POOL, DENOMINATOR,

NOMESSAGE, FPROBABILITY, SELECTION, NGRIDLINES, SELINEAR, INOWN, OUTOWN.

Parameter: unnamed.

Action with RESTRICT

You can restrict the units that Genstat will use for fitting the model by putting a restriction on

any of the vectors involved in the MODEL statement (response variate, weight variate, offset

variate or variate of binomial totals), or on any explanatory variate or factor. However, you are

not allowed to have different restrictions on the different vectors.

Reference

Ross, G.J.S. (1990). Nonlinear Estimation. Springer-Verlag, New York.

220 Directives in Release 22

See also

Directives: EXPRESSION, MODEL, RDISPLAY, RKEEP, RCYCLE, RFUNCTION, FIT,

FITCURVE.

Procedures: NLAR1, HGNONLINEAR, RQUADRATIC, MINIMIZE, MIN1DIMENSION, SIMPLEX.

Genstat Reference Manual 1 Summary section on: Regression analysis.

FKEY 221

FKEY

Forms design keys for multi-stratum experimental designs, allowing for confounded and

aliased treatments.

Options

BASICFACTORS = factors Factors indexing the units of the design

ADDEDFACTORS = factors Factors to be allocated to the units of the design

KEY = matrix Stores the design key (ADDEDFACTORS ×

BASICFACTORS)

INKEY = matrix Can be used to input existing allocations for some of the

added factors

HIERARCHIES = matrix Can be used to specify that some of the factors must be

constant within each combination of levels of other

factors; the matrix has a row for each added factor and

columns first for the basic factors and then for the added

factors, ones in the entries where the row factor must be

constant within the combinations of the column factors,

zero elsewhere

SEED = scalar Can provide a seed to generate a random permutation of

the sets of basic effects that may be allocated to each

added factor, thus producing design randomly selected

from all those that might be possible; default * i.e. no

permutation

ROWPRIMES = variate Prime numbers for the rows of the KEY matrix

COLPRIMES = variate Prime numbers for the columns of the KEY matrix

ROWMAPPINGS = variate Mappings from the rows of the KEY to the
TREATMENTFACTORS

COLMAPPINGS = variate Mappings from the columns of the KEY to the
BLOCKFACTORS

SAVE = identifier Structure to save all the information about the formation

of the design; this can then be input later to give a

different design (if possible) with the same properties

Parameters

REQUIRED = formula structures Formulae each defining a list of terms that are to be

estimated in the analysis

NONNEGLIGIBLE = formula structures

Formulae each specifying terms that cannot be ignored

in the context of the corresponding REQUIRED formula

Description

Design keys can be used in the GENERATE directive to generate values of treatment factors from

block factors. They also provide the basis of the representation used to store the repertoire of

designs obtainable from procedure AGDESIGN (see Payne and Franklin 1994). This covers a

range of standard situations, but cannot allow for every eventuality. FKEY allows you to form

keys for other circumstances and, if these are likely to occur frequently, you can extend or

replace the standard repertoire using procedure FDESIGNFILE.

The assumption in FKEY is that the units of the design are indexed by a set of factors known

as the basic factors. The key allows the values of another set of factors, known here as the added

factors, to be calculated from the basic factors. These factors are listed using the BASICFACTORS

and ADDEDFACTORS options. They must all have been declared previously as factors, and their

222 Directives in Release 22

numbers of levels must have been defined. Usually the basic factors are the factors that will be

used to define the block formula of the design (for example, blocks, plots, rows, columns,

subplots and so on) and the added factors are the treatment factors, but in partial replicates, for

example, the basic factors may be the treatment factors and the added factors the block factors.

If the basic and added factors all have prime numbers of levels the key is saved, by the KEY

option, as a matrix with a row for each added factor and a column for each basic factor.

However, if the levels are not all prime, FKEY will break up factors that do not have prime

numbers of levels into "pseudo-factors". Thus, a factor with six levels will be represented by the

combinations of levels of two pseudo-factors, one with two levels and one with three levels.

When pseudo-factors are required for the added factors, the ROWPRIMES option can be used to

save a variate storing the (prime) number of levels corresponding to each row of the key, and the

ROWMAPPINGS option can save a variate with an element for each row containing the number of

the corresponding added factor. So, if we had two added factors, one with five and one with six

levels, the ROWPRIMES variate might contain the values 5, 2 and 3, and the ROWMAPPINGS variate

the values 1, 2 and 2. The second added factor (with six levels) would then be represented by two

pseudo-factors, corresponding to the second and third rows of the key. The COLPRIMES and

COLMAPPINGS options can similarly save details of the pseudo-factors required for basic factors

with non-prime numbers of levels. The variates saved by ROWPRIMES, COLPRIMES,

ROWMAPPINGS and COLMAPINGS can be used in the AKEY procedure, together with the key, to

form the added factors automatically without the need to worry about the pseudo-factoring.

The main properties of the design are derived from the REQUIRED and NONNEGLIGIBLE

parameters. Suppose we have a block design containing three blocks of nine plots. The

experiment is to have three treatment factors, A, B and C, and these will be the added factors. The

design has a block structure of plots nested within blocks

Blocks/Plots

In the analysis we wish to be able to estimate all main effects and interactions of the factors A,

B and C, except the three-factor interaction A.B.C; these terms are specified by the formula

structure supplied using the REQUIRED parameter. The NONNEGLIGIBLE parameter specifies

model terms that cannot be ignored in the analysis: that is, the model terms with which these

required terms cannot be confounded. Here we have the main effect Blocks and all main effects

and interactions of the factors A, B and C. To form the design key K, we thus need to put

FACTOR [NVALUES=27; LEVELS=3] Block,A,B,C
& [LEVELS=9] Plot
FKEY [BASIC=Block,Plot; ADDED=A,B,C; KEY=K; \
 COLPRIMES=Bplev; COLMAPPINGS=Bmap] \
 REQUIRED=!f(A*B*C-A.B.C); NONNEGLIGIBLE=!f(Block+A*B*C)

If the design has more than two strata suitable for the estimation of treatment effects, the

REQUIRED and NONNEGLIGIBLE parameters can specify lists of formulae, in parallel, one pair

of formulae for each stratum. Each REQUIRED formula specifies the terms that must be estimated

in one of the strata (or in a stratum below it), and the corresponding NONNEGLIGIBLE formula

specifies the terms that cannot be ignored there. Suppose we put

FACTOR [NVALUES=81; LEVELS=3] Block,Wplot,A,B,C,D,E
& [LEVELS=9] Subplot
FKEY [BASIC=Block,Wplot,Subplot; ADDED=A,B,C,D,E; KEY=K; \
 COLPRIMES=Bplev; COLMAPPINGS=Bmap] \
 REQUIRED=!f((A+B+C)*(A+B+C)),!f((A+B+C+D+E)*(A+B+C+D+E));\
 NONNEGLIGIBLE=!f(Block+Block.Wplot),!f(Block)

Here we have a block formula

Block / Wplot / Subplot1

which produces three strata

Block + Block.Wplot + Block.Wplot.Subplot

FKEY 223

The first formula in the REQUITRED list !f((A+B+C)*(A+B+C)), in parallel with the formula

!f(Block+Block.Wplot) in the NONNEGLIGIBLE list, indicates that we do not want the main

effects or two-factor interaction of factors A, B and C to be confounded with each other nor with

Block or Block.Wplot; this ensures that they will be estimated in the

Block.Wplot.Subplot stratum. The second pair of formulae, !f((A+B+C+D+E) *

(A+B+C+D+E)) and !f(Block), indicate that we want to estimate the main effects and two-

factor interactions of all the five treatment factors A, B, C, D and E in the Block.Wplot stratum

or below; in effect this means that we are willing to have D and E and any of their interactions

estimated in the Block.Wplot stratum.

The algorithm that FKEY uses to construct the key is based on the method developed by

Franklin & Bailey (1977), Franklin (1985) and Kobilinsky (1995). Essentially this considers the

possible orthogonal sets of contrasts amongst the main effects and interactions of the basic

factors, and tries in turn to find a feasible set against which to confound each added factor. Often

there are several feasible ways in which this can be done. To avoid FKEY selecting the same key

every time, you can set the SEED option to an integer that will be used to generate a random

permutation of the order in which the sets of basic contrasts are considered, thus producing

design randomly selected from all those that might be possible; by default no permutation takes

place. Alternatively, you can use the SAVE option to save all the information about the formation

of the design; this can then be input later to provide the next possible key (if available) with the

requested properties.

In a multi-stratum design, you may wish to insist that some factors are applied to complete

units of one of the strata. This can be done using the HIERARCHIES option, which allows you

to indicate that some of the added factors must be constant within each combination of levels of

other factors. These constraints are specified, if required, by supplying a matrix with a row for

each added factor and columns first for the basic factors and then for the added factors. The

matrix contains ones in the entries where the row factor must be constant within the

combinations of the column factors, and zeros elsewhere.

FKEY can also be used to extend an existing design, by allocating further factors to the units.

The existing key should then be input using the INKEY option, with zeros in the rows for the new

added factors.

FKEY can form keys for small designs fairly quickly, but for complicated arrangements you

may find that it takes some time to check the various possibilities.

Options: BASICFACTORS, ADDEDFACTORS, KEY, INKEY, HIERARCHIES, SEED, ROWPRIMES,

COLPRIMES, ROWMAPPINGS, COLMAPPINGS, SAVE.

Parameters: REQUIRED, NONNEGLIGIBLE.

References

Franklin, M.F. (1985). Selecting defining contrasts and and confounded effects in pn�m factorial

experiments. Technometrics, 27, 165-172.

Franklin, M.F. & Bailey, R.A. (1977). Selection of defining contrasts and confounded effects

in two-level experiments. Applied Statistics, 26, 321-326.

Kobilinsky, A. (1995). PLANOR: Programme de Génération Automatique de Plans

d'Expériences Réguliers. INRA, Versailles.

Payne, R.W. & Franklin, M.F. (1994). Data structures and algorithms for an open system to

design and analyse generally balanced designs. In: COMPSTAT 94 Proceedings in

Computational Statistics (ed. R. Dutter & W. Grossmann), pp. 429-434. Physica-Verlag,

Hiedelberg.

224 Directives in Release 22

See also

Directives: AFMINABERRATION, GENERATE, FPSEUDOFACTORS.

Procedures: AKEY, ARANDOMIZE, ASAMPLESIZE, FACPRODUCT, FBASICCONTRASTS.

Genstat Reference Manual 1 Summary sections on: Design of experiments, Analysis of

variance.

FLRV 225

FLRV

Forms the values of LRV structures.

Options

PRINT = string tokens Printed output required (roots, vectors); default *

i.e. no printing

NROOTS = scalar Number of roots or vectors to print; default * i.e. print

them all

SMALLEST = string token Whether to print the smallest roots instead of the largest

(yes, no); default no

TOLERANCE = scalar Tolerance for detecting zero roots

Parameters

INMATRIX = matrices or symmetric matrices

Matrices whose latent roots and vectors are to be

calculated

LRV = LRVs LRV to store the latent roots and vectors from each
INMATRIX

WMATRIX = symmetric matrices (Generalized) within-group sums of squares and

products matrix used in forming the two-matrix

decomposition; if any of these is omitted, it is taken to

be the identity matrix, giving the usual spectral

decomposition

ILRV = LRVs LRV to store the imaginary parts of the latent roots and

vectors arising from the decomposition of a non-

symmetric matrix

Description

The INMATRIX parameter lists the matrices for which latent roots and vectors are to be

calculated. If the WMATRIX parameter is not set, FLRV provides the solution of the one-matrix

eigenvalue problem

AX = XL

A is usually an n-by-n symmetric matrix. XLX� is then the spectral decomposition of the

symmetric matrix A. Here L is a diagonal matrix containing the n latent roots, or eigenvalues, of

A ordered such that

l1 	 l2 	 ... 	 ln

The columns of the n-by-n matrix X are the corresponding latent vectors, or eigenvectors. The

matrix X is orthogonal:

X�X = XX� = In

The three options of FLRV control the printing of the results. You use the PRINT option to

specify whether you want the roots or vectors to be printed. If you request the roots to be printed,

the trace will be printed as well. By default nothing is printed. The NROOTS option governs how

many of the roots and vectors are printed, while the SMALLEST option determines whether the

largest or smallest roots, and corresponding vectors, are printed.

You can use the LRV parameter to save the latent roots and vectors, and the trace. You must

declare these structures in advance if you want to save less than the full number of roots;

otherwise, they are defined automatically, as LRVs with n rows. You can save a subset of the

latent roots and vectors by supplying an LRV structure with fewer columns than rows. However

this saves only the largest roots and the corresponding vectors. You cannot save the smallest

roots directly, as the SMALLEST option applies only to printing. If you want to save the smallest

roots, then you must save the complete set of roots and vectors, and extract the last columns of

226 Directives in Release 22

the matrix, for example using qualified identifiers. These rules are the same as those applied in

the directives for multivariate analysis.

Alternatively, A can be a square, unsymmetric, matrix. This again provides the solution of the

eigenvalue problem

AX = XL

but now A is a square matrix of order n, L is a diagonal matrix of n latent roots, and X is a square

matrix of order n containing the right latent vectors of A. The solution of this problem may

produce some complex latent roots, occurring as complex conjugate pairs, in which case the

corresponding latent vectors are also complex conjugate pairs. To accomodate this, FLRV has a

parameter, ILRV, for specifying an LRV structure to store the imaginary parts of the latent roots

and vectors (the real parts being stored by the LRV parameter). The ILRV parameter need not be

set, but a warning message is then printed if any complex roots are produced. If all the latent

roots are real, they are sorted into descending order, such that l1 	 l2 	 ... ln, as in the symmetric
case, but if some roots are complex they are ordered such that |l1| 	 |l2| 	 ... 	 |ln|. To detect

whether a latent root is real, Genstat checks whether imaginary part is close to zero; to allow for

numerical imprecision the value is tested against |l1| multiplied by the valued supplied by the

TOLERANCE option, by default 10�6. The values saved by the LRV and ILRV parameters,

however, are those generated by the algorithm, so procedures using FLRV may also need to test

explicitly for zero roots. The TOLERANCE option and ILRV parameter are ignored if INMATRIX

is set to a symmetric matrix. Percentage variations are printed only if all roots are real. The latent

vectors xi are normalized so that xi�xi = 1, but this is not sufficient to determine them uniquely

since they can still be scaled by any (complex) scalar z such that |z|=1. The convention adopted

in Genstat is to apply an additional scaling such that the largest element of each xi is real and

positive. The latent vectors are guaranteed to be orthogonal only when the matrix A is symmetric.

FLRV can also solve the two-matrix eigenvalue problem

AX = WXL

The symmetric matrix W is specified using the WMATRIX parameter. A is a symmetric matrix

again specified by the INMATRIX parameter; if this is set to a square matrix, the WMATRIX

parameter is ignored. L is a again diagonal matrix, and X a square matrix. Both A and W must

have the same number of rows, n, and W must be positive semi-definite. Now the latent roots are

the n elements of the diagonal matrix L and are the successive maxima of

l = (x�Ax) / (x�Wx)

where x is the corresponding column of the n-by-n matrix X, normalized so that X�WX=I. The

two-matrix decomposition is particularly relevant for canonical variate analysis.

For either eigenvalue problem, the sum of the latent roots is stored in the element of the LRV

labelled 'Trace'. In the one-matrix problem, this is also the trace of the original matrix A; but

for the two-matrix problem, it is the trace of W�1A. Latent roots are often expressed as

percentages of the trace.

The method used for the spectral decomposition of a symmetric matrix first reduces the matrix

to tri-diagonal form using Householder transformations (Martin, Reinsch & Wilkinson 1968);

this is followed by a QL algorithm for finding the eigenvalues and eigenvectors (Bowdler,

Martin, Reinsch & Wilkinson 1968). The algorithm used for the unsymmetric eigenvalue

problem is based on NAG Library subroutine F02EBF. The documentation of this routine should

be consulted for a full discussion of the method and accuracy of the results (NAG 1994). If

INMATRIX is set to a matrix A of order n which happens to be symmetric the results should be

identical, up to the sign of the latent vectors, apart from small numerical discrepancies of the

order of machine precision and dependent on n and the condition number of A. The two-matrix

problem is solved using two spectral decompositions, each computed as for the first problem.

Options: PRINT, NROOTS, SMALLEST, TOLERANCE.

Parameters: INMATRIX, LRV, WMATRIX, ILRV.

FLRV 227

References

Bowdler, H., Martin, R.S., Reinsch, C. & Wilkinson, J.H. (1968). The QR and QL algorithms

for symmetric matrices. Numerische Mathematik, 11, 293-306.

Martin, R.S., Reinsch, C. & Wilkinson, J.H. (1968). Householders tridiagonalisation of a

symmetric matrix. Numerische Mathematik, 11, 181-195.

Numerical Algorithms Group. (1994). F02EBF. NAG Fortran Library Mark 15, Volume 5.

Oxford: Numerical Algorithms Group.

See also

Directives: LRV, MATRIX, SYMMETRICMATRIX, NAG, QRD, SVD.

Functions: EVALUES, EVECTORS.

Genstat Reference Manual 1 Summary sections on: Calculations and manipulation,

Multivariate and cluster analysis.

228 Directives in Release 22

FOR

Introduces a loop; subsequent statements define the contents of the loop, which is terminated

by the directive ENDFOR.

Options

NTIMES = scalar Number of times to execute the loop; default is to

execute as many times as the length of the first

parameter list or once if the first list is null

INDEX = scalar Records the loop index

START = scalar Defines an integer initial value for the loop index;

default 1

END = scalar Defines an integer final value for the loop index

STEP = scalar Defines an integer amount by which to increase the

index each time the loop is executed; default 1

VALUES = variate Defines a set of values to be taken successively by the

loop index (overrides START, END and STEP if these are

specified too)

Parameters

 Any number of parameter settings of the form identifier

= list of data structures; the identifier is set up as a

dummy which is then used within the loop to refer, in

turn, to the structures in the list

Description

The FOR loop is a series of statements that is repeated several times. The FOR directive

introduces the loop and indicates how many times it is to be executed. In its simplest form FOR

has no parameters, and the number of times is indicated by the NTIMES option. For example, the

following loop calculates the mean of three sets of data stored in the file attached to channel 2:

FOR [NTIMES=3]
 READ [CHANNEL=2] X
 CALCULATE Mean = MEAN(X)
 PRINT Mean; DECIMALS=4
ENDFOR

The INDEX option allows you to record the loop index in a scalar. By default this is the number

of the time that the loop is currently being executed. So, in the statement below, the index Count

will take the values 1, 2 and 3.

FOR [NTIMES=3; INDEX=Count]

The options START, END and STEP allow you to define a loop index that does not start at one,

and does not increase by one each time the loop is executed. They should all be set to integers;

any non-integer value is rounded to the nearest integer. (Integer calculations are exact, so this

avoids inaccuracies due to numerical round-off when loops are executed many times.) START

specifies the INDEX value on the first time that the loop is executed (default 1). STEP defines

how it changes between one time that the loop is executed and the next (default 1). So, for

example, on the second time INDEX will be START + STEP. END provides an alternative way of

specifying how many times to execute the loop � it stops when the next index will go beyond

END. For example, the statement below

FOR [INDEX=Count; START=3; END=8; STEP=2]

defines a loop that will be executed three times, with the index variable Count taking the values

3, 5 and 7; the next value would be 9, which goes beyond 8. The default STEP is one. STEP can

also be negative. So, this statement

FOR 229

FOR [INDEX=Count; START=3; END=-4; STEP=-2]

defines a loop that will be executed four times, with the index variable Count taking the values

3, 1, �1 and �3; the next value would be �5, which goes beyond �4. If you specify NTIMES as

well as END, they must both define the same number of times to execute the loop.

The VALUES option allows you to specify an arbitrary sequence of values for the loop index,

and these need not be integers. The setting is a variate. So, for example, here

VARIATE [VALUES=0, 0.5, 1, 1.5, 2, 1.5, 1, 0.5, 0] Cvals
FOR [INDEX=Count; VALUES=Cvals]

Count will first increase from 0 to 2 in steps of 0.5, and then decrease back down to 0. The

number of values in the VALUES variate must be the same as the value supplied by NTIMES if

both options are specified. VALUES overrides START, END and STEP if these are specified too.

The INDEX is defined automatically as a scalar if it has not already been declared. If VALUES

is set, its default number of decimals is set to be the same as the number defined for the VALUES

variate (see the DECIMALS parameter of the VARIATE and SCALAR directives), or to take the

default number if no decimals have been defined for VALUES. Otherwise the default number of

decimals is set to zero.

The parameters of FOR allow you to write a loop whose contents apply to different data

structures each time it is executed. Unlike other directives, the parameter names of FOR are not

fixed for you by Genstat: you can put any valid identifier before each equals sign. Each of these

then refers to a Genstat dummy structure; so you must not have declared them already as any

other type of structure. The first time that the loop is executed, they each point to the first data

structure in their respective lists, next time it is the second structure, and so on. The list of the

first parameter must be the longest; other lists are recycled as necessary.

If you specify parameters you do not need to specify NTIMES but, if you specify both, the

value of NTIMES must be the same as the length of the first parameter list.

You can specify as many parameters as you need. For example

FOR Ind=Age,Name,Salary; Dir='descending','ascending'
 SORT [INDEX=Ind; DIRECTION=#Dir] Name,Age,Salary
 PRINT Name,Age,Salary
ENDFOR

is equivalent to the sequence of statements

SORT [INDEX=Age; DIRECTION='descending'] Name,Age,Salary
PRINT Name,Age,Salary
SORT [INDEX=Name; DIRECTION='ascending'] Name,Age,Salary
PRINT Name,Age,Salary
SORT [INDEX=Salary; DIRECTION='descending'] Name,Age,Salary
PRINT Name,Age,Salary

printing the units of the text Name, and variates Age and Salary, first in order of descending

ages, then in alphabetic order of names, and finally in order of descending salaries.

You can put other control structures inside the loop. So, for example, you can have loops

within loops.

When you are using loops interactively, you may find it helpful to use the PAUSE option of

SET to request Genstat to pause after every so many lines of output. Another useful directive is

BREAK, which specifies an explicit break in the execution of the loop.

Options: NTIMES, INDEX, START, END, STEP, VALUES.

Parameters: names defining the dummies used within the loop.

230 Directives in Release 22

See also

Directives: ENDFOR, EXIT, CASE, IF.

Genstat Reference Manual 1 Summary section on: Program control.

FORECAST 231

FORECAST

Forecasts future values of a time series (synonym of TFORECAST).

Options

PRINT = string tokens What to print (forecasts, limits, setransform,

sfe); default fore,limi

CHANNEL = scalar Channel number for output; default * i.e. current output

channel

ORIGIN = scalar Number of known values to be incorporated; default 0

UPDATE = string token Whether to update the forecast origin to the end of the

new observations (yes, no); default no

NEWOBSERVATIONS = variate Variate of length 	 ORIGIN providing new values of the

time series to be incorporated (must be set if ORIGIN >

0)

SFE = variate Saves standardized forecast errors; default *

MAXLEAD = scalar Maximum lead time i.e number of forecasts to be made;

default * defines the number as the length of FORECAST

variate

FORECAST = variate Variate of length MAXLEAD to save forecasts of output

series; default *

SETRANSFORM = variate Saves standard errors of the forecasts (on transformed

scale, if defined); default *

LOWER = variate Saves lower confidence limits; default *

UPPER = variate Saves upper confidence limits; default *

PROBABILITY = scalar Probability level for confidence limits; default 0.9

COMPONENTS = pointer Contains variates (of length ORIGIN + MAXLEAD) to save

components of the forecast

SAVE = identifier Save structure to supply fitted model; default * i.e. that

from last model fitted

Parameters

FUTURE = variates Variates (of length ORIGIN + MAXLEAD) containing

future values of input series

METHOD = string tokens How to treat future values of input series

(observations, forecasts); default obse

Description

FORECAST was renamed as TFORECAST in Release 14 to emphasize its status as a time-series

command. The earlier name (FORECAST) was retained to allow previous programs to continue

to run, but this may be removed in a future release.

FORECAST can be used after ESTIMATE to forecast future values of a time series. In many

applications of forecasting with univariate ARIMA models, you will need only a simple form

of the directive. For example

FORECAST [MAXLEAD=10]

will cause Genstat to print forecasts for 10 lead times, that is, the next 10 time points after the

end of your data. However, you must already have used ESTIMATE to specify the time series to

be forecast, and the model to be used for forecasting. This information is supplied by the SAVE

option; if SAVE is not specified, FORECAST uses the information from the most recent ESTIMATE

statement. Once you have used ESTIMATE, you can give successive FORECAST statements to

incorporate new observations of the time series, and to produce forecasts from the end of the new

data.

232 Directives in Release 22

If the time series is supplied with a known model (that is, one with all its orders and

parameters specified) you can use ESTIMATE with option setting METHOD=initialize before

you use FORECAST. This will carry out just sufficient calculations, in particular the regeneration

of the model residuals, for FORECAST to be used. The model parameters will not be changed �
not even the innovation variance. This setting of METHOD restricts the structures, such as

parameter standard errors, that can be accessed using TDISPLAY and TKEEP after ESTIMATE.

The SAVE structure created by using ESTIMATE with METHOD=initialize thus requires less

space than that produced by the other settings.

The PRINT option controls the printed output, and the CHANNEL option allows this to be sent

to another output channel.

The ORIGIN option specifies the number of new values to be incorporated before forecasting

ahead from that point. Setting this to a positive value n indicates that n new observations are to

be added onto the end of the series. These new observations must be supplied in a variate using

the NEWOBSERVATIONS option, which must be of length 	n. The standardized forecast errors

for these new observations can be printed or saved in a variate of length n using the SFE option.

The UPDATE option specifies whether these new observations are to be incorporated internally

onto the end of the time series and the internal pointer moved to the end of the new observations.

If UPDATE=yes is used, then ORIGIN=0 in future calls to FORECAST will point to the end of the

n new observations. If the default, UPDATE=no is used, then the internal pointer remains at the

end of the original series.

The number of future values to be forecast is set by option MAXLEAD. These new values can

be saved in a variate of length MAXLEAD using the FORECAST option.

The PROBABILITY option determines the width of the error limits on the forecast. It defines

the probability that the actual value will be contained within the limits at any particular lead

time. Note that the limits do not apply simultaneously over all lead times.

The SETRANSFORM option specifies a variate to store the standard errors that Genstat used in

calculating the error limits of the forecasts, starting at lead time 1. These are the standard errors

of the transformed series, according to the value of the Box-Cox transformation parameter; they

are functions of the model only, not of the data.

The LOWER option specifies a variate to store the lower limits of the forecasts. This must be

the same length as the FORECAST variate. The FORECAST directive puts the values of the lower

limit into the variate, matching the forecasts in the FORECAST variate. The UPPER option

similarly allows the upper limits to be saved. Note that the limits are constructed as symmetric

percentiles, assuming Normality of the transformed time series. Similarly, the forecast is a

median value � not necessarily the mode or the mean, unless the transformation parameter is 1.0.

The SFE option specifies a variate to save the standardized errors of the forecasts. These are

the innovation values that are generated as each successive new observation is incorporated,

divided by the square root of the TSM innovation variance. They provide a useful check on the

continuing adequacy of the model. For example, excessively large values (compared to the

standard Normal distribution) may indicate that you should revise the model. The variate must

be the same length as the FORECAST variate. The FORECAST directive places values of the errors

in the variate, matching the new observations in the FORECAST variate.

The parameters of FORECAST are relevant only when the time-series model incorporates

explanatory variables, which requires a TRANSFERFUNCTION statement before the ESTIMATE

statement. You use the FUTURE parameter to specify a list of variates, corresponding to the list

of variates specified by the SERIES parameter of TRANSFERFUNCTION. These variates must all

have the same length. They hold future values of the explanatory variables to be used either for

constructing forecasts of the response variable, or for incorporating new observations in order

to revise the forecasts. You can use the METHOD parameter when some or all of the future values

of the explanatory variables are forecasts obtained using univariate ARIMA models. You can

amend the error limits of the forecasts for the response variable to allow for the uncertainty in

FORECAST 233

these future values, but you need to assume that there is no cross-correlation between the errors

in these predictions. The list of strings specified by the METHOD parameter indicates for each

explanatory variable whether such an allowance should be made. The future values of a series

are by default treated as known values if no corresponding ARIMA model is present, or if the

transformation parameter of the ARIMA model is not equal to the value used in the regression

model for that series. You can change the settings of the METHOD parameter in successive

FORECAST statements.

The COMPONENTS option is also relevant only when the time-series model incorporates

explanatory variables, and can be used to specify a pointer to variates in which you can save

components of future values of the output series. There is a variate for each input component and

for the output noise component. These variates correspond exactly to the variates that were

specified by the FUTURE parameter for the input series, and by the FORECAST variate for the

output series; corresponding lengths must match. The values that the variates hold can therefore

be components of the forecasts of the output series, or can be new observations. The can be used

to investigate the structure of forecasts.

If the input series ARIMA model and the transfer-function model have differing

transformation parameters, then the METHOD option reverts to its default action of treating the

values of any future input series as known quantities rather than forecasts.

Options: PRINT, CHANNEL, ORIGIN, UPDATE, NEWOBSERVATIONS, SFE, MAXLEAD, FORECAST,

SETRANSFORM, LOWER, UPPER, PROBABILITY, COMPONENTS, SAVE.

Parameters: FUTURE, METHOD.

See also

Directives: TFORECAST.

Genstat Reference Manual 1 Summary section on: Time series.

234 Directives in Release 22

FORMULA

Declares one or more formula data structures.

Options

VALUE = formula Value for all the formulae; default *

MODIFY = string token Whether to modify (instead of redefining) existing

structures (yes, no); default no

IPRINT = string tokens Information to be used by default to identify the

formulae in output (identifier, extra); if this is not

set, they will be identified in the standard way for each

type of output

Parameters

IDENTIFIER = identifiers Identifiers of the formulae

VALUE = formula structures Value for each formula

EXTRA = texts Extra text associated with each identifier

Description

The IDENTIFIER parameter lists the identifiers of the formulae that are to be declared. The

formula data structure stores a Genstat formula. This can be used to define the model to be fitted

in a statistical analysis. Its main use is to give a formula as the argument of a procedure.

Values can be assigned to the formulae by either the VALUE option or the VALUE parameter.

The option defines a common value for all the structures in the declaration, while the parameter

allows the structures each to be given a different value. If both the option and the parameter are

specified, the parameter takes precedence.

You can associate a text of extra annotation with each formula using the EXTRA parameter.

If MODIFY is set to yes any existing attributes and values of the formulae are retained; otherwise

these are lost.

For example:

FORMULA [VALUE=Drug*Logdose] Model
FORMULA BModel,Tmodel; \
 VALUE=!F(Litter/Rat),!F(Vitamin*Protein)

The construction !F(Litter/Rat) is an example of an unnamed formula.

The IPRINT option can be set to specify how the formulae will be identified in output. If

IPRINT is not set, they will be identified in whatever way is usual for the section of output

concerned. For example, the PRINT directive generally uses their identifiers (although this can

be changed using the IPRINT option of PRINT itself).

Options: VALUE, MODIFY, IPRINT.

Parameters: IDENTIFIER, VALUE, EXTRA.

See also

Directives: FCLASSIFICATION, REFORMULATE, SET2FORMULA.

Functions: COMPARISON, POL, POLND, REG, REGND, LOESS, SSPLINE.

Genstat Reference Manual 1 Summary sections on: Data structures, Analysis of variance,

Regression analysis, REML analysis of linear mixed models.

FOURIER 235

FOURIER

Calculates cosine or Fourier transforms of real or complex series.

Option

PRINT = string tokens What to print (transforms); default *

Parameters

SERIES = variates Real part of each input series

ISERIES = variates Imaginary part of each input series

TRANSFORM = variates To save real part of each output series

ITRANSFORM = variates To save imaginary part of each output series

PERIODOGRAM = variates To save periodogram of each transform

Description

The Fourier or spectral analysis of time series is described comprehensively by Bloomfield

(1976) and Jenkins & Watts (1968). The Fourier transformation of a series calculates the

coefficients of the sinusoidal components into which the series can be analysed. There are four

types of transformation described below, which are appropriate for different types of symmetry

in the series. You may often want the length of the variate holding the supplied series to

determine implicitly a natural grid of frequencies at which values of the transform are calculated.

Genstat will do this if you have not previously declared the identifier supplied for the transform.

Alternatively you may want to determine the transform at a finer grid of frequencies, and you

can achieve this by declaring a transform variate that is as long as you require. You can do this

only for the two types of Fourier transform that apply to real series.

Series of real numbers are stored in single variates, and series of complex numbers in pairs

of variates. You can use the FOURIER directive to calculate the cosine transform of the real

series { at , t=0...N�1 } stored in a variate A by

FOURIER [PRINT=transform] A

You calculate the Fourier transform of the complex series { at+ibt , t=0...N�1 } by storing the

values at in one variate, A say, the corresponding values bt in another, B say, and giving the

statement:

FOURIER [PRINT=transform] A; ISERIES=B

You can restrict the series specified by either the SERIES or ISERIES parameter to a contiguous

set of units. Genstat then applies the transformation only to the restricted series of values.

Similarly, you may supply restricted variates with the TRANSFORM and ITRANSFORM parameters

to save the transform: Genstat will then carry out the transformation so as to supply the required

number of values. There must be no missing values in the variates in the SERIES or ISERIES

parameters, unless you exclude them by a restriction.

Genstat carries out the Fourier transformation using a fast algorithm which relies on the order

of the transformation being highly composite (de Boor 1980). In practice, an appropriate order

is a round number such as 300 or 6000, consisting of a digit followed by zeroes. If, however, the

order has a large prime factor, the transformation may take much longer. For example, a

transformation of order 499 is about 25 times slower than one of order 500. In the descriptions

below, therefore, we clearly state the order of each form of the transformation, to illustrate a

sensible choice of size.

The cosine transformation of a real series can be used to calculate the spectrum from a set of

autocorrelations. Suppose the variate R contains the values r0 ... rn, and the variate F is to hold

the calculated values f0 ... fm of the spectrum. These values correspond to angular frequencies of

ðj/m; that is, periods of 2m/j, for j=0...m. You apply the transformation by putting

FOURIER R; TRANSFORM=F

236 Directives in Release 22

If F has not been declared previously, this statement defines it automatically as a variate with

n+1 values (so m=n). If F has been declared to have m+1 values, then m must be greater than or

equal to n; otherwise Genstat will redeclare F to have n+1 values.

The transform is defined when m>n by

fj = r0 + �k = 1 ... n { 2 × rk × cos(k × ð × j / m) }
When m=n the final term in this sum is

rn cos(ðj) = rn (�1)j

and it appears without the multiplier 2. The order of the transformation is 2m.

If R contains sample autocorrelations, you must multiply it by a variate holding a lag window

in order to obtain a smooth spectrum estimate (see Bloomfield 1976, page 166; or Jenkins &

Watts 1968, page 243).

The Fourier transformation of a real series can be used to calculate the periodogram of a time

series. Suppose the variate X of length N contains the supplied series values x0...xN�1 . The result

of the transformation is a set of coefficients a0...am of the cosine components and b0...bm of the

sine components of the series, held in variates A and B, say. Normally the number of such

components is related to the length of the series by taking m=N/2 if N is even or m=(N�1)/2 if

N is odd. Then the coefficients correspond to angular frequencies of 2ðj/N, which is the same

as saying that they correspond to periods N/j for j=0...m. Since by definition b0=0, and bm=0 if

N is even, there are N "free" coefficients in A and B (which you can think of as the real and

imaginary parts of a complex transform with values aj+ibj). You can save the periodogram values

p0...pm in a variate P, say: these are the squared amplitudes of the sinusoidal components, and are

calculated by Genstat as pj = aj
2+bj

2.

You obtain the transform by putting

FOURIER X; TRANSFORM=A; ITRANSFORM=B; PERIODOGRAM=P

If you want only the periodogram, you can put

FOURIER X; PERIODOGRAM=P

If you have not declared A previously Genstat defines it automatically, here as a variate of length

m+1 where m has the default value defined above. If you have previously declared A, it should

have length greater than or equal to m+1; otherwise Genstat declares it to have this length. In any

case, B and P should have the same length as A, and will be declared (or redeclared) if required.

In the usual case when A, B or P has the default length m+1, the transform is defined by:

aj = �t = 0 ... N�1 { xt × cos(t × 2ð × j / N) } ; j = 0 ... m

bj = �t = 0 ... N�1 { xt × sin(t × 2ð × j / N) } ; j = 0 ... m

In this case, the order of the transformation is N. If A, B and P have length m�+1 with m�>m,

Genstat computes the results at a finer grid of frequencies 2ðj/N�, j=0...m� where N�=2m�. These

replace 2ðj/N in the above defining sums. The upper limit on the sums remains as N�1, although

internally Genstat treats it as N��1 with the extra values of xN...xN��1 being taken as zero. The

order of the transformation is then N�. There are various conventions used for scaling the

periodogram with factors 2/m, 1/m or 1/ðm. You can apply these by using a CALCULATE

statement after the transformation. You may also want to apply mean correction to the series

before calculating the periodogram.

The Fourier transformation of a complex series is the most general form of the Fourier

transformation; the other three types are essentially special cases in which some coefficients are

zero or have a symmetric structure. Suppose variates X and Y contain values x0 ... xN�1 and y0 ...

yN�1, which may be viewed as the real and imaginary parts of the series { xt+iyt, t=0 ... N�1 }. The

results of the transformation are coefficients a0 ... aN�1 and b0 ... bN�1 which can be held in

variates A and B, say: these may similarly be considered as parts of complex coefficients at+ibt,

t=0 ... N�1.

You can do the transformation by putting

FOURIER SERIES=X; ISERIES=Y; TRANSFORM=A; ITRANSFORM=B

FOURIER 237

Both X and Y must be variates with the same length N. Similarly A and B must have length N, and

if they do not Genstat will declare (or redeclare) them as variates of length N. The order of the

transformation is N.

The results are defined by

aj = �t = 0 ... N�1 { xt × cos(t × 2ð × j / N) � yt × sin(t × 2ð × j / N) } ; j = 0 ... m
bj = �t = 0 ... N�1 { xt × sin(t × 2ð × j / N) + yt × cos(t × 2ð × j / N) } ; j = 0 ... m

or equivalently in complex form by

(aj + i bj) = �t = 0 ... N�1 { (xt + i yt) × exp(i t × 2ð × j / N) }

The complex transform can be used in cross-spectral analysis.

You can view a Fourier transformation as an orthogonal matrix transformation. Hence its

inverse is another Fourier transformation (apart from some simple scaling). You can use this to

calculate convolutions. In particular, the correlations of a time series can be obtained by applying

the inverse cosine transformation to the periodogram.

The Fourier transform of a conjugate sequence is most easily considered as the reverse of the

transformation of a real series, with the roles of the series and the transform interchanged. For

the true inverse transformation some simple scaling is also required.

Thus if variates A and B of length m+1 are supplied containing values a0 ... am and b0 ... bm,

which may be viewed as parts of complex coefficients aj+ibj, the result of the transformation is

a single real series x0 ... xN�1 held in a variate X of length N.

X can be declared to have length N=2m or N=2m+1 (corresponding to the case N even or odd

in the Fourier transformation of a real series). The value of b0 must be zero; also if N=2m, the

value of bm must be zero. If either of these conditions is not satisfied, Genstat sets the values of

these elements to zero and gives a warning. If X has not been declared previously (or has been

declared with a length equal to neither 2m nor 2m+1), then it is declared (or redeclared) with a

length governed by whether bm is 0: N=2m if bm=0, and N=2m+1 if bm�0. The value of b0 is

checked to be zero as before.

You can obtain the transform using the statement

FOURIER SERIES=A; ISERIES=B; TRANSFORM=X

The definition of the transform is, in the case N=2m+1,

xt = a0 + �j = 1 ... m {2 × (aj × cos(t × 2ð × j / N) � bj × sin(t × 2ð × j / N)) }

In the case N=2m, the final term in the sum is simply

am cos(tð) = am (�1)t

and it appears without the multiplier 2. The order of this transformation is N.

Option: PRINT.

Parameters: SERIES, ISERIES, TRANSFORM, ITRANSFORM, PERIODOGRAM.

Action with RESTRICT

You can restrict the series specified by either the SERIES or ISERIES parameter to a contiguous

set of units. Genstat then applies the transformation only to the restricted series of values.

Similarly, you may supply restricted variates with the TRANSFORM and ITRANSFORM parameters

to save the transform: Genstat will then carry out the transformation so as to supply the required

number of values.

References

Bloomfield, P. (1976). Fourier Analysis of Time Series: an Introduction. Wiley, New York.

de Boor, C. (1980). FFT as nested multiplication, with a twist. SIAM Journal of Scientific and

Statistical Computing, 1, 173-178.

Jenkins, G.M. & Watts, D.G. (1968). Spectral Analysis and its Applications. Holden-Day, San

Francisco.

238 Directives in Release 22

See also

Directive: CORRELATE.

Procedures: DFOURIER, MCROSSPECTRUM, PERIODTEST, REPPERIODOGRAM,

SMOOTHSPECTRUM.

Genstat Reference Manual 1 Summary section on: Time series.

FPSEUDOFACTORS 239

FPSEUDOFACTORS

Determines patterns of confounding and aliasing from design keys, and extends the treatment

model to incorporate the necessary pseudo-factors.

Options

TREATMENTSTRUCTURE = formula Treatment model for the design

BLOCKSTRUCTURE = formula Block model for the design

FACTORIAL = scalar Limit on the number of factors in each treatment term

LROWS = factors or scalars Numbers of levels of factors, or factors, corresponding

to the rows of the key matrices

LCOLUMNS = factors or scalars Numbers of levels of factors, or factors, corresponding

to the columns of the key matrices

NEWTREATMENTSTRUCTURE = identifier

Store the extended treatment model

PSEUDOFACTORS = pointer Pseudo-factors required for the keys

NPSEUDOFACTORS = scalar Number of pseudo-factors required for the keys

KEYPSEUDOFACTORS = matrix Key to generate the pseudo-factors from the treatment

factors

KEYCONTRASTS = matrix Key partitioning the treatment terms into orthogonal sets

of contrasts

Parameters

KEY = matrices Design keys

KEYINVERSE = matrices Store the inverses of the design keys

ALIASSETS = variates Stores aliasing information about the orthogonal sets of

treatment contrasts

RESOLUTION = scalars Saves the resolution number of the design constructed by

each key

Description

The FPSEUDOFACTORS directive examines a list of design keys, specified using the KEY

parameter, and forms pseudo-factors to allow the ANOVA directive to cope with partial

confounding or aliasing in the design generated by the keys. The factors corresponding to the

rows of the keys are specified by the LROWS option, and those for the columns are specified by

the LCOLUMNS option. If you merely want to save the inverses of the keys, using the

KEYINVERSE parameter, you can specify scalars defining the numbers of levels of the factors

instead of the factors themselves. If LROWS is not specified, FPSEUDOFACTORS will take the

factors from the formula specified by the TREATMENTSTRUCTURE parameter, in the order that

they occur there. Similarly, the BLOCKSTRUCTURE option can provide a default for LCOLUMNS.

FPSEUDOFACTORS assumes that the design is formed by generating a replicate using each

design key. The BLOCKSTRUCTURE option defines the block structure within each replicate, so

the full block structure would be Rep/(#BLOCKSTRUCTURE) where Rep is a factor for the

replicates. The TREATMENTSTRUCTURE option specifies the treatment terms to be estimated

using the design, and the FACTORIAL option allows a limit to be set on the number of factors in

the terms that are generated as, for example, in the ANOVA directive. FPSEUDOFACTORS

examines the keys to see whether any treatment terms are partially aliased or partially

confounded. Provided the factors of each such term all have the same (prime) number of levels

it can then extend the treatment formula, inserting pseudo-factors for these terms, so that the

ANOVA directive can produce a correct analysis. The extended formula can be saved using the

NEWTREATMENTSTRUCTURE option, and the NPSEUDOFACTORS option saves the number of

pseudo-factors that are needed. The pseudo-factors themselves are represented by the elements

240 Directives in Release 22

of a pointer specified by the PSEUDOFACTORS option, and the KEYPSEUDOFACTORS option can

save the key matrix required to generate their values from the values of the treatment factors.

FPSEUDOFACTORS can also determine the aliasing relationships of treatment terms in

fractional factorial designs. The KEYCONTRASTS option can save a design key that partitions the

treatment terms into orthogonal sets of contrasts. (The matrix thus has a row for each set of

contrasts, and a column for each treatment factor.) The ALIASSETS parameter saves a variate,

for each design key, with length equal to the number of rows in the KEYCONTRASTS matrix. The

variate stores integers indicating the alias group of each set of contrasts so, if two elements of

the variate are equal, this indicates that the corresponding sets of contrasts are aliased in the

replicate generated by the design key concerned. The RESOLUTION parameter saves the

resolution number for the replicate generated by each design key. This is the minimum number

of factors involved in any pair of aliased terms.

Options: TREATMENTSTRUCTURE, BLOCKSTRUCTURE, FACTORIAL, LROWS, LCOLUMNS,

NEWTREATMENTSTRUCTURE, PSEUDOFACTORS, NPSEUDOFACTORS, KEYPSEUDOFACTORS,

KEYCONTRASTS.

Parameters: KEY, KEYINVERSE, ALIASSETS, RESOLUTION.

See also

Directives: AFMINABERRATION, GENERATE, FKEY.

Procedures: AGFACTORIAL, AKEY, ARANDOMIZE, FACDIVIDE, FBASICCONTRASTS.

Genstat Reference Manual 1 Summary sections on: Design of experiments, Analysis of

variance.

FRAME 241

FRAME

Defines the positions and appearance of the plotting windows within the frame of a

high-resolution graph.

Options

GRID = string tokens Specifies grid lines (xy, xz, yx, yz, zx, zy)

BOXFRAME = string tokens Whether to include a box enclosing the entire frame

(include, omit)

BACKGROUND = scalars or texts Specifies the colour to be used for the background of the

whole frame (where allowed by the graphics device)

RESET = string token Whether to reset the window definition to the default

values (yes, no); default no

Parameters

WINDOW = scalars Window numbers

YLOWER = scalars Lower y device coordinate for each window

YUPPER = scalars Upper y device coordinate for each window

XLOWER = scalars Lower x device coordinate for each window

XUPPER = scalars Upper x device coordinate for each window

YMLOWER = scalars Size of bottom margin (for x-axis labels)

YMUPPER = scalars Size of upper margin (for overall title)

XMLOWER = scalars Size of left-hand margin (for y-axis labels)

XMUPPER = scalars Size of right-hand margin

BACKGROUND = scalars or texts Specifies the colour to be used for the background in

each window (where allowed by the graphics device)

BOX = string tokens Whether to include a box enclosing the plotted graphic

(include, omit)

BOXSURFACE = string tokens Box to include in a surface plot (full, bounded, omit)

BOXKEY = string tokens Box to draw around key (full, bounded, omit)

PENTITLE = scalars Pen to use to write the overall title

PENKEY = scalars Pen to use for the key

PENGRID = scalars Pen to use to draw the grid lines

SCALING = string tokens How to scale the axis in each window (xyequal,

xzequal, yzequal, xyzequal)

TPOSITION = string tokens Position of title (right, left, center, centre)

CINTERIOR = scalars or texts Specifies the colour to be used for the interior of each

window (where allowed by the graphics device)

CFRAME = scalars or texts Specifies the colour to be used for the frame of each

window (where allowed by the graphics device)

CTITLE = scalars or texts Specifies the colour to be used for the title bar of each

window (where allowed by the graphics device)

AXES = identifiers or pointers Additional oblique axes to include in each window

SAVE = pointers Saves details of the current settings for the window

concerned

Description

You can define up to 256 different windows in which to plot graphics. Each window is a

rectangular area of the screen which is defined using normalized device coordinates (NDC).

These can have a range from 0.0 to 1.4 in both Y and X directions, but the usable area depends

on the orientation of the device (as defined by the DEVICE directive). With a landscape device,

your should use only the range 0.0 to 1.0 for Y, while for a portrait device you should use only

242 Directives in Release 22

0.0 to 1.0 in the X direction. The mapping from NDC to physical coordinates on the current

output device is performed internally, so the window definitions are independent of the choice

of device. The actual size of a particular window on different devices will vary according to their

relative physical sizes. The NDC system used for window definition is also completely

independent of the values of the data that are to be plotted.

When you use FRAME, any aspects of the windows that you do not specify explicitly retain the

values that they had immediately before the FRAME statement. Alternatively, you can specify

option RESET=yes to reset all these aspects to the default values, defined by Genstat at the start

of each job.

To define a window, the upper and lower bounds are required in both y- and x-directions; thus

defining both the position and the size of the window. For example

FRAME WINDOW=1; YLOWER=0.25; YUPPER=0.75;\
 XLOWER=0; XUPPER=0.5

defines window 1 to be a square of size 0.5, whose bottom left corner is at the point (0.0,0.25)

and whose top right corner is (0.5,0.75). This does not define the exact size of a graph plotted

in this window, as margins may be required for the annotation and titles (see below).

If you do not specify all four values in the FRAME statement, the existing values are retained.

A check is then made on the validity of the window bounds. The settings of YLOWER and XLOWER

must be strictly less than those of YUPPER and XUPPER respectively; also, none of the bounds

can be outside the permitted range, which is [0.0,1.0] on most graphics devices. You cannot use

* to reset a bound to the default value; if you try to do so, Genstat will produce an error

diagnostic. (Instead you can specify option RESET=yes, as explained above.)

All the windows have a default size defined when you start Genstat. Window 1 is the default

window used for plots by DGRAPH, DCONTOUR, and so on, and is set up to be a square of size

0.75. The default key window is window 2, which is a rectangle of height 0.25 and width 0.75

located immediately below window 1. Windows 3 and 4 are the unit square [0,1]×[0,1] and

windows 5, 6, 7 and 8 are the top-left, top-right, bottom-left, and bottom-right quarters

respectively of the unit square. Windows 9, 10, 11 and 12 also divide the frame into quarters, but

they have the full width (0 to 1) in the x-direction and quarter of the width in the y-direction,

working from the top (i.e. 0.75 to 1 for window 9) to the bottom (i.e. 0 to 0.25 for window 12)

of the frame. The remaining windows, from 13 to 32, also default to the unit square. You can use

FRAME to modify the size or position of any of these windows.

Usually, a margin is provided around each plot so that there is room for the axes to be drawn,

along with labelling and titles as specified by the XAXIS or YAXIS directives. By default, the

margin size is designed to allow sufficient room for annotation to be added using the standard

character size, as defined by the SIZEMULTIPLIER or SMLABEL parameters of PEN. If you use

XAXIS or YAXIS to control the plotting of axes explicitly you may wish to alter the size of the

margins, either to increase the space used for the axes or, alternatively, to maximize the space

available for the graph itself. For example, if you alter the size of the labelling, by explicitly

defining the relevant axis pens, more space may be required for the axes; otherwise the labels

may be clipped at the window bounds. The parameters YMLOWER, YMUPPER, XMLOWER and

XMUPPER can be used to set the space (in NDC) for the bottom, top, left-hand and right-hand

margins respectively, and have initial default settings of 0.10, 0.07, 0.12 and 0.05.

On most devices the background colours of the window may be modified by setting the

BACKGROUND, CINTERIOR, CFRAME and CTITLE parameters. The BACKGROUND parameter can

be used to define the colour for the whole background, while the other parameters define specific

aspects (overriding any setting of BACKGROUND): CINTERIOR defines the colour of the interior

of the plot (where the points are plotted), CFRAME defines the colour of the outer frame (outside

the interior), and CTITLE is the colour of the title bar. The parameters can be set either to a text

containing the name of one of Genstat's pre-defined colours, or to a scalar containing a number

defining a colour using the RGB system; see the PEN directive and the RGB function for details.

FRAME 243

Similarly, the BACKGROUND option can define the background colour for the whole frame (which

may include areas outside any of the windows). The special colour setting 'match' can be used

to apply the colour from the preceding parameter to the next one: CFRAME would inherit the

colour from CINTERIOR, and CTITLE would inherit from from CFRAME. For example,

FRAME 1; CINTERIOR='white'; CFRAME='ivory'; CTITLE='match'

will specify colour white for the inside of the plot, and ivory to all the area outside this.

The PENTITLE and PENKEY options allow you to define the pens to be used to write the

overall title and the key in each window; the initial default is to use pen �5 and �6 respectively.

The TPOSITION parameter can be used to specify the position of the title in each window: either

left-justified, right-justified or centred. The initial default is that it is centred.

The GRID option allows you to request grid lines to be drawn in particular directions and

planes (for all the windows listed by the WINDOW parameter). For example the setting xy requests

lines in the xy plane running from the x-axis (that is, parallel to the y-axis), and the setting yx

requests lines in the xy plane running from the y-axis (that is, parallel to the x-axis); so you can

set both of these to obtain box markings in the xy plane. The PENGRID parameter specifies the

pen to be used for the grid lines in each window; the initial default is to use pen �4. You must

use the RESET option if you want to restore these pen numbers to the initial defaults. (Genstat

does not allow you to set negative pen numbers explicitly.) The BOX parameter allows you to put

a box around the window in plots other than surface plots; the initial default is to include this.

The box for a surface plot is controlled by the BOXSURFACE option, and can either be a full box

enclosing the whole graph, or a bounded box enclosing just the surface; the initial default is that

no box is drawn. The BOXKEY parameter can request that either a full or a bounded box be drawn

around each key; the initial default is to omit the box. Finally, the BOXFRAME option controls

whether or not a box is drawn around the entire frame; the initial default is to omit the box.

The SCALING parameter enables you to request that scaling of the x-, y- or z-axes should be

equal in each window. For example, the xyequal setting ensures that the x- and y-axes are

scaled identically, the setting xyzequal ensures that all the axes have the same scaling, and so

on.

The AXES parameter allows you to specify the identifier of an oblique axis (defined by the

AXIS directive) that should be included in a window. If you want to include several axes, you

can specify a pointer containing the identifiers of the required axes.

The current FRAME settings for a particular window can be saved in a pointer supplied by the

SAVE parameter. The elements of the pointer are labelled to identify the components.

Options: GRID, BOXFRAME, RESET.

Parameters: WINDOW, YLOWER, YUPPER, XLOWER, XUPPER, YMLOWER, YMUPPER, XMLOWER,

XMUPPER, BACKGROUND, BOX, BOXSURFACE, BOXKEY, PENTITLE, PENKEY, PENGRID,

TPOSITION, SCALING, CINTERIOR, CFRAME, CTITLE, AXES, SAVE.

See also

Directives: AXIS, XAXIS, YAXIS, ZAXIS.

Procedures: BANK, DHELP, FFRAME.

Genstat Reference Manual 1 Summary section on: Graphics.

244 Directives in Release 22

FRENAME

Renames files.

No options

Parameters

OLD = texts Name of each file to rename

NEW = texts New name for each file

OVERWRITE = string tokens Whether to overwrite any existing files (yes, no);

default no

Description

FRENAME allows you to rename external files. The names of the original files are specified, in

texts, but the OLD parameter. The new file names are specified by the NEW parameter. If no path

is included in the file name, it is assumed to be in the current working directory (which can be

defined by the WORKINGDIRECTORY option of the SET directory). If you need to define the path,

remember that the character \ is the continuation symbol in Genstat. So this character needs to

be duplicated in a string to avoid Genstat interpreting it as a continuation: for example

FRENAME 'Today.Dat'; NEW='D:\\April\\18.dat'

renames the file Today.dat to become the file 18.dat in the directory (or folder) D:\April.

As a more convenient alternative, the PC version of Genstat allows you to use / instead: i.e. you

could put

FRENAME 'Today.Dat'; NEW='D:/April/18.dat'

By default FRENAME gives a fault if there is already a file with the new name, but you can set

parameter OVERWRITE=yes to overwrite it.

Options: none.

Parameters: OLD, NEW, OVERWRITE.

See also

Directives: FCOPY, FDELETE, CLOSE, ENQUIRE, OPEN.

Genstat Reference Manual 1 Summary section on: Input and output.

FRQUANTILES 245

FRQUANTILES

Forms regression quantiles.

Options

Y = variate Response variate

DESIGNMATRIX = matrix Design matrix for the regression model

TOLERANCE = scalar Tolerance for the algorithm; default 10-12

Parameters

PRQUANTILE = scalars Values for which to perform the quantile regressions

RESIDUALS = variates Parameter estimates from each quantile regression

ESTIMATES = variates or matrices Estimates from each quantile regression, either a variate

of estimates for a specific quantile or, if PRQUANTILE is

set to a missing value, a matrix with a row of estimates

for every cumulative probability value in the

CUMPROBABILITIES variate

XBARQUANTILES = variates When PRQUANTILE is set to a missing value, saves the

sum of the mean of each design column multiplied by its

regression quantile for all the quantile solutions

CUMPROBABILITIES = variates When PRQUANTILE is set to a missing value, saves the

cumulative probabilitiy values at which the estimated

regression quantiles change

EXIT = scalars Saves an exit code, with 0 to indicate success

Description

FRQUANTILES calculates regression quantile statistics using the algorithm of Koenker & D'Orey

(1987). The Y option specifies the response variate, and the DESIGNMATRIX option specifies the

design matrix for the regression model to be fitted. The design matrix can be formed, for

example, using the TERMS directive.

The PRQUANTILE parameter can be set to a scalar specifying the probability value whose

quantiles are required. The ESTIMATES parameter then saves the estimated regression quantile

statistics, and the RESIDUALS parameter saves the corresponding residuals.

Alternatively, if PRQUANTILE parameter is set to a scalar containing a missing value,

FRQUANTILES forms the complete set of "solutions" by finding all the probability values at

which the regression quantiles change. These cumulative probabilities can be saved in a variate,

using the CUMPROBABILITIES parameter, and the ESTIMATES parameter then saves a matrix

with a row of estimates for each cumulative probability. The XBARQUANTILES parameter saves

a variate containing the sum of the mean of each column of the DESIGNMATRIX multiplied by

its regression quantile for all the cumulative probabilities.

The EXIT parameter can save a scalar containing an "exit" code, as follows:

0 the algorithm was successful;

1 the solution was not unique;

2 the algorithm failed.

If EXIT is set, no Genstat diagnostic is given if the algorithm fails, unless the failure arises from

an incorrect option or parameter setting, or because Genstat has run out of workspace.

Options: Y, DESIGNMATRIX, TOLERANCE.

Parameters: PRQUANTILE, RESIDUALS, ESTIMATES, CUMPROBABILITIES, XBARQUANTILES,

EXIT.

246 Directives in Release 22

Method

For more details of quantile regression and of the estimation method, see Koenker (2005) and

Koenker & D'Orey (1987).

Action with RESTRICT

FRQUANTILES takes account of restrictions on the Y variate.

References

Koenker, R. (2005). Quantile Regression. Cambridge University Press, New York.

Koenker, R.W. & D'Orey, V. (1987). Algorithm AS229 computing regression quantiles. Applied

Statistics, 36, 383-393.

See also

Directives: FIT, TERMS.

Procedures: RQLINEAR, RQNONLINEAR, RQSMOOTH.

Function: RQOBJECTIVE.

Genstat Reference Manual 1 Summary sections on: Regression analysis, Calculations and

manipulation.

FSIMILARITY 247

FSIMILARITY

Forms a similarity matrix or a between-group-elements similarity matrix or prints a similarity

matrix.

Options

PRINT = string token Printed output required (similarities, summary);

default * i.e. no printing

STYLE = string token Print percentage similarities in full or just the 10% digit

(full, abbreviated); default full

METHOD = string token Form similarity matrix or rectangular

between-group-element similarity matrix

(similarities, betweengroupsimilarities);

default simi

SIMILARITY = matrix or symmetric matrix

Input or output matrix of similarities; default *

GROUPS = factor Grouping of units into two groups for

between-group-element similarity matrix; default *

PERMUTATION = variate Permutation of units (possibly from HCLUSTER) for

order in which units of the similarity matrix are printed;

default *

UNITS = text or variate Unit names to label the rows of the similarity matrix;

default *

MINKOWSKI = scalar Index t for use with TEST=minkowski

Parameters

DATA = variates or factors The data values

TEST = string tokens Test type, defining how each DATA variate or factor is

treated in the calculation of the similarity between each

unit (simplematching, jaccard, russellrao, dice,

antidice, sneathsokal, rogerstanimoto,

cityblock, manhattan, ecological, euclidean,

pythagorean, minkowski, divergence, canberra,

braycurtis, soergel); default * ignores that variate

or factor

RANGE = scalars Range of possible values of each DATA variate or factor;

if omitted, the observed range is taken

Description

The FSIMILARITY directive forms similarity matrices, essentially using the method described

by Gower (1971). The similarity coefficient that is calculated allows variables to be qualitative,

quantitative or dichotomous, or mixtures of these types; values of some of the variables may be

missing for some samples. The values of a similarity coefficient vary between zero and unity:

two samples have a similarity of unity only when both have identical values for all variables; a

value of zero occurs when the values for the two samples differ maximally for all variables.

You can form a symmetric matrix of similarities, or a rectangular matrix of similarities

between the units in two groups. You can save either form of similarity matrix, using the

SIMILARITY option. FSIMILARITY can also be used to print the symmetric matrix of

similarities after it has formed it; alternatively, you can input an existing similarity matrix for

printing, using the SIMILARITY option.

The DATA parameter specifies a list of variates or factors, all of which must be of the same

length. If you want to print an existing similarity matrix, the DATA parameter (and the TEST and

248 Directives in Release 22

RANGE parameters) should be omitted, and the SIMILARITY option used to input the matrix

concerned.

The TEST parameter specifies a list of strings, one for each variate or factor in the DATA

parameter list, that define their "types". If you want to exclude a variate or factor from

contributing, you should specify an empty string (* or ''). Otherwise the similarity between

units i and j is calculated as

�k { wk(xik, xjk) sk(xik, xjk) } / �k wk(xik, xjk)
where xik is the value of the DATA variate k in unit i, and the contribution functions sk and weight

functions wk for a variate or factor k of the available types are defined in the tables below (for

further details see Gower 1971, 1985).

The first table contains the types appropriate for variates that are recording the presence or

absence of a characteristic; these cannot be used with factors.

Type Contribution sk Weight wk

Jaccard if xi � 0 and xj � 0, then 1 1

if xi = xj = 0, then 0 0

if only one of xi or xj = 0, then 0 1

RussellRao if xi � 0 and xj � 0, then 1 1

if xi = 0 or xj = 0, then 0 1

Dice if xi � 0 and xj � 0, then 1 1

if xi = xj = 0, then 0 0

if only one of xi or xj = 0, then 0 0.5

antidice if xi � 0 and xj � 0, then 1 1

if xi = xj = 0, then 0 0

if only one of xi or xj = 0, then 0 2

SneathSokal if xi � 0 and xj � 0, then 1 1

if xi = xj = 0, then 1 1

if only one of xi or xj = 0, then 0 0.5

RogersTanimoto if xi � 0 and xj � 0, then 1 1

if xi = xj = 0, then 1 1

if only one of xi or xj = 0, then 0 2

The simplematching type is appropriate for qualitative variables, which may be either variates

or factors.

Type Contribution sk Weight wk

simplematching if xi = xj, then 1 1

if xi � xj, then 0 1

The next table shows the types that can be used for quantitative variates (but not factors). In the

FSIMILARITY 249

definitions, r is the range of the variate, t is the Minkowski index (defined by the MINKOWSKI

option). Note, however, that BrayCurtis and Soergel should not be mixed with other types.

Type Contribution sk Weight wk

cityblock 1 � |xi � xj| / r 1

Manhattan synonymous with cityblock

ecological 1 � |xi � xj| / r 1

unless xi = xj = 0 0

Euclidean 1 � {(xi � xj) / r}2 1

Pythagorean synonymous with Euclidean

Minkowski 1 � |xi � xj|
t / rt 1

Divergence 1 � {(xi � xj) / (xi + xj)}
2 1

Canberra 1 � |xi � xj| / (|xi| + |xj|) 1

BrayCurtis 1 � |xi � xj| / (xi + xj) xi + xj

Soergel 1 � |xi � xj| / max(xi, xj) max(xi, xj)

The RANGE parameter contains a list of scalars, one for each variate or factor in the DATA list.

This allows you to check that the values of each variate lie within the given range. If any variate

or factor fails the range check, FSIMILARITY gives an error diagnostic and terminates without

forming the similarity matrix. The range is also used to standardize quantitative variates; this

allows you to impose a standard range, for example when variates are measured on

commensurate scales. You can omit the RANGE parameter for all or any of the variates or factors

by giving a missing identifier or a scalar with a missing value; Genstat then uses the observed

range. If PRINT=summary, Genstat prints the name, the minimum value, and the range for each

variate and factor.

The METHOD option controls what type of matrix is produced. METHOD=similarity, the

default, gives a symmetric matrix of similarities amongst a single set of units.

METHOD=betweengroupsimilarity gives a rectangular matrix of similarities between two

sets of units. To form a rectangular matrix of similarities, you must also define the grouping of

units by setting the GROUPS option (see below).

The PRINT, STYLE and PERMUTATION options govern the printing of a symmetric matrix of

similarities. You can either form the similarity matrix within FSIMILARITY, or input it by the

SIMILARITY option. To print the similarity matrix you should set option PRINT=similarity.

The STYLE option has two settings, full (the default) or abbreviated. The similarity matrix

printed in full style has its values displayed as percentages with one decimal place. If you put

STYLE=abbreviated, the values of the similarity matrix are printed as single digits with no

spaces, the digit being the 10's value of the similarity as a percentage. In both cases, though, the

actual similarities in the range 0-1 are stored in the similarity matrix itself. The PERMUTATION

option allows you to specify a variate with values corresponding to the order in which you want

the rows of the similarity matrix to be printed. The reordering of the rows is most effective when

the permutation arises from a hierarchical clustering and corresponds to the dendrogram order.

You use the GROUPS option to specify a partition of the units into two groups, by giving a

factor with two levels. The units with level 1 of the factor correspond to the rows of the matrix,

while the units with level 2 correspond to the columns.

250 Directives in Release 22

The UNITS option allows you to label the rows of the output similarity matrix if the variates

of the DATA parameter do not have any unit labels, or if you want to use different labels from

those labelling the units of the variates. This labelling also applies to the rows and columns of

a matrix of similarities between group elements.

Options: PRINT, STYLE, METHOD, SIMILARITY, GROUPS, PERMUTATION, UNITS, MINKOWSKI.

Parameters: DATA, TEST, RANGE.

Action with RESTRICT

If any of the DATA variates or factors is restricted, or if the factor in the GROUPS option is

restricted, then that restriction is applied to all the variates or factors. If more than one is

restricted, then the restrictions must all be to the same set of units. The dimension of the

resulting symmetric matrix of similarities is taken from the number of units that contribute to the

similarity matrix.

References

Gower, J.C. (1971). A general coefficient of similarity and some of its properties. Biometrics,

27, 857-871.

Gower, J.C. (1985). Measures of similarity, dissimilarity and distance. In: Encyclopedia of

Statistical Sciences, Volume 5, 397-405.

See also

Directives: CLUSTER, HCLUSTER, PCO, HREDUCE.

Procedures: ECANOSIM, HBOOTSTRAP, MANTEL, MASCLUSTER.

Genstat Reference Manual 1 Summary sections on: Calculations and manipulation,

Multivariate and cluster analysis.

FSSPM 251

FSSPM

Forms the values of SSPM structures.

Options

PRINT = string tokens Printed output required (correlations, wmeans,

SSPM); default * i.e. no printing

WEIGHTS = variate or symmetric matrix

Variate of weights for weighted SSP, or symmetric

matrix of weights (one row and column for each unit of

data); default * i.e. all units with weight one

SEQUENTIAL = scalar Used for sequential formation of SSPMs; a positive

value indicates that formation is not yet complete (see

READ directive); default * i.e. not sequential

Parameter

SSPMs Structures to be formed

Description

FSSPM forms the values for the component parts of SSPM structures, based on the information

supplied when the SSPM directive was used to declare them. You can use an SSPM as input to

the regression directive TERMS, or the multivariate directives PCP and CVA. The method used to

form the SSPM is based on the updating formula for the means and corresponding corrected sums

of squares and cross products (Herraman 1968).

FSSPM has one parameter which lists the SSPM structures whose values are to be formed. If

any of these vectors has a missing value, the corresponding unit is excluded from all the means

and all the sums of squares and products. You can also exclude units by setting their weights to

zero.

When you have very many units, you may not be able to store them all at the same time within

Genstat. You can then use the SEQUENTIAL option of READ to read the data in conveniently

sized blocks, and the SEQUENTIAL option of FSSPM to control the accumulation of the sums of

squares and products. The SSPM is updated for each block of data in turn until the end of data

is found. The PRINT option has no effect until the last set of values is processed, when READ sets

the scalar indicator to a negative value.

Options: PRINT, WEIGHTS, SEQUENTIAL.

Parameter: unnamed.

Action with RESTRICT

FSSTM takes account of restrictions on any of the variates or factors forming the terms of the

SSPM, or on the weights variate or grouping factor if you have specified them.

Reference

Herraman, C. (1968). Algorithm AS12: Sums of squares and products matrix. Applied Statistics,

17, 289-292.

See also

Directives: SSPM, CVA, FCA, PCO, PCP, TERMS.

Procedures: FCORRELATION, FVCOVARIANCE, ROBSSPM.

Genstat Reference Manual 1 Summary sections on: Calculations and manipulation,

Multivariate and cluster analysis, Regression analysis.

252 Directives in Release 22

FTSM

Forms preliminary estimates of parameters in time-series models.

Option

PRINT = string tokens What to print (models); default *

Parameters

TSM = TSMs Models whose parameters are to be estimated

CORRELATIONS = variates Auto- or cross-correlations on which to base estimates

for each model

BOXCOXTRANSFORM = scalars Box-Cox transformation parameter

CONSTANTTERM = scalars Constant term

VARIANCE = scalars Variance of ARIMA model, or ratio of input variance to

output variance for transfer model

Description

The TFIT directive carries out a lot of computation to find the best estimates of the parameters

of a time-series model. The amount of computation can be reduced if you provide rough initial

values for the parameters, especially when there are many of them. This can be done using the

FTSM directive. FTSM obtains moment estimators of a simple kind, by solving equations between

the unknown parameters of the ARIMA or transfer-function model and the autocorrelations or

cross-correlations calculated from the observed time series. Sometimes these equations have no

solution, or their solution provides values inconsistent with the constraints demanded of the

parameters. If so, Genstat sets the corresponding parameters to missing values. The form of the

directive is the same for ARIMA and transfer-function models, but the interpretation is slightly

different.

To obtain preliminary estimates of ARIMA model parameters, a typical FTSM statement might

be

FTSM [PRINT=model] Yatsm; CORRELATIONS=Yacf; BOXCOX=Ytran;\
 CONSTANT=Ymean; VARIANCE=Yvar

You must previously have declared Yatsm to be a TSM structure (i.e. a time-series model

structure) of type ARIMA with appropriate orders, and lags if you need to specify them. Genstat

takes this model to be associated with observations of a time series yt. The aim of the directive

is to set the values of the variate of model parameters equal to preliminary estimates derived

from the variate Yacf and scalars Ytran, Ymn and Yvar.

The variate Yacf should contain sample autocorrelations r0 ... rm. You should obtain these

from the original time series, stored in variate Y say, by first using the CALCULATE directive to

transform Y according to the Box-Cox equations with transformation parameter Ytran (if you

do indeed want a transformation). You should then form the differences of the transformed

series, according to the degrees of differencing already set in the model; you can use the

DIFFERENCE function with the CALCULATE directive for this. Finally, you should use the

AUTOCORRELATIONS parameter of the CORRELATE directive to store the autocorrelations of the

resulting series in Yacf. Often you will have done these operations already in order to produce

Yacf for selecting a model.

At the same time, you can supply the scalars Ytran, Ymean and Yvar to set the first three

elements of the parameters variate of Yatsm; these cannot be set using Yacf alone. The scalar

Ytran should be the parameter used to transform Y, and Genstat will copy it into the first

element of the variate of parameters. Genstat will copy the scalar Ymean into the second element,

which is the constant term of the model; the recommended value for this is the sample mean of

the series from which Yacf is calculated, but you may prefer the value 0. The scalar Yvar is

used to set the innovation variance, which is the third element of the variate of parameters. The

FTSM 253

recommended value is the sample variance of the series from which Yacf is calculated. If you

set Yvar to 1.0, then Genstat will set the innovation variance to the variance ratio

Variance(e)/Variance(y), as estimated from Yacf according to the model.

If any of the BOXCOX, CONSTANT or VARIANCE parameters is not set, Genstat will leave

unchanged the corresponding value in the variate of parameters of the model. The only exception

to this rule is if a parameter is missing. Then Genstat initially sets the transformation parameter

to 1.0 (corresponding to no transformation), and the constant to 0.0; the innovation variance is

left missing.

A typical FTSM statement for a transfer-function model might be

FTSM [PRINT=model] Xytsm; CORRELATIONS=Xyccf; BOXCOX=Xtran;\
 CONSTANT=Xmean; VARIANCE=Xyvratio

You must previously have declared the time-series model Xytsm to be of type

transferfunction with appropriate orders, and lags if you need to specify them. Genstat

assumes that this model represents the dependence of an output series yt on an input series xt in

a multi-input model. The directive sets the values of the parameters of the model equal to

preliminary estimates derived from Xyccf, Xtran, Xmean and Xyvratio.

You should put into the variate Xyccf an estimate of the impulse-response function of the

model, from which Genstat will derive the parameters. This estimate is usually a sample cross-

correlation sequence r0 ... rm obtained from variates Y and X1 containing observations of yt and

xt according to one of the following four rules:

(a) In the simple case, the differencing orders of Xytsm are all zero, and you do not want to

use any Box-Cox transformation of either yt or xt. Then the cross-correlations should be

those between variates Alpha and Beta, say, derived from X and Y by filtering (or pre-

whitening), see the TFILTER directive. The ARIMA model that you used for the filter

should be the same for X and Y, and you should choose it so that the values of Alpha

represent white noise.

(b) If the differencing orders of Xytsm are not zero, then before you calculate the cross-

correlations you should further difference the series Beta as specified by these orders.

(c) If a Box-Cox transformation is associated with yt, you should apply it to Y before the

filtering. However this transformation parameter must not be associated with Xytsm: you

should assign it to the univariate ARIMA model that you have specified for the error term.

(d) If a Box-Cox transformation is associated with xt, it must be the same as the one you used

in the ARIMA model for xt from which the series Alpha was derived. The scalar Xtran

must contain this transformation parameter. Genstat copies it into the first element of the

parameter variate of Xytsm. If the Box-Cox parameter is unset, Genstat leaves the

transformation parameter of Xytsm unchanged; it is set to 1.0 if it was originally missing.

Genstat copies the scalar Xmean into the second element of the variate of parameters. The

recommended value is the sample mean of X after any transformation has been applied. If you

do not set the CONSTANT parameter, Genstat leaves the constant parameter of Xytsm unchanged;

it is set to 0.0 if it was originally missing.

You use the scalar Xyvratio to obtain the correct scaling of non-seasonal moving-average

parameters in Xytsm. All the other autoregressive parameters and moving-average parameters

are invariant under scale changes in yt and xt. You should set the scalar to the ratio of the sample

variances of the variates from which the cross-correlations were calculated; that is,

Variance(Beta)/Variance(Alpha). If you do not set this, Genstat uses the value 1.0.

You can use FTSM to go backwards from autocorrelations to the original time-series model.

If you apply it to the autocorrelations that were constructed from a time-series model by means

of TSUMMARIZE, it will recover the parameters of the model exactly, provided the model is non-

seasonal. If the model contains seasonal parameters, with seasonal period s, the parameters will

not be recovered exactly, except in one special circumstance: that is, when the non-seasonal part

of the model, considered in isolation from the seasonal part, has a theoretical autocorrelation

254 Directives in Release 22

function that is zero beyond lag s/2. Otherwise, the non-seasonal and seasonal parts of the model

interact, and so Genstat loses accuracy in the recovered parameters. When you use sample

autocorrelations, this loss of accuracy tends to be small in comparison with the sampling

fluctuations of the estimates. But if s is small, say s=4 for quarterly data, the loss could be

serious. Exactly the same considerations apply to transfer-function models.

Option: PRINT.

Parameters: TSM, CORRELATIONS, BOXCOXTRANSFORM, CONSTANT, VARIANCE.

See also

Directives: TSM, TDISPLAY, TFILTER, TFIT, TFORECAST, TKEEP, TRANSFERFUNCTION,

TSUMMARIZE.

Procedures: BJESTIMATE, BJFORECAST, BJIDENTIFY.

Genstat Reference Manual 1 Summary section on: Time series.

FVARIOGRAM 255

FVARIOGRAM

Forms experimental variograms.

Options

PRINT = string token Controls printed output (statistics); default stat

Y = variate Y positions (needed only for 2-dimensional irregular

data)

X = variate X positions or interval (not needed for 2-dimensional

regular data i.e. when DATA is a matrix)

YMAX = scalar Maximum lag in the y direction (2-dimensional regular

data only)

XMAX = scalar Maximum lag in the x direction

STEPLENGTH = scalar or variate Length(s) of the steps in which lag is incremented

METHOD = string token How to estimate the variogram (moments,

cressiehawkins, dowd, genton); default mome

DIRECTIONS = scalar or variate Directions (degrees) along which to form the variogram

(relevant only for 2-dimensional irregular data)

SEGMENTS = scalar or variate Angles subtended by the segments (degrees) over which

averaging is to be done (relevant only for 2-dimensional

irregular data)

Parameters

DATA = variates or matrices Measurements as a variate or, for data on a regular grid,

as a matrix

VARIOGRAMS = variates or matrices

Structure to store the sample variogram

COUNTS = variates or matrices Numbers of comparisons involved in the calculation of

each variogram

DISTANCES = variates or matrices Mean lag distances at each step

LAGPOINTS = pointer Saves lag classes, indexes to observations and directions

to plot in an h-scattergram

Description

The FVARIOGRAM directive forms an experimental variogram from a set of values of a variable,

Z, distributed in one or two dimensions. By default the variogram is calculated by Matheron's

method of moments, as

ã(h) = (1 / (2 × m(h))) × � i = 1 ... m(h) { z(xi) � z(xi + h) }2 ,

where z(xi) and z(xi + h) are the values at positions xi + h, and m(h) is the number of paired

comparisons contributing to the estimate. For data on a regular grid or transect h is an integer

multiple of the sampling interval. For irregularly scattered data h is discretized so that for each

nominal lag there is a range of distance equal to the increment and an angular range set by the

user. The nominal lag is at the centre of both ranges. However, you can set the METHOD option

to calculate robust estimates instead. The cressiehawkins setting uses the estimator of Cressie

& Hawkins (1980), which essentially damps the effect of outliers from the secondary process.

Dowd's (1984) and Genton (1978) methods, which estimate the variogram for a dominant

intrinsic process in the presence of outliers, can be requested by the dowd and genton settings

respectively. For further details see Webster & Oliver (2007) pages 67-68 and 115-116.

The data are specified using the DATA parameter. If they are on a regular grid, they should be

supplied in a matrix defined with a variate of column labels to provide the x-values and a variate

of row labels to provide the y-values. Alternatively, if they are irregularly scattered, then they

256 Directives in Release 22

should be supplied in a variate, and the X and Y options should be set to variates to supply their

spatial coordinates.

The experimental variogram is controlled by five options. For irregular data the maximum

distance to which the variogram is calculated is set by the XMAX option for all directions. For

regular data XMAX defines the maximum lag distance in the X direction, and YMAX must also be

given to limit the distance in the Y direction. The increments in distance are set by the

STEPLENGTH option, where you can supply a scalar to define equally-spaced steps or a variate

to specify the steps themselves. The variogram may be computed in one or more directions.

These are given by the DIRECTIONS option in degrees counterclockwise from east in the usual

convention. Each direction is at the centre of an angular range, which is defined by the

SEGMENTS option. DIRECTIONS and SEGMENTS should be set to scalars if the variogram is to

be calculated for only one direction, or to variates if there are to be several.

A variogram can be computed without regard to direction by setting DIRECTIONS to 0 and

SEGMENTS to 180. This is advisable if variation seems to be isotropic, i.e. the same in all

directions, or if there are too few data to compute ã^ (h) for two or more directions separately. The

lag then becomes a scalar |h| = h in distance only. Experience suggests that some 300 data are

needed to distinguish anisotropy.

By default some statistics are printed concerning the variogram, but these can be supressed

by setting option PRINT=*. Other information can be saved using the various parameters, in

variates if there is a single direction, or in matrices with one column for each direction if there

are several: VARIOGRAMS stores the ordered set of semivariances; DISTANCES stores the mean

lag distances at which the semivariances have been computed; and COUNTS stores the numbers

of paired comparisons from which the semivariances have been computed.

The LAGPOINTS parameter allows you to save a pointer containing lag classes, indexes to

observations and directions that can be used to plot an h-scattergram.

Options: PRINT, Y, X, YMAX, XMAX, STEPLENGTH, METHOD, DIRECTIONS, SEGMENTS.

Parameters: DATA, VARIOGRAMS, COUNTS, DISTANCES, LAGPOINTS.

Action with RESTRICT

You can restrict a DATA variate to form the variogram from only a subset of its units.

References

Cressie, N. & Hawkins, D.M. (1980). Robust estimation of the variogram. Journal of the

International Association of Mathematical Geology, 12, 115-125.

Dowd, P.A. (1984). The variogram and kriging: robust and resistant estimators. In: Geostatistics

for Natural Resources Characterization (ed. G. Verly, M. David, A.G. Journel & A.

Marechal), 91-106. D. Reidel, Dordrecht.

Genton, M.G. (1998). Highly robust variogram estimation. Mathematical Geology, 30, 213-221.

Webster, R. & Oliver, M.A. (2007). Geostatistics for Environmental Scientists, 2nd Edition.

Wiley, Chichester.

See also

Directives: KRIGE, FCOVARIOGRAM, MCOVARIOGRAM, COKRIGE.

Procedures: MVARIOGRAM, DVARIOGRAM, DCOVARIOGRAM, DHSCATTERGRAM,

KCROSSVALIDATION.

Genstat Reference Manual 1 Summary section on: Spatial statistics.

GENERATE 257

GENERATE

Generates factor values for designed experiments.

Options

TREATMENTS = formula Model term for which pseudo-factors are to be

generated; default *

REPLICATES = formula Factors defining replicates of the design; default *

BLOCKS = formula Block formula (for design-key generation) or term (for

generation of pseudo-factors); default *

KEY = matrix Key matrix (number of factors in the parameter list by

number of factors in the BLOCKS formula) to generate

the factors by the design key method; default *

BASEVECTOR = variate Base vector for design key generation; default *

Parameter

factors Factors whose values are to be generated

Description

GENERATE is invaluable when you have a set of data that is to be read in a systematic order: for

example, you may want to take all the observations within one group, then the same number of

observations within the next group, and so on until an equal number of observations has been

read for every group. You can then define values of the grouping factor or factors by GENERATE;

so the only values that you need to read are the observed data. Designed experiments are the

obvious instance where the data are structured in this way: for example, you might have all the

data from the first block, then all those from the second block, and so on.

The best way to understand GENERATE is to look at some examples. The values of a set of

factors that you have defined by GENERATE are said to be in standard order: that is their units

are arranged so that the levels of the first factor occur in the same order as in its levels vector

then, within each level of the first factor, the levels of the second factor are arranged similarly,

and so on. For example

FACTOR [NVALUES=24; LEVELS=2] A
& [LEVELS=!(4,1,2)] B
& [LEVELS=4] C
GENERATE A,B,C

gives A, B and C the values

A: 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2
B: 4 4 4 4 1 1 1 1 2 2 2 2 4 4 4 4 1 1 1 1 2 2 2 2
C: 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

Placing a number or a scalar in the parameter list has the same effect as if a factor with that

number of levels had been listed. Thus to generate values only for A and C, all that you require

is

GENERATE A,3,C

To generate values for just B and C is even simpler since the cycling process is itself recycled

until all the units have been covered. Omitting A therefore causes all combinations of a level of

B with a level of C to be used twice, in the same pattern as displayed above; so you need specify

only

GENERATE B,C

You get a warning if one of the cycles is incomplete, as would happen for example if B and C had

18 values instead of 24.

This first use of GENERATE, then, is particularly appropriate for generating the blocking

factors in an experimental design.

258 Directives in Release 22

Another use, obtained by setting the BLOCKS, KEY and BASEVECTOR options, is to form values

of treatment factors using the design-key method. This method, described by Patterson (1976)

and Patterson & Bailey (1978), provides a very flexible way of specifying the allocation of

treatments in an experimental design. The method assumes that the units are identified by a set

of what are called "plot" factors. In Genstat terms, these will often be the same as the factors that

occur in the block formula of the design (see the BLOCKSTRUCTURE directive), and they are

specified by the BLOCKS option of GENERATE. The setting is a formula, but remember this can

be just a list of factors if you do not wish to indicate their inter-relationships; if the setting is

more than just a list, Genstat forms the set of plot factors by taking the factors from the block

formula in the order in which they occur there. Of course, the factors need not be identical to

those in the block formula. For example if one these factors has a non-prime number of levels,

it may need to be specified instead as the combination of two or more (pseudo) factors: for

example, in a block design with blocks of size eight, the plots might need to be indexed by three

factors with two levels.

The treatment factors to be generated are again specified by the parameter of GENERATE.

The KEY option specifies a matrix known as the design key, which indicates how the values

of each treatment factor are to be calculated from the plot factors. The matrix has a row for each

treatment factor and a column for each plot factor; below kij represents the element in row i and

column j. (This is the transpose of the form used by Patterson 1976, but in Genstat it seems more

convenient to specify the treatments by rows.) There is also an option called BASEVECTOR,

which can specify a variate with an element bi for each treatment factor to allow the levels of the

factor to be shifted cyclically; if this is unset, Genstat assumes bi=0.

The calculation assumes that the values of the plot factors are represented by the integers zero

upwards (and GENERATE will perform this mapping automatically if necessary). The value q[i]u

in unit u of treatment factor i is then given by

q[i]u = bi + ki1 × p[1]u + ki2 × p[2]u + ... + kin × p[n]u modulo ti

where p[1]u ... p[n]u are the values of the plot factors in unit u, and ti is the number of levels of

treatment factor i. The calculated values are integers in the range 0, 1 ... ti�1, but GENERATE will

again map these to the defined levels if necessary.

To illustrate the process, the treatments to be allocated (before randomization) to the plots of

an n × n Latin Square may be calculated as

Latin-factor-value = Row-factor-value + Column-factor-value modulo n

The values of the extra factor in a Graeco-Latin square can then be formed as

Graeco-factor-value = Row-factor-value + 2 × Column-factor-value modulo n

So design key has rows (1,1) and (1,2).

The design key thus provides a very convenient way of defining treatment factors. Essentially,

the key identifies each factor i with the set of contrasts (in the usual terminology)
P[1]**Ki1 P[2]**Ki2 ... P[n]**Kin

and the skill when forming a design is in selecting the best set for each factor. Further keys are

presented by Patterson & Bailey (1978), and these are used in the example of procedure AKEY;

this procedure extends the GENERATE facilities by allowing the block factors to be generated

automatically, and the design to be printed after the factors have been generated. The Genstat

design system has a repertoire of keys, used by procedures DESIGN and AGDESIGN to generate

a range of designs including factorials, fractional factorials, Latin squares and Lattices. You can

form your own keys for designs not covered by the repertoire, using the FKEY directive.

GENERATE can also be used to form the values of pseudo-factors in partially balanced designs.

The treatment term to which the pseudo-factors are to be linked is specified by the TREATMENTS

option. The factors that identify the replicates are specified by the REPLICATES option, and

those that identify the blocks within each replicate are specified by the BLOCKS option. The

settings of these two options are model formulae, but Genstat merely scans them to find which

GENERATE 259

factors they contain; so you may again find it easiest simply to give the factors as a list. The

parameter of GENERATE lists the pseudo-factors. These have as many levels as there are blocks

within each replicate. The blocks in the first replicate are used to determine which combinations

of the factors in the treatment term correspond to each level of the first pseudo-factor, those in

the second replicate are used for the second pseudo-factor, and so on. If a treatment combination

occurs in more than one block within the same replicate, the level of the corresponding pseudo-

factor is not determined uniquely and Genstat will report an error.

Options: TREATMENTS, REPLICATES, BLOCKS, KEY, BASEVECTOR.

Parameter: unnamed.

Action with RESTRICT

Any of the factors may be restricted to generate values for only a subset of the units.

References

Patterson, H.D. (1976). Generation of factorial designs. Journal of the Royal Statistical Society,

Series B, 38, 175-179.

Patterson, H.D. & Bailey, R.A. (1978). Design keys for factorial experiments. Applied Statistics,

27, 335-343.

See also

Directives: FKEY, FPSEUDOFACTORS.

Procedures: AKEY, ARANDOMIZE, FACDIVIDE, FACPRODUCT, FBASICCONTRASTS.

Genstat Reference Manual 1 Summary sections on: Calculations and manipulation, Design of

experiments,

260 Directives in Release 22

GET

Accesses details of the "environment" of a Genstat job.

Options
†ENVIRONMENT = pointer Pointer given unit labels 'inprint', 'outprint',

'diagnostic', 'errors', 'pause', 'prompt',

'newline', 'case', 'run', 'wordlength',

'captions', 'typeset', 'cmethod',

'dataspace', 'algorithms',

'actionafterfault', 'unsetdummy',

'language', 'year2digitbreak' and

'timewithseconds' to save the current settings of

those options of SET; default *

SPECIAL = pointer Pointer given unit labels 'units',

'blockstructure', 'treatmentstructure',

'covariate', 'asave', 'dsave', 'msave',

'rsave', 'tsave', 'vsave' and 'vcomponents,

used to save the current settings of those options of SET;

default *

LAST = text To save the last input statement; default *

FAULT = text To save the last fault code; default *

FIELDWIDTH = scalar Saves the fieldwidth currently defined as the default

minimum for PRINT and other output commands

SIGNIFICANTFIGURES = scalar Saves the minimum number of significant figures

currently to be supplied in the default formats

determined by PRINT and other output commands

SEEDS = pointer Saves a pointer to variates defining the seeds currently

used as defaults by random-number functions, the

RANDOMIZE directive, and internally by various other

directives

EPS = scalar To obtain the value of the smallest x (on this computer)

such that 1+x > 1 ; default *

NJOB = scalar Number of the current job within the program; default *

VERSION = pointer Information about the version of Genstat that is being

used; default *

PID = scalar Gets an integer value unique in the current job to use, for

example, in names of temporary files

WORKINGDIRECTORY = text Saves the name of the current working directory

No parameters

Description

The GET directive allows you to access the current settings of the environment. This can be

particularly useful in procedures, when details of the environment may need to change and be

reset later to their original state. Sometimes it may be sufficient just to use the RESTORE option

of the PROCEDURE directive for this purpose, but this causes them to be reset only at the end of

a procedure.

The ENVIRONMENT and SPECIAL options of GET are used to access and save the current

settings of options of the SET directive. The options of SET are divided into two groups. Those

that apply to the general environment can be saved using the ENVIRONMENT option: these are

INPRINT, OUTPRINT, DIAGNOSTIC, ERRORS, PAUSE, PROMPT, NEWLINE, CASE, RUN,

GET 261

WORDLENGTH, CAPTIONS, TYPESET, CMETHOD, DATASPACE, ALGORITHMS,

ACTIONAFTERFAULT, UNSETDUMMY, LANGUAGE, YEAR2DIGITBREAK and TIMEWITHSECONDS.

Those that apply only to the save structures associated with particular directives can be saved

using the SPECIAL option: these are UNITS, BLOCKSTRUCTURE, TREATMENTSTRUCTURE,

COVARIATE, ASAVE, DSAVE, MSAVE, RSAVE, TSAVE, VSAVE and VSTRUCTURE. The labels of the

pointer can be specified in either lower or upper case. or any mixture.

When you use the ENVIRONMENT option, Genstat sets up a pointer structure with units

identified by the labels of the corresponding options of SET: these labels are 'inprint',

'outprint', and so on. The labels can be specified in either lower or upper case, or any

mixture. Each unit of this pointer contains one or more strings, or a scalar, to represent the

current setting. Thus, the statement

GET [ENVIRONMENT=Env]

would set up a pointer called Env with elements Env['inprint'], Env['outprint'], and

so on. Each element can also be referred to by its position in the pointer; for example,

Env['inprint'] is the same as Env[1].

Thus you do not have to know how the environment has been set in order to change it and then

restore it; you can use GET to find out about it, and SET to change it back. For example, suppose

that you wanted to stop temporarily the echoing of statements to the output file in a batch

program. In the following program the first SET statement cancels the echoing, if indeed any

echoing is in progress, and the second restores echoing to what it was before the first SET.

GET [ENVIRONMENT=Env]
SET [INPRINT=*]

(more statements)

SET [INPRINT=#Env['inprint']]

The SPECIAL option similarly sets up a pointer to save its information. The labels of the

pointer are 'units', 'blockstructure', and so on. These can again be specified in either

lower or upper case, or any mixture. The first element of the pointer is the units structure, or,

failing that, the number of units if you have defined it for the current job. Printing the contents

of the other elements is not usually informative, as the information is stored in coded form. The

last ten elements of the pointer allow you to access the special save structures in the graphical

and analysis directives. They are most useful for recovering information about an analysis when

you have not already specified an explicit save structure. (Otherwise you would have to do the

analysis all over again.) The SPECIAL option also provides a way of accessing the save

structures associated with the analysis-of-variance directives BLOCKSTRUCTURE, COVARIATE

and TREATMENTSTRUCTURE. This facility is used by the ASTATUS procedure, which may be a

more convenient way of accessing these structures.

The LAST option is used to save the latest statement that you have input. You can then give

the statement again later in the job without having to retype it, though some implementations of

Genstat provide a simpler recall facility using the cursor keys. The option has the same effect

as setting up a macro containing a single statement, and is accessed in the same way. For

example, the statements

PRINT [SERIAL=yes; IPRINT=*; SQUASH=yes] !t('New Data'),Y
GET [LAST=Prdat]

(statements)

READ Y

(data)

##Prdat

would print the data, Y, under the title New Data and save the PRINT statement in a text called

Prdat. After the next data set is read, the heading New Data and the new data set are printed

262 Directives in Release 22

in the same format as the previous data set.

The FAULT option is used to save the last fault code as a single string in a text structure. (A

list of fault code definitions is available in the on-line help provided with most implementations

of Genstat.) This option is particularly useful in procedures, in combination with the

DIAGNOSTIC and FAULT options of SET, to control the printing of diagnostics.

The FIELDWIDTH option saves the fieldwidth currently defined as the default minimum for

PRINT and other output commands, and the SIGNIFICANTFIGURES option saves the minimum

number of significant figures currently to be supplied in the default formats determined by

PRINT and other output commands (see PRINT for details).

The SEEDS option saves a pointer containing variates, each containing four values, which

define the seeds currently used as defaults by random-number functions, the RANDOMIZE

directive, and internally by various other directives. The pointer elements are labelled to identify

the use of the seeds concerned: for example 'calculate', and 'randomize' for random-

number functions and the RANDOMIZE directive respectively.

The EPS option is used to obtain the smallest number, å, such that 1.0+å is recognized by your

computer to be greater than 1.0; this is an indication of the precision of the computer, which can

affect the behaviour of some of the algorithms used by Genstat. EPS can be used, for example,

when testing for convergence of iterative algorithms.

The NJOB option provides the current job number within the Genstat program. It is used in the

start-up file to distinguish between statements to be executed just at the start of the program, and

those to be executed at the start of each job.

The VERSION option provides information about the version of Genstat that is being used.

This is particularly useful within general programs or procedures. It saves a pointer containing

the following elements.

release is a scalar storing the release number, for example 21.10.

The main information is in the integer part and the first

decimal place; the second decimal may be used to

distinguish between sub-releases with minor changes or

corrections.

patch shows whether the release includes a patch.

build is the build number (useful for support).

implementation identifies the type of computer for which the version has

been implemented, for example 'PC'.

system indicates the operating system, for example Windows 11.

version may contain further information relevant to particular

implementations.

description gives the name of the release, for example Genstat

Twenty-first Edition.

bits gives the number of bits for which the implementation has

been built, for example 64 for a 64-bit version.

The PID option saves a scalar containing an integer value that is unique within the current job.

You might want to use this, for example, to define a unique name for a temporary file.

The WORKINGDIRECTORY option saves a text containing the name of the current working

directory.

Options: ENVIRONMENT, SPECIAL, LAST, FAULT, FIELDWIDTH, SIGNIFICANTFIGURES,

SEEDS, EPS, NJOB, VERSION, PID, WORKINGDIRECTORY.

Parameters: none.

GET 263

See also

Directives: SET, PROCEDURE.

Genstat Reference Manual 1 Summary section on: Program control.

264 Directives in Release 22

GETLOCATIONS

Finds locations of an identifier within a pointer, or a string within a factor or text, or a number

within any numerical data structure.

Options

CASE = string token Whether to treat the case of letters (small or capital) as

significant when searching for a string (significant,

ignored); default sign

TOLERANCE = scalar Tolerance for comparing numbers

SUBSTITUTE = string token Whether to substitute dummies within pointers in DATA

or FIND (yes, no); default no

Parameters

DATA = identifiers Variates, scalars, matrices, tables, factors, texts or

pointers to be searched

FIND = scalars, texts or pointers Numbers, strings or identifiers to be located in DATA

NLOCATIONS = scalars Saves the number of times that FIND occurs in DATA

LOCATIONS = variates or pointers Saves the locations where FIND occurs as one of the

values in DATA, in a variate if DATA is a one-dimensional

data structure like a variate or text, or in a pointer

containing a variate for each dimension if DATA is a

multi-dimensional data structure like a matrix or table

CLASSIFICATION = pointers Saves the classifying factors for a DATA table, in the

same order as the corresponding variates in the

LOCATIONS and LEVELS pointers

LEVELS = pointers Saves the levels of the classifying factors where FIND

occurs as one of the values of a DATA table, the

information is saved in a pointer containing a variate for

each factor

Description

The GETLOCATIONS directive finds where a particular item occurs as one of the values stored

by a Genstat data structure. So, for example, it can locate the lines within a text structure that are

equal to a particular string, or it can locate the rows and columns of a matrix that hold a

particular number, or it can locate the numbers of the suffixes where a pointer contains a

particular identifier.

The item to find is specified by the FIND parameter, as a scalar (for a number), or a single-

valued text (for a string of characters), or a single-valued pointer (for the identifier of a data

structure). The data structure to search is supplied by the DATA parameter.

If the FIND pointer contains a dummy, GETLOCATIONS usually looks to see that dummy is

contained in the DATA pointer. Alternatively, if you set option SUBSTITUTE=yes and the FIND

pointer contains a dummy, it is replaced by the data structure to which it points. Then if that data

structure is a dummy, it too is replaced, amd so on until we reach a data structure that is not a

dummy. However, if the original dummy (or any of the dummies to which it points) is unset, the

original dummy is retained. The same substitution is done on any dummies in the DATA pointer.

So, when SUBSTITUTE=yes, GETLOCATIONS matches the structures to which the dummies

(eventually) point, rather than the dummies themselves.

The number of times that FIND occurs in DATA can be saved, in a scalar, by the NLOCATIONS

parameter. The locations where FIND occurs can be saved by the LOCATIONS parameter. These

are saved in a variate if DATA is a one-dimensional structure i.e. a scalar, variate, text, factor or

pointer. If DATA is a rectangular, diagonal or symmetric matrix, they are saved in a pointer

GETLOCATIONS 265

containing two variates. The first saves the row locations, and the second saves the column

locations. If DATA is a table, LOCATIONS saves a pointer with a variate for each factor classifying

the table. Each variate stores the locations within the dimension classified by a particular factor.

So, for example, with a two-way DATA table the first variate stores the row numbers, and the

second variate stores the column numbers. The CLASSIFICATION parameter can save the factors

in the same order as the LOCATIONS variates, in case you are unsure of which factor corresponds

to each dimension. The LEVELS parameter provides an alternative to LOCATIONS for tables,

storing the factor levels corresponding to the positions in each dimension, rather than the

numbers of e.g. the rows or columns. If a DATA table has margins and the number to FIND occurs

in one of them, a missing value will be stored for the corresponding location or level.

Options: CASE, TOLERANCE, SUBSTITUTE.

Parameters: DATA, FIND, NLOCATIONS, LOCATIONS, CLASSIFICAION, LEVELS.

Action with RESTRICT

GETLOCATIONS takes account of restrictions on DATA variates, factors or texts.

See also

Directives: TXFIND, TXPOSITION.

Functions: GETFIRST, GETLAST, GETPOSITION, POSITION.

Genstat Reference Manual 1 Summary section on: Calculations and manipulation.

266 Directives in Release 22

GETATTRIBUTE

Accesses attributes of structures.

Option

ATTRIBUTE = string tokens Which attributes to access (nvalues, nlevels, nrows,

ncolumns, type {type number}, levels, labels {of

a factor or pointer}, nmv, present, identifier,

refnumber {structure number}, extra, decimals,

characters, minimum, maximum, restriction,

mode {integer code 1 - 5 denoting type of values: double

real, real, integer, character and word}, maxline {of a

text or factor}, rows, columns, classification,

margins {of a table}, associatedidentifier {of a

table}, unknown {cell of a table}, suffixes {of a

pointer}, owner, terms {of an SSPM}, groups {of an

SSPM}, weights {of an SSPM}, SSPMauxiliary,

SSPrst, tsmmodel, rstat {of an RSAVE}, stype

{type as a character string}, referencelevel {of a

factor}, drepresentation, unitlabels {of a

vector}, iprint, datavariate {of a table},

summarytype {of a table}, percentquantile {of a

table of quantiles}, %margin {of a table of

percentages}, coding {of a text}); default * i.e. none

Parameters

STRUCTURE = identifiers Structures whose attributes are to be accessed

SAVE = pointers Pointer to store copies of the attributes of each structure;

these are labelled by the ATTRIBUTE strings

Description

The GETATTRIBUTE directive allows you to access attributes of each of the structures that are

listed with its STRUCTURE parameter. It refers to the list of structures by pointers, which are set

up by the SAVE parameter. You must always set the option and both parameters.

If you request an attribute that is not relevant to a structure, it is omitted from the pointer.

Thus for example the nlevels, levels and labels settings are relevant only for factors, and

nrows and ncolumns only for matrices. The references to the relevant attributes that you

specify are always stored in the order shown in the definition of the ATTRIBUTE option above.

For attributes that are single numbers, the information is copied into an unnamed scalar which

is pointed to by the appropriate element of the pointer; if the attribute has not been set, then the

corresponding scalar will contains a missing value. For the attributes stype, identifier,

iprint, margins, associatedidentifier, summarytype and tsmmodel, the

corresponding element of the pointer is a text structure containing a single line. For the other

attributes, the corresponding element of the pointer stores a reference to the attribute itself. One

example is the labels vector of a factor. However, if the factor has no labels vector the

corresponding entry of the pointer is set to the missing value.

The type setting gives a scalar value indicating the type of structure, by the code:

1 scalar

2 factor

3 text

4 variate

5 matrix

GETATTRIBUTE 267

6 diagonal matrix

7 symmetric matrix

8 table

9 ASAVE

10 TSAVE

11 expression

12 formula

13 dummy

14 pointer

15 LRV

16 SSPM

17 TSM

18 RSAVE

22 tree

32 VSAVE

Alternatively, the stype setting obtains the type name in a text structure. This works not only

for the standard Genstat types, such as variates and factors, but also for user-defined types (see

STRUCTURE).

Option: ATTRIBUTE.

Parameters: STRUCTURE, SAVE.

See also

Directives: SCALAR, VARIATE, TEXT, FACTOR, MATRIX, SYMMETRICMATRIX,

DIAGONALMATRIX, TABLE, DUMMY, POINTER, EXPRESSION, FORMULA, LRV, SSPM, TREE,

TSM.

Genstat Reference Manual 1 Summary section on: Data structures.

268 Directives in Release 22

GRAPH

Produces scatter and line graphs on the terminal or line printer (synonym of LPGRAPH).

Options

CHANNEL = scalar Channel number of output file; default is current output

file

TITLE = text General title; default *

YTITLE = text Title for y-axis; default *

XTITLE = text Title for x-axis; default *

YLOWER = scalar Lower bound for y-axis; default *

YUPPER = scalar Upper bound for y-axis; default *

XLOWER = scalar Lower bound for x-axis; default *

XUPPER = scalar Upper bound for x-axis; default *

MULTIPLE = variate Numbers of plots per frame; default * i.e. all plots are on

a single frame

JOIN = string token Order in which to join points (ascending, given);

default asce

EQUAL = string tokens Whether/how to make bounds equal (no, scale,

lower, upper); default no

NROWS = scalar Number of rows in the frame; default * i.e. determined

automatically

NCOLUMNS = scalar Number of columns in the frame; default * i.e.

determined automatically

YINTEGER = string token Whether y-labels integral (yes, no); default no

XINTEGER = string token Whether x-labels integral (yes, no); default no

Parameters

Y = identifiers Y-coordinates

X = identifiers X-coordinates

METHOD = string tokens Type of each graph (point, line, curve, text); if

unspecified, poin is assumed

SYMBOLS = factors or texts For factor SYMBOLS, the labels (if defined), or else the

levels, define plotting symbols for each unit, whereas a

text defines textual information to be placed within the

frame for METHOD=text or the symbol to be used for

each plot for other METHOD settings; if unspecified, * is

used for points, with integers 1-9 to indicate coincident

points, ' and . are used for lines and curves

DESCRIPTION = texts Annotation for key

Description

The GRAPH directive has been replaced by the LPGRAPH directive, and may be removed in a

future release or modified to produce high-resolution plots instead of character-based plots.

The simplest form of the GRAPH directive produces a point plot (or scatterplot as it is

sometimes called). It can also be used to plot lines and curves, and text can be added for extra

annotation. The data are supplied as y- and x-coordinates in separate parameter lists. For

example

VARIATE [VALUES=-16,-7,9,16,7,-8,-12,-5,0,10,4,-4,-3,3,16] X
& [VALUES=0,-14,-12.5,0,14,0,12,0,-10,-9,5,6,-6,-1.5,16] Y
GRAPH Y; X

Here the identifiers Y and X are variates of equal length; Genstat uses their values in pairs to give

GRAPH 269

the coordinates of the points to be plotted.

By default, if you specify several identifiers, Genstat plots them all in the same frame a pair

at a time; for example

GRAPH Y[1...3]; X[1,2]

superimposes plots of Y[1] against X[1], Y[2] against X[2], and Y[3] against X[1]. The

usual rules governing the parallel expansion of lists apply here: the length of the Y parameter list

determines the number of plots within the frame, and the X parameter list is recycled if it is

shorter. To generate several frames from one GRAPH statement you can use the MULTIPLE

option, described below.

The identifiers supplied by the Y and X parameters need not be variates, but can be any

numerical structures: scalars, variates, factors, tables or matrices. The only constraints are that

the pairs of structures must have the same numbers of values, and that tables must not have

margins.

There are four types of graph available, controlled by the METHOD parameter: point (the

default), line, curve and text.

A line plot is one in which each point is joined to the next by a straight line. Alternatively,

using the curve method, cubic splines are used to produce a smoothed curve through the data

points. This does not represent any model fitted in the statistical sense, but as long as the data

points are not too widely spaced (especially where the gradient changes quickly) the plotted

curve should be a good representation of the underlying function.

By default, Genstat sorts the data so that the x-values are in ascending order before any line

or curve is drawn through the points. However, if you set option JOIN=given, the points are

joined in the order in which they occur in the data; if there are then any missing values there will

be breaks in the line at each missing unit.

Plots produced with METHOD set to either line or curve do not include markings for the data

points themselves; you should plot these separately if they are required. For example

VARIATE [VALUES=-0.1,0.1...0.9] V
& [VALUES=5.5,9.9,8.7,2.3,1.3,5.5] W
GRAPH W,W; V; METHOD=curve,point

Here W is plotted against V twice, first with the curve method and then with the point method.

It is best to plot the line first, so that the symbols for individual points will overwrite those used

for the line or curve.

The fourth plotting method is text. You can use this to place an item of text within a graph

as extra annotation. For example:

SCALAR Xt,Yt; VALUE=20,10
TEXT [VALUES='Y=aX+b'] T
GRAPH Y,Yt; X,Xt; METHOD=line,text; SYMBOLS=*,T

This plots a line, defined by the variates Y and X, as described above. In addition, the text T is

printed within the frame starting at the coordinates defined by the scalars Yt and Xt. As these

statements show, the SYMBOLS parameter then specifies the text that is to be plotted. The text

is truncated as necessary, if positioned too close to the edge of the graph.

With other methods SYMBOL defines the plotting symbol to be used to mark either points or

lines on the graph. The default symbol for points is the asterisk, and for lines is a combination

of dots and single quotes. If several points coincide, Genstat replaces the asterisk by a digit

between 2 and 9, representing the number of coincidences, with 9 meaning nine or more. For

point plots, the SYMBOLS parameter can be set to either a text or a factor. If you specify a text

with a single string, the string is used to label every point; otherwise, the text must have one

string for each point.

Normally, output goes to the current output channel, but you can use the CHANNEL option to

direct it to another. For example, when you are working interactively, you might want to send

a graph to a secondary output file so that you can print it later. Unlike some directives you

270 Directives in Release 22

cannot save the output in a text structure.

The TITLE option lets you set an overall title for the graph. For example:

GRAPH [XTITLE='Nitrogen Applied (kg/ha)'] Yield; Nitrogen

You can also have individual axis titles, specified by the YTITLE and XTITLE options. Genstat

prints the y-axis title as a column of characters down the left-hand side of the graph. New lines

are ignored, so that strings within a text are concatenated. Genstat truncates the title if necessary:

the maximum possible number of characters is the number of rows of the frame plus 4. The x-

axis title is printed below the graph; the maximum number of characters is the number of

columns of the frame plus four: long strings are truncated whereas short strings are centred.

If no titles are set, a simple key will be produced below the graph which lists the identifiers

and plotting symbols for each pair of Y and X structures. You can obtain your own key by setting

the DESCRIPTION parameter, which supplies a line of text for each plot.

By default, Genstat automatically calculates the extent of the axes from the data to be plotted,

in such a way that all the data are contained within the frame. You can set one or more of the

bounds for the axes by options YLOWER, YUPPER, XLOWER and XUPPER. By setting the upper

bound of an axis to a value that is less than the lower bound, you can reverse the usual

convention for plotting in which the y-values increase upwards and the x-values increase to the

right. Setting the options YINTEGER and XINTEGER constrains the axis markings to be integral,

if possible.

The EQUAL option allows you to place constraints on the bounds for the axes. The default

setting no (meaning no constraint) uses the boundary values as set by the options or calculated

from the data. The settings lower and upper constrain the lower or upper bounds of the two

axes to be equal: for example, to plot the line y=x along with the data, setting EQUAL=lower will

ensure that it will pass through the bottom left-hand corner of the frame. The scale setting

adjusts the y-bounds and x-bounds so that the physical distance on one axis corresponds as

closely as possible to physical distance on the other: for example, so that one centimetre will

represent the same distance along each axis.

Normally each GRAPH statement produces one frame, and Genstat sets the size so that it will

fill one screen or line-printer page, based on the settings of WIDTH and PAGE from OPEN or

OUTPUT, or their defaults if these have not been specified. When output is to a file the graph will

be placed on a new page, unless this has been disabled using OUTPUT, JOB or SET. The size of

the graph is defined in terms of the number of characters in each row and the number of rows

in the frame, a row being one line of output. You can adjust the size of the frame by using the

NROWS and NCOLUMNS options; the minimum allowed is three rows and three columns, and the

maximum number of columns is 17 characters less than the width of the output channel (to leave

room for axis markings and titles). There is no maximum on the number of rows. By default, the

number of columns is 101, subject to the maximum above, and the number of rows is the number

of lines per page, less 8, to allow room for annotation. By defining the page size in advance you

can avoid having to specify the numbers of rows and columns when you wish to plot many

graphs.

The automatic axis scaling aims to find axis markings that are at reasonable values, but

because the markings appear at fixed character positions this may not always be possible. If both

upper and lower axis bounds are set, or EQUAL is set in conjunction with axis bounds, or you

have requested integral axis markings, there may be conflicting constraints on the axis scaling.

If the resultant axis markings then require several decimal places, you may be able to obtain

better values by slight adjustments to the numbers of rows or columns.

The MULTIPLE option lets you generate several frames (separate graphs) from one statement.

If there is room, the graphs can be printed alongside each other, for example to produce a two-

by-two array of plots on a line-printer page. The option should be set to a variate whose elements

define the number of graphs to plot in each frame and the number of values in the variate

determines the number of frames to be output. For example,

GRAPH 271

GRAPH [MULTIPLE=!(2,1,2)] A,B,C,D,E; X[1...3]

will produce three frames; the first containing A against X[1] and B against X[2], the second

containing C against X[3] and the third containing D against X[1] and E against X[2]. The sum

of the values in the MULTIPLE list gives the total number of structures required to form the plots,

which must therefore be equal to the length of the Y parameter list. The X list will be recycled

if necessary, as here.

By default, each graph will fit the page (as if it had been produced by an individual GRAPH

statement). However, if you set the NCOLUMNS option to a suitably small value, Genstat may be

able to fit more than one frame across the page. The MULTIPLE option will then produce the

graphs side by side. Remember that 17 columns are automatically added to provide annotation,

and five blank columns are used to separate multiple graphs in parallel. This means that, for

example, setting NCOLUMNS=20 will produce two graphs in parallel on a screen of width 80, and

three graphs when output to a file of width 121 or more.

Options: CHANNEL, TITLE, YTITLE, XTITLE, YLOWER, YUPPER, XLOWER, XUPPER, MULTIPLE,

JOIN, EQUAL, NROWS, NCOLUMNS, YINTEGER, XINTEGER.

Parameters: Y, X, METHOD, SYMBOLS, DESCRIPTION.

Action with RESTRICT

You can arrange to plot only a subset of the points specified by a particular pair of Y and X

vectors (i.e. variates and/or factors), by restricting either one of them. If both are restricted, then

they must be restricted in exactly the same way.

See also

Directives: DGRAPH, D3GRAPH, LPGRAPH.

Genstat Reference Manual 1 Summary section on: Graphics.

272 Directives in Release 22

GROUPS

Forms a factor (or grouping variable) from a variate or text, together with the set of distinct

values that occur.

Options

PRINT = string token Printed output required (summary); default * i.e. no

printing

NGROUPS = scalar Number of groups to form when LIMITS is not

specified; if NGROUPS is also unspecified, each distinct

value (allowing for rounding) defines a group; default *

LMETHOD = string token Defines how to form the levels variate if the setting of

the VECTOR parameter is a variate, or the labels if it is a

text; if LMETHOD=* no levels/labels are formed, and

existing levels (for a variate VECTOR) or labels (for a

text VECTOR) of an already declared FACTOR will be

retained if still appropriate (given, minimum, median,

maximum, limit); default medi

DECIMALS = scalar Number of decimal places to which to round the VECTOR

before forming the groups; default * i.e. no rounding

BOUNDARIES = string token Whether to interpret the LIMITS as upper or lower

boundaries (upper, lower); default lowe

REDEFINE = string token Whether to allow a structure in the FACTOR list that has

already been declared (e.g. as a variate or text) to be

redefined (yes, no); default no

CASE = string token Whether the case of letters (small and capital) in text

should be regarded as significant or ignored

(significant, ignored); default sign

LDIRECTION = string token How to define the levels (for a variate VECTOR) or labels

(for a text VECTOR) when LMETHOD = minimum, median

or maximum (ascending, given); default asce

OMITUNBOUNDED = string token Whether to omit the (unbounded) group that occurs

below the lowest limit when BOUNDARIES=lower, or

above the final limit when BOUNDARIES=upper (yes,

no); default no

Parameters

VECTOR = variates or texts Vectors whose values are to define the groups

FACTOR = factors Structures to be defined as factors to save details of the

groups; default * will, if REDEFINE=yes, cause the

corresponding VECTOR itself to be defined as a factor

LIMITS = variates or texts Limits to define the groups

LEVELS = variates Variate to define the levels of each FACTOR if

LMETHOD=give, or to save them otherwise

LABELS = texts Text to define the labels of each FACTOR if

LMETHOD=give, or to save them otherwise

Description

The GROUPS directive is designed to form factors from variates or texts. The variates and texts

are specified by the VECTOR parameter, and the factors by the FACTOR parameter. With the

simplest use of GROUPS you need specify no more than that, and each factor is defined to have

a level for every distinct value of its corresponding variate or text. You need not have declared

GROUPS 273

the factor already; it will be declared automatically if necessary.

Alternatively, you can divide the values of the variate or text into groups to be represented by

the factor. You can use the LIMITS parameter to specify the range of values for each group. The

limits vector is a text or a variate, depending whether the factor is being defined from a variate

or a text; its values specify boundaries for the ranges. The BOUNDARIES option controls whether

these are regarded as upper or lower boundaries; by default BOUNDARIES=lower. You can also

ask GROUPS itself to set limits that will partition the units into groups of nearly equal size. You

should then specify the NGROUPS option and leave the LIMITS parameter unset. (If you give both

LIMITS and NGROUPS, then NGROUPS is ignored.)

If you are defining a factor from a variate VECTOR, the LMETHOD option controls how the

levels vector is formed, with the following settings:

median forms the levels from the median of the units in each group

(default);

minimum forms them from the minimum value in each group;

maximum form them from the maximum value;

limit uses the values in the LIMITS variate;

given uses the values supplied (in a variate) by the LEVELS

parameter.

With any of the settings median, minumum, maximum or limit, you can use the LEVELS

parameter to specify a variate to store the levels that are produced; this can be done even if no

factor is being formed, that is if no identifier is supplied for the factor by the FACTOR list.

Finally, if you set LMETHOD=*, no levels are formed and any existing levels of the factor will be

retained if they are still appropriate; otherwise the levels will be the integers 1 upwards. With

any of these settings, you can use the LABELS parameter to specify labels for the factor.

Similar rules apply if you have a text VECTOR except that LMETHOD then governs how the

labels are defined for the factor, and LEVELS can be used to specify its levels. The CASE option

controls whether the case of the letters in the text strings is important. So, for example, if you

set CASE=ignored the strings 'April' and 'april' will be put into the same group. With the

default, CASE=significant, they would form different groups.

When the levels are formed from a LIMITS variate, there will be one group with no

corresponding limit. If BOUNDARIES=upper, the extra group is above the final limit. The level

assigned to that group is then the value that is the same distance above the final limit as the

distance between the final limit and the last but one limit. If BOUNDARIES=lower, the extra

group is below the first limit, and its level is given the value that is the same distance below the

first limit as the distance between the first and second limits. The situation is similar with a

LIMITS text, but the label for the extra group is always the single-character string '-'. If you

would prefer to have an exact correspondence between the level and the limits, you can set

option OMITUNBOUNDED=yes to omit the "unbounded" extra group. Any units beyond the final

upper limit, or below the initial lower limit, are then given missing values.

The LDIRECTION option controls the ordering of the levels (for a variate VECTOR) or the

labels (for a text VECTOR) when LMETHOD is set to median, minimum or maximum. By default,

they are sorted into ascending order, but you can set LDIRECTION=given to take them in the

order in which they occur in the VECTOR. This may be useful, for example, if a text vector

contains the names of days or of months in calendar order.

You can set the DECIMALS option to request that the values of a variate VECTOR be rounded

to a particular number of decimal places before the groups are formed: for example DECIMALS=0

would round each value to the nearest integer.

You can redefine a VECTOR structure as a factor by setting option REDEFINE=yes and

omitting to specify any corresponding identifier in the FACTOR list. This can be very useful on

occasions when you are unable to define in advance which levels will occur in a set of data.

The PRINT option can be set to summary to print a summary of the contents of the FACTOR

274 Directives in Release 22

(numbers of values, missing values and levels).

Options: PRINT, NGROUPS, LMETHOD, DECIMALS, BOUNDARIES, REDEFINE, CASE,

LDIRECTION, OMITUNBOUNDED.

Parameters: VECTOR, FACTOR, LIMITS, LEVELS, LABELS.

Action with RESTRICT

GROUPS takes account of any restrictions on variates or texts in the VECTOR list, and will give

missing values to the excluded units. If more than one vector is restricted, then each of their

restrictions must be the same.

See also

Directives: FACTOR, VARIATE, TEXT.

Procedures: FACAMEND, FACDIVIDE, FACPRODUCT, FACSORT, FACLEVSTANDARDIZE,

FACUNIQUE, FMFACTORS, FFREERESPONSEFACTOR, QFACTOR.

Genstat Reference Manual 1 Summary section on: Calculations and manipulation.

HCLUSTER 275

HCLUSTER

Performs hierarchical cluster analysis.

Options

PRINT = string tokens Printed output required (dendrogram,

amalgamations); default * i.e. no printing

METHOD = string token Criterion for forming clusters (singlelink,

nearestneighbour, completelink,

furthestneighbour, averagelink, mediansort,

groupaverage); default sing

CTHRESHOLD = scalar Clustering threshold at which to print formation of

clusters; default * i.e. determined automatically

Parameters

SIMILARITY = symmetric matrices Input similarity matrix for each cluster analysis

GTHRESHOLD = scalars Grouping threshold where groups are formed from the

dendrogram

GROUPS = factors Stores the groups formed

PERMUTATION = variates Permutation order of the units on the dendrogram

AMALGAMATIONS = matrices To store linked list of amalgamations

Description

The aim of cluster analysis is to arrange the n sampling units into more or less homogeneous

groups. HCLUSTER offers several possibilities. The general strategy is best appreciated in

geometrical terms, with the n sampling units represented by points in a multidimensional space.

In agglomerative methods, these points initially represent n separate clusters, each containing

one member. At each of n�1 stages, two clusters are fused into one bigger cluster, until at the

final stage all units are fused into a single cluster: this process can be represented by a

hierarchical tree whose nodes indicate what fusions have occurred. The methods fuse the two

closest clusters and vary in how closest is defined. In single-linkage cluster analysis, closest is

defined as the smallest distance between any two samples from different clusters; in centroid

clustering it is the smallest distance between cluster centroids; and so on. Genstat can display

the tree fitted to a given similarity matrix, and provides a scale to show the level of similarity at

which the fusions have occurred; such a scaled tree is termed a dendrogram.

The input for HCLUSTER is provided by the SIMILARITY parameter, as a list of symmetric

matrices, one for each analysis. These matrices can be formed by FSIMILARITY, by HREDUCE

or by CALCULATE. Missing values are allowed in the similarity matrix only with the single-

linkage method.

A hierarchical tree does not by itself provide a classification. This can be derived by cutting

the dendrogram at some arbitrary level of similarity, specified as a percentage similarity using

the GTHRESHOLD parameter. Each cluster then consists of those samples occurring on the same

detached branch of the dendrogram, and the resulting cluster membership can be saved in a

factor whose identifier is specified by the GROUPS parameter. The factor will be declared

implicitly, if necessary, and it will have its number of levels set to the number of clusters formed

and its number of values taken from the number of rows of the corresponding symmetric matrix.

GTHRESHOLD and GROUPS must be either both present or both absent.

The endpoints of the dendrogram correspond to the units in some permuted order. The

PERMUTATION parameter allows you to specify a variate to save this order, for example to use

in the FSIMILARITY directive. Genstat will define it to be a variate automatically, if necessary,

with number of values is taken from the number of rows of the corresponding similarity matrix.

Conventionally, the first unit on the dendrogram is unit 1 and so the first value of the variate of

276 Directives in Release 22

permutations will be 1.

The AMALGAMATIONS parameter can specify a matrix to store information about the order in

which the units form groups, and at what level of similarity. At any stage in the process of

agglomeration, each group is represented by the unit with the smallest unit number: for example,

a group containing units 2, 5, 17 and 22 is represented by unit 2. This means that the final merge

is always between a group indexed by unit 1 and a group indexed by another unit. Since there

are n�1 stages of agglomeration, the matrix will have a number of rows one less than the number

of rows of the input similarity matrix. Each row represents a joining of two groups and consists

of three values. The first two values are the numbers indexing the two groups that are joining,

and the third value is the level of similarity. So the matrix has three columns. The matrix will

be declared implicitly, if necessary.

HCLUSTER can print two pieces of information. The first gives details of each amalgamation,

followed by a list of clusters that are formed at decreasing levels of similarity. The second is the

dendrogram. The PRINT option allows you to control which of these are printed. If

METHOD=singlelink and the PRINT setting includes amalgamations, the minimum spanning

tree will be printed instead of the stages at which the clusters merge. This is because information

from forming the minimum spanning tree is used to form the single linkage clustering.

Alternatively, if you save the AMALGAMATIONS matrix, you can use procedure DDENDROGRAM

to display the dendrogram using high-resolution graphics. Also the HFCLUSTERS procedure can

be used to obtain the full set of clusters constructed during the cluster analysis, and the similarity

values at which they were formed.

The METHOD option has seven possible settings; these determine how the similarities amongst

clusters are redefined after each merge. The default singlelink, which has synonym

nearestneighbour, gives single linkage. The setting completelink (synonym

furthestneighbour) defines the distance between two clusters as the maximum distance

between any two units in those clusters. The setting averagelink defines the similarity

between a cluster and two merged clusters as the average of the similarities of the cluster with

each of the two. For groupaverage, an average is taken over all the units in the two merged

clusters. Median sorting is best thought of in terms of clusters being represented by points in a

multidimensional space; when two clusters join, the new cluster is represented by the midpoint

of the original cluster points.

The CTHRESHOLD option is a scalar which allows you to define the levels of decreasing

similarity at which the lists of clusters are printed with their membership. The decreasing levels

of similarity are formed by repeatedly subtracting the CTHRESHOLD value from the maximum

similarity of 100%. For example, setting CTHRESHOLD=10 will list the clusters formed at 90%

similarity, 80%, and so on. At each level, those units that have not joined any group are also

listed. If you do not set this option, the default value will be calculated from the range of

similarities at which merges occur, to give between 10 and 20 separate levels.

Options: PRINT, METHOD, CTHRESHOLD.

Parameters: SIMILARITY, GTHRESHOLD, GROUPS, PERMUTATION, AMALGAMATIONS.

See also

Directives: FSIMILARITY, HDISPLAY, HLIST, HSUMMARIZE, CLUSTER, HREDUCE.

Procedures: DDENDROGRAM, DCLUSTERLABELS, DMST, BCLASSIFICATION, BKEY,

CINTERACTION, HBOOTSTRAP, HCOMPAREGROUPINGS, HFAMALGAMATIONS,

HFCLUSTERS, HPCLUSTERS, MASCLUSTER.

Genstat Reference Manual 1 Summary section on: Multivariate and cluster analysis.

HDISPLAY 277

HDISPLAY

Displays results ancillary to hierarchical cluster analyses: matrix of mean similarities between

and within groups, a set of nearest neighbours for each unit, a minimum spanning tree, and the

most typical elements from each group.

Option

PRINT = string tokens Printed output required (neighbours, tree,

typicalelements, gsimilarities); default tree

Parameters

SIMILARITY = symmetric matrices Input similarity matrix for each cluster analysis

NNEIGHBOURS = scalars Number of nearest neighbours to be printed

NEIGHBOURS = matrices Matrix to store nearest neighbours of each unit

GROUPS = factors Indicates the groupings of the units (for calculating

typical elements and mean similarities between groups)

TREE = matrices To store the minimum spanning tree (as a series of links

and corresponding lengths)

GSIMILARITY = symmetric matrices

To store similarities between groups

Description

You can use the HDISPLAY directive to print ancillary information useful for interpreting cluster

analyses, and to save information to use elsewhere in Genstat, for example for plotting.

The SIMILARITIES parameter specifies a list of symmetric similarity matrices. These are

operated on, in turn, to produce the output requested by the PRINT option and to save the

information specified by other parameters. Since the interpretations of the remaining parameters

are closely linked to the different settings of the PRINT option, each setting is discussed below

with the relevant parameters.

The NNEIGHBOURS parameter gives a list of scalars indicating how many neighbours will

appear in the printed table of nearest neighbours.

The NEIGHBOURS parameter can specify a list of identifiers to store details of nearest

neighbours. These will be declared implicitly, if necessary, as matrices. The rows of the matrices

correspond to the units; there should be an even number of columns. The values in the odd-

numbered columns represent the neighbouring units in order of their similarity, while the values

in the even-numbered columns are the corresponding similarities. If you have declared the matrix

previously and it does not have enough columns, then NEIGHBOURS stores as many neighbours

as possible. If there is an odd number of columns in the matrix, the last column is not filled. If

the matrix is declared implicitly, the number of columns will be twice the value of the

NNEIGHBOURS scalar.

If the PRINT option includes the setting neighbours, Genstat prints a table of nearest

neighbours for every sample, together with their values of similarity. The number of neighbours

printed is determined by the value of the NNEIGHBOURS scalar; if NNEIGHBOURS is not set, the

table is not printed. This information is also useful for interpreting clusters and ordinations.

The GROUPS parameter specifies a factor to divide the units of each similarity matrix into

clusters. You may have formed the factor from a previous hierarchical cluster analysis, using

HCLUSTER. This parameter must be set if the PRINT option includes the settings

typicalelement or gsimilarities.

If the PRINT option includes the setting typicalelement, Genstat prints the average

similarity of each group member with the other group members. This is to help you identify

typical members of each group: typical members will have relatively large average similarities

compared to those of the other members. Within each group, members are printed in decreasing

278 Directives in Release 22

order of average similarity.

The GSIMILARITY parameter specifies a list of symmetric matrices in which you can save the

mean between-group and within-group similarities. Any structure that you have not declared

already will be declared implicitly to be a symmetric matrix with number of rows equal to the

number of levels of the factor in the GROUPS parameter.

If the PRINT option includes the setting gsimilarities, Genstat prints the mean similarities

between-groups and within-groups. Self-similarities are excluded.

The TREE parameter can specify a matrix to save the minimum spanning tree. The matrix is

set up with two columns and number of rows equal to the number of units. For each unit, the

value in the first column is the unit to which that unit is linked on its left; the second column is

the corresponding similarity. The first unit is not linked to any unit on its left, as it is always the

first unit on the tree; so the first row of the matrix contains missing values. The

HFAMALGAMATIONS procedure can use the tree to form an amalgamations matrix, representing

how the clusters would be formed with this similarity matrix by single-linkage cluster analysis.

Setting the PRINT option to tree prints the minimum spanning tree associated with the

similarity matrix specified the SIMILARITY parameter. The minimum spanning tree (MST) is

not a Genstat structure, but it can be kept in the form described above: that is, in a matrix with

two columns. An MST is a tree connecting the n points of a multidimensional representation of

the sampling units. In a tree every unit is linked to a connected network and there are no closed

loops; the special feature of the MST is that, of all trees with a sampling unit at every node, it

is the one whose links have minimum total length. The links include all those that join nearest

neighbours; the MST is closely related to single linkage hierarchical trees. Minimum spanning

trees are also useful if you superimpose them on ordinations to reveal regions in which distance

is badly distorted (see procedure DMST); if neighbouring points, as given by the MST, are distant

in the ordination then something is badly wrong.

Option: PRINT.

Parameters: SIMILARITY, NNEIGHBOURS, NEIGHBOURS, GROUPS, TREE, GSIMILARITY.

See also

Directives: HCLUSTER, HLIST, HSUMMARIZE.

Procedures: DDENDROGRAM, DMST, HPCLUSTERS.

Genstat Reference Manual 1 Summary section on: Multivariate and cluster analysis.

HELP 279

HELP

Provides help information about Genstat commands and functions.

No options

Parameter

TOPIC = texts Single-valued texts indicating the command or function

about which the information is required

Description

HELP has a parameter, called TOPIC, which you use to list the commands and functions about

which you want information. In Genstat for Windows, HELP opens the Windows on-line help file

at the appropriate pages.

Options: none.

Parameter: TOPIC.

See also

Procedures: LIBHELP, LIBEXAMPLE.

280 Directives in Release 22

HISTOGRAM

Produces histograms of data on the terminal or line printer (synonym of LPHISTOGRAM).

Options

CHANNEL = scalar Channel number of output file; default is the current

output file

TITLE = text General title; default *

LIMITS = variate Variate of group limits for classifying variates into

groups; default *

NGROUPS = scalar When LIMITS is not specified, this defines the number

of groups into which a data variate is to be classified;

default is the integer value nearest to the square root of

the number of values in the variate

LABELS = text Group labels

SCALE = scalar Number of units represented by each character; default 1

Parameters

DATA = identifiers Data for the histograms; these can be either a factor

indicating the group to which each unit belongs, a

variate whose values are to be grouped, or a one-way

table giving the number of units in each group

NOBSERVATIONS = tables One-way table to save numbers in the groups

GROUPS = factors Factor to save groups defined from a variate

SYMBOLS = texts Characters to be used to represent the bars of each

histogram

DESCRIPTION = texts Annotation for key

Description

The HISTOGRAM directive has been replaced by the LPHISTOGRAM directive, and may be

removed in a future release or modified to produce high-resolution plots instead of character-

based plots.

Histograms provide quick and simple visual summaries of data values. The data are divided

into several groups, which are then displayed as a histogram consisting of a line of asterisks for

each group. The number of asterisks in each line is proportional to the number of values assigned

to that group; this figure is also printed at the beginning of each line. The data for the histogram

are specified using the DATA parameter in either variates, factors or one-way tables.

If a histogram is to be formed from a variate, Genstat sorts its values into groups as defined

by upper and lower bounds. You can also specify a list of variates, to obtain a parallel histogram.

For each group one row of asterisks is printed for each variate, labelled by the corresponding

identifier. The variates are sorted according to the same intervals; there is no need for them all

to have the same numbers of values.

With variates of data, you can use the NGROUPS option to specify the number of groups in the

histogram; Genstat will then work out appropriate limits, based on the range of the data, to form

intervals of equal width. For example:

HISTOGRAM [NGROUPS=5] Data

Alternatively, you can define the groups explicitly, by setting the LIMITS option to a variate

containing the group limits. For example:

VARIATE [VALUES=1,2,3,5,7,8,10] Glimits
HISTOGRAM [LIMITS=Glimits] Data

Glimits is a variate with seven values, producing a histogram in which the data are split into

eight groups; �1, 1-2, 2-3, 3-5, 5-7, 7-8, 8-10, >10. The upper limit of each group is included

HISTOGRAM 281

within that group, so the group 3-5, for example, contains values that are greater than 3 and less

than or equal to 5. The values of the limits variate are sorted into ascending order if necessary,

but the variate itself is not changed.

You can use the LABELS option to provide your own labelling for the groups of the histogram.

It should be set to a text vector of length equal to the number of groups. If neither NGROUPS nor

LIMITS has been set, the number of groups is determined from the number of values in the

LABELS structure. If LABELS is also unset, the default number of groups is chosen as the integer

value nearest to the square root of the number of values, up to a maximum of 10. Alternatively,

procedure AKAIKEHISTOGRAM provides a more sophisticated method of generating histograms,

using Akaike's Information Criterion (AIC) to generate an optimal grouping of the data.

The data for the histogram can also be specified as a factor (which defines the assignment of

each unit to a group of the histogram). Genstat then counts the number of units that occur with

each level of the factor; thus the number of groups of the histogram is the number of levels of

the factor and the value for each group is the corresponding total. If the LABELS option is unset,

the labels of the factor (if present) are used to label the groups, otherwise Genstat uses the factor

levels.

When Genstat plots the histogram of a one-way table, the number of groups is the number of

levels of the factor classifying the table and the values of the table indicate the number of

observations in each group. If the LABELS option is unset, the labels or levels of the classifying

factor are again used to label the histogram.

When producing a parallel histogram the data structures must all be of the same type: variate,

factor or table. If parallel histograms are to be formed from several factors, they must all have

the same number of levels, and the labels or levels of the first factor will be used to identify the

groups. Likewise, if you are forming parallel histograms from several tables, they must all have

the same number of values, and the classifying factor of the first table will define the labelling

of the histogram.

The SYMBOLS parameter can specify alternative plotting characters to be used instead of the

asterisk. For example:

HISTOGRAM Variate; SYMBOLS='+'

You can specify a different string for each structure in a parallel histogram. If you specify strings

of more than one character, Genstat uses the characters in order, recycled as necessary, until each

histogram bar is of the correct length.

The TITLE option lets you set an overall title for the output, and the DESCRIPTION parameter

can be used to provide a text for labelling the histogram instead of the identifiers of the DATA

structures.

Normally one asterisk will represent one unit. However, if there are many data values and the

groups become large, Genstat may not be able to fit enough asterisks into one row. It will then

alter the scaling so that one asterisk represents several units. You can set the scaling explicitly

using the SCALE option; the value specified is rounded to the nearest integer, and determines

how many units should be represented by each asterisk.

HISTOGRAM has two output parameters that allow you to save information that has been

generated during formation of the histogram. The NOBSERVATIONS parameter allows you to save

a one-way table of counts that contains the number of observations that were assigned to each

group; the missing-value cell of this table will contain a count of the number of units that were

missing and that therefore remain unclassified. When producing a histogram from a variate, you

can use the GROUPS parameter to specify a factor to record the group to which each unit was

allocated.

Normally, output goes to the current output channel, but you can use the CHANNEL option to

direct it to another. For example, when you are working interactively, you might want to send

a graph to a secondary output file so that you can print it later. Unlike some directives (for

example, PRINT) you cannot save the output in a text structure.

282 Directives in Release 22

Options: CHANNEL, TITLE, LIMITS, NGROUPS, LABELS, SCALE.

Parameters: DATA, NOBSERVATIONS, GROUPS, SYMBOLS, DESCRIPTION.

Action with RESTRICT

You can restrict a DATA variate or factor to form a histogram for only a subset of the units.

However, the restriction does not carry over to any other variates or factors listed by the DATA

parameter.

See also

Directives: BARCHART, DHISTOGRAM, LPHISTOGRAM.

Genstat Reference Manual 1 Summary section on: Graphics.

HLIST 283

HLIST

Lists the data matrix in abbreviated form.

Options

GROUPS = factor Defines groupings of the units; used to split the printed

table at appropriate places and to label the groups;

default *

UNITS = text or variate Names for the rows (i.e. units) of the table; default *

Parameters

DATA = variates or factors The data variables

TEST = string tokens Test type, defining how each variable is treated in the

calculation of the similarity between each unit

(simplematching, jaccard, russellrao, dice,

antidice, sneathsokal, rogerstanimoto,

cityblock, manhattan, ecological, euclidean,

pythagorean, minkowski, divergence, canberra,

braycurtis, soergel); default * ignores that variable

RANGE = scalars Range of possible values of each variable; if omitted, the

observed range is taken

Description

HLIST lists the values of the data matrix in a condensed form, either in their original order or,

more usefully, in the order determined by a cluster analysis (see HCLUSTER). This representation

can be very helpful for revealing patterns in the data, associated with clusters, or for an initial

scan of the data to pick out interesting features of the variables.

The DATA parameter specifies a list of variates or factors, all of which must be of the same

length. The TEST parameter specifies a list of strings, one for each variate or factor in the DATA

parameter list, to define the "type" of each one. This is similar to the TEST parameter used in

FSIMILARITY to determine how differences in variate or factor values for each unit contribute

to the overall similarity between units. However, HLIST distinguishes only between qualitative

variables (factors or variates with settings simplematching - rogerstanimoto) and

quantitative variables (variates with other settings). The values of qualitative variates are printed

directly. If the range of a quantitative variate is greater than 10, the printed values are scaled to

lie in the range 0 to 10. This scaling is done by subtracting the minimum value, dividing by the

range and then multiplying by 10. If the range is less than 10, the values are printed unscaled;

so quantitative variates with values that are all less than 1 will appear as 0 in the abbreviated

table. The values are printed with no decimal places, and in a field-width of 3.

The RANGE parameter contains a list of scalars, one for each variable in the DATA list. This

allows you to check that the values of each variable lie within the given range. The range is also

used to standardize quantitative variates, so that you can impose a standard range for example

when variates are measured on commensurate scales. You can omit the RANGE parameter for all

or any of the variables by giving a missing identifier or a scalar with a missing value; Genstat

then uses the observed range.

The UNITS option allows you to change the labelling of the units in the table; you can specify

a text or a pointer or a variate.

You can use the GROUPS option to specify a factor that will split the units into groups. The

table from HLIST is then divided into sections corresponding to the groups. If the factor has

labels, these are used to annotate the sections; otherwise a group number is used.

Options: GROUPS, UNITS.

284 Directives in Release 22

Parameters: DATA, TEST, RANGE.

Action with RESTRICT

You can restrict any of the DATA variates or factors to list only a subset of the units. If more than

one of these is restricted, then they must all be restricted to the same set of units.

See also

Directives: HCLUSTER, HDISPLAY, HSUMMARIZE.

Genstat Reference Manual 1 Summary section on: Multivariate and cluster analysis.

HREDUCE 285

HREDUCE

Forms a reduced similarity matrix (referring to the GROUPS instead of the original units).

Options

PRINT = string token Printed output required (similarities); default * i.e.

no printing

METHOD = string token Method used to form the reduced similarity matrix

(first, last, mean, minimum, maximum,

zigzag); default firs

Parameters

SIMILARITY = symmetric matrices Input similarity matrix

REDUCEDSIMILARITY = symmetric matrices

Output (reduced) similarity matrix

GROUPS = factors Factor defining the groups

PERMUTATION = variates Permutation order of units (for METHOD = firs, last or

zigz)

Description

Sometimes you may want to regard an n-by-n similarity matrix S as being partitioned into b-by-b

rectangular blocks. You might then want to form a reduced matrix of similarities, between the

different blocks instead of between the individual units. To do this you have to arrange for each

of the b2 blocks of the full matrix to be replaced by a single value. Each diagonal block must be

replaced by unity. The METHOD option specifies how to replace the off-diagonal blocks, for

example the maximum, minimum or mean similarity within the block. The zigzag method

(Rayner 1966) is relevant in particular when the data consist of b soil samples for each of which

information is recorded on several soil horizons, possibly different in the different samples. The

method recognizes that certain horizons might be absent from some soil samples; this leads to

finding successive optimal matches, conditional on the constraint that one horizon cannot match

a horizon that has already been assigned to a higher level; after finding these optima, an average

is taken for each horizon.

The SIMILARITY parameter specifies the similarity matrix for the full set of n observations;

this must be present and have values. The REDUCEDSIMILARITY parameter specifies an

identifier for the reduced similarity matrix, of order b; this will be declared implicitly if you have

not declared it already. The factor that defines the classification of the units into groups must be

specified by the GROUPS parameter. The units can be in any order, so that for example the units

of the first group need not be all together nor given first. The labels of the factor label the

reduced similarity matrix.

The PERMUTATION parameter, if present, must specify a variate. It defines the ordering of

samples within each group, and so must be specified for methods first, last and zigzag.

Within each group, the unit with the lowest value of the permutation variate is taken to be the

first sample, and so on. Genstat will, if necessary, use a default permutation of one up to the

number of rows of the similarity matrix.

If you set option PRINT=similarities, the values of the reduced symmetric matrix are

printed, as percentages.

(Note: this directive was originally called REDUCE.)

Options: PRINT, METHOD.

Parameters: SIMILARITY, REDUCEDSIMILARITY, GROUPS, PERMUTATION.

286 Directives in Release 22

Reference

Rayner, J.H. (1966). Classification of soils by numerical methods. Journal of Soil Science, 17,

79-92.

See also

Directive: FSIMILARITY.

Genstat Reference Manual 1 Summary section on: Multivariate and cluster analysis.

HSUMMARIZE 287

HSUMMARIZE

Forms and prints a group by levels table for each test together with appropriate summary

statistics for each group.

Option

GROUPS = factor Factor defining the groups; no default i.e. this option

must be specified

Parameters

DATA = variates or factors The data variables

TEST = string tokens Test type, defining how each variable is treated in the

calculation of the similarity between each unit

(simplematching, jaccard, russellrao, dice,

antidice, sneathsokal, rogerstanimoto,

cityblock, manhattan, ecological, euclidean,

pythagorean, minkowski, divergence, canberra,

braycurtis, soergel); default * ignores that variable

RANGE = scalars Range of possible values of each variable; if omitted, the

observed range is taken

Description

The HSUMMARIZE directive helps you to see which clusters, if any, are distinguished by each

variable. It requires a factor to define the clusters, as well as the original DATA variables (variates

or factors), together with their types and, optionally, their ranges. From this it prints a frequency

table for each variable, classified by the grouping factor and the different values of the variable

concerned.

The option and parameters of the HSUMMARIZE directive are the same as those of the HLIST

directive, and are described there.

For qualitative variables (variates or factors with TEST settings simplematching -

rogerstanimoto) the values are integral, and for each group Genstat calculates an interaction

statistic labelled chi-square. This statistic does not have a significance level attached to it, but

it does draw attention to groups for which the distribution is markedly different from the overall

distribution.

For quantitative variables (i.e. variates with other settings) values are rounded to the nearest

point on an 11-point scale (0-10). The interaction statistic is analogous to Student's t, and it

draws attention to the groups for which the mean value is markedly different from the overall

mean (again with no significance level attached). Missing values are ignored in the computation

of these statistics.

Option: GROUPS.

Parameters: DATA, TEST, RANGE.

Action with RESTRICT

You can restrict any of the DATA variates or factors to do the calculations for only a subset of the

units. If more than one of these is restricted, then they must all be restricted to the same set of

units.

See also

Directives: HCLUSTER, HDISPLAY, HLIST.

Genstat Reference Manual 1 Summary section on: Multivariate and cluster analysis.

288 Directives in Release 22

IF

Introduces a block-if control structure.

No options

Parameter

expression Logical expression, indicating whether or not to execute

the first set of statements.

Description

A block-if structure consists of one or more alternative sets of statements. The first of these is

introduced by an IF statement. There may then be further sets introduced by ELSIF statements.

Then you can have a final set introduced by an ELSE statement, and the whole structure is

terminated by an ENDIF statement. Thus the general form is:

first

IF expression

 statements

then either none, one, or several blocks of statements of the form

ELSIF expression

 statements

then, if required, a block of the form

ELSE

 statements

and finally the statement

ENDIF

Each expression must evaluate to a single number, which is treated as a logical value: a zero

value is treated as false and non-zero as true. Genstat executes the block of statements following

the first true expression. If none of the expressions is true, the block of statements following

ELSE (if present) is executed.

You can thus use these directives to built constructs of increasing complexity. The simplest

form would be to have just an IF statement, then some statements to execute, and then an

ENDIF. For example:

IF MINIMUM(Sales) < 0
 PRINT 'Incorrect value recorded for Sales.'
ENDIF

If the variate Sales contains a negative value, the PRINT statement will be executed. Otherwise

Genstat goes straight to the statement after ENDIF.

To specify two alternative sets of statements, you can include an ELSE block. For example

IF Age < 20
 CALCULATE Pay = Hours*1.75
ELSE
 CALCULATE Pay = Hours*2.5
ENDIF

calculates Pay using two different rates: 1.75 for Age less than 20, and 2.5 otherwise.

Finally, to have several alternative sets, you can include further sets introduced by ELSIF

statements. Suppose that we want to assign values to X according to the rules:

X=1 if Y=1

X=2 if Y � 1 and Z=1

X=3 if Y � 1 and Z=2

IF 289

X=4 if Y � 1 and Z � 1 or 2

This can be written in Genstat as follows:

IF Y == 1
 CALCULATE X = 1
ELSIF Z == 1
 CALCULATE X = 2
ELSIF Z == 2
 CALCULATE X = 3
ELSE
 CALCULATE X = 4
ENDIF

If Y is equal to 1, the first CALCULATE statement is executed to set X to 1. If Y is not equal to 1,

Genstat does the tests in the ELSIF statements, in turn, until it finds a true condition; if none of

the conditions is true, the CALCULATE statement after ELSE is executed to set X to 4. Thus, for

Y=99 and Z=1, Genstat will find that the condition in the IF statement is false. It will then test

the condition in the first ELSIF statement; this produces a true result, so X is set to 2. Genstat

then continues with whatever statement follows the ENDIF statement. Block-if structures can be

nested to any depth, to give conditional constructs of even greater flexibility.

Options: none.

Parameter: unnamed.

See also

Directives: ELSIF, ELSE, ENDIF, EXIT, CASE, CALCULATE.

Genstat Reference Manual 1 Summary section on: Program control.

290 Directives in Release 22

INPUT

Specifies the input file from which to take further statements.

Options

PRINT = string tokens What output to generate from the statements in the file

(statements, macros, procedures, unchanged);

default stat

REWIND = string token Whether to rewind the file (yes, no); default no

Parameter

scalar Channel number of input file

Description

Having opened a file of Genstat statements on another input channel (for example by the OPEN

directive) you can switch control to that channel at any time using an INPUT statement. You

specify the channel as a number or as a scalar containing that number. For example,

OPEN 'MYPROCS.GEN'; CHANNEL=4; FILETYPE=input
INPUT 4

The file can contain any valid Genstat statements: they will be executed just as if they had been

on the original input channel. In this file you could use an INPUT statement to switch back to

channel 1 after a while. Alternatively, you may have set up several input files and jump from one

to another, again using INPUT. You can use RETURN to go back to the previous channel or STOP

to end this run of Genstat. If the end of the file is reached without finding any of these

statements, control will be passed back to the previous input channel as explained in the

description of the RETURN directive. Note that if you use INPUT to go back to an earlier channel,

you may affect the way in which RETURN works (again see the description of RETURN).

The PRINT option can be used to specify whether the statements read from the file should be

echoed to the current output channel. This is used in the same way as INPRINT in JOB and SET.

The REWIND option allows you to return to the beginning of the file. You might need to do

this, for example, if you had made an error, so that the statements on the secondary input file

were executed wrongly. After correcting your error you could set REWIND=yes to start again

from the beginning of the file.

Options: PRINT, REWIND.

Parameter: unnamed.

See also

Directives: RETURN, OPEN.

Genstat Reference Manual 1 Summary section on: Input and output.

INTERPOLATE 291

INTERPOLATE

Interpolates values at intermediate points.

Options

CURVE = string token Type of curve to be fitted to calculate the interpolated

value (linear, cubic); default line

METHOD = string token Type of interpolation required (interval, value,

missing): for METHOD=valu, values are interpolated

for each point in the NEWINTERVAL variate and stored in

the NEWVALUE variate; for METHOD=inte, points are

estimated in the NEWINTERVAL variate for the

observations in the NEWVALUE variate; while for

METHOD=miss, the NEWVALUE and NEWINTERVAL lists

are irrelevant, INTERPOLATE now interpolates for

missing values in the OLDVALUE and OLDINTERVAL

variates (except those missing in both variates); default
inte

Parameters

OLDVALUES = variates Observations from which interpolation is to be done

NEWVALUES = variates Results of each interpolation

OLDINTERVALS = variates Points at which each set of OLDVALUES was observed

NEWINTERVALS = variates Points for each set of NEWVALUES

Description

If you have a set of pairs of observations (x, y), you can use interpolation to estimate either a

value y for a value x that need not be in the set, or a value x for a value y that likewise need not

be in the set. The simplest way to interpolate is by joining successive pairs of observations by

straight lines and reading off the appropriate values in between: then the two cases are called

linear interpolation (obtaining y from x) and inverse linear interpolation (obtaining x from y).

Genstat can alternatively join the points by cubic functions instead of straight lines. Genstat uses

the term values to describe the set of y-values and intervals for the set of x-values, no matter

whether you are doing direct or inverse interpolation.

Genstat does the interpolation for each parallel set of variates in the parameter lists. Each

variate in the OLDINTERVALS list specifies the x-values of a set of observed points; the

corresponding variate in the OLDVALUES list specifies the corresponding y-values. The variates

in the NEWINTERVALS and NEWVALUES lists are for the x-values and y-values of the interpolated

points.

If you set METHOD=value, Genstat does ordinary interpolation, and you use the

NEWINTERVALS variate to specify the x-values for which you require interpolated y-values.

Genstat calculates the y-values and stores them in the corresponding NEWVALUES variate; this

variate will be declared implicitly if you have not declared it already.

For the interpolation to take place, the x-values must be in either monotonically increasing or

decreasing order; thus, if necessary, Genstat takes a copy of the x-values and y-values and sorts

these (in parallel) to put the x-values into ascending order.

Assume that wheat plants have been sampled on five occasions and their growth stage

(Zadoks) assessed. INTERPOLATE interpolates values, which it stores in variate Nzad, to

estimate the growth stage that the plant has reached after 50, 100 and 150 days.

VARIATE [NVALUES=6] Zadoks,Days; \
 VALUES=!(0,15,23,35,65,95),!(0,50,84,119,147,182)
& [NVALUES=3] Nzadoks,Ndays; VALUES=!(25,50,75),!(50,100,150)
INTERPOLATE [METHOD=value] Zadoks; NEWVALUES=Nzad; \

292 Directives in Release 22

 OLDINTERVALS=Days; NEWINTERVALS=Ndays

Similarly, if you set METHOD=interval, Genstat does inverse interpolation. You must then

specify the y-values in the NEWVALUES variate. Genstat calculates the x-values and stores them

in the corresponding NEWINTERVALS variate, which will be declared implicitly if necessary.

Again the x-values must be in monotonically increasing or decreasing order, and Genstat will

produce a sorted copy if necessary. Inverse interpolation is the default.

This statement would use inverse linear interpolation to estimate how long after planting we

have to wait for the plant to reach growth stages 25, 50 and 75 Zadoks.

INTERPOLATE [METHOD=interval] Zadoks; NEWVALUES=Nzadoks; \
 OLDINTERVALS=Days; NEWINTERVALS=Nd

If you set METHOD=missing, Genstat ignores the NEWVALUES and NEWINTERVALS

parameters; it estimates values for x or y when the other is missing, placing the results in the

previously missing position of the OLDVALUES or the OLDINTERVALS variates. Ordinary

interpolation is used when the missing value is in y, and inverse interpolation when it is in x. If

both the x-value and the y-value are missing for a particular unit, no values can be interpolated

for it, and it remains missing. To do linear interpolation requires that both the x-value and the

y-value should be non-missing for the point on each side of the unit with the missing value. For

cubic interpolation, there must be two non-missing points on each side of the unit.

The CURVE option has two settings, linear and cubic. By default, CURVE=linear, and

successive pairs of observations are connected by straight-line segments for linear, or inverse-

linear, interpolation. For cubic interpolation you set CURVE=cubic; there must then be at least

four values in each of the OLDVALUES and OLDINTERVALS variates.

For linear & inverse linear interpolation between variates you can use the VINTERPOLATE

procedure.

Options: CURVE, METHOD.

Parameters: OLDVALUES, NEWVALUES, OLDINTERVALS, NEWINTERVALS.

Action with RESTRICT

Either or both of the OLDVALUES and OLDINTERVALS variates can be restricted to arrange for

only a subset of the observed points to be used. Similarly, either or both of the NEWVALUES and

NEWINTERVALS variates can be restricted to arrange that values are calculated for only a subset

of units of the new variates.

See also

Directives: KRIGE, COKRIGE.

Procedure: VINTERPOLATE.

Genstat Reference Manual 1 Summary section on: Calculations and manipulation.

IRREDUNDANT 293

IRREDUNDANT

Forms irredundant test sets for the efficient identification of a set of objects.

Options

PRINT = string tokens Controls printed output (numbers, diagram,

notdistinguished, messages); default numb, diag,

notd, mess

BESTSET = pointer Saves the best set

SETS = matrix Saves details of the available sets

NOTDISTINGUISHED = matrix Saves details of the objects that cannot be distinguished

METHOD = string token Algorithm to use (exact, sequential); default exac

TAXONNAMES = text, variate or factor

Defines labels for the objects (or taxa) to be identified;

default uses the unit labels vector of the CHARACTER

factors

GROUPS = factor Defines groupings of the objects so that the sets are

constructed to distinguish only between the objects that

belong to different groups; default constructs sets to

distinguish between individual objects

OBJECT = scalar or text If this is specified, sets are constructed just to distinguish

the specified object (or taxon) from the other objects

NDISTINCTIONS = scalar Number of factors required in each set to distinguish

between each pair of objects; default 1

MAXPREFERENCE = scalar Maximum preference of the factors to be included in the

sets

MAXSIZE = scalar Limit on number of factors in a set (sets containing more

than this are discarded); default * i.e. none

NPRINT = scalar Number of sets to print (a positive number specifies the

number to print, a negative number sets a tolerance on

the difference between the sizes of the sets printed and

the size of the best set); default * prints them all

NSAVE = scalar Number of sets to save in the SETS matrix; default *

saves them all

LIMSETS = variate Variate containing two numbers n1 and n2, if this is

specified then every time that there are more than n1 sets

under construction using the exact method, the sets are

arranged in order of increasing size and all sets

containing more factors than set n2 are deleted

DISTINCTIONS = string token Whether or not to store the distinctions or recalculate

them at every stage in the exact algorithm (store,

calculate); default stor

CRITERION = string token Function to be use to select factors by the sequential

method (ndistinctions,

weightedndistinctions); default ndis

MAXCYCLE = scalar Maximum number of improvement cycles to perform

during the sequential method; default 20

EQUIVALENCE = scalar Value for determining equivalence of the selection

criteria of tests selected during the sequential method

Parameters

CHARACTER = identifiers Factors, and/or tables classified by a single factor,

294 Directives in Release 22

defining the properties of the objects to to be identified

COST = scalars Cost associated with each factor; default 1

PREFERENCE = scalar Preference rating for each factor (1 representing most

preferred etc.); default 1

VARIABLE = scalar or text Factor level used to represent variable information;

default is to use a missing value

INAPPLICABLE = scalar or text Factor level used to indicate that the information

provided by that factor is inapplicable for a particular

object

Description

The IRREDUNDANT directive is useful when you have a set of objects (or taxa) whose properties

can be described by a set of discrete-valued tests. Many applications are biological. For example,

in botanical work, the taxa may be species of plant and the tests may require the observation of

characters like the colours of petals or numbers of leaves. Similarly, in microbiology, the tests

may involve the ability of an organism to grow in various media. IRREDUNDANT helps you to

select an efficient set of tests that can be applied, in a batch, to identify any unknown specimen

of any of the objects. (The batch of tests is then often printed as a diagnostic table; see Payne &

Preece 1980.) As all the tests in the set are to be used for every identification, it is best for the

set to contain as few tests as possible. So there should thus be no redundant tests: these are tests

that can be deleted from the set without causing any object (or taxon) to be no longer

identifiable. Sets of tests that contain no redundant tests are known as irredundant.

Consider taxa A, B, C and D, whose responses to tests 1-5 are shown in the table below. The

symbol "+", for example in the entry for taxon A and test 1, indicates that all specimens of taxon

A will always give a positive result to test 1, the symbol "�" for taxon D with test 1 indicates a

negative result, and the symbol "v" for taxon B with test 3 indicates that some specimens of D

will give a positive result to test 3 but others will give a negative result.

Test

Taxon 1 2 3 4 5

A + + + � +

B + � v � �
C + � � + +

D � + + + �

The table contains several irredundant sets, one of which contains the tests 1, 3 and 5. (If, for

example, test 3 is deleted from this set, taxa A and C can no longer be distinguished). Another

set contains tests 2 and 4. So, the irredundant sets can be of different sizes. The optimum set will

often be defined to be one containing a minimum number of tests. Alternatively, if the test cost

different amounts to apply, the optimum set may be one with minimum total cost. However,

whichever of these situations applies, the optimum set will be irredundant, as otherwise a better

set could be obtained by deleting a redundant test.

The characteristics of the taxa and tests are specified using the CHARACTER parameter of

IRREDUNDANT. In the simplest situation, this provides a list of factors, one for each test (or

character), as with the BKEY procedure. The factors contain a unit for each taxon, and the level

stored in that unit indicates how the taxon can respond to the test. For example, irredundant sets

for the data in the table above could be constructed as follows:

TEXT [VALUES=A,B,C,D] Taxa
FACTOR [NVALUES=4; LEVELS=2] T1,T2,T3,T4,T5
READ T1,T2,T3,T4,T5
2 2 2 1 2
2 1 * 1 1

IRREDUNDANT 295

2 1 1 2 2
1 2 2 2 1 :
IRREDUNDANT [TAXONNAMES=Taxa] T1,T2,T3,T4,T5

Level 1 of the factors T1 - T5 represents a negative response, and level 2 represents a positive

response. The variable response of taxon B with test 3 is represented by a missing value, but you

can use the VARIABLE parameter to use a particular level of the factor instead. There may be

tests that are not applicable to some of the taxa. For example, when identifying insects, tests

concerning colours of wings are not applicable to those that do not fly! The level to be used to

indicate these responses is specified by the INAPPLICABLE parameter. Costs for the test can be

specified by the COST parameter; by default, these are all taken to be one. Names for the taxa can

be supplied, in either a text or a variate or a factor, using the TAXONNAMES parameter. If this is

not set, IRREDUNDANT uses the unit labels of the CHARACTER factors if any have been defined

(see the FACTOR directive), or otherwise the integers 1, 2 upwards.

The use of the VARIABLE option works well with responses that are completely variable i.e.

where the specimens of the taxon may give any of the available results to the test. However,

when the tests have more than two possible results, there may be taxa that can give some but not

all of the available results to a test. The responses to a test like this should be specified by a two-

way table classified by one factor with a level for each possible result, and another with a level

for each taxon. The table should then contain a positive (e.g. one) whererever the taxon

concerned can deliver the result, and zero elsewhere. For example suppose that, with test T6,

taxon A, C and D always give result 1, 2 and 3 respectively, but taxon B can give either or results

2 or 3. The relevant table could then be constructed and used as follows:

FACTOR [LABELS=Taxa] Taxfact
FACTOR [LEVELS=3] T6fact
TABLE [CLASSIFICATION=T6fact,Taxfact; VALUES=\
 " level 1:" 1, 0, 0, 0, \
 " level 2:" 0, 1, 1, 0, \
 " level 3:" 0, 1, 0, 1] T6tab
IRREDUNDANT [TAXONNAMES=Taxfact] T1,T2,T3,T4,T5,T6tab

The standard irredundant sets contain at least one test to distinguish each pair of taxa.

However, to guard against mistakes in either the original data on during the subsequent use of

the set, you can set the NDISTINCTIONS option to ask for the set to include a larger number of

tests able to distinguish each pair. Another refinement is that you can set the GROUPS option to

a factor defining groupings of the taxa. The sets are then formed to distinguish only pairs of taxa

that belong to different groups. Alternatively, you may want a set of tests to either confirm

whether or not the specimen belongs to one particular taxon. The taxon of interest should then

be indicated by setting the OBJECT option to the number of the taxon or, if textual taxon names

have been defined, to the text identifying the taxon. Finally, if you set both GROUPS and OBJECT,

the sets will be constructed to confirm whether or not a specimen belongs to a particular group.

IRREDUNDANT provides two methods for constructing the irredundant sets. The default is to

use an exact method (Payne 1991) which constructs all possible sets for the dataset concerned.

However, with some datasets, there may be too many sets to construct them all. If you run out

of workspace (or time), you can use the LIMSETS to specify a variate containing two integers

n1 and n2. Then whenever there are more than n1 sets under construction, the sets are arranged

in order of increasing size and all sets containing more factors than set n2 are deleted. The

method then no longer guarantees to find all the irredundant sets containing the fewest number

of tests or with the minimum total costs, but in the situations where this modification is needed,

it is very unlikely that it will fail to find any of them.

Alternatively, you can set option METHOD=sequential to use a sequential algorithm (Payne

& Preece 1980, Section 6.6). This does not guarantee to find a set with minimum size or cost,

but it takes much less computing time and should always should produce a satisfactory set. The

sequential method starts with an initial set containing all the essential tests, and then adds

296 Directives in Release 22

additional tests, one at a time, until each pair of taxa can be distinguished. (A test is essential if

it is the only test which can distinguish between a particular pair of taxa.) The criterion for

selecting the test to add to the set at each stage is usually the number of pairs of taxa that the test

distinguishes, of those pairs not distinguished by tests already in the set. If costs have been

defined, this number of pairs is divided by the cost of the test concerned.

Setting option CRITERION=weighted uses a refinement, suggested by Barnett et al. (1983),

which weights each pair of taxa by the reciprocal of the number of tests that can distinguish

between them. The criterion is then the maximum weighted number of pairs of taxa (divided by

the cost of the test, if defined). This causes tests that distinguish "difficult" pairs of taxa (those

with nearly identical characteristics) to be selected earlier during the construction of the set, and

thus tends to generate smaller sets. You can set a preference rating for each test using the

PREFERENCE parameter; the most-preferred tests should have ratings of one, and less-preferred

tests should have ratings of two and upwards. Then, if at any stage there is then more than one

test with the best criterion value, the most-preferred test is selected. If these preferances are

especially important, you may also also want to set the EQUIVALENCE option to a scalar, e say.

Then all tests whose criterion values are within e of the current maximum are regarded as

equivalent, and the best test is selected from within these tests according to the preferences.

The main disadvantage of most sequential methods is that they produce only a single set of

tests. In order to allow a choice of sets and as a way of improving the original set, IRREDUNDANT

can run through a sequence of cycles. In each of these, the tests in the best set are deleted in turn,

further tests are selected to separate the pairs of taxa distinguished only by the deleted test, and

any redundant tests are deleted. If no improvement is achieved, all the non-essential tests are

deleted, and the set is reformed without using those tests. The process can be then repeated until

no improvements are being achieved of until the number of cycles exceeds the setting of the

MAXCYCLE option (default 20).

Printed output is controlled by the PRINT option, with settings:

numbers numbers of the tests in the sets,

diagram table showing the contents of the sets,

notdistinguished lists of pairs of taxa that cannot be distinguished,

messages messages for example when the number of sets has been

reduced as requested by the LIMSETS option, or

concerning pairs of taxa than cannot be distinguished.

The default is PRINT=numb,diag,notd,mess.

The best set can be saved using the BESTSET option, as a pointer containing the relevant

factors. The SETS option can save a matrix, with a row for each set and a column for each test,

representing all the sets that have been formed. In each row the matrix generally stores the

number one in the columns corresponding to the tests in that set, and zero elsewhere. However,

if the sets have been constructed to confirm the identification of a single taxon, the matrix

contains more informative numbers than one. So, down each column wherever one would be

stored, it instead stores the level given by the taxon for the factor corresponding to the test

concerned. The NOTDISTINGUISHED option can save information about the pairs of taxa that

cannot be distinguished, or that are distinguished by less than NDISTINCTIONS tests. The matrix

has a row for each such pair of taxa, and three columns. Columns 1 and 2 contain the numbers

of the taxa in the pair, and column 3 contains the number of tests that can distinguish them.

Options: PRINT, BESTSET, SETS, NOTDISTINGUISHED, METHOD, UNITS, GROUPS, OBJECT,

NDISTINCTIONS, MAXPREFERENCE, MAXSIZE, NPRINT, NSAVE, LIMSETS, DISTINCTIONS,

CRITERION, MAXCYCLE, EQUIVALENCE.

Parameters: CHARACTER, COST, PREFERENCE, VARIABLE, INAPPLICABLE.

IRREDUNDANT 297

Method

The exact method uses an extension of the algorithm of Payne (1991). The sequential method

is an extension by Barnett et al. (1983) of the algorithm described in Payne & Preece (1980)

Section 6.6.

Action with RESTRICT

IRREDUNDANT takes account of restrictions on any of the CHARACTER factors or on

TAXONNAMES or GROUPS.

References

Barnett, J.A., Payne, R.W. & Yarrow, D. (1983). Yeasts: Characteristics and Identification.

Cambridge: Cambridge University Press.

Payne, R.W. (1991). Algorithm AS263 Construction of irredundant test sets. Applied Statistics,

40, 213-229.

Payne, R.W. & Preece, D.A. (1980). Identification keys and diagnostic tables: a review (with

discussion). Journal of the Royal Statistical Society, Series A, 143, 253-292.

See also

Procedures: BKEY, IDENTIFY.

Genstat Reference Manual 1 Summary sections on: Calculations and manipulation,

Multivariate and cluster analysis.

298 Directives in Release 22

JOB

Starts a Genstat job.

Options

INPRINT = string tokens Printing of input as in PRINT option of INPUT

(statements, macros, procedures,

unchanged); default unch

OUTPRINT = string tokens Additions to output as in PRINT option of OUTPUT

(dots, page, unchanged); default unch

DIAGNOSTIC = string tokens Defines the least serious class of Genstat diagnostic

which should still be generated (messages,

warnings, faults, extra, unchanged); default
unch

ERRORS = scalar Limit on number of error diagnostics that may occur

before the job is abandoned; default * i.e. no change

PROMPT = text Characters to be printed for the input prompt

WORDLENGTH = string token Length of word (8 or 32 characters) to check in

identifiers, directives, options, parameters and

procedures (long, short); default * i.e. no change

Parameter

text Name to identify the job

Description

The JOB and ENDJOB directives can be used to partition a Genstat program into separate jobs.

A job is a self-contained subsection of a program. All data structures and procedures are lost at

the end of each job. Any setting defined by a UNITS statement is deleted, as are the special

structures set up by analyses like regression and analysis of variance. The graphics environment

is also reset to the initial default. Thus, in many ways, it is as though Genstat was starting again

for each new job. However, any files that have been attached to Genstat retain their current status

from job to job. So, for example, Genstat will continue to add output to the end of an output file,

or will continue reading from the current point of an input file.

The JOB directive is used to start a new job. It has a parameter which can be set to a text to

identify the job (for example in the message at the end of the job), and options to control some

aspects of the Genstat "environment". However, Genstat will automatically start a job at the

beginning of a program, or after an ENDJOB statement, so you do not need to give a JOB

statement unless you wish to define an identifying text or to modify the environment.

JOB also has options that allow you to modify some aspects of the Genstat environment. The

default settings of the options will leave these aspects unchanged so, if any aspect is modified,

it will remain in that form (unless modified again) in any subsequent job. All these aspects have

initial defaults, described below, that apply at the outset of a program. However, it is possible

to arrange for Genstat to run commands from a start-up file before it executes the first statement

of a program, so the initial environment can differ from machine to machine.

The INPRINT option specifies which pieces of input from the current input channel will be

recorded in the current output file. (The current input channel may be a file or, in an interactive

run, it may also be the keyboard.) The settings correspond to three types of input:

statements statements that are typed explicitly on the keyboard or

which occur explicitly in an input file,

macros statements or parts of statements that have been supplied

in macros, using the ## notation (1.9.2), and

procedures statements occurring within procedures.

JOB 299

The initial default is to record only statements for input from a file, or to record nothing if

input is from the keyboard. The recording of input can be modified also by the INPRINT option

of the SET directive, or by the PRINT option of INPUT.

The OUTPRINT option controls the way in which the output from many Genstat directives will

start: page ensures that output to a file will start at the head of a page, and dots produces a line

of dots beginning with the line number of the statement that has generated the analysis. The

initial default is to give a new page and a line of dots if output is to a file, but neither if output

is to the screen. This can be modified also by the OUTPRINT option of the SET directive, or by

the PRINT option of OUTPUT.

The DIAGNOSTICS option controls the reporting of errors and possible mistakes. In order of

increasing seriousness there three classes of diagnostic: messages, warnings and faults. Messages

are comments that are made to draw your attention to things that might need closer investigation,

like large residuals in an analysis of variance or a regression. Warnings are definite errors, but

ones that are not sufficiently serious to prevent Genstat from continuing; an example would be

an attempt to print a data structure with no values. Faults are the most serious type of error. A

fault in a batch run will cause Genstat to stop executing the current job. However, Genstat will

continue to read and interpret the statements so that it can find the start of the next job (if any);

at the same time it will report any further errors that it finds, up to the number specified by the

ERRORS option.

The setting of DIAGNOSTICS indicates the level of stringency to be adopted. Thus, if

DIAGNOSTICS=warnings, Genstat will report faults and warnings (but not messages), while

DIAGNOSTICS=messages ensures that all three classes are reported. The setting extra is

similar to messages but will also generate a dump of system information after any fault. You

can prevent the output of any diagnostics by putting DIAGNOSTICS=*. The initial default is to

set DIAGNOSTICS=messages.

The WORDLENGTH parameter controls the number of characters that are stored and checked in

identifiers and names of directives, procedures, options, parameters and functions. In releases

prior to 4.2 this was always eight, but from 4.2 onwards you can choose between eight

(WORDLENGTH=short) and 32 (WORDLENGTH=long). The initial default is long.

Options: INPRINT, OUTPRINT, DIAGNOSTIC, ERRORS, PROMPT, WORDLENGTH.

Parameter: unnamed.

See also

Directives: ENDJOB, STOP.

Genstat Reference Manual 1 Summary section on: Program control.

300 Directives in Release 22

KRIGE

Calculates kriged estimates using a model fitted to the sample variogram.

Options

PRINT = string token Controls printed output (description, search,

weights, monitor, data); default desc

Y = variate Y positions (not needed for 2-dimensional regular data

i.e. when DATA is a matrix)

X = variate X positions (needed only for 2-dimensional irregular

data)

YOUTER = variate Variate containing 2 values to define the Y-bounds of

the region to be examined (bottom then top); by default

the whole region is used

XOUTER = variate Variate containing 2 values to define the X-bounds of

the region to be examined (left then right); by default the

whole region is used

YINNER = variate Variate containing 2 values to define the Y-bounds of

the interpolated region (bottom then top); no default

XINNER = variate Variate containing 2 values to define the X-bounds of

the interpolated region (left then right); no default

BLOCK = variate Dimensions (length and height) of block; default !(0, 0)

i.e. punctual kriging

RADIUS = scalar Maximum distance between target point in block and

usable data

SEARCH = string token Type of search (isotropic, anisotropic); default
isot

MINPOINTS = scalar Minimum number of data points from which to compute

elements; default 7

MAXPOINTS = scalar Maximum number of data points from which to compute

elements (2 < MINPOINTS � MAXPOINTS < 41); default

20

NSTEP = scalar Number of steps for numerical integration; (3 < NSTEP <

11); default 8

DRIFT = string token Amount of drift (constant, linear, quadratic);

default cons

YXRATIO = scalar Ratio of Y interval to X interval; default 1.0

INTERVAL = scalar Distance between successive interpolations; default 1.0

Parameters

DATA = variates or matrices Observed measurements as a variate or, for data on a

regular grid, as a matrix

ISOTROPY = string tokens Form of variogram (isotropic, Burgess,

geometrical); default isot

MODELTYPE = string tokens Model fitted to the variogram (power,

boundedlinear, circular, spherical,

doublespherical, pentaspherical,

exponential, besselk1, gaussian, cubic, stable,

cardinalsine, matern); default powe

NUGGET = scalars The nugget variance

SILLVARIANCES = variates Sill variances of the spatially dependent component;

default none

KRIGE 301

RANGES = variates Ranges of the spatially dependent component; default

none

GRADIENT = variates Slope of the unbounded component; default none

EXPONENT = variates Power of the unbounded component or power for the

stable model; default none

SMOOTHNESS = scalar Value of í parameter for the Matern model; defalt none

PHI = variates Phi parameters of an anistropic model (ISOTROPY =

Burg or geom)

RMAX = variates Maximum gradient or distance parameter of an

anistropic model

RMIN = variates Minimum gradient or distance parameter of an anistropic

model

PREDICTIONS = matrices Kriged estimates

VARIANCES = matrices Estimation variances

LAGRANGEMULTIPLIER = matrices or pointers

Saves the Lagrange multipliers from each kriging

solution

MEASUREMENTERROR = scalar Specifies the variance of the measurement error

SAVE = pointers Supplies the model name and estimates, as saved from
MVARIOGRAM

Description

The KRIGE directive computes the ordinary kriging estimates of a variable at positions on a grid

from data and a model variogram. The data must be supplied, using the DATA parameter, in one

of the two forms as for the FVARIOGRAM procedure: i.e. for data on a regular grid, in a matrix

defined with a variate of column labels to provide the x-values and a variate of row labels to

provide the y-values or, for irregularly scattered data, as a variate with the X and Y options set

to variates to supply the spatial coordinates.

By default all data are considered when forming the kriging system. However, a subset of the

data may be selected by limiting the area to a rectangle defined by XOUTER and YOUTER options.

Each of these should be set to a variate with two values to define lower and upper limits in the

x (East-West) and y (North-South) directions respectively.

The positions at which Z is predicted (estimated) are contained in a rectangle defined by the

XINNER, YINNER and INTERVAL options. XINNER and YINNER are set to variates similarly to

XOUTER and YOUTER, and their limits should not lie outside those of XOUTER and YOUTER.

INTERVAL is set to a scalar to define the distance between the successive positions in the rows

and columns of the grid at which kriging is to be done, specified in the same units as the data.

However, if the aim is to make a map, INTERVAL should be chosen so that it represents no more

than 2 mm on the final printed document. The optimality of the kriging will then not be degraded

noticeably by the subsequent contouring.

Kriging may be either punctual, i.e. at "points" which have the same size and shape as the

sample support, or on bigger rectangular blocks. The size of the blocks is specified by the BLOCK

option, in a variate whose two values define the length of the block first in the x direction

(eastings) and then in the y direction (northings). By default the BLOCK variate contains two zero

values, to give punctual kriging. The average semivariances between point and block are

computed by integrating the variogram numerically over the block. The number of steps in each

direction is defined by the NSTEP option. The default of 8 is recommended as a compromise

between speed and accuracy. The kriging may be accelerated at the expense of accuracy by

reducing NSTEP, or accuracy gained by increasing it. The minimum is 4 and the maximum 10.

The minimum and maximum number of points for the kriging system are set by the

MINPOINTS and MAXPOINTS options. There is a minimum limit of 3 for MINPOINTS and a

302 Directives in Release 22

maximum of 40 for MAXPOINTS, and MINPOINTS must be less than or equal to MAXPOINTS. The

defaults are 7 and 20 respectively. Data points may be selected around the point or block to be

kriged by setting the RADIUS option to the radius within which they must lie. If the variogram

is anisotropic, the search may be requested to be anisotropic by setting option SEARCH to

anisotropic; by default SEARCH=isotropic.

Universal kriging may be invoked by setting the DRIFT option to linear or to quadratic,

i.e. to be of order 1 or 2 respectively. By default is DRIFT=constant, to give ordinary kriging.

For data in a regular grid that is not square, the ratio of the spacing in the y direction to that in

the x direction is given by the YXRATIO option. The default is 1.0 for square.

The variogram is specified by its type and parameters. The model and estimates can be saved

using the SAVE parameter of MVARIOGRAM, and passed on to KRIGE using its SAVE parameter.

Alternatively, they can be supplied as follows.

The model can be defined by setting the MODELTYPE option to either power,

boundedlinear (one dimension only), circular, spherical, doublespherical,

pentaspherical, exponential, besselk1 (Whittle's function), gaussian, cubic, stable

(i.e. powered exponential; see Webster & Oliver 2001), cardinalsine (Chiles & Delfiner

1999) or matern. All models may have a nugget variance, supplied using the NUGGET option;

this is the constant estimated by MVARIOGRAM. For punctual kriging, you can specify the variance

of any measurement error using the MEASUREMENTERROR parameter. The parameters of the

power function (the only unbounded model) are defined by the GRADIENT and EXPONENT

parameters. The parameter for the power of the stable model is supplied using the EXPONENT

parameter. The parameter í for the matern function is supplied using the SMOOTHNESS

parameter. The simple bounded models, i.e. all other settings of MODELTYPE except

doublespherical, require the SILLVARIANCES (the sill of the correlated variance) and

RANGES parameters. The latter is strictly the correlation range of the boundedlinear,

circular, spherical and pentaspherical models, while for the asymptotic models it is

the distance parameter of the model. The doublespherical model requires SILLVARIANCES

and RANGES to be set to variates of length two, to correspond to the two components of the

model.

The ISOTROPY parameter allows the variation to be defined to be either isotropic or

anisotropic in one of two ways: either Burgess anisotropy (Burgess & Webster 1980) or

geometric anisotropy (Journel & Huijbregts 1978, Webster & Oliver 1990). The anisotropy

is specified by three parameters, namely PHI, the angle in radians of the direction of maximum

variation, RMAX, the maximum gradient or distance parameter of the model, and RMIN, the

minimum gradient or distance parameter. The power, stable, exponential, Gaussian,

pentashperical, spherical, cubic and circular functions may be anisotropic.

KRIGE calculates two matrices, one of predictions (or estimates), which can be saved using

the PREDICTIONS parameter, and the other of the prediction (estimation or kriging) variances

saved using the VARIANCES parameter. The matrices are arranged with the first row of each

matrix at the bottom following geographic rather than mathematical convention. You can save

the Lagrange multipliers from the kriging solution using the LAGRANGEMULTIPLIER parameter.

For ordinary Kriging the Lagrange multipliers are saved in a matrix (with a multiplier for each

point). For universal Kriging a pointer of matrices is saved, where a matrix to save the Lagrange

multipliers of each equation term.

The PRINT option can be set to data to print the data (2-dimensional regular data only). It

also allows intermediate results to be printed. The setting search lists the results of the search

for data around each position to be kriged, weights lists the kriging weights at each position

and monitor monitors the formation and inversion of the kriging matrices for each position.

These options enable you to check that the kriging is working reasonably. However, they can

produce a great deal of output, and should not be requested when kriging large matrices, such

as might be wanted for mapping.

KRIGE 303

Options: PRINT, Y, X, YOUTER, XOUTER, YINNER, XINNER, BLOCK, RADIUS, SEARCH,

MINPOINTS, MAXPOINTS, NSTEP, DRIFT, YXRATIO, INTERVAL.

Parameters: DATA, ISOTROPY, MODELTYPE, NUGGET, SILLVARIANCES, RANGES, GRADIENT,

EXPONENT, SMOOTHNESS, PHI, RMAX, RMIN, PREDICTIONS, VARIANCES,

LAGRANGEMULTIPLIER, MEASUREMENTERROR, SAVE.

Action with RESTRICT

You can restrict any of the DATA variate to do the estimation using only a subset of the units. If

more than one of the variates is restricted, they must all be restricted in the same way.

References

Burgess, T.M. & Webster, R. (1980). Optimal interpolation and isarithmic mapping of soil

properties. I. The semi-variogram and punctual kriging. Journal of Soil Science, 31, 315-331.

Chiles, J.P. & Delfiner, P. (1999). Geostatistics: Modeling Spatial Uncertainty. Wiley, New

York.

Journel, A.G. & Huijbregts, C.J. (1978). Mining Geostatistics. Academic Press, London.

Webster, R. & Oliver, M.A. (1990). Statistical Methods in Soil and Land Resource Survey.

Oxford University Press, Oxford.

Webster, R. & Oliver, M.A. (2001). Geostatistics for Environmental Scientists. Wiley,

Chichester.

See also

Directives: FVARIOGRAM, FCOVARIOGRAM, MCOVARIOGRAM, COKRIGE.

Procedures: MVARIOGRAM, DVARIOGRAM, DCOVARIOGRAM, DHSCATTERGRAM,

KCROSSVALIDATION.

Genstat Reference Manual 1 Summary section on: Spatial statistics.

304 Directives in Release 22

LIST

Lists details of the data structures currently available within Genstat.

Options

PRINT = string tokens What to print (identifier, attributes); default

iden, attr

CHANNEL = identifier Channel number of file, or identifier of a text to store

output; default current output file

SYSTEM = string token Whether to include "system" structures with prefix _

(yes, no); default no

SCOPE = string token When used within a procedure, this allows the listing of

structures in the program that called the procedure

(SCOPE=external), or in the main program itself

(SCOPE=global), rather than those within the

procedure (local, external, global); default loca

NSTRUCTURES = scalar Saves the number of structures of the requested types

SAVE = pointer Saves a pointer containing the structures of the requested

types

Parameter

strings Types of structure to list (all, ASAVE, diagonal,

dummy, expression, factor, formula, lrv, matrix,

pointer, RSAVE, scalar, sspm, symmetric, table,

text, tree, TSAVE, tsm, variate, VSAVE); default
all

Description

The LIST directive can be used to list the data structures that are currently available. It is

particularly useful when you are working interactively to remind you about the data structures

that you have set up, and the identifiers that you have used.

The parameter specifies the types of structure that you want to list. By default, all types are

listed.

By default LIST prints details of relevant attributes, as well as the identifiers, but this can be

controlled using the PRINT option.

The CHANNEL option can be set to a scalar to divert the output to another output channel.

Alternatively, it can specify the identifier of text data structure to store the output (and, if you

specify an undeclared structure, it will automatically be defined as a text).

The SYSTEM option of LIST controls whether structures whose identifiers begin with the

underscore character _ are listed; this character is used as a prefix for the specialized structures

set up by the Client program in Genstat for Windows, so their inclusion could be confusing.

The SCOPE option can be used within a procedure to list the data structures in the program that

called the procedure (SCOPE=external) or in the outermost part of the program

(SCOPE=global).

The SAVE option can save a pointer containing the structures of the requested types. This is

not formed if there are none.

The NSTRUCTURES option can save a scalar storing the number of structures of these types.

(So you can check whether a SAVE pointer has been formed by checking whether NSTRUCTURES

is greater than zero.)

Options: PRINT, CHANNEL, SYSTEM, SCOPE, NSTRUCTURES, SAVE.

Parameter: unnamed.

LIST 305

See also

Directives: DUMP, GETATTRIBUTE.

Genstat Reference Manual 1 Summary section on: Data structures.

306 Directives in Release 22

LPCONTOUR

Produces contour maps of two-way arrays of numbers using character (i.e. line-printer)

graphics.

Options

CHANNEL = scalar Channel number of output file; default is current output

file

INTERVAL = scalar Contour interval for scaling; default * i.e. determined

automatically

TITLE = text General title; default *

YTITLE = text Title for y-axis; default *

XTITLE = text Title for x-axis; default *

YLOWER = scalar Lower bound for y-axis; default 0

YUPPER = scalar Upper bound for y-axis; default 1

XLOWER = scalar Lower bound for x-axis; default 0

XUPPER = scalar Upper bound for x-axis; default 1

YINTEGER = string token Whether y-labels integral (yes, no); default no

XINTEGER = string token Whether x-labels integral (yes, no); default no

LOWERCUTOFF = scalar Lower cut-off for array values; default *

UPPERCUTOFF = scalar Upper cut-off for array values; default *

Parameters

GRID = identifiers Pointers (of variates representing the columns of a data

matrix), matrices or two-way tables specifying values on

a regular grid

DESCRIPTION = texts Annotation for key

Description

A contour plot provides a way of displaying three-dimensional data in a two-dimensional plot.

LPCONTOUR produces these in "line-printer" format, that is, using the characters of ordinary

output rather than a high-resolution graphics display. It was added in Release 10 as a synonym

of the earlier CONTOUR directive, which may be modified to use high-resolution graphics in a

future release.

The data values are supplied as a rectangular array of numbers that represent the values of the

variable in the third dimension, often referred to as height or the z-axis. The first two dimensions

(x and y) are the rows and columns indexing the array; the complete three-dimensional data set

is referred to as a surface or grid. Contours are lines that are used to join points of equal height,

and usually some form of interpolation is used to estimate where these points lie. The resulting

contour plot is not necessarily very "realistic" when compared to perspective plots produced by

DSURFACE, but it has the advantage that the entire surface can easily be examined, without the

danger of some parts being obscured by high points or regions.

You might use contour plots for example when you have data sampled at points on a regular

grid, such as the concentrations of a trace element or nutrient in the soil. Contours are also very

useful when fitting nonlinear models, when they can be used to study two-dimensional slices of

the likelihood surface, to help find good initial estimates of the parameters.

LPCONTOUR produces output by using cubic interpolation between the grid points to estimate

a z-value for each character position in the plot. Each value is reduced to a single digit in the

range 0 ... 9, according to the rules described below. To produce the contour plot only the even

digits are printed: you can then see the contours as the boundaries between the blank areas and

the printed digits.

The GRID parameter can be set to a matrix, a two-way table (with the first factor defining the

LPCONTOUR 307

rows), or a pointer to a set of variates each containing a column of data. We explain the

conventions in terms of a matrix as input, but similar rules apply to the other structures. When

reading or printing a matrix the origin of the rows and columns (row 1, column 1) appears at the

top left-hand corner. However, in forming the contour plot the rows are reversed in order so that

the first row of the matrix is placed at the bottom of the contour; thus the origin of the contour

is located, according to the usual conventions, at the bottom left-hand corner of the plot. The

DCONTOUR directive, which plots contours using high-resolution graphics, also reverses the rows

of the grid in the same way.

LPCONTOUR scales the grid values by dividing by the contour interval. The scaled grid values

are then converted to single digits by taking the remainder modulo 10 and truncating the

fractional part. The INTERVAL option allows you to set the contour interval. For example, if the

grid values range from 17 to 72 and the interval is set to 10, contour lines (the boundaries

between blank space and printed digits) will occur at grid values of 20, 30, 40, 50, 60 and 70. By

default, the interval is determined from the range of the data in order to obtain 10 contours.

The UPPERCUTOFF and LOWERCUTOFF options can be used to define a window for the grid

values that will form the contours. All values above or below these are printed as X. Setting

either UPPERCUTOFF or LOWERCUTOFF will change the default contour interval, as the range of

data values is effectively curtailed.

You can use the TITLE, YTITLE and XTITLE option to annotate the contour plot. If you

specify several grids, these will be plotted in separate frames and the text of the TITLE option

will appear at the top of each one. You should thus use TITLE only to give a general description

of what the contours represent. The DESCRIPTION parameter can be used to add specific

descriptions to be printed at the bottom of each individual plot.

The YUPPER and YLOWER options allow you to set upper and lower bounds for the y-axis; thus

generating axis labels that reflect the range of values over which the grid was observed or

evaluated. Setting YINTEGER=yes will ensure the labels are printed as integers, if possible. The

default axis bounds are 0.0 and 1.0. The options XLOWER, XUPPER and XINTEGER similarly

control labelling of the x-axis.

Options: CHANNEL, INTERVAL, TITLE, YTITLE, XTITLE, YLOWER, YUPPER, XLOWER, XUPPER,

YINTEGER, XINTEGER, LOWERCUTOFF, UPPERCUTOFF.

Parameters: GRID, DESCRIPTION.

Action with RESTRICT

LPCONTOUR takes account of restrictions on any of the variates in a GRID pointer.

See also

Directives: DCONTOUR, LPGRAPH, LPHISTOGRAM.

Genstat Reference Manual 1 Summary section on: Graphics.

308 Directives in Release 22

LPGRAPH

Produces point and line graphs using character (i.e. line-printer) graphics.

Options

CHANNEL = scalar Channel number of output file; default is current output

file

TITLE = text General title; default *

YTITLE = text Title for y-axis; default *

XTITLE = text Title for x-axis; default *

YLOWER = scalar Lower bound for y-axis; default *

YUPPER = scalar Upper bound for y-axis; default *

XLOWER = scalar Lower bound for x-axis; default *

XUPPER = scalar Upper bound for x-axis; default *

MULTIPLE = variate Numbers of plots per frame; default * i.e. all plots are on

a single frame

JOIN = string token Order in which to join points (ascending, given);

default asce

EQUAL = string tokens Whether/how to make bounds equal (no, scale,

lower, upper); default no

NROWS = scalar Number of rows in the frame; default * i.e. determined

automatically

NCOLUMNS = scalar Number of columns in the frame; default * i.e.

determined automatically

YINTEGER = string token Whether y-labels integral (yes, no); default no

XINTEGER = string token Whether x-labels integral (yes, no); default no

Parameters

Y = identifiers Y-coordinates

X = identifiers X-coordinates

METHOD = string tokens Type of each graph (point, line, curve, text); if

unspecified, poin is assumed

SYMBOLS = factors or texts For factor SYMBOLS, the labels (if defined), or else the

levels, define plotting symbols for each unit, whereas a

text defines textual information to be placed within the

frame for METHOD=text or the symbol to be used for

each plot for other METHOD settings; if unspecified, * is

used for points, with integers 1-9 to indicate coincident

points, ' and . are used for lines and curves

DESCRIPTION = texts Annotation for key

Description

LPGRAPH plots graphs in "line-printer" format, that is, using the characters of ordinary output

rather than a high-resolution graphics display. It was added in Release 10 as a synonym of the

earlier GRAPH directive, which may be modified to use high-resolution graphics in a future

release.

The simplest form of the LPGRAPH directive produces a point plot (or scatterplot as it is

sometimes called). It can also be used to plot lines and curves, and text can be added for extra

annotation. The data are supplied as y- and x-coordinates in separate parameter lists. For

example

VARIATE [VALUES=-16,-7,9,16,7,-8,-12,-5,0,10,4,-4,-3,3,16] X
& [VALUES=0,-14,-12.5,0,14,0,12,0,-10,-9,5,6,-6,-1.5,16] Y

LPGRAPH 309

LPGRAPH Y; X

Here the identifiers Y and X are variates of equal length; Genstat uses their values in pairs to give

the coordinates of the points to be plotted.

By default, if you specify several identifiers, Genstat plots them all in the same frame a pair

at a time; for example

LPGRAPH Y[1...3]; X[1,2]

superimposes plots of Y[1] against X[1], Y[2] against X[2], and Y[3] against X[1]. The

usual rules governing the parallel expansion of lists apply here: the length of the Y parameter list

determines the number of plots within the frame, and the X parameter list is recycled if it is

shorter. To generate several frames from one LPGRAPH statement you can use the MULTIPLE

option, described below.

The identifiers supplied by the Y and X parameters need not be variates, but can be any

numerical structures: scalars, variates, factors, tables or matrices. The only constraints are that

the pairs of structures must have the same numbers of values, and that tables must not have

margins.

There are four types of graph available, controlled by the METHOD parameter: point (the

default), line, curve and text.

A line plot is one in which each point is joined to the next by a straight line. Alternatively,

using the curve method, cubic splines are used to produce a smoothed curve through the data

points. This does not represent any model fitted in the statistical sense, but as long as the data

points are not too widely spaced (especially where the gradient changes quickly) the plotted

curve should be a good representation of the underlying function.

By default, Genstat sorts the data so that the x-values are in ascending order before any line

or curve is drawn through the points. However, if you set option JOIN=given, the points are

joined in the order in which they occur in the data; if there are then any missing values there will

be breaks in the line at each missing unit.

Plots produced with METHOD set to either line or curve do not include markings for the data

points themselves; you should plot these separately if they are required. For example

VARIATE [VALUES=-0.1,0.1...0.9] V
& [VALUES=5.5,9.9,8.7,2.3,1.3,5.5] W
LPGRAPH W,W; V; METHOD=curve,point

Here W is plotted against V twice, first with the curve method and then with the point method.

It is best to plot the line first, so that the symbols for individual points will overwrite those used

for the line or curve.

The fourth plotting method is text. You can use this to place an item of text within a graph

as extra annotation. For example:

SCALAR Xt,Yt; VALUE=20,10
TEXT [VALUES='Y=aX+b'] T
LPGRAPH Y,Yt; X,Xt; METHOD=line,text; SYMBOLS=*,T

This plots a line, defined by the variates Y and X, as described above. In addition, the text T is

printed within the frame starting at the coordinates defined by the scalars Yt and Xt. As these

statements show, the SYMBOLS parameter then specifies the text that is to be plotted. The text

is truncated as necessary, if positioned too close to the edge of the graph.

With other methods SYMBOL defines the plotting symbol to be used to mark either points or

lines on the graph. The default symbol for points is the asterisk, and for lines is a combination

of dots and single quotes. If several points coincide, Genstat replaces the asterisk by a digit

between 2 and 9, representing the number of coincidences, with 9 meaning nine or more. For

point plots, the SYMBOLS parameter can be set to either a text or a factor. If you specify a text

with a single string, the string is used to label every point; otherwise, the text must have one

string for each point.

Normally, output goes to the current output channel, but you can use the CHANNEL option to

310 Directives in Release 22

direct it to another. For example, when you are working interactively, you might want to send

a graph to a secondary output file so that you can print it later. Unlike some directives you

cannot save the output in a text structure.

The TITLE option lets you set an overall title for the graph. For example:

LPGRAPH [XTITLE='Nitrogen Applied (kg/ha)'] Yield; Nitrogen

You can also have individual axis titles, specified by the YTITLE and XTITLE options. Genstat

prints the y-axis title as a column of characters down the left-hand side of the graph. New lines

are ignored, so that strings within a text are concatenated. Genstat truncates the title if necessary:

the maximum possible number of characters is the number of rows of the frame plus 4. The x-

axis title is printed below the graph; the maximum number of characters is the number of

columns of the frame plus four: long strings are truncated whereas short strings are centred.

If no titles are set, a simple key will be produced below the graph which lists the identifiers

and plotting symbols for each pair of Y and X structures. You can obtain your own key by setting

the DESCRIPTION parameter, which supplies a line of text for each plot.

By default, Genstat automatically calculates the extent of the axes from the data to be plotted,

in such a way that all the data are contained within the frame. You can set one or more of the

bounds for the axes by options YLOWER, YUPPER, XLOWER and XUPPER. By setting the upper

bound of an axis to a value that is less than the lower bound, you can reverse the usual

convention for plotting in which the y-values increase upwards and the x-values increase to the

right. Setting the options YINTEGER and XINTEGER constrains the axis markings to be integral,

if possible.

The EQUAL option allows you to place constraints on the bounds for the axes. The default

setting no (meaning no constraint) uses the boundary values as set by the options or calculated

from the data. The settings lower and upper constrain the lower or upper bounds of the two

axes to be equal: for example, to plot the line y=x along with the data, setting EQUAL=lower will

ensure that it will pass through the bottom left-hand corner of the frame. The scale setting

adjusts the y-bounds and x-bounds so that the physical distance on one axis corresponds as

closely as possible to physical distance on the other: for example, so that one centimetre will

represent the same distance along each axis.

Normally each LPGRAPH statement produces one frame, and Genstat sets the size so that it will

fill one screen or line-printer page, based on the settings of WIDTH and PAGE from OPEN or

OUTPUT, or their defaults if these have not been specified. When output is to a file the graph will

be placed on a new page, unless this has been disabled using OUTPUT, JOB or SET. The size of

the graph is defined in terms of the number of characters in each row and the number of rows

in the frame, a row being one line of output. You can adjust the size of the frame by using the

NROWS and NCOLUMNS options; the minimum allowed is three rows and three columns, and the

maximum number of columns is 17 characters less than the width of the output channel (to leave

room for axis markings and titles). There is no maximum on the number of rows. By default, the

number of columns is 101, subject to the maximum above, and the number of rows is the number

of lines per page, less 8, to allow room for annotation. By defining the page size in advance you

can avoid having to specify the numbers of rows and columns when you wish to plot many

graphs.

The automatic axis scaling aims to find axis markings that are at reasonable values, but

because the markings appear at fixed character positions this may not always be possible. If both

upper and lower axis bounds are set, or EQUAL is set in conjunction with axis bounds, or you

have requested integral axis markings, there may be conflicting constraints on the axis scaling.

If the resultant axis markings then require several decimal places, you may be able to obtain

better values by slight adjustments to the numbers of rows or columns.

The MULTIPLE option lets you generate several frames (separate graphs) from one statement.

If there is room, the graphs can be printed alongside each other, for example to produce a two-

by-two array of plots on a line-printer page. The option should be set to a variate whose elements

LPGRAPH 311

define the number of graphs to plot in each frame and the number of values in the variate

determines the number of frames to be output. For example,

LPGRAPH [MULTIPLE=!(2,1,2)] A,B,C,D,E; X[1...3]

will produce three frames; the first containing A against X[1] and B against X[2], the second

containing C against X[3] and the third containing D against X[1] and E against X[2]. The sum

of the values in the MULTIPLE list gives the total number of structures required to form the plots,

which must therefore be equal to the length of the Y parameter list. The X list will be recycled

if necessary, as here.

By default, each graph will fit the page (as if it had been produced by an individual LPGRAPH

statement). However, if you set the NCOLUMNS option to a suitably small value, Genstat may be

able to fit more than one frame across the page. The MULTIPLE option will then produce the

graphs side by side. Remember that 17 columns are automatically added to provide annotation,

and five blank columns are used to separate multiple graphs in parallel. This means that, for

example, setting NCOLUMNS=20 will produce two graphs in parallel on a screen of width 80, and

three graphs when output to a file of width 121 or more.

Options: CHANNEL, TITLE, YTITLE, XTITLE, YLOWER, YUPPER, XLOWER, XUPPER, MULTIPLE,

JOIN, EQUAL, NROWS, NCOLUMNS, YINTEGER, XINTEGER.

Parameters: Y, X, METHOD, SYMBOLS, DESCRIPTION.

Action with RESTRICT

You can arrange to plot only a subset of the points specified by a particular pair of Y and X

vectors (i.e. variates and/or factors), by restricting either one of them. If both are restricted, then

they must be restricted in exactly the same way.

See also

Directives: DGRAPH, D3GRAPH, LPCONTOUR, LPHISTOGRAM.

Genstat Reference Manual 1 Summary section on: Graphics.

312 Directives in Release 22

LPHISTOGRAM

Produces histograms using character (i.e. line-printer) graphics.

Options

CHANNEL = scalar Channel number of output file; default is the current

output file

TITLE = text General title; default *

LIMITS = variate Variate of group limits for classifying variates into

groups; default *

NGROUPS = scalar When LIMITS is not specified, this defines the number

of groups into which a data variate is to be classified;

default is the integer value nearest to the square root of

the number of values in the variate

LABELS = text Group labels

SCALE = scalar Number of units represented by each character; default 1

Parameters

DATA = identifiers Data for the histograms; these can be either a factor

indicating the group to which each unit belongs, a

variate whose values are to be grouped, or a one-way

table giving the number of units in each group

NOBSERVATIONS = tables One-way table to save numbers in the groups

GROUPS = factors Factor to save groups defined from a variate

SYMBOLS = texts Characters to be used to represent the bars of each

histogram

DESCRIPTION = texts Annotation for key

Description

Histograms provide quick and simple visual summaries of data values. The data are divided into

several groups, which are then displayed as a histogram consisting of a line of asterisks for each

group. The number of asterisks in each line is proportional to the number of values assigned to

that group; this figure is also printed at the beginning of each line. LPHISTOGRAM plots

histograms in "line-printer" format, that is, using the characters of ordinary output rather than

a high-resolution graphics display. It was added in Release 10 as a synonym of the earlier

HISTOGRAM directive, which may become a command for high-resolution graphics in a future

release.

The data for the histogram are specified using the DATA parameter in either variates, factors

or one-way tables. If a histogram is to be formed from a variate, Genstat sorts its values into

groups as defined by upper and lower bounds. You can also specify a list of variates, to obtain

a parallel histogram. For each group one row of asterisks is printed for each variate, labelled by

the corresponding identifier. The variates are sorted according to the same intervals; there is no

need for them all to have the same numbers of values.

With variates of data, you can use the NGROUPS option to specify the number of groups in the

histogram; Genstat will then work out appropriate limits, based on the range of the data, to form

intervals of equal width. For example:

LPHISTOGRAM [NGROUPS=5] Data

Alternatively, you can define the groups explicitly, by setting the LIMITS option to a variate

containing the group limits. For example:

VARIATE [VALUES=1,2,3,5,7,8,10] Glimits
LPHISTOGRAM [LIMITS=Glimits] Data

Glimits is a variate with seven values, producing a histogram in which the data are split into

LPHISTOGRAM 313

eight groups; �1, 1-2, 2-3, 3-5, 5-7, 7-8, 8-10, >10. The upper limit of each group is included

within that group, so the group 3-5, for example, contains values that are greater than 3 and less

than or equal to 5. The values of the limits variate are sorted into ascending order if necessary,

but the variate itself is not changed.

You can use the LABELS option to provide your own labelling for the groups of the histogram.

It should be set to a text vector of length equal to the number of groups. If neither NGROUPS nor

LIMITS has been set, the number of groups is determined from the number of values in the

LABELS structure. If LABELS is also unset, the default number of groups is chosen as the integer

value nearest to the square root of the number of values, up to a maximum of 10. Alternatively,

procedure AKAIKEHISTOGRAM provides a more sophisticated method of generating histograms,

using Akaike's Information Criterion (AIC) to generate an optimal grouping of the data.

The data for the histogram can also be specified as a factor (which defines the assignment of

each unit to a group of the histogram). Genstat then counts the number of units that occur with

each level of the factor; thus the number of groups of the histogram is the number of levels of

the factor and the value for each group is the corresponding total. If the LABELS option is unset,

the labels of the factor (if present) are used to label the groups, otherwise Genstat uses the factor

levels.

When Genstat plots the histogram of a one-way table, the number of groups is the number of

levels of the factor classifying the table and the values of the table indicate the number of

observations in each group. If the LABELS option is unset, the labels or levels of the classifying

factor are again used to label the histogram.

When producing a parallel histogram the data structures must all be of the same type: variate,

factor or table. If parallel histograms are to be formed from several factors, they must all have

the same number of levels, and the labels or levels of the first factor will be used to identify the

groups. Likewise, if you are forming parallel histograms from several tables, they must all have

the same number of values, and the classifying factor of the first table will define the labelling

of the histogram.

The SYMBOLS parameter can specify alternative plotting characters to be used instead of the

asterisk. For example:

LPHISTOGRAM Variate; SYMBOLS='+'

You can specify a different string for each structure in a parallel histogram. If you specify strings

of more than one character, Genstat uses the characters in order, recycled as necessary, until each

histogram bar is of the correct length.

The TITLE option lets you set an overall title for the output, and the DESCRIPTION parameter

can be used to provide a text for labelling the histogram instead of the identifiers of the DATA

structures.

Normally one asterisk will represent one unit. However, if there are many data values and the

groups become large, Genstat may not be able to fit enough asterisks into one row. It will then

alter the scaling so that one asterisk represents several units. You can set the scaling explicitly

using the SCALE option; the value specified is rounded to the nearest integer, and determines

how many units should be represented by each asterisk.

LPHISTOGRAM has two output parameters that allow you to save information that has been

generated during formation of the histogram. The NOBSERVATIONS parameter allows you to save

a one-way table of counts that contains the number of observations that were assigned to each

group; the missing-value cell of this table will contain a count of the number of units that were

missing and that therefore remain unclassified. When producing a histogram from a variate, you

can use the GROUPS parameter to specify a factor to record the group to which each unit was

allocated.

Normally, output goes to the current output channel, but you can use the CHANNEL option to

direct it to another. For example, when you are working interactively, you might want to send

a graph to a secondary output file so that you can print it later. Unlike some directives (for

314 Directives in Release 22

example, PRINT) you cannot save the output in a text structure.

Options: CHANNEL, TITLE, LIMITS, NGROUPS, LABELS, SCALE.

Parameters: DATA, NOBSERVATIONS, GROUPS, SYMBOLS, DESCRIPTION.

Action with RESTRICT

You can restrict a DATA variate or factor to form a histogram for only a subset of the units.

However, the restriction does not carry over to any other variates or factors listed by the DATA

parameter.

See also

Directives: BARCHART, DHISTOGRAM, LPGRAPH, LPCONTOUR.

Genstat Reference Manual 1 Summary section on: Graphics.

LRV 315

LRV

Declares one or more LRV data structures.

Options

ROWS = scalar, vector or pointer Number of rows, or row labels, for the matrix; default *

COLUMNS = scalar, vector or pointer

Number of columns, or column labels, for matrix and

diagonal matrix; default *

Parameters

IDENTIFIER = identifiers Identifiers of the LRVs

VECTORS = matrices Matrix to contain the latent vectors for each LRV

ROOTS = diagonal matrices Diagonal matrix to contain the latent roots for each LRV

TRACE = scalars Trace of the matrix

Description

The LRV is a compound data structure. These are similar to pointers in that they point to other

structures, but they have a fixed number of elements which must be of the correct types and must

form a consistent set (in terms of their sizes and so on). You can refer to elements of compound

structures in exactly the same way as the elements of pointers, but the suffixes and their labels

are fixed for each type of structure. Unlike pointers, the labels are also not case sensitive;

Genstat will recognize the label in either upper case or lower case, or in any mixture of the two.

The LRV structure is used to store latent roots and vectors resulting from the decomposition

of a matrix (by the FLRV directive), or produced in multivariate analysis. It points to three

structures (identified by their suffixes):

[1] or ['Vectors'] is a matrix whose columns are the latent vectors (the word

"Vector" is used here in its mathematical sense rather

than in the more specific Genstat sense; in fact, latent

vectors are most conveniently stored in matrices rather

than in Genstat vectors);

[2] or ['Roots'] is a diagonal matrix whose elements are the latent roots;

[3] or ['Trace'] is a scalar holding the trace of the matrix, which is the sum

of all its latent roots.

The length of each latent vector is specified by the ROWS option; this then defines the number

of rows in the 'VECTORS' matrix. The COLUMNS option defines the number of latent roots to be

stored; this is also the number of latent vectors, and so indicates the number of columns in the

'VECTORS' matrix and the number of elements in the 'ROOTS' matrix. If you do not specify the

number of columns Genstat will set it to be the same as the number of rows. The value of

COLUMNS can be less than the value of ROWS; however, it must not exceed than that of ROWS,

otherwise Genstat gives an error diagnostic. Row and column labels can be defined, as in the

MATRIX directive.

You can specify identifiers for the three individual elements of the LRV by using the

VECTORS, ROOTS and TRACE parameters. If you have declared them already they must be of the

correct type (and you can also have given them values). If you have given these identifiers row

or column settings, then these will be used for the LRV declaration and must match any of the

corresponding options of LRV that you choose to set.

Options: ROWS, COLUMNS.

Parameters: IDENTIFIER, VECTORS, ROOTS, TRACE.

316 Directives in Release 22

See also

Directives: FLRV, DIAGONALMATRIX, MATRIX, POINTER, QRD, SVD, SYMMETRICMATRIX.

Genstat Reference Manual 1 Summary sections on: Data structures, Multivariate and cluster

analysis.

MARGIN 317

MARGIN

Forms and calculates marginal values for tables.

Option

CLASSIFICATION = factors Factors classifying the margins to be formed; default *

requests all margins to be formed

Parameters

OLDTABLE = tables Tables from which the margins are to be taken or

calculated

NEWTABLE = tables New tables formed with margins

METHOD = string tokens Way in which the margins are to be formed for each

table (totals, means, minima, maxima,

variances, medians, deletion, or a null string to

indicate that the marginal values are all to be set to the

missing value); default tota

Description

You can use MARGIN to extend a table to contain marginal values, or to change the marginal

values of a table that already has margins, or to delete the margins from a table. The tables whose

margins are to be changed are specified by the OLDTABLE parameter. If you specify only this

parameter, the new values replace those of the original tables. However, if you want to retain the

original values, you can specify new tables to contain the amended values, using the NEWTABLE

list. These tables will be declared automatically, if you have not declared them already.

The METHOD parameter controls the type of margins that are formed. If you set

METHOD=deletion, all the margins of the tables are deleted but the body of the table is retained.

The CLASSIFICATION option specifies the list of factors for which you want to form

marginal values. Genstat puts missing values in the margins that are excluded if the METHOD

parameter is set to maxima or minima; for other settings of METHOD, Genstat puts in zeroes. The

classifying sets for each table can be different, but all the factors in the CLASSIFICATION option

must be in the classifying sets of each OLDTABLE.

Option: CLASSIFICATION.

Parameters: OLDTABLE, NEWTABLE, METHOD.

See also

Directives: TABLE, TABULATE, COMBINE.

Genstat Reference Manual 1 Summary section on: Calculations and manipulation.

318 Directives in Release 22

MATRIX

Declares one or more matrix data structures.

Options

ROWS = scalar, vector, pointer or text

Number of rows, or labels for rows; default *

COLUMNS = scalar, vector, pointer or text

Number of columns, or labels for columns; default *

VALUES = numbers Values for all the matrices; default *

MODIFY = string token Whether to modify (instead of redefining) existing

structures (yes, no); default no

IPRINT = string tokens Information to be used by default to identify the matrices

in output (identifier, extra); if this is not set, they

will be identified in the standard way for each type of

output

Parameters

IDENTIFIER = identifiers Identifiers of the matrices

VALUES = identifiers Values for each matrix

DECIMALS = scalars Number of decimal places for printing

EXTRA = texts Extra text associated with each identifier

MINIMUM = scalars Minimum value for the contents of each structure

MAXIMUM = scalars Maximum value for the contents of each structure

DREPRESENTATION = scalars or texts

Default format to use when the contents represent dates

and times

Description

A matrix stores a set of numbers as a two-dimensional array indexed by rows and columns. For

example, the array

1 2 3 4
5 6 7 8
9 10 11 12

is called a three-by-four matrix.

You use the ROWS and COLUMNS options to specify the size of the matrices that are being

defined. The simplest way of doing this is to use scalars to define the numbers of rows and

columns explicitly. Alternatively, you can set ROWS (or COLUMNS) to a variate, text or pointer,

whose length then defines the number of rows (or columns) and whose values will then be used

as labels, for example when the matrix is printed. Finally, if you specify a factor, the number of

levels defines the number of rows or columns and the labels if available, or otherwise the levels,

are used for labelling.

Values can be supplied for the matrices using either the VALUES option or the VALUES

parameter. The option defines a common value (or set of values) for all the matrices in the

declaration, while the parameter allows them each to be given different values. With the option

you must supply a list of values. With the parameter, however, you must give a list of identifiers

of data structures of the appropriate mode; unnamed data structures are particularly useful for

this. Thus, to declare the matrix above, we can put:

MATRIX [ROWS=3; COLUMNS=4] X; \
 VALUES=!(1,2,3,4,5,6,7,8,9,10,11,12)

If both the option and the parameter are specified, the parameter takes precedence.

The DECIMALS parameter can be used to define the number of decimal places that Genstat will

MATRIX 319

use by default whenever the values of the matrix are printed. This applies to output either by

PRINT or from an analysis (but it does not affect the accuracy with which the numbers are

stored).

You can associate a text with each data structure by means of the parameter EXTRA. This text

is then used by many Genstat directives to give a fuller annotation of output.

The MINIMUM and MAXIMUM parameters allow you to define lower and upper limits on the

values expected for any structure that stores numbers. Genstat then prints warnings if any values

outside that range are assigned to the structure.

The DREPRESENTATION parameter allows a scalar or a single-valued text to be specified for

each matrix to indicate that the matrix stores dates and times, and to define a format to be used

for these, by default, when they are printed; details are given in the description of the PRINT

directive.

If you are declaring any of the matrices for a second time, by default you will lose all its

existing attributes and values. You can retain those that remain valid by setting option

MODIFY=yes.

The IPRINT option can be set to specify how the matrices will be identified in output. If

IPRINT is not set, they will be identified in whatever way is usual for the section of output

concerned. For example, the PRINT directive generally uses their identifiers (although this can

be changed using the IPRINT option of PRINT itself).

Options: ROWS, COLUMNS, VALUES, MODIFY, IPRINT.

Parameters: IDENTIFIER, VALUES, DECIMALS, EXTRA, MINIMUM, MAXIMUM,

DREPRESENTATION.

See also

Directives: DIAGONALMATRIX, LRV, SYMMETRICMATRIX, SSPM.

Genstat Reference Manual 1 Summary section on: Data structures.

320 Directives in Release 22

MCOVARIOGRAM

Fits models to sets of variograms and cross-variograms.

Options

PRINT = string tokens Controls printed output from the fit (model, summary,

estimates, fittedvalues, monitoring); default

mode, summ, esti

WEIGHTING = string token Method to be used for weighting (counts, equal);

default coun

MAXLAG = scalar Maximum lag distance of points to be included in the

modelling

MINCOUNT = scalar Minimum number of points required at a particular lag

point for a pair of variables for this to be used to model

their cross-variogram; default 30 for equal weighting and

10 for counts

MAXCYCLE = scalar Maximum number of iterations for model fitting; default

30

TOLERANCES = variate Tolerances for model fitting; default * i.e. appropriate

default values

COORDSYSTEM = string token Coordinate system used for the geometry for discretizing

the lag (mathematical, geographical); default math

COVARIOGRAM = pointers Experimental variograms, cross-variograms and

associated information defining the data for fitting the

model

Parameters

MODELTYPE = string tokens Defines the model structures to be fitted (nugget,

power, boundedlinear, circular, spherical,

pentaspherical, cubic, stable, besselk1,

cardinalsine, dampenedcosine); no default i.e.

must be specified

INITIAL = scalars or variates Scalar defining the initial distance parameter for fitting

an isotropic model structure or a variate defining initial

values for an anisotropic ellipse or ellipsoid for fitting an

geometrical anisotropic model

ISOTROPY = string tokens Specifies the zonal anisotropy to be used for model

structure (isotropic, x, y, z, xy, xz, yz); default
isot

ESTIMATES = pointers Structures to store the estimated nonlinear parameters

and sill values

LOWER = scalars Lower bound for each nonlinear distance parameter

UPPER = scalars Upper bound for each nonlinear distance parameter

STEPLENGTH = scalars Initial step length for each nonlinear distance parameter

SMOOTHNESS = scalars Value of exponent parameter for the power and stable

models, or theta parameter for the dampened-cosine

model

Description

The MCOVARIOGRAM directive fits models to sets of auto- and cross-variograms. You can specify

a combination of basic variogram functions to model the variograms, for example, nugget plus

spherical. MCOVARIOGRAM uses the algorithms from the directives FIT and FITNONLINEAR to

MCOVARIOGRAM 321

estimate the model parameters for the combination of basic variogram functions. It then fits a

linear model of coregionalization using the Goulard & Voltz (1992) algorithm, where each step

of the solution is checked for conditional semi-definiteness. The two-step process is iterated until

convergence.

The MODELTYPE parameter selects the combination of model structures to be used in the

model:

nugget c0

boundlinear ch/a for h � a, otherwise 0

circular c {1 � (2/ð)arccos(h/a) + (2h/(ða))�(1�h2/a2)}

 for h � a, otherwise 0

spherical c {1.5h/a � 0.5(h/a)3 }

 for h � a, otherwise 0

pentaspherical c {1.875h/a � 1.25(h/a)3 + 0.375(h/a)5}

 for h � a, otherwise 0

cubic c {7(h/a)2 � 8.75(h/a)3 + 3.5(h/a)5 � 0.75(h/a)7}

stable c {1 � exp(�(h/a)b))}

 for 0 � b � 2

besselk1 c {1 � h/a k1(h/a) }

cardinalsine c {1 � a/h sin(h/a)}

dampenedcosine c {1 � exp(�h/(as)) cos(h/a) }

power ghá

Initial values for the model structures should be supplied using the INITIAL parameter. For

an isotropic model the initial value should be specified as a scalar. You can specify a

geometrically anisotropic model by supplying the values within a variate. In two dimensions the

variate should contain three values that define an anisotropy ellipse. The first value should define

the first axis direction. This is the angle for the main direction of continuity (least change with

separating distance) measured in degrees, counter-clockwise from East if option COORDSYSTEM

is set to mathematical or clockwise from North if COORDSYSTEM is set to geographical.

The second value should contain the initial value for the distance parameter of the first axis, and

the last value of the variate should be the anisotropy ratio between the distance parameters along

the first axis (principal direction of continuity) and the second axis.

In three dimensions the variate should contain six values that define an anisotropy ellipsoid.

The first value defines the angle for the first axis (principal direction of continuity) which is

measured in degrees, counter-clockwise from East if COORDSYSTEM is set to mathematical or

clockwise from North if COORDSYSTEM is set to geographical. The second value defines the

dip angle for the first axis (rotation angle around the y-axis) which is measured in degrees up

from horizontal. The third value defines the rotation angle of the second and third axis around

the first axis (defined by the two previous angles). The fourth value should contain the initial

value for the distance parameter along the first axis. The fifth value defines the anisotropy ratio

between distance parameters along the first and second axis of the ellipsoid. The last value of

the variate defines the anisotropy ratio between the distance parameters along the second and

third axis of the ellipsoid.

Another form of anisotropy can occur when the sill of a semi-variogram varies in different

directions. This is known as zonal anisotropy and you can set a model structure to be zonal in

particular directions using the ISOTROPY parameter. A model structure can be zonal and

geometrically anisotropic.

For the power and stable models the SMOOTHNESS option controls the power parameter for

the model. By default, the parameter is estimated, however, you can supply a value to fix the

parameter for the model fitting.

The WEIGHTING option controls the weights that are used when fitting the model. The default

setting counts uses the values supplied for the counts within the COVARIOGRAM option, and

322 Directives in Release 22

equal uses equal weights (of one).

The MAXLAG option can be used to specify the maximum lag distance of points to be included

in the modelling. The MINCOUNT option specifies the minimum number of points to be used to

model the variograms at a particular lag.

The TOLERANCES option controls the criterion for convergence of the nonlinear regression

and Goulard & Voltz algorithm. The values should be supplied in a variate where the first value

is the criterion for the nonlinear regression and the second value is the criterion for the Goulard

& Voltz algorithm. The option MAXCYCLE can be used to change the maximum number of

iterations performed by the nonlinear regression from the default of 30.

The COVARIOGRAM option allows you to specify a pointer containing the auto-variograms,

cross-variograms and associated information. This structure can be saved from the

FCOVARIOGRAM directive.

The geometry used for the directions supplied using the COVARIOGRAM option is given by the

COORDSYSTEM option, where the setting mathematical specifies directions counter-clockwise

from East, and geographical clockwise from North (for the first angle only in 3 dimensions).

The ESTIMATES parameter allows you to specify an identifier to save the estimated nonlinear

parameters, sill values and associated information. This structure stores the information required

for the DCOVARIOGRAM procedure or COKRIGE directive.

The PRINT option controls the output to be displayed, with settings:

model description of the models fitted,

summary summary of analysis,

estimates parameter estimates,

fittedvalues fitted semi-variances,

monitoring monitoring information at each iteration of the nonlinear

regression.

Options: PRINT, WEIGHTING, MAXLAG, MINCOUNT, MAXCYCLE, TOLERANCES, COORDSYSTEM,

COVARIOGRAM.

Parameters: MODELTYPE, INITIAL, ISOTROPY, ESTIMATES, LOWER, UPPER, STEPLENGTH,

SMOOTHNESS.

Reference

Goulard, M. & Voltz, M. (1992). Linear coregionalization model: tools for estimation and choice

of cross-variogram matrix. Mathematical Geology, 24, 269-286.

See also

Directives: FCOVARIOGRAM, COKRIGE, FVARIOGRAM, KRIGE.

Procedures: DCOVARIOGRAM, KCROSSVALIDATION, MVARIOGRAM, DVARIOGRAM

DHSCATTERGRAM.

Genstat Reference Manual 1 Summary section on: Spatial statistics.

MDS 323

MDS

Performs non-metric multidimensional scaling.

Options

PRINT = string tokens Printed output required (coordinates, roots,
distances, fitteddistances, stress,

monitoring); default * i.e. no printing

DATA = symmetric matrix Distances amongst a set of units

METHOD = string token Whether to use non-metric scaling, or metric scaling

with linear regression of the fitted distances to the actual

distances (nonmetric, linear); default nonm

SCALING = string token Whether least-squares, least-squares-squared, or

log-stress scaling is to be used (ls, lss,

logstress); default ls

TIES = string token Treatment of tied data values (primary, secondary,

tertiary); default prim

WEIGHTS = symmetric matrix Weights for each distance value; default * i.e. all

distances with weight one

INITIAL = matrix Initial configuration; default * i.e. a principal coordinate

solution is used

NSTARTS = scalar Number of starting configurations to be used, by making

random perturbations to the initial configuration; default

10

SEED = scalar Seed for the random-number generator; default 0

MAXCYCLE = scalar Maximum number of iterations; default 30

Parameters

NDIMENSIONS = scalars Number of dimensions for each solution

COORDINATES = matrices To store the coordinates of the units for each solution

STRESS = scalars To store the stress value for each solution

DISTANCES = symmetric matrices To store the distances amongst the points for the units in

the fitted number of dimensions

FITTEDDISTANCES = symmetric matrices

To store the fitted distances from the monotonic

(METHOD=nonmetric) or linear (METHOD=linear)

regression

Description

The MDS directive carries out iterative scaling, including metric and non-metric scaling. The

input data consists of a symmetric matrix whose values may be interpreted, in a general sense,

as distances between a set of objects. The matrix is specified by the DATA option; thus only one

matrix can be analysed each time the MDS directive is used.

The objective of the MDS directive is to find a set of coordinates whose inter-point distances

match, as closely as possible, those of the input data matrix. When plotted, the coordinates

provide a display which can be interpreted in the same way as a map: for example, if points in

the display are close together, their distance apart in the data matrix was small.

The algorithm invoked by the MDS directive uses the method of steepest descent to guide the

algorithm from an initial configuration of points to the final matrix of coordinates that has the

minimum stress of all configurations examined.

Printed output is controlled by the PRINT option; by default nothing is printed. There are six

possible settings:

324 Directives in Release 22

coordinates prints the solution coordinates, rotated to principal

coordinates;

roots prints the latent roots of the solution coordinates;

distances prints the inter-unit distances, computed from the solution

configuration;

fitteddistances prints the fitted values from the regression of the inter-unit

distances on the distances in the data matrix, the regression

may be monotonic or linear through the origin, depending

on the setting of the METHOD option;

stress prints the stress of the solution coordinates;

monitoring prints a summary of the results at each iteration.

The METHOD option determines whether metric or non-metric scaling is given. The algorithm

involves regression of the distances, calculated from the solution coordinates, against the

dissimilarities in the symmetric matrix specified by the DATA option. With the default setting,

METHOD=nonmetric, monotonic regression is used; if METHOD=linear, the algorithm uses

linear regression through the origin.

The stress function to be minimized can be selected using the STRESS option. There are three

possibilities.

ls (least squares): �{ �i �j {wij (dij � d^
ij)

2} / (m �i �j{ wij dij
2})}

lss (least-squares-squared): �{ �i �j {wij (dij
2 � d^

ij
2)2} / (m �i �j{ wij dij

4})}
logstress: �{ �i �j {wij (log(dij) � log(d^

ij))
2} / m }

where the dij are the elements of the dissimilarity matrix calculated for the fitted configuration,

the d^ij are the fitted values from the regression selected by the METHOD option, the wij are the

corresponding weights and m is the number of off-diagonal elements in the dissimilarity matrix.

The TIES option allows you to vary the way in which tied data values in the input data matrix

are to be treated. By default, the treatment of ties is primary, and no restrictions are placed on

the distances corresponding to tied dissimilarities in the input data matrix. In the secondary

treatment of ties, the distances corresponding to tied dissimilarities are required to be as nearly

equal as possible. Kendall (1977) describes a compromise between the primary and secondary

approaches to ties: the block of ties corresponding to the smallest dissimilarity are handled by

the secondary treatment, the remaining blocks of ties are handled by the primary treatment. This

tertiary treatment of ties is useful when the dissimilarities take only a few values. For example,

in the reconstruction of maps from abuttal information, the dissimilarity coefficient takes only

two values: zero if localities abut, and one if they do not. The block of ties associated with the

dissimilarity of zero are handled by the secondary treatment, and the block of ties with

dissimilarity one by the primary treatment.

The WEIGHT option can be used to specify a symmetric matrix of weights. Each element of

the matrix gives the weight to be attached to the corresponding element of the input data matrix.

If the option is not set, the elements of the data matrix are weighted equally: wij=1 for all i and

j. The most important use of the option occurs when the matrix of weights contains only zeros

and ones; the zeros then correspond to missing values in the input data matrix, allowing

incomplete data matrices to be scaled. Up to about two thirds of the data matrix may be missing

before the algorithm breaks down. This enables experimenters to design studies in which only

a subset of all the dissimilarities need to be observed. This is particularly useful when there are

a large number of units; if the number of units is m, say, a complete m × m data matrix requires

m(m�1)/2 dissimilarities to be observed.

Since the algorithm is an iterative one, making use of the method of steepest descent, there is

no guarantee that the solution coordinates found from any given starting configuration has the

minimum stress of all possible configurations. The algorithm may have found a local, rather than

the global, minimum. This problem may be partially overcome by using a series of different

starting configurations. If several of the solutions arrive at the same lowest stress solution, then

MDS 325

you may be reasonably confident of having found the global minimum. The NSTARTS option

determines the number of starting configurations to be used. The starting configuration used on

the first start can be specified by the INITIAL option; if this is not set, the default is to take the

principal coordinate solution obtained from a PCO analysis of the input dissimilarity matrix.

Subsequent starting configurations are found by perturbing each coordinate of the first starting

configuration by successively larger amounts. This strategy generally results in at least one

starting configuration that does not get entrapped in a local minimum: however there can be no

guarantee that the global minimum for the stress function has been found. Experience suggests

that, for safety, the NSTARTS option should be set equal to at least 10. By default NSTARTS=10.

The SEED option supplies the seed for the random numbers that are used to perturb the initial

configuration. The default of zero continues the existing sequence of random numbers if MDS has

already been used in the current Genstat job. If MDS has not yet been used, Genstat picks a seed

at random.

The MAXCYCLES option determines the maximum number of iterations of the algorithm. The

default of 30 should usually be sufficient. However, it may be necessary to set a larger value for

very large data matrices or when using the logstress setting of the SCALING option. The

monitoring setting of the PRINT option may be used to see how convergence is progressing.

The NDIMENSIONS parameter must be set to a scalar (or scalars) to indicate the number(s) of

dimensions in which the multidimensional scaling is to be performed on the data matrix. An MDS

statement with a list of scalars will carry out a series of scaling operations, all based on the same

matrix of dissimilarities, but with different numbers of dimensions.

The remaining parameters of the MDS directive allow output to be saved in Genstat data

structures. The COORDINATES parameter can list matrices to store the minimum stress

coordinates in each of the dimensions given by the NDIMENSIONS parameter, and the STRESS

parameter can specify scalars to store the associated minimum stresses. The parameters

DISTANCES and FITTEDDISTANCES can specify symmetric matrices to store the distances

computed from the coordinates matrix and the fitted distances computed from the monotonic or

linear regressions, respectively.

Options: PRINT, DATA, METHOD, SCALING, TIES, WEIGHTS, INITIAL, NSTARTS, SEED,

MAXCYCLE.

Parameters: NDIMENSIONS, COORDINATES, STRESS, DISTANCES, FITTEDDISTANCES.

Reference

Kendall, D.G. (1977). On the tertiary treatment of ties. Proceedings of the Royal Society of

London, Series A, 354, 407-423.

See also

Directives: MONOTONIC, PCP, PCO, CVA, FCA.

Genstat Reference Manual 1 Summary section on: Multivariate and cluster analysis.

326 Directives in Release 22

MERGE

Copies subfiles from backing-store files into a single file.

Options

PRINT = string token What to print (catalogue); default *

OUTCHANNEL = scalar Channel number of the backing-store file where the

subfiles are to be stored; default 0, i.e. the workfile

METHOD = string token How to append subfiles to the OUT file (add,

overwrite, replace); default add, i.e. clashes in

subfile identifiers cause a fault (note: replace overwrites

the complete file)

PASSWORD = text Password to be checked against that stored with the file;

default *

Parameters

SUBFILE = identifiers Identifiers of the subfiles

INCHANNEL = scalars Channel number of the backing-store file containing

each subfile

NEWSUBFILE = identifiers Identifier to be used for each subfile in the new file

Description

The MERGE directive is used to copy subfiles into another backing-store file. You can either add

the subfiles to an existing backing-store file, or form a new backing-store file.

The OUTCHANNEL option specifies the backing-store channel of the file to which the subfiles

are to be copied; by default this is the workfile (channel 0).

The SUBFILE parameter specifies the list of subfiles that are to be copied, and the INCHANNEL

parameter indicates the channel of the backing-store file where each one is currently stored. If

you do not specify the INCHANNEL parameter, Genstat assumes that the subfiles are coming from

the workfile. You are not allowed to include the OUTCHANNEL among the channels in the

INCHANNEL list. Also, you cannot store two subfiles with the same names, and should use the

NEWSUBFILE parameter to rename any that clash. For example

MERGE [OUTCHANNEL=3] JanData,JulyData,JanData; \
 INCHANNEL=1,1,2; NEWSUBFILE=Jan92dat,Jul92dat,Jan93dat

To rename only some of the subfiles, you can either respecify the existing identifier, or insert

* at the appropriate point in the NEWSUBFILE list.

If you specify a missing identifier * in the SUBFILE list, Genstat will include all the subfiles

from the relevant INCHANNEL. If you want to rename any of these subfiles, you can also mention

it explicitly. For example, this statement will take all the subfiles from channel 1 and rename

subfile Sub as Subf.

MERGE *,Sub; INCHANNEL=1; NEWSUBFILE=*,Subf

You can set option PRINT=catalogue to produce a catalogue of the subfiles in the new

backing-store file.

If a subfile of the specified name already exists on the backing-store file, the storing operation

will usually fail. However, you can set option METHOD=overwrite to overwrite the old subfile,

that is, to replace the old subfile with a new subfile. Alternatively, you can put

METHOD=replace to form a new backing-store file containing only the new subfiles.

Subfiles are merged in a fixed order. Genstat first takes the subfiles from the backing-store file

with the lowest channel number, in the order in which they occur there, then it takes the subfiles

the next lowest channel number, and so on. If OUTCHANNEL=0 (that is, the new file is the

workfile), the original subfiles that are to be retained from that file will be followed by the new

subfiles; otherwise, if OUTCHANNEL is non-zero, the original subfiles are placed after the new

MERGE 327

subfiles. If you want to put the subfiles into a particular order, you should merge them into the

workfile in that order, and then merge the workfile into a new userfile.

To keep the new file secure, you can use the PASSWORD option to incorporate a password.

Once you have done this, you must include the same password in any future use of MERGE or

STORE with this same userfile; spaces, case, and newlines are significant in the password. You

cannot change the password in a userfile once you have set it, but you can use the MERGE

directive to create a new userfile with no password or with a new password. If you set the

password to be a text whose values have been have restricted, the restriction is ignored.

Options: PRINT, OUTCHANNEL, METHOD, PASSWORD.

Parameters: SUBFILE, INCHANNEL, NEWSUBFILE.

See also

Directives: STORE, RETRIEVE, CATALOGUE, OPEN.

Genstat Reference Manual 1 Summary section on: Input and output.

328 Directives in Release 22

MODEL

Defines the response variate(s) and the type of model to be fitted for linear, generalized linear,

generalized additive and nonlinear models.

Options

DISTRIBUTION = string token Distribution of the response variable (normal,

poisson, binomial, gamma, inversenormal,

multinomial, calculated, negativebinomial,

geometric, exponential, bernoulli); default norm

LINK = string token Link function (canonical, identity, logarithm,

logit, reciprocal, power, squareroot, probit,

complementaryloglog, calculated, logratio);

default cano (i.e. iden for DIST=norm or calc; loga

for DIST=pois; logi for DIST=bino, bern or mult;

reci for DIST=gamm or expo; powe for DIST=inve;

logr for DIST=nega or geom)

EXPONENT = scalar Exponent for power link; default -2

AGGREGATION = scalar Fixed parameter for negative binomial distribution

(parameter k as in variance function Var = mean +

mean2/k); default 1

KLOGRATIO = scalar Parameter for logratio link, in form log(mean/(mean+k));

default as set in AGGREGATION option

DISPERSION = scalar Value of dispersion parameter in calculation of s.e.s etc;

default * for DIST=norm, gamm, inve or calc, and 1

for DIST=pois, bino, mult, nega, geom, expo or
bern

WEIGHTS = variate or symmetric matrix

Variate of weights for weighted regression, or symmetric

matrix of weights (one row and column for each unit of

data) for generalized least squares; default *

OFFSET = variate Offset variate to be included in model; default *

GROUPS = factor Absorbing factor defining the groups for within-groups

linear or generalized linear regression; default *

RMETHOD = string token Type of residuals to form, if any, after each model is

fitted (deviance, Pearson, simple); default devi

DMETHOD = string token Basis of estimate of dispersion, if not fixed by

DISPERSION option (deviance, Pearson); default
devi

FUNCTIONVALUE = scalar Scalar whose value is to be minimized by calculation;

default *

YRELATION = string token Whether to analyse the y-variates separately, as in

ordinary regression, or to analyse them cumulatively as

counts in successive categories of a multinomial

distribution (separate, cumulative); default sepa

DCALCULATION = expression structures

Calculations to define the deviance contributions and

variance function for a non-standard distribution; must

be specified when DIST=calc

LCALCULATION = expression structures

Calculations to define the fitted values and link

derivative for a non-standard link; must be specified

MODEL 329

when LINK=calc

DFDISPERSION = scalar Allows you to specify the number of degrees of freedom

for a dispersion parameter specified by the DISPERSION

option; if this is not set, the supplied dispersion is

assumed to be known exactly

SAVE = identifier To name regression save structure; default *

Parameters

Y = variates Response variates; only the first is used in nonlinear

models and in generalized linear models except when

DIST=mult, when they specify the numbers in each

category of an ordinal response model

NBINOMIAL = variate or scalar Total numbers for DIST=bino

RESIDUALS = variates To save residuals for each y variate after fitting a model

FITTEDVALUES = variates To save fitted values, and provide fitted values if no

terms are given in FITNONLINEAR

LINEARPREDICTOR = variate Specifies the identifier of the variate to hold the linear

predictor

DERIVATIVE = variate Specifies the identifier of the variate to hold the

derivative of the link function at each unit

DEVIANCE = variate Specifies the identifier of the variate to hold the

contribution to the deviance from each unit

VFUNCTION = variate Specifies the identifier of the variate to hold the value of

the variance function at each unit

Description

The MODEL directive does not actually fit anything: it simply sets up some structures inside

Genstat that are used when you give a FIT, FITCURVE or FITNONLINEAR statement later on.

So when you are doing regression, MODEL will always be accompanied by at least one other

regression statement to fit a model, like FIT.

The Y parameter allows a list of variates; if you put more than one for linear regression, then

you will get an analysis for each. This is a more efficient way of doing many linear regressions

with the same explanatory variables, than separate pairs of MODEL and FIT statements. With

additive models, generalized linear models and nonlinear models, only the first variate will be

analysed (with the exception of multinomial response models); the others will be ignored.

The RESIDUALS and FITTEDVALUES parameters allow you to specify variates to contain the

residuals and fitted values for each response variable. The residuals are the "unexplained"

component of the response variable, standardized in some way according to the RMETHOD option.

The fitted values are the "explained" component: that is, the combination of parameters and

explanatory variables fitted in the model. You can get access to these sets of values in a different

way through the RKEEP directive.

The DISTRIBUTION and LINK options are used to specify a generalized linear model

(McCullagh & Nelder 1989). By default the data are assumed to follow a Normal distribution,

as required for ordinary linear regression, but other distributions can be selected using the

DISTRIBUTION option. The LINK option specifies the link function that relates the linear model

to the expected values of the distribution; in the default ordinary linear regression, this is the

identity function (indicating no transformation). So, for example, for a log-linear model we

would specify DISTRIBUTION=Poisson and LINK=log, while for logistic regression we would

have DISTRIBUTION=binomial and LINK=logit. The NBINOMIAL parameter must also be

set when DISTRIBUTION=binomial, to give the number of binomial trials for each unit.

The EXPONENT option specifies the exponent when LINK=power. Similarly, the

330 Directives in Release 22

AGGREGATION opt ion speci f ies the aggregat ion parameter k when

DISTRIBUTION=negativebinomial. This is a measure of the tendency for observations to

cluster together which appears in the formula for the variance as a function of the mean

variance = mean + mean2/k

The default value of k is set at 1, which corresponds to the geometric distribution. The parameter

k must be positive, and as it increases to infinity the distribution approaches the Poisson

distribution. The KLOGRATIO option sets the parameter k for the logratio link.

You can also define your own distribution or link function for a generalized linear model. To

specify your own distribution, you need to set DISTRIBUTION=calculated and then specify

expression structures with the DCALCULATION option to calculate the deviance and the variance

function for each unit of the response variate, using the current values of the fitted-values variate.

You must also set the FITTEDVALUES, DEVIANCE and VFUNCTION parameters to indicate which

identifiers are used to represent these in the expressions. To specify your own link, you need to

set LINK=calculated and provide expressions with the LCALCULATION option for two other

calculations to form the fitted values and the derivative of the link function for each unit of the

response variate, using the current values of the linear predictor. You must also set the

FITTEDVALUES, LINEARPREDICTOR and DERIVATIVE parameters to specify the identifiers

used to represent these in the calculations. In addition, you must provide initial values for the

linear predictor, so that the iterative process can get started: often this can be done just by

applying the link function to the response variate itself, but it may be necessary to modify

extreme values such as 0 that may be mapped to infinity by the link function.

You can fit ordinal response models by setting option YRELATION=cumulative and option

DISTRIBUTION=multinomial.

The DISPERSION option controls how the variance of the distribution of the response values

is calculated. By default, the variance is estimated from the residual mean square, and standard

errors and standardized residuals are calculated from the estimate. If you use DISPERSION to

supply a value for the variance of the Normal distribution, or for the dispersion parameter of

other distributions, then standard errors and residuals are based on this given value instead. In

a generalized linear model, the dispersion of the chosen distribution can be fixed at a value

provided by the DISPERSION option, or estimated from either the residual deviance or the

Pearson chi-square statistic, as specified by the DMETHOD option.

The DFDISPERSION option allows you to specify the number of degrees of freedom for a

value specified by the DISPERSION option. You might want to use this, for example, if you had

estimated the dispersion from some other data set. If DFDISPERSION is not set, the supplied

dispersion is assumed to be known exactly.

The WEIGHTS option allows you to specify a variate holding weights for each unit. In simple

linear regression, the estimate of dispersion is then the weighted residual mean square. Thus, if

the variance of the response variable is not constant, and you know the relative size of the

variance for each observation, you can set the weight to be proportional to the inverse of the

variance of an observation. Alternatively, if the variance is related in a simple way to the mean,

you may just need to specify a different distribution for the response. The WEIGHTS option can

also be set to a symmetric matrix, supplying weights corresponding to some pattern of

correlation or covariance between units as well as variance of each unit. The subsequent analysis

is known as generalized least-squares if the response distribution is Normal.

The OFFSET option allows you to include in the regression a variable with no corresponding

parameter. Linear regression analysis of Y with offset O is just the same as analysis of Y�O, but

the offset has non-trivial applications in generalized linear models.

The GROUPS option specifies a factor whose effects you want to eliminate before any

regression is fitted. The factor must already have been defined. This method of elimination is

sometimes called absorption; you might want to use it when data from many different groups

are to be modelled. Use of GROUPS gives less information than you would get if you included

MODEL 331

the factor explicitly in the model (leverages, predictions and some parameter correlations cannot

be formed), but it saves space and time in fitting the model when the factor has many levels. You

can use GROUPS only with linear and generalized linear regression.

The RMETHOD option controls how residuals are formed. By default, residuals are deviance

residuals standardized by their estimated variance. The alternative Pearson residuals are defined

in exactly the same way if the distribution is Normal, but for regression models with distributions

other than Normal the two kinds of residual are different. If you do not want residuals, you can

set the option to a missing value (*) to save space within Genstat. However, you will then not

be able to get residuals, fitted values or leverages, and the automatic checks on the fit of a model

will not be done.

The FUNCTIONVALUE option is relevant only when you want to use FITNONLINEAR to

optimize a general function. It then identifies the scalar that stores the results in the expression

that calculates the function to be minimized (see the CALCULATION option of FITNONLINEAR).

This should calculate a deviance if you are using this general facility to fit a statistical model.

FUNCTIONVALUE is ignored if the Y parameter of MODEL is set.

The SAVE option allows you to specify an identifier for the regression save structure. This

structure stores the current state of the regression model, and can be used explicitly in the

directives RDISPLAY, RKEEP, PREDICT and RFUNCTION. If the identifier in SAVE is of a

regression save structure that already has values, those values are deleted. You can reset the

current regression save structure at any point in a program by using the SET directive. Then, later

regression statements would use the model stored in this save structure.

Options: DISTRIBUTION, LINK, EXPONENT, AGGREGATION, KLOGRATIO, DISPERSION,

WEIGHTS, OFFSET, GROUPS, RMETHOD, DMETHOD, FUNCTIONVALUE, YRELATION,

DCALCULATION, LCALCULATION, DFDISPERSION, SAVE.

Parameters: Y, NBINOMIAL, RESIDUALS, FITTEDVALUES, LINEARPREDICTOR, DERIVATIVE,

DEVIANCE, VFUNCTION.

Action with RESTRICT

You can restrict the units that Genstat will use for the regression by putting a restriction on any

of the vectors involved in the MODEL statement (response variates, weight variate, offset variate,

grouping factor or variate of binomial totals), or on any explanatory variate or factor in a

subsequent TERMS statement. However, you are not allowed to have different restrictions on the

different vectors. You should not alter the restriction applied to the vectors between the TERMS

statement and subsequent fitting statements.

Reference

McCullagh, P. & Nelder, J.A. (1989). Generalized Linear Models (second edition). Chapman

and Hall, London.

See also

Directives: FIT, FITCURVE, FITNONLINEAR, TERMS.

Genstat Reference Manual 1 Summary section on: Regression analysis.

332 Directives in Release 22

MONOTONIC

Fits an increasing monotonic regression of y on x.

No options

Parameters

Y = variates Y-values of the data points

X = variates X-values of the data points; default is to assume that the

x-values are monotonically increasing

RESIDUALS = variates Variate to save the residuals from each fit

FITTEDVALUES = variates Variate to save the fitted values from each fit

Description

Monotonic regression plays a key role in non-metric multidimensional scaling, which is available

in Genstat via the MDS directive. However, it can be useful in its own right, so the method has

been made accessible by the MONOTONIC directive. A monotonic regression through a set of

points is simply the line that best fits the points subject to the constraint that it never decreases:

of course the line need not be straight, in fact it rarely will be. If you need a monotonically

decreasing line, you can simply subtract all the y-values from their maximum, find the

monotonically increasing regression, and then back-transform the data and fitted line, and change

the sign of the residuals.

The MONOTONIC directive has no options. It has four parameters: Y to specify the y-values, X

for the x-values, RESIDUALS to save the residuals, and FITTEDVALUES to save the fitted values.

The x-values need not be supplied, in which case the directive assumes that the y-values are in

increasing order of the x-values. In common with the other regression directives, the variates to

save the residuals and fitted values need not be declared in advance.

Options: none.

Parameters: Y, X, RESIDUALS, FITTEDVALUES.

Action with RESTRICT

MONOTONIC ignores any restrictions on the variates.

See also

Directives: MDS, FIT, FITCURVE, FITNONLINEAR.

Genstat Reference Manual 1 Summary sections on: Multivariate and cluster analysis,

Regression analysis.

NAG 333

NAG

Calls an algorithm from the NAG Library.

Options

PRINT = string token Controls printed output (algorithms, monitoring);

default * i.e. none

NAME = string token Name of the algorithm to call; default * i.e. none

ZDZ = string token Value to be given to zero divided by zero in Genstat

expressions defined in the ARGUMENTS (missing,

zero); default miss

TOLERANCE = scalar If the scalar is non missing, this defines the smallest

non-zero number for use in Genstat expressions defined

in the ARGUMENTS; otherwise it accesses the default

value, which is defined automatically for the computer

concerned

SEED = scalar Seed to use for any random number generation in

Genstat expressions defined in the ARGUMENTS; default

0

INDEX = scalar If a Genstat expression defined in the ARGUMENTS has a

list of structures before the assignment operator (=), the

scalar indicates the position within the list of the

structure currently being evaluated

Parameters

ARGUMENTS = pointer Arguments for the call

RESULT = scalar Stores the result for algorithms that take the form of a

function rather than a subroutine

Description

NAG provides access to some specific algorithms in the Numerical Algorithms Group's subroutine

libraries. You can set option PRINT=algorithms to list those that are currently available. The

other setting monitoring gives additional monitoring from algorithms like D02KDF that can

give additional monitoring information from a MONIT subroutine. (NAG includes a custom version

of MONIT for each routine, that provides all the relevant information.)

The name of the algorithm is specified using the NAME option. It is best to give the name in

full, as the NAG names may not be distinct in their first four characters and so the standard

abbreviation rules (e.g. that four characters are sufficient) cannot be guaranteed in all future

releases. The arguments for the call are supplied, in a pointer, using the ARGUMENTS parameter.

These must be in the order required by the algorithm, and input arguments must be of the correct

type (number or string) and shape (vector, matrix and so on); for details see the relevant NAG

documentation. Output arguments are defined automatically from the results. The RESULT

parameter saves the result if the NAG algorithm is a function rather than a subroutine.

Some NAG algorithms may have an argument that is an external function or subroutine that

performs a calculation. This can be specified for the NAG directive by supplying a pointer whose

first element defines the calculation using a Genstat expression, or a pointer to several Genstat

expressions. With an external function, the next element of the pointer should be the Genstat

data structure that receives the result of the calculation in the expression(s). The remaining

elements should be the Genstat data structures that correspond to the arguments of the external

function or subroutine, in the order in which they occur in the definition of the function or

subroutine in the NAG documentation. The expression or expressions are evaluated within the

NAG directive by making a call to the CALCULATE directive. The ZDZ, TOLERANCE, SEED and

334 Directives in Release 22

INDEX options of the NAG directive can be used to set the corresponding options of CALCULATE

for the call.

Options: PRINT, NAME, ZDZ, TOLERANCE, SEED, INDEX.

Parameters: ARGUMENTS, RESULT.

See also

Directives: POINTER, EXPRESSION, CALCULATE, FITNONLINEAR, FLRV, QRD, SVD.

Genstat Reference Manual 1 Summary section on: Calculations and manipulation.

NNDISPLAY 335

NNDISPLAY

Displays output from a multi-layer perceptron neural network fitted by NNFIT.

Option

PRINT = string tokens Controls fitted output (description, estimates,

fittedvalues, summary); default desc, esti, summ

Parameter

pointers Save structure with details of the network and the

estimated parameters

Description

NNDISPLAY displays results from the fit of a neural network by NNFIT. The type of neural

network fitted by NNFIT is a fully-connected feed-forward multi-layer perceptron with a single

hidden layer. This network starts with a row of nodes, one for each input variable (i.e. x-variate),

which are all connected to every node in the hidden layer. The nodes in the hidden layer are then

all connected to the output node in the final, output layer.

Details of the fit and the structure of the neural network can be supplied using the parameter

of NNDISPLAY. This must have been saved using the SAVE parameter of NNFIT. If this is not set,

the output is from the most recent network fitted by NNFIT.

The output is controlled by the PRINT option, with settings:

description a description of the network (number of input variables,

nodes etc.),

estimates estimates of the free parameters,

fittedvalues fitted values,

summary summary (numbers of iterations, objective function etc.).

Option: PRINT.

Parameter: unnamed.

See also

Directives: NNFIT, NNPREDICT.

Genstat Reference Manual 1 Summary section on: Data mining.

336 Directives in Release 22

NNFIT

Fits a multi-layer perceptron neural network.

Options

PRINT = string tokens Controls fitted output (description, estimates,

fittedvalues, summary); default desc, esti, summ

NHIDDEN = scalar Number of functions in the hidden layer; no default,

must be set

HIDDENMETHOD = string token Type of activation function in the hidden layer

(logistic, hyperbolictangent); default logi

OUTPUTMETHOD = string token Type of activation function in the output layer (linear,

logistic, hyperbolictangent); default line

GAIN = scalar Multiplicative constant to use in the functions; default 1

NTRIES = scalar Number of times to search for a good initial starting

point for the optimization; default 5

NSTARTITERATIONS = scalar Number of iterations to use to find a good starting point

for the optimization; default 30

VALIDATIONOPTIONS = variate Variate containing three integers to control validation

for early stopping; default * i.e. no early stopping;

default !(10,4,16)

SEED = scalar Seed for random numbers to generate initial values for

the free parameters; default 0

MAXCYCLE = scalar Maximum number of iterations of the conjugate-gradient

algorithm; default 50

Parameters

Y = variates Response variates

X = pointers Input variates

YVALIDATION = variates Validation data for the dependent variates

XVALIDATION = pointers Validation data for the independent variates

FITTEDVALUES = variates Fitted values generated for each y-variate by the neural

network

OBJECTIVE = scalars Value of the sum of squares objective function at the end

of the optimization

NCOMPLETED = scalars Number of completed iterations of the conjugate-

gradient algorithm

EXIT = scalars Saves the exit code

SAVE = pointers Saves details of the network and the estimated

parameters

Description

A neural network is a method for describing a nonlinear relationship between a response variate

supplied here by the Y parameter, and a set of input variates supplied here in a pointer by the X

parameter. The type of neural network fitted by NNFIT is a fully-connected feed-forward multi-

layer perceptron with a single hidden layer. This network starts with a row of nodes, one for each

input variable (i.e. x-variate), which are all connected to every node in the hidden layer. The

nodes in the hidden layer are then all connected to the output node in the final, output layer. The

number of nodes in the hidden layer is specified by the NHIDDEN option.

The output value y is given by

y = ø(�k = 1...m wk ö(�j = 1...d wjk xj � è) � ç)

where d is the number of input nodes (i.e. x-variates),

NNFIT 337

m is the number of hidden nodes (NHIDDEN),

xj is value of the jth x-variate,

wjk are weight parameters in the connections between the

nodes in the input and hidden layers,

wk are weight parameters in the connections between the

nodes in the hidden and output layer,

è is the threshold value subtracted at the hidden layer,

ç is the threshold value subtracted at the single node in the

output layer,

ö(.) is the activation function applied at the hidden layer,

ø(.) is the activation function applied at the output layer.

The activation functions for the hidden and outer layer are specified by the HIDDENMETHOD

and OUTPUTMETHOD options, respectively, with settings:

linear ö(z) = z (OUTPUTMETHOD only),

logistic ö(z) = 1 / (1 + exp(�ãz)),

hyperbolictangent ö(z) = tanh(ãz),

where the parameter ã is specified by the GAIN option; the default setting is logistic for

HIDDENMETHOD, and linear for OUTPUTMETHOD.

Values for the free parameters in the multi-layer perceptron model are optimized by using a

preconditioned, limited-memory quasi-Newton conjugate gradients method to minimize the

objective (sum of squares) function equal to 0.5 times the average sum of squared deviation of

the estimated y-values from the observed y-values.

Printed output is controlled by the PRINT option, with settings:

description a description of the network (number of input variables,

nodes etc.),

estimates estimates of the free parameters,

fittedvalues fitted values,

summary summary (numbers of iterations, objective function etc.).

The NTRIES option defines the number of times to search for a good initial starting point for

the optimization (default 5). The NSTARTITERATIONS option defines the number of iterations

to use to find a good starting point for the optimization (default 30).

The SEED option supplies a seed for the random numbers to generate initial values for the free

parameters. The default of zero continues the existing sequence of random numbers if any have

already been used in the current Genstat job. If none have yet been used, Genstat picks a seed

at random.

The MAXCYCLE option sets a limit on the number of iterations of the conjugate-gradient

algorithm to use for the estimation (default 50).

To improve the accuracy of the neural-network approximations to new data records, it is

usually desirable to stop the optimization before the value of the objective function reaches a

global minimum on the training set. This method, which is known as early stopping, and can be

performed by using a validation set of data records, specified by the YVALIDATION and

XVALIDATION parameters. The optimization is then halted when the sum of squares error

function achieves a minimum over the validation set of data records which has not been used to

estimate the values of the free parameters in the model. The VALIDATIONOPTIONS option

specifies a variate containing three integers to control validation for early stopping. The first

integer defines the number of iterations of the optimizing function to complete before beginning

validation; default 10. The second integer defines the number of iterations between consecutive

validations; default 4. The third integer defines the number of iterations to continue validating

beyond the current minimum of the objective function before stopping; default 16. This is to try

to avoid the possibility of getting stuck at a local minimum. The variates in the XVALIDATION

pointer must be in the same order as the corresponding variates in the X pointer.

338 Directives in Release 22

The results of the fit, together with details about design of the neural network, can be saved

using the SAVE parameter. This can then be used in the NNDISPLAY directive to display further

output, or the NNPREDICT directive to form predictions.

Options: PRINT, NHIDDEN, HIDDENMETHOD, OUTPUTMETHOD, GAIN, NTRIES,

NSTARTITERATIONS, VALIDATIONOPTIONS, SEED, MAXCYCLE.

Parameters: Y, X, YVALIDATION, XVALIDATION, FITTEDVALUES, OBJECTIVE, NCOMPLETED,

EXIT, SAVE.

Method

NNFIT uses the function nagdmc_mlp from the Numerical Algorithms Group's library of Data

Mining Components (DMCs), which estimates the free parameters using a conjugate gradient

method.

Action with RESTRICT

You can restrict the set of units used for the estimation by applying a restriction to the y-variate

or any of the x-variates. If several of these are restricted, they must all be restricted to the same

set of units. Similarly, you can restrict the set of units used for the validation by applying a

restriction to the YVALIDATION variate or any of the XVALIDATION variates.

See also

Directives: NNDISPLAY, NNPREDICT, ASRULES, RBFIT.

Procedure: KNEARESTNEIGHBOURS.

Genstat Reference Manual 1 Summary section on: Data mining.

NNPREDICT 339

NNPREDICT

Forms predictions from a multi-layer perceptron neural network fitted by NNFIT.

Option

PRINT = string tokens Controls fitted output (description, predictions);

default desc, pred

Parameters

X = pointers Input variates

PREDICTIONS = variates Predictions

SAVE = pointers Details of the network

Description

NNPREDICT forms predictions using a neural network fitted by NNFIT. The type of neural

network fitted by NNFIT is a fully-connected feed-forward multi-layer perceptron with a single

hidden layer. This network starts with a row of nodes, one for each input variable (i.e. x-variate),

which are all connected to every node in the hidden layer. The nodes in the hidden layer are then

all connected to the output node in the final, output layer.

Details of the fit and the structure of the neural network must be supplied using the SAVE

parameter. This must have been saved using the SAVE parameter of NNFIT. If this is not set, the

output is from the most recent network fitted by NNFIT. The values of the input variates to be

used to calculate the predictions are supplied, in a pointer, using the X parameter. The variates

in the pointer must be in exactly the same order as the equivalent variates in the pointer defined

for the X parameter in the original NNFIT command.

The output is controlled by the PRINT option, with settings:

description a description of the network (number of input variables,

nodes etc.),

predictions predicted values.

Option: PRINT.

Parameters: X, PREDICTIONS, SAVE.

Method

NNPREDICT uses the function nagdmc_predict_mlp from the Numerical Algorithms Group's

library of Data Mining Components (DMCs).

See also

Directives: NNDISPLAY, NNFIT.

Genstat Reference Manual 1 Summary section on: Data mining.

340 Directives in Release 22

OPEN

Opens files.

No options

Parameters

NAME = texts External names of the files

CHANNEL = scalars Channel number to be used to refer to each file in other

statements (numbers for each type of file are

independent); if this is set to a scalar containing a

missing value, the first available channel of the specified

type is opened and the scalar is set to the channel

number

FILETYPE = string tokens Type of each file (input, output, unformatted,

backingstore, procedurelibrary, graphics);

default inpu

WIDTH = scalars Maximum width of a record in each file; default 80

INDENTATION = scalar Number of spaces to leave at the start of each line;

default 0

PAGE = scalars Number of lines per page (relevant only for output files)

ACCESS = string token Allowed type of access (readonly, writeonly,

both); default both

STYLE = string token Style in which to write to an output file (plaintext,

html, latex, rtf); default plai

HTMLHEAD = texts Text structures containing custom content for the header

of an HTML document

Description

Genstat makes use of various types of file. These are classified according to the information that

they store. The files are accessed via channels. For each type there is a set of numbered channels

that can be used to reference different files in the relevant directives. For example, there are five

input channels, numbered 1 up to 5. Likewise, there are five output channels. Genstat

distinguishes between the different types of channel, so you can have one file attached to output

channel 3 and a different file simultaneously attached to backing store channel 3. Then, setting

the option CHANNEL=3 in PRINT and STORE statements will send the different kinds of output

to the appropriate files. With backing-store files, there are six channels, numbered 0 to 5, but

channel 0 is reserved for the backing-store workfile. Similarly, there are six channels, numbered

0 to 5, for unformatted files. For procedure libraries there are three channels, numbered 1 to 3.

For graphics files, each channel is used for output in a particular graphics format, corresponding

to the number of the device selected by the DEVICE directive.

When you run Genstat it starts taking input from input channel 1 and produces output on

output channel 1. In an interactive run, these will be keyboard and screen, while in a batch run

they will be files on the computer. Another file that is attached automatically is the start-up file

of instructions that are executed at the outset of each job; this is attached to input channel 5. The

start-up file may attach other files. For example, if you are working interactively, the standard

start-up file arranges for output channel 5 to store a transcript of your output. (This is done using

the COPY directive.) The command that you use to run Genstat may allow you to arrange for

other files to be attached when Genstat starts running. Alternatively, within Genstat, you can use

the OPEN directive.

Usually you need specify only the name of the file, the channel number and type of file, and

leave the other parameters to take their default settings. For example, the following statements

OPEN 341

attach a file called WEATHER.DAT to the second input channel, and then read data from it.

OPEN 'WEATHER.DAT'; CHANNEL=2; FILETYPE=input
READ [CHANNEL=2] Rain,Temperature,Sunshine

The file name can be anything that is acceptable to your computer system. You should, however,

check for any constraints: for example, plotting software may require HPGL graphics files to

have the extension .HPGL. You should check in your local documentation for information

regarding any features that are specific to your computer or version of Genstat. For example,

logical or symbolic names may be automatically translated by Genstat before files are accessed;

upper and lower case characters may be significant, as on Unix systems. The file name may

involve characters that have special meaning within Genstat. For example, the character \ may

be required to specify directories and sub-directories on a PC. This character needs to be

duplicated in a string to avoid Genstat interpreting it as the continuation symbol: for example

OPEN 'C:\\RES\\WEATHER.DAT'; CHANNEL=2; FILETYPE=input

to open the file 'C:\RES\WEATHER.DAT'. As a more convenient alternative, the PC version of

Genstat allows you to use / instead.

You are free to choose which channels you want to use (within the range available for the

specified type of file), apart from input and output channel 1 which are "reserved" for use by the

files specified on the command line. As already mentioned, input channel 5 is used for the start-

up file, and this may arrange for output channel 5 to store a transcript of your output. However,

you can use the CLOSE directive to disconnect these files if you want to use the channels for

some other purpose. The backing-store and unformatted work files are attached to channel 0, and

this channel cannot be used in OPEN or CLOSE. Graphics files must be opened on the channel

corresponding to the device number.

Obviously you cannot open more than one file on a channel, so if you wish to open a file on

a channel that is currently in use you must first close that channel. Sometimes, in general

programs or procedures, you may not know which channels are available. You can then let OPEN

find a free channel: if CHANNEL is set to a scalar containing a missing value, the file is opened

on the next available channel of the appropriate type, and the scalar is set to the number of the

channel. The scalar need not be declared in advance; if CHANNEL is set to an undeclared

structure, this will be defined as a scalar automatically.

SCALAR FreeChan
OPEN 'WEATHER.DAT'; CHANNEL=FreeChan; FILETYPE=input
READ [CHANNEL=FreeChan] Rain,Temperature,Sunshine

Another constraint is that you cannot open the same file on more than one channel at once.

Input files must already exist when they are opened, whereas output files will be created by

Genstat. If an output file with the specified name exists already, Genstat may create an extra

"version" of the file, or report a fault, or cause the file to be overwritten, depending on the usual

conventions on your type of computer. Your local documentation will describe what rules apply

in this situation, and should also explain if there are any system variables you can set to control

this action.

The STYLE parameter controls the style to be used to represent the information in an output

file. The default is to use plain text, which assumes that all characters occupy an equal width.

So, for example, columns are aligned by use of space characters and captions are highlighted by

underlining them by rows of equal signs or minuses. However, you can also choose HTML (as

used for example by web browsers), RTF (as used by word processors such as Microsoft Word)

or LaTeX.

When you open a file for use by backing store or unformatted input and output, you can both

read from it and send output to it, unless you set the ACCESS parameter (see below). Procedure

libraries are a special type of backing-store file.

The WIDTH parameter sets the maximum number of characters per line for input and output

files. It is ignored for other types of file. The default values for WIDTH are designed to be

342 Directives in Release 22

appropriate for each implementation of Genstat and may differ between input and output; details

will be found in your local documentation. For input and output with screen displays that use

windows WIDTH may be set automatically from the size of the appropriate window.

For input files the default is normally 80, reflecting the size of most screen displays. You can

change this if necessary, to read either fewer characters from each line, or longer lines. If the

WIDTH is set to be too small any extra characters will be lost, which may cause unexpected action

or syntax errors. Remember that if you use READ with LAYOUT=fixed to read fixed-format data,

short lines are extended with spaces up to the WIDTH setting. If you want to read data from a file

with, say, 64 characters per line, setting WIDTH=64 when you open the file may make the format

specification easier (rather than taking the default width of 80 and having to remember to skip

16 characters at the end of each line).

 For output files, the default is the largest number of characters that can usually be displayed

in a single line. This number is typically 80 for terminals but for files it is likely to be either 80,

120 or 132, depending on the type of computer. You can use the WIDTH parameter to restrict the

number of output characters to a smaller number, or to a larger number up to 200.

The PAGE parameter specifies the size of page in output, affecting directives like GRAPH. For

output to files, the default value of PAGE is designed to be suitable for printers. For windowed

displays Genstat will, if possible, detect the size of the window and set the page size

appropriately. You can also set option OUTPRINT=page in either JOB or SET to ensure that

graphs and statistical analyses each start on a new page.

The INDENTATION parameter can be used to leave a specified number of blank characters to

the left of each line of an output file, so that printed output can be bound for example. The

indentation is subtracted from the WIDTH setting, so if you set WIDTH=80 and INDENTATION=10

then only 70 characters will be printed on each line of output.

The ACCESS parameter is used to control the way in which unformatted and backing-store files

can be accessed, on computers that allow this.

The HTMLHEAD parameter allows you to supply additional markup content for the document

header of an HTML file, to be inserted between the <head> and </head> tags. It can be set

either to a text containing all the HTML markup or to the name of a file containing that

information. It is intended primarily for inserting CSS style information, for example:

<style>
h1 { color: black; background-color: red !important; }
h2 { color: white; background-color: green !important; }
</style>

but can also be used to set any other valid header content. Additional CSS content can also be

loaded via a link tag, e.g.

<link rel="styleSheet" type="text/css" href="genstat.css">

By default, the header contains a title and some standard meta data. These tags can be

overwritten by specifying these tags in the inserted header

data. The tags that are treated in this way are:

<title>
<meta name="description"
<meta name="keywords"
<meta name="author"

All other content of the text is inserted verbatim and assumed to be valid HTML. If HTMLHEAD

is not set, Genstat inserts the content of the file Genstat.css which is supplied with the

Genstat installation in the Source directory. This defines a number of classes which are used

at various points in the Genstat output (for example to define styles used for output from

CAPTION). The file can be used as a template from which to derive a local variation redefining

basic elements of output.

OPEN 343

Options: none.

Parameters: NAME, CHANNEL, FILETYPE, WIDTH, INDENTATION, PAGE, ACCESS, STYLE,

HTMLHEAD.

See also

Directives: CLOSE, ENQUIRE, FCOPY, FDELETE, FRENAME, READ, PRINT, INPUT, STORE,

RETRIEVE, RECORD, RESUME.

Procedure: SETDEVICE.

Genstat Reference Manual 1 Summary section on: Input and output.

344 Directives in Release 22

OPTION

Defines the options of a Genstat procedure with information to allow them to be checked

when the procedure is executed.

No options

Parameters

NAME = texts Names of the options

MODE = string tokens Mode of each option (e, f, p, t, v, as for unnamed

structures); default p

NVALUES = scalars or variates Specifies allowed numbers of values

VALUES = variates or texts Defines the allowed values for a structure of type variate

or text

DEFAULT = identifiers Default values for each option

SET = string tokens Indicates whether or not each option must be set (yes,

no); default no

DECLARED = string tokens Indicates whether or not the setting of each option must

have been declared (yes, no); default no

TYPE = texts Text for each option, whose values indicate the types

allowed (ASAVE, datamatrix {i.e. pointer to variates

of equal lengths as required in multivariate analysis},

diagonalmatrix, dummy, expression, factor,

formula, LRV, matrix, pointer, RSAVE, scalar,

SSPM, symmetricmatrix, table, text, tree, TSAVE,

TSM, variate, VSAVE); default * meaning no limitation

COMPATIBLE = texts Defines aspects to check for compatibility with the first

parameter of the directive or procedure (nvalues,
nlevels, nrows, ncolumns, type, levels,

labels {of factors or pointers}, mode, rows,
columns, classification, margins,

associatedidentifier, suffixes {of pointers},

restriction)

PRESENT = string tokens Indicates whether or not each structure must have values

(yes, no); default no

LIST = string tokens Whether to allow a list of identifiers (MODE=p) or of

values (MODE=v or t) instead of just one (yes, no);

default no

INPUT = string token Whether the option only supplies input information to

the procedure (yes, no); default no

Description

The OPTION directive is used at the start of the definition of a Genstat procedure (initiated by

the PROCEDURE directive) to define the options of the procedure. The NAMES parameter defines

the names of the options. Each name also defines the identifier of a data structure that should be

used, within the procedure itself, to refer to the information transmitted by the relevant option.

When you use the procedure, you have the choice of typing each name in capital letters, or in

small letters, or in any mixture of the two; this corresponds to the rules for the names of options

and parameters of directives. Within the procedure, however, you need to be more precise, but

the exact form of the identifiers will depend upon whether the Genstat environment was set to

use short or long "wordlengths" when the procedure was defined. (This is controlled by the

WORDLENGTH option of the JOB, SET and PROCEDURE directives.) With long wordlengths, the

OPTION 345

identifier should be exactly the same as the option name up to the 32nd character; any characters

beyond the 32nd are ignored. Alternatively, if short wordlengths have been selected, Genstat

forms each identifier by truncating the corresponding option name to no more than eight

characters and then converting it into capital letters.

The MODE parameter tells Genstat whether the setting of each option is to be a number (v), or

an identifier of a data structure (p), or a string (t), or an expression (e), or a formula (f). These

codes are exactly the same as those that indicate the mode of the values to appear within the

brackets containing an unnamed structure.

The type of the structure used to represent an option of the procedure depends on the MODE

and LIST parameters of the OPTION directive.

For anything other than mode p, the structure will be a dummy. This will point to an

expression for mode e, a formula for mode f, and a text for mode t. With mode v, it will point

to a scalar if the corresponding setting of the LIST parameter is no, and a variate if LIST=yes.

For mode p and LIST=no, the structure is a dummy, which will point to whichever structure

is supplied for the option when the procedure is called; alternatively, when LIST=yes, it is a

pointer which will store the list of structures that are supplied. For example, suppose that

procedure ALLPOSS which contains the option definitions

OPTION \
 NAMES='EXP','FORM','VLN','VLY','TLN','TLY','PLN','PLY'; \
 MODE= e, f, v, v, t, t, p, p;\
 LIST= no, no, no, no, yes, yes, no, yes

is called with these options settings:

ALLPOSS [EXP=LOG10(X+1); FORM=Variety*Nitrogen; VLN=2; \
 VLY=1,3,5,7; TLN=oneval; TLY=one,two,three; \
 PLN=A; PLY=B,C,D]

Inside the procedure it will be as though the identifiers had been defined as follows:

DUMMY [VALUE=!E(LOG10(X+1))] EXP
& [VALUE=!F(Variety*Nitrogen)] FORM
& [VALUE=2] VLN
& [VALUE=!(1,3,5,7)] VLY
& [VALUE='oneval'] TLN
& [VALUE=!T(one,two,three)] TLY
& [VALUE=A] PLN
POINTER [VALUE=B,C,D] PLY

The other parameters allow the settings that are supplied, when the procedure is called, to be

checked automatically.

The NVALUES parameter indicates how many values the structures that are supplied for an

option of mode p may contain. For example,

OPTION NAME='X','Y'; NVALUES=3,!(3,4); TYPE='variate'

indicates that the variates supplied for X must be of length 3, while those supplied for Y can be

of length 3 or 4.

The VALUES parameter can be used with modes t and v to specify an allowed set of values

against which those supplied for the option will be checked. In this example, the values allowed

for METHOD are Logit, Comploglogog or Angular.

OPTION NAME='METHOD'; MODE=t; \
 VALUES=!t(Logit,Comploglog,Angular); \
 DEFAULT='Logit'

The allowed values for mode t define a list of string tokens for the option or parameter, that can

be used in exactly the same way as the string tokens defined for options or parameters of the

ordinary Genstat directives. They can be up to 32 characters in length; characters 33 onwards

are ignored. Each value must start with a letter, and may then contain letters or digits. When the

procedure is used, Genstat will check the specified string against those in the VALUES list, using

346 Directives in Release 22

the same abbreviation rules as for string tokens in options or parameters of the ordinary Genstat

directives. Thus, for example, to request an angular transformation we need merely put

METHOD=A as the first letter A is sufficient to distinguish Angular from Logit and

Comploglog. Within the procedure, Genstat then sets METHOD to the full string as defined in the

VALUES list, i.e. Angular, and this greatly simplifies its subsequent use. However, if short

wordlengths have been requested, the name is truncated to eight characters and put into capital

letters, so Comploglog would become COMPLOGL.

As an example of mode v, this specification would ensure that the numbers supplied for an

option NV were all odd integers between one and nine

OPTION NAME='NV'; MODE=v; VALUES=!(1,3,5,7,9)

The DEFAULT parameter specifies default values to be used if the option or parameter or

option is not set. Above METHOD will be set by default to 'Logit'.

The SET parameter indicates whether or not an option must be set. The DECLARED parameter

specifies whether or not the structures to which options of mode p are set must already have been

declared. The TYPE parameter can be used to specify a text to indicate the allowed types of the

structures to which an option of mode p is set. The COMPATIBLE parameter can be used to

specify compatibility checks to be made for the setting of an option against the first parameter

of the procedure. (The parameters are specified using the PARAMETER directive.) The PRESENT

parameter allows you to indicate that the structure to which an option is set must have values.

Finally, the INPUT parameter allows you to indicate that the option will be used only to provide

input to the procedure, and will not be used to output any results. It is not essential to set this

parameter but its use can improve efficiency.

For example, here the options PERCENT and RESULT can be can be either scalars, variates,

tables or any type of matrix (rectangular, symmetric or diagonal). Structures to which the

PERCENT option is set must have been declared, but for the RESULTS option they need not have

been. Likewise the PERCENT option must have values, but the RESULTS option need not.

OPTION NAME='PERCENT','RESULT'; \
 MODE=p; SET=yes; DECLARED=yes,no; \
 TYPE=!t(scalar,variate,matrix,symmetric,diagonal,table); \
 PRESENT=yes,no

Options: none.

Parameters: NAME, MODE, NVALUES, VALUES, DEFAULT, SET, DECLARED, TYPE, COMPATIBLE,

PRESENT, LIST, INPUT.

See also

Directives: PROCEDURE, PARAMETER, CALLS, ENDPROCEDURE.

Genstat Reference Manual 1 Summary section on: Program control.

OR 347

OR

Introduces a set of alternative statements in a "multiple-selection" control structure.

No options or parameters

Description

A multiple-selection control structure consists of several alternative blocks of statements. The

first of these is introduced by a CASE statement. This has a single parameter, which is an

expression that must yield a single number. Subsequent blocks are each introduced by an OR

statement. There can then be a final block, introduced by an ELSE statement, as in the block-if

structure. The whole structure is terminated by an ENDCASE statement. Full details are given in

the description of the CASE directive.

Options: none.

Parameters: none.

See also

Directives: CASE, ELSE, ENDCASE, EXIT.

Genstat Reference Manual 1 Summary section on: Program control.

348 Directives in Release 22

OUTPUT

Defines where output is to be stored or displayed.

Options

PRINT = string tokens Additions to output (dots, page, unchanged);

default dots,page

DIAGNOSTIC = string tokens What diagnostic printing is required (messages,

warnings, faults, extra, unchanged); default
faul,mess,warn

WIDTH = scalar Limit on number of characters per record; default width

of output file

INDENTATION = scalar Number of spaces to leave at the start of each line;

default 0

PAGE = scalar Number of lines per page

STYLE = string token Style for future output to the channel (plaintext,

formatted); default * i.e. unchanged

Parameter

scalar Channel number of output file

Description

The OUTPUT directive changes the current output channel and thus re-defines where the output

will be sent by the subsequent statements in a program, until another OUTPUT statement is given

(excluding any statements that use a CHANNEL option to redirect their output). Thus

OUTPUT 2
PRINT X
PRINT [CHANNEL=3] Y
ANOVA X

sends the values of X, and the analysis of X by the ANOVA statement, to the file on the second

output channel, and the values of Y to the file on the third.

The PRINT option controls two aspects of the output produced for example from statistical

analyses: whether a line of dots is printed at the start, and whether the output begins on a new

page; this can also be controlled by the OUTPRINT option of SET. Similarly, the DIAGNOSTIC

option has exactly the same effect as the DIAGNOSTIC option of SET.

The WIDTH option specifies the maximum width to be used when producing output. The

default value is the width specified when the file was opened, but you can subsequently decrease

it; you cannot use OUTPUT to set the width to a greater value than that specified when the file

was opened. The PAGE option allows you to reset the number of lines per page.

The STYLE option is relevant if the file on the channel has been opened in a style other than

plain text. (The alternatives include HTML, RTF and LaTeX; see the OPEN directive). It allows

you to switch between the "formatted" style that is used by default for these files, and the

ordinary plain-text representation. If the STYLE option is not specified, the style is left

unchanged.

Options: PRINT, DIAGNOSTIC, WIDTH, INDENTATION, PAGE, STYLE.

Parameter: unnamed.

See also

Directives: PRINT, OPEN, COPY.

Genstat Reference Manual 1 Summary section on: Input and output.

OWN 349

OWN

Does work specified in Fortran subprograms linked into Genstat by the user.

Option

SELECT = scalar Sets a switch, designed to allow OWN to be used for many

applications; standard set-up assumes a scalar in the

range 0-9; default 0

Parameters

IN = identifiers Supplies input structures, which must have values,

needed by the auxiliary subprograms

OUT = identifiers Supplies output structures whose values or attributes are

to be defined by the auxiliary subprograms

Description

To implement the OWN directive, you must get access to some of the Genstat source code. The

relevant section of the code is named Module X, and is distributed with Genstat to all sites,

probably in a file called X.FOR. The module consists of several Fortran 77 subprograms but to

implement the OWN directive you need to modify only the subprogram called G5XZXO. This

contains extensive comments that describe the way it works, and the straightforward changes that

you would need to make in order to call your own subprograms. These comments are designed

to be the complete documentation, and so the details are not repeated here.

The IN parameter allows you to pass values of data structures into your subprograms. Genstat

will check these input structures before calling your subprograms, to ensure that they are of the

right type and length for your program, and that they have been assigned values. The OUT

parameter copies values calculated by your subprograms into Genstat data structures. You can

arrange to define the type and length of these output structures either before or after calling your

subprograms.

If the setting of the IN parameter is a list of identifiers, the OWN directive will call your

subprograms more than once. Each time it will make available to your subprograms the values

of one structure in the IN list, and will take information from the subprograms and put them into

the corresponding structure in the OUT list. Therefore, to pass several structures at a time to your

subprograms, you must put the structures into pointers. For example,

OWN IN=!p(A1,A2,A3),!p(B1,B2,B3); OUT=X,Y

will call your subprograms twice, passing information about A1, A2, A3 and X the first time, and

about B1, B2, B3 and Y the second time. It does this because !p(A1,A2,A3), for example, is a

single structure.

If you want to pass just one pointer to your subprograms, you must ensure that OWN does not

treat the pointer as a set of structures each of which is to be passed. You can do this by

constructing another pointer to hold just the identifier of the pointer that you want to pass; for

example:

POINTER [VALUES=A,B,C] S1
OWN IN=!p(S1)

The SELECT option allows you to call any number of subprograms independently. Thus, you

can set up OWN so that the statements

OWN [SELECT=1]

and

OWN [SELECT=2]

do totally unrelated tasks. The standard version of G5XZXO deals only with the default value,

0, of SELECT, and would need to be extended if you wanted to cater for alternative values.

350 Directives in Release 22

However, you should be able to use much of the Fortran that deals with the default setting.

The distributed version of Genstat contains a version of the G5XZXO subprogram that carries

out a simple calculation, purely for illustration of how the subroutine works. In this version, the

result of

OWN IN=!p(V,S,M); OUT=W

is to shift, square and scale the values of V; that is, it does the calculation

W = M * (V + S)**2

The subprogram checks that precisely three structures are given in the pointer specified by the

IN parameter, and that they are a variate and two scalars with values already present. It also

checks that there is precisely one output structure, a variate; this is implicitly declared by OWN

if necessary, based on the length of the input variate. Missing values in the input structures are

also checked for and dealt with appropriately. The subprogram calls another one called G5XZSQ

actually to carry out the transformation. To modify G5XZXO, you need to alter the details of the

checks on the structures and substitute the call for one to your own subprogram.

The standard version of the G5XZXO subprogram will produce Genstat diagnostics if the

checks on the input or output structures fail, or if there is not enough workspace. These

diagnostics are the standard ones with codes VA, SX and SP, and are dealt with by a section at

the end of the G5XZXO subprogram. You can define your own diagnostics, using the code ZZ.

You are not allowed to edit the standard file of error messages that stores the one-line definitions

of each diagnostic code. However, you can edit the G5XZPF subprogram which is in module X.

This prints extra messages after a ZZ diagnostic; instructions for editing the subprogram are

contained as comments in it.

Output from your subprograms is most easily arranged by storing the information that you

want in data structures, and printing these with a PRINT statement after the OWN statement.

Alternatively, you can give Fortran WRITE statements; there are standard routines in Genstat

for outputting numbers and strings, but they are not described here. You should use the correct

Fortran unit numbers for output, and this varies between implementations of Genstat. Note that

a Fortran unit number is not the same as a Genstat channel number.

Option: SELECT.

Parameters: IN, OUT.

See also

Directives: PASS, SUSPEND.

Genstat Reference Manual 1 Summary section on: Program control.

PAGE 351

PAGE

Moves to the top of the next page of an output file.

Option

CHANNEL = scalar Channel number of file; default * i.e. current output file

No parameters

Description

PAGE arranges for future output to start on a new page. By default, PAGE works on the current

output channel, but you can use the CHANNEL option if you are sending output to another file.

PAGE has no effect unless output is to a file, and it achieves its effect by printing a line consisting

of just the control code for a form feed (ASCII character 12). The effect of PAGE is therefore

independent of the page size set by the OPEN directive.

Option: CHANNEL.

Parameters: none.

See also

Directives: SKIP, CAPTION, PRINT.

Genstat Reference Manual 1 Summary section on: Input and output.

352 Directives in Release 22

PARAMETER

Defines the parameters of a Genstat procedure with information to allow them to be checked

when the procedure is executed.

No options

Parameters

NAME = texts Names of the parameters

MODE = string tokens Mode of each parameter (e, f, p, t, v, as for unnamed

structures); default p

NVALUES = scalars or variates Specifies allowed numbers of values

VALUES = variates or texts Defines the allowed values for a structure of type variate

or text

DEFAULT = identifiers Default values for each parameter

SET = string tokens Indicates whether or not each parameter must be set

(yes, no); default no

DECLARED = string tokens Indicates whether or not the setting of each parameter

must have been declared (yes, no); default no

TYPE = texts Text for each option, whose values indicate the types

allowed (ASAVE, datamatrix {i.e. pointer to variates

of equal lengths as required in multivariate analysis},

diagonalmatrix, dummy, expression, factor,

formula, LRV, matrix, pointer, RSAVE, scalar,

SSPM, symmetricmatrix, table, text, tree, TSAVE,

TSM, variate, VSAVE); default * meaning no limitation

COMPATIBLE = texts Defines aspects to check for compatibility with the first

parameter of the directive or procedure (nvalues,
nlevels, nrows, ncolumns, type, levels,

labels {of factors or pointers}, mode, rows,
columns, classification, margins,

associatedidentifier, suffixes {of pointers},

restriction)

PRESENT = string tokens Indicates whether or not each structure must have values

(yes, no); default no

INPUT = string token Whether the parameter only supplies input information

to the procedure (yes, no); default no

Description

The PARAMETER directive is used at the start of the definition of a Genstat procedure (initiated

by the PROCEDURE directive) to define the parameters of the procedure. The NAMES parameter

defines the names of the parameters. Each name also defines the identifier of a data structure that

should be used, within the procedure itself, to refer to the information transmitted by the relevant

parameter. When you use the procedure, you have the choice of typing each name in capital

letters, or in small letters, or in any mixture of the two; this corresponds to the rules for the

names of options and parameters of directives. Within the procedure, however, you need to be

more precise, but the exact form of the identifiers will depend upon whether the Genstat

environment was set to use short or long "wordlengths" when the procedure was defined. (This

is controlled by the WORDLENGTH option of the JOB, SET and PROCEDURE directives.) With long

wordlengths, the identifier should be exactly the same as the parameter name up to the 32nd

character; any characters beyond the 32nd are ignored. Alternatively, if short wordlengths have

been selected, Genstat forms each identifier by truncating the corresponding option name to no

PARAMETER 353

more than eight characters and then converting it into capital letters. The data structures within

the procedure are either all dummies or all pointers, according to the setting of the PARAMETER

option of the PROCEDURE directive. If they are pointers, they store all the settings, and the

procedure is called only once; if they are dummies, the procedure is called once for every item

in the lists.

The other parameters of PARAMETER allow the settings that are supplied, when the procedure

is called, to be checked automatically similarly to those of the OPTION directive (where more

details are given). The MODE parameter tells Genstat whether the setting of each parameter is to

be a number (v), or an identifier of a data structure (p), or a string (t), or an expression (e), or

a formula (f). These codes are exactly the same as those that indicate the mode of the values to

appear within the brackets containing an unnamed structure. The NVALUES parameter indicates

how many values the structures that are supplied for a parameter of mode p may contain. The

VALUES parameter can be used with modes t and v to specify an allowed set of values against

which those supplied for the parameter will be checked. The DEFAULT parameter specifies

default values to be used if the parameter is not set, and the SET parameter indicates whether or

not a parameter must be set. The DECLARED parameter specifies whether or not the structures

to which options or parameters of mode p are set must already have been declared. The TYPE

parameter can be used to specify a text to indicate the allowed types of the structures to which

an option or parameter of mode p is set. The PRESENT parameter allows you to indicate that the

structure to which an option or parameter is set must have values. Finally, the INPUT parameter

allows you to indicate that the parameter will be used only to provide input to the procedure, and

will not be used to output any results. It is not essential to set INPUT but its use can improve

efficiency.

Options: none.

Parameters: NAME, MODE, NVALUES, VALUES, DEFAULT, SET, DECLARED, TYPE, COMPATIBLE,

PRESENT, INPUT.

See also

Directives: PROCEDURE, OPTION, CALLS, ENDPROCEDURE.

Genstat Reference Manual 1 Summary section on: Program control.

354 Directives in Release 22

PASS

Performs tasks specified in subprograms supplied by the user, but not linked into Genstat; this

directive may not be available on some computers.

Option

NAME = text Filename of external executable program library and

entry point function; default 'GNPASS$GNPASS'

Parameters

DATA = pointers Structures whose values are to be passed to the external

program, and returned

ERROR = scalars Reports any errors in the external program

Description

On some computers, you can arrange that one program, such as Genstat, calls for another to be

executed, with information passed directly between the two. You can thus cause Genstat to

execute your own subprograms without having to modify Genstat in any way. You can do this

with the PASS directive. To find out if the PASS directive has been implemented in your version,

you can either look at local documentation, or issue the PASS command with no options or

parameters. If it is not available, you will get a message saying that PASS has not been

implemented. You could then use the SUSPEND directive instead.

To use the PASS directive, you must first compile a program library file (DLL on Windows

or SO on Linux) of your own code. You will need to program the reading and writing of the data

to communicate with Genstat within the functions that are called. The details are explained

below.

The NAME option specifies the file name of a program library (DLL for Windows or SO for

Linux) and a function name within the library, separated by a dollar symbol $. If the file

extension is missing, .DLL will be appended for Windows and .SO will be appended for Linux.

An advantage of omitting a file extension is that,if you have libraries that just differ in their

extensions, the same command could be run on Windows and Linux. If no path is provided for

the library, the system will search the Genstat Bin folder first, and then the folders in the PATH

environment variable. An FI 20 fault will be given if the library is not found. The library is then

searched for an exported function with the name specified after the dollar (this is case sensitive).

If no function name is provided, the function GNPASS is used. An FI 21 fault is given if the

function is not found.

You can use the DATA pointer to pass the values of any data structures except texts. All the

structures needed by your subprograms must be combined in a pointer structure, unless only one

structure is needed. The structures must have values before you include them in a PASS

statement; if you want to use some of the structures to store results from your subprograms, you

must initialize them to some arbitrary values, such as zero or missing. If you specify several

pointers in a PASS statement, your subprograms will be invoked several times, to deal in turn

with the set of structures stored by each pointer. However, the values of the structures in all the

pointers are copied before any work is done by your subprograms. Thus, if you want to operate

with PASS on the results of a previous operation by PASS, you must give two PASS statements

with one pointer each rather than one statement with two pointers. The ERROR parameter can

pass a scalar value back into Genstat to indicate whether any errors have occurred.

As an example, consider using PASS to carry out a simple transformation of a variate, as

would be done by the statement

CALCULATE W = M*(V+S)**2

where V and W are variates, and M and S are scalars. Example GNPASS programs which calculate

this transformation in Fortran (GENPASS.f90) and C (GNPASSC.c) are available is the Source

PASS 355

directory of the Genstat installation. The functions in Fortran must have arguments (INFILE,

OUTFILE) of type CHARACTER(*) and in C (INFILE, OUTFILE, INLEN, OUTLEN) with

the first two arguments of type char * and the last two of type int. INFILE gives the filename of

the input data and OUTFILE gives the filename of the output to be read into Genstat. The extra

C arguments are the lengths of the first two arguments. The example files contain a function

SQUARE that calculates the transformation. The code needs to handle missing values by

comparing data with the missing value indicators given in INFILE. Compiled versions of these

for Windows (GNPASS.dll and GNPASSC.dll) are also in the Source folder. To create your

own library you can use these as a template, replace SQUARE with your own function, and then

compile and link the code into a program library. To use the Fortran example, run the following

statements:

SCALAR S,M; VALUE=2,10
VARIATE V,W; VALUES=!(1...10),!(10(*))
TEXT Lib; VALUE='%GENDIR%/Source/GNPASS$GNPASS'
PASS [NAME=Lib] !p(V,S,M,W)

The PASS statement causes the program to run, and assigns the calculated values to the variate

W. To use the C program you would use GNPASSC as the library.

Numbers can be used in place of scalars, as usual in Genstat statements:

PASS [NAME='%GENDIR%/Source/GNPASS$GNPASS'] !P(V,2,10,W)

To transform the values in both V, as above, and another variate X, with values 10...50 say, you

could give the extra statements:

VARIATE X,Y; VALUES=!(10...50),!(50(*))
PASS [NAME=Lib] !p(V,2,10,W),!p(X,2,10,Y)

After preparing the Fortran or C program, you need to form it into an executable program,

using a Fortran or C compiler. It may also be possible to use other source languages, provided

the input and output formats of their compilers are compatible with that used by Genstat. All

floating point values are passed from Genstat as type REAL*8 for Fortran or double for C.

Factors and other items are passed as INTEGER for Fortran or int (4 bytes) for C. The GNPASS

programs loop around the pointers, with the number of pointers (an integer) provided as the first

value in the INFILE file. The next 3 items in the input file are the missing value representation

for reals (given twice for historical reasons) and integers. Then there are sets of values for each

pointer: the number of structures passed, and then the lengths of the arrays of type double

precision, single precision (this is not used and should be zero) and integer. Then, for each

structure in turn, the file contains its length, mode, Genstat origin and maximum block size (all

integers) and its data. The Genstat origin is not used within the program, but should be written

back to the result file. The maximum block size is no longer needed, as the files are not now

written with a record structure but in unformatted binary mode. However, it must also be written

to the result file. The Fortran program reads and writes the data in blocks, but the C program just

uses single statements for this. The data are in double precision for mode 2 or integer for mode

3. The results must be written to the OUTFILE file in the same format, other than that the number

of pointers is replaced by an integer error code (0 for success) which is returned in the ERROR

parameter, and the missing values indicators are omitted. The example programs read the real

and integer data into a single array with a calculated offset for each structure, and pass this in

a common block/global structure. However, the data could be saved into individual structures

and passed as arguments to the subroutine in your own program.

Option: NAME.

Parameters: DATA, ERROR.

See also

Directive: EXTERNAL, SUSPEND.

356 Directives in Release 22

Genstat Reference Manual 1 Summary section on: Program control.

PCO 357

PCO

Performs principal coordinates analysis, also principal components and canonical variates

analysis (but with different weighting from that used in CVA) as special cases.

Options

PRINT = string tokens Printed output required (roots, scores,

loadings, residuals, centroid, distances);

default * i.e. no printing

NROOTS = scalar Number of latent roots for printed output; default *

requests them all to be printed

SMALLEST = string token Whether to print the smallest roots instead of the largest

(yes, no); default no

Parameters

DATA = identifiers These can be specified either as a symmetric matrix of

similarities or transformed distances or, for the canonical

variates analysis, as an SSPM containing within-group

sums of squares and products etc or, for principal

components analysis, either as a pointer containing the

variates of the data matrix or as a matrix storing the

variates by columns

LRV = LRVs Latent vectors (i.e. coordinates or scores), roots and

trace from each analysis

CENTROID = diagonal matrices Squared distances of the units from their centroid

RESIDUALS = matrices or variates Distances of the units from the fitted space

LOADINGS = matrices Principal component loadings, or canonical variate

loadings

DISTANCES = symmetric matrices Computed inter-unit distances calculated from the

variates of a data matrix, or inter-group Mahalanobis

distances calculated from a within-group SSPM

SAVE = pointers Saves details of the analysis; if unset, an unnamed save

structure is saved automatically (and this can be

accessed using the GET directive)

Description

The PCO directive is used for principal coordinates analysis. This method encompasses principal

components analysis and a form of canonical variates analysis as special cases as explained

above.

There are six sections of output from PCO, requested using the PRINT option:

roots prints the latent roots and trace;

scores prints the principal coordinate scores;

loadings when the directive is being used for principal components

analysis or canonical variates analysis, this specifies that

the loadings from the analysis are to be printed;

residuals prints the residuals, this is relevant only if results are to be

printed corresponding to only some of the latent roots;

centroid prints the distances (not squared distances) of each unit

from their overall centroid;

distances prints the matrix of inter-unit distances (not squared

distances).

The NROOTS and SMALLEST options control the printed output of roots, scores, loadings and

358 Directives in Release 22

residuals. By default, results are printed for all the roots, but you can set the NROOTS option to

specify a lesser number. If option SMALLEST has the default setting no these are taken to be the

largest roots, but if you set SMALLEST=yes the results are for the smallest non-zero roots. The

inter-unit distances are unaffected by the setting of the NROOTS option.

The DATA parameter supplies the data. In its simplest form, PCO works on a symmetric matrix,

with values giving the associations amongst a set of objects. This could, for example, be a

similarity matrix produced by FSIMILARITY.

Alternatively, the input to PCO can be a pointer whose values are the identifiers of a set of

variates, or a matrix storing the variates by columns. Now the PCO directive will construct the

matrix of inter-unit squared distances, and will base the analysis on associations derived from

this. This is equivalent to a principal components analysis; however, the results are derived by

analysing the distance matrix rather than an SSPM. When there are more units than variates,

using PCO for principal components analysis is less efficient than using the PCP directive;

however, if there are more variates than units the PCO directive is more efficient. When PCO is

used for principal components analysis, all the variates must be of the same length and none of

their values may be missing; any restrictions on the variates are ignored.

The third type of input to PCO is an SSPM structure. This must be a within-group SSPM: that

is, you must have set the GROUP option of the SSPM directive when the SSPM was declared. Now

the PCO directive will calculate the Mahalanobis distances amongst the group means, and base

the analysis on them. This will give results similar to a canonical variates analysis. The

representation of distances will be better than that of CVA, but CVA will be better if you are

interested in loadings for discriminatory purposes.

The second and subsequent parameters of PCO allow you to save the results. The number of

units that determine the sizes of the output structures differs according to the input to PCO. For

a matrix or a symmetric matrix the number of units is the number of rows of the matrix, for a

pointer it is the number of values in the variates that the pointer contains, while for an SSPM the

number of units is the number of groups.

The latent roots, scores and trace can be saved in an LRV structure using the LRV parameter.

If you have declared the LRV already, its number of rows must equal the number of units.

If the input to PCO is a pointer, a matrix, or an SSPM, the principal component or canonical

variate loadings can be saved in a matrix using the LOADINGS parameter. The number of rows

of the matrix is equal to the number of variates (either those specified by an input pointer or

those specified in the SSPM directive for an input SSPM structure), or the number of columns

in an input matrix.

The number of columns of the LRV and of the LOADINGS matrix corresponds to the number

of dimensions to be saved from the analysis, and this must be the same for both of them. If the

structures have been declared already, Genstat will take the larger of the numbers of columns

declared for either, and declare (or redeclare) the other one to match. If neither has been declared

and option SMALLEST retains the default setting no, Genstat takes the number of columns from

the setting of the NROOTS option. Otherwise, Genstat saves results for the full set of dimensions.

The trace saved as the third component of the LRV structure, however, will contain the sums of

all the latent roots, whether or not they have all been saved.

The distances of the units from their centroid can be saved in a diagonal matrix using the

CENTROID parameter. The diagonal matrix has the same number of rows as the number of units,

defined above. The RESIDUALS parameter allows you to save residuals, formed from the

dimensions that have not been saved, in a matrix with one column and number of rows equal to

the number of units. Finally, the inter-unit distances can be saved in a symmetric matrix using

the DISTANCES parameter. The number of rows of the symmetric matrix is again the same as the

number of units.

The SAVE parameter can supply a pointer to save a multivariate save structure contining all

the details of the analysis. If this is unset, an unnamed save structure is saved automatically (and

PCO 359

this can be accessed using the GET directive). Alternatively, you can set SAVE=* to prevent any

save structure being formed if, for example, you have a very large data set and want to avoid

committing the storage space.

Having obtained an ordination, you may sometimes want to add points to the ordination for

additional units. If you know the squared distances of the new units from the old, the technique

of Gower (1968) can be used to add points to the ordination for the new units. You can do this

in Genstat by using the ADDPOINTS directive.

Options: PRINT, NROOTS, SMALLEST.

Parameters: DATA, LRV, CENTROID, RESIDUALS, LOADINGS, DISTANCES, SAVE.

Action with RESTRICT

PCO ignores any restrictions on the DATA variates.

Reference

Gower, J.C. (1968). Adding a point to vector diagrams in multivariate analysis. Biometrika, 55,

582-585.

See also

Directives: CVA, FCA, MDS, PCP, PCORELATE, SSPM.

Procedures: LRVSCREE, DBIPLOT, DMST, MULTMISSING, MVAOD, DISCRIMINATE,

SDISCRIMINATE, PLS, RIDGE.

Genstat Reference Manual 1 Summary section on: Multivariate and cluster analysis.

360 Directives in Release 22

PCORELATE

Relates the observed values on a set of variates or factors to the results of a principal

coordinates analysis.

Options

COORDINATES = matrix Points in reduced space; no default i.e. this option must

be specified

NROOTS = scalar Number of latent roots for printed output; default *

requests them all to be printed

Parameters

DATA = variates or factors The data variables

TEST = string tokens Test type, defining how each variable is treated in the

calculation of the similarity between each unit

(simplematching, jaccard, russellrao, dice,

antidice, sneathsokal, rogerstanimoto,

cityblock, manhattan, ecological, euclidean,

pythagorean, minkowski, divergence, canberra,

braycurtis, soergel); default * ignores that variable

RANGE = scalars Range of possible values of each variable; if omitted, the

observed range is takenz

Description

One way of interpreting the principal coordinates obtained from a similarity matrix by PCO is by

relating them to the original data variables. For each coordinate and each data variable, an F-

statistic can be computed as if the variable and the coordinate vector were independent. This is

not the case but, although the exact distribution of these pseudo F-values is not known, they do

serve to rank the variables in order of importance of their contribution to the coordinate vector.

The DATA parameter lists the variables (variates or factors) that are to be related to the PCO

results and the TEST parameter indicates their "type" as in the FSIMILARITY directive. The

RANGE parameter contains a list of scalars, one for each variable in the DATA list, allowing you

to standardize quantitative variates.

Qualitative variables (variates or factors with TEST settings simplematching -

rogerstanimoto) are treated as grouping factors, and the mean coordinate for each group is

calculated. Only 10 groups are catered for; group levels above 10 are combined. The pseudo F-

statistic gives the between-group to within-group variance ratio. Missing values are excluded.

Quantitative variables (i.e. variates with other settings) are grouped on a scale of 0-10 (where

zero signifies a value up to 0.05 of the range), and mean coordinates for each group are

calculated. The printed pseudo F statistic is for a linear regression of the principal coordinate on

the ungrouped data variate, after standardizing the data variate to have unit range; the regression

coefficient is also printed.

The COORDINATES option must be present and must be a matrix. This represents the units in

reduced space. Usually the coordinates will be from a principal coordinates analysis. The number

of rows of the matrix must match the number of units present in the variables, taking account of

any restriction.

The output from PCORELATE can be extensive. You may not be interested in relating the

variables to the higher dimensions of the principal coordinates analysis even though you may

have saved these in the coordinate matrix. The NROOTS option can request that results for only

some of the dimensions are printed. If NROOTS is not specified, PCORELATE prints information

for all the saved dimensions: that is, for the number of columns of the coordinates matrix.

(Note : this directive was originally called RELATE.)

PCORELATE 361

Options: COORDINATES, NROOTS.

Parameters: DATA, TEST, RANGE.

See also

Directive: PCO.

Genstat Reference Manual 1 Summary section on: Multivariate and cluster analysis.

362 Directives in Release 22

PCP

Performs principal components analysis.

Options

PRINT = string tokens Printed output required (loadings, roots,

residuals, scores, tests); default * i.e. no

printing

NROOTS = scalar Number of latent roots for printed output; default *

requests them all to be printed

SMALLEST = string token Whether to print the smallest roots instead of the largest

(yes, no); default no

METHOD = string token Whether to use sums of squares, correlations or

variances and covariances (ssp, correlation,

vcovariance, variancecovariance); default ssp

Parameters

DATA = pointers or matrices or SSPMs

Pointer of variates forming the data matrix, or matrix

storing the variate values by columns, or SSPM giving

their sums of squares and products (or correlations) etc

LRV = LRVs To store the principal component loadings, roots and

trace from each analysis

SSPM = SSPMs To store the computed sum-of-squares-and-products or

correlation matrix

SCORES = matrices To store the principal component scores

RESIDUALS = matrices or variates To store residuals from the dimensions fitted in the

analysis (i.e. number of columns of the SCORES matrix,

or as defined by the NROOTS option)

SAVE = pointers Saves details of the analysis; if unset, an unnamed save

structure is saved automatically (and this can be

accessed using the GET directive)

Description

Principal components analysis finds linear combinations of a set of variates that maximize the

variation contained within them, thereby displaying most of the original variability in a smaller

number of dimensions. Principal components analysis operates on sums of squares and products,

or a correlation matrix, or a matrix of variances and covariances, formed from the variates.

You supply the input for PCP using the first parameter; this list may have more than one entry,

in which case Genstat repeats the analysis for each of the input structures. Instead of supplying

an SSPM, you can supply a pointer containing the set of variates, or a matrix storing the variate

values by columns. Genstat will then calculate the sums of squares and products, or correlations,

or variances and covariances for the analysis (see option METHOD below).

For example, these two forms of input are equivalent:

SSPM [TERMS=Height,Length,Width,Weight] S
FSSPM S
PCP [PRINT=roots] S

and

PCP [PRINT=roots] !P(Height,Length,Width,Weight)

But the first form does mean that you have the sums of squares and products available for later

use, in the SSPM S. Here the pointer is unnamed but you may wish to use a named pointer. For

example:

PCP 363

POINTER [VALUES=Height,Length,Width,Weight] Dmat
PCP [PRINT=roots] Dmat

By default the PCP directive does not print any results: you use the PRINT option to specify what

output you require. The printed output is in five sections, each with a corresponding setting, as

illustrated in the examples below.

The columns of the matrices of principal component loadings and scores correspond to the

latent roots. Each latent root corresponds to a single dimension, and gives the variability of the

scores in that dimension. The loadings give the linear coefficients of the variables that are used

to construct the scores in each dimension.

The significance tests are for equality of the k smallest roots: li (i = 1, 2, ... k). The test statistic

is

n � ((2p + 11) / 6) [log((1/k) �i>k ii) � (1/k) �i>k log(ii)]

where n is the number of units and p is the number of variables. Asymptotically, the statistics

have a chi-square distribution with (k+2)(k�1)/2 degrees of freedom. If any latent roots are zero,

Genstat excludes them from the calculation of the test statistic; the effective value of p is reduced

accordingly.

If you omit the NROOTS option, Genstat prints by default the results corresponding to all the

latent roots. The number of latent roots is the number of variates involved in the input to PCP.

The NROOTS option allows you to print only part of the results, corresponding to the first or last

r latent roots. You may then want to print the residuals formed from the remaining columns of

scores. The residuals are all positive: this is because residuals from multivariate analyses

generally occupy several dimensions, so they represent distances in multidimensional space and

signs cannot be attached to them.

To print results corresponding to the r smallest latent roots, you must set option NROOTS to

r and option SMALLEST to yes. Now if residuals are printed they will be formed from the scores

corresponding to the largest roots. The NROOTS and SMALLEST options apply to the latent roots

and vectors, the principal component scores and the residuals. So you cannot print directly, for

example, the first two columns of scores and the last three columns of loadings. This is rarely

required but, if necessary, it can be done by saving the relevant results and printing them

separately.

By default, the PCP directive operates on the SSPM but you can set the METHOD option to

correlations to operate on a derived matrix of correlations, or to vcovariance (or its

synonym variancecovariance) to use variances and covariances. Note that when correlations

are analysed the significance-test statistics no longer have asymptotic chi-square distributions.

The LRV parameter allows you to save the principal component loadings, the latent roots, and

their sum (the trace) in an LRV structure, while the SCORES parameter saves the principal

component scores in a matrix. If you have declared the LRV already, its number of rows must

be the same as the number of variates supplied in an input pointer or implied by an input SSPM.

The number of rows of the SCORES matrix, if previously declared, must be equal to the number

of units.

The number of columns of the LRV and of the SCORES matrix corresponds to the number of

dimensions to be saved from the analysis, and this must be the same for both of them. If the

structures have been declared already, Genstat will take the larger of the numbers of columns

declared for either, and declare (or redeclare) the other one to match. If neither has been declared

and option SMALLEST retains the default setting no, Genstat takes the number of columns from

the setting of the NROOTS option. Otherwise, Genstat saves results for the full set of dimensions.

The trace saved as the third component of the LRV structure, however, will contain the sums of

all the latent roots, whether or not they have all been saved. Procedure LRVSCREE can be used

to produce a "scree" diagram which can be helpful in deciding how many dimensions to save.

The SSPM parameter can save the SSPM structure used for the analysis. A particularly

364 Directives in Release 22

convenient instance is when you have supplied an SSPM structure as input but, for example,

have set METHOD=correlation: the SSPM that is saved will then contain correlations instead

of sums of squares and products.

The RESIDUALS parameter allows you to save the principal component residuals, in a matrix

with number of rows equal to the number of units and one column. If the latent roots and vectors

(loadings) are saved from the analysis, the residuals will correspond to the dimensions not saved;

the same applies if you save scores. If neither the LRV nor scores are saved, the saved residuals

will correspond to the smallest latent roots not printed.

The SAVE parameter can supply a pointer to save a multivariate save structure contining all

the details of the analysis. If this is unset, an unnamed save structure is saved automatically (and

this can be accessed using the GET directive). Alternatively, you can set SAVE=* to prevent any

save structure being formed if, for example, you have a very large data set and want to avoid

committing the storage space.

If you want principal component scores or residuals to be printed or saved from the analysis,

the original data must be available. The matrices to save such results must have been declared

with as many rows as the variates have values, ignoring the restriction. You can calculate the

analysis from one subset of units, but calculate the scores and residuals for all the units, by using

as input to PCP an SSPM structure formed using a weight variate with zeros for the excluded

sampling units and unity for those to be included. For example, to exclude a known set of

outliers from an analysis, but to print scores for them, these statements could be used:

POINTER [NVALUES=5] V
FACTOR [LABELS=!T(No,Yes)] Outlier
READ [CHANNEL=2] Outlier,V[]
CALCULATE Wt = Outlier .IN. 'No'
SSPM [TERMS=V] S
FSSPM [WEIGHT=Wt] S
PCP [PRINT=scores] S

Principal component regression is provided by procedure RIDGE.

Options: PRINT, NROOTS, SMALLEST, METHOD.

Parameters: DATA, LRV, SSPM, SCORES, RESIDUALS, SAVE.

Action with RESTRICT

If the variables used to form the SSPM structure are restricted, then the analysis will be subject

to that restriction. Similarly, if a pointer to a set of variates is used as input to PCP, then any

restriction on the variates will be taken into account by the analysis.

See also

Directives: CVA, FCA, MDS, PCO, ROTATE, SSPM.

Procedures: LRVSCREE, DBIPLOT, DMSTPLS, RIDGE.

Genstat Reference Manual 1 Summary section on: Multivariate and cluster analysis.

PEN 365

PEN

Defines the properties of "pens" for high-resolution graphics.

Options

RESET = string token Whether to reset the pen definitions to their default

values (yes, no); default no

BOXUNITS = string token Units to use for text boxes (characters, distance);

the default is to retain the existing setting

Parameters

NUMBER = scalars Numbers associated with the pens

COLOUR = texts or scalars Colour to use with each pen unless otherwise specified

by the CSYMBOL, CLINE, CFILL or CAREA parameters

LINESTYLE = texts or scalars Style for line used by each pen when joining points

METHOD = string tokens Method for determining line (point, line,

monotonic, closed, open, fill, spline, polygon)

SYMBOL = texts, scalars, pointers or matrices

Defines the plotting symbol for each pen, by a text or

scalar for a pre-defined symbol, a pointer for a user-

defined symbol, or a matrix to supply a bitmap

LABELS = texts or factors Define labels that will be printed alongside the plotting

symbols

ROTATION = scalars or variates Rotation required for the plotting symbols and labels (in

degrees)

JOIN = string tokens Order in which points are to be joined by each pen

(ascending, given)

BRUSH = scalars Number of the type of area filling used with each pen

when drawing pie charts or histograms (unavailable in

Genstat for Windows)

FONT = texts or scalars Font to be used for any text written by each pen

THICKNESS = scalars Thickness with which any lines are drawn by each pen

SIZEMULTIPLIER = scalars or variates

Multiplier used in the calculation of the size in which to

draw symbols and labels by each pen unless otherwise

specified by SMSYMBOL or SMLABEL

CSYMBOL = texts or scalars Colour to use with each pen when drawing symbols

CLINE = texts or scalars Colour to use with each pen when drawing lines

CFILL = texts or scalars Colour to use with each pen when filling areas inside

hollow symbols

CAREA = texts or scalars Colour to use with each pen when filling areas inside

polygons and bars of histograms

SMSYMBOL = scalars or variates Multiplier used in the calculation of the size in which to

draw symbols by each pen

SMLABEL = scalars or variates Multiplier used in the calculation of the size in which to

draw labels by each pen

DFSPLINE = scalars Number of degrees of freedom to use when
METHOD=spline

YMISSING = string token How to treat missing y-values when METHOD=spline

(break, interpolate)

XMISSING = string token How to treat missing x-values when METHOD=spline

(break, ignore)

366 Directives in Release 22

YLPOSITION = string token How to position labels in the y-direction with respect to

the points (above, centre, below, automatic)

XLPOSITION = string token How to position labels in the x-direction with respect to

the points (left, centre, right, automatic)

YLSIZE = scalars or variates Sizes of the y-direction of the text boxes into which to

plot labels

XLSIZE = scalars or variates Sizes of the x-direction of the text boxes

YLOFFSET = scalars or variates Offsets in the y-direction of the text boxes

XLOFFSET = scalars or variates Offsets in the x-direction of the text boxes

BARTHICKNESS = scalars Thickness with which any error bars are drawn by each

pen

BARCAPWIDTH = scalars Width of the cap drawn by each pen at the top and

bottom of any error bars

DESCRIPTION = texts Description for points plotted by the pen, to be used by

the Data Information tool in the Graphics Viewer

TSYMBOL = scalars Defines the transparency of symbols drawn by each pen,

on a scale of 0 (opaque) to 255 (completely transparent)

TLINE = scalars Defines the transparency of lines drawn by each pen

TFILL = scalars Defines the transparency to use when filling areas inside

hollow symbols with each pen

TAREA = scalars Defines the transparency to use when filling areas inside

polygons and bars of histograms with each pen

SAVE = pointers Saves details of the current settings for the pen

concerned

Description

Graphical displays are drawn using graphical pens. The graphics commands each have particular

pens that they use by default, but most allow you to specify alternatives (see DGRAPH, D3GRAPH,

DCONTOUR, DHISTOGRAM etc). The attributes of the pens, such as colour, font and symbol-type,

determine how the plots are generated. The PEN directive allows you to change these attributes,

so that you can modify the resulting display. Different attributes are relevant for different types

of plot: for example symbols and labels are used only within DGRAPH and D3GRAPH (and the

graphics procedures that use them to construct their plots).

The NUMBER parameter lists the numbers of the pens, in the range 1 to 256 or �1 to �12, that

you wish to redefine. By default, any aspects of these pens that are not set explicitly retain the

values that they had immediately before the PEN statement. Alternatively, you can specify option

RESET=yes to reset their definitions to the default values defined by Genstat at the start of each

job.

Pens 1 to 256 are used for the information that is plotted in a graph (points, lines, and so on).

In most of the graphics commands, the default is to use these pens in succession for the different

structures that are plotted, so that the various data sets can easily be distinguished. The

negatively numbered pens are used as the initial defaults for the axes and their associated marks

and labels (see XAXIS), or for gridlines, overall title and key (see FRAME), or for default gridlines

in shade plots (see DSHADE), or for default outlines in histograms, bar charts and pie charts (see

DHISTOGRAM, BARCHART and DPIE), or for error bars (see BARCHART), or for the overall title

(see DSTART). Details are given in the Methods Section below. They cannot be used for any

other purposes.

The COLOUR, CSYMBOL, CLINE, CFILL and CAREA parameters specify the colours to be used

by the pen. The COLOUR parameter defines the colour for everything plotted by the pen apart

from the colour for filling "hollow" symbols (e.g. a circle but not a cross), while the other

parameters define specific aspects (overriding any setting of COLOUR): CSYMBOL defines the

PEN 367

colour to be used for drawing symbols, CLINE defines the colour for lines, CFILL defines the

colour for filling areas inside "hollow" symbols, and CAREA defines the colour for filling areas

inside polygons and bars of histograms. The parameters can be set any of the following: a text

containing the name of one of Genstat's pre-defined colours; a scalar containing a number

defining a colour using the RGB system; or a hexadecimal digit defined in a string of the form

'#rgb', '0xrgb' or '0Xrgb' where rgb are the pairs of hexadecimal digits 00-FF that give

the red, green and blue intensities of the colour respectively. For example, '#FF0000',

'#00FF00' and '#0000FF' give pure red, green and blue respectively. The leading zeros can

be dropped, so '#FF00' and '#FF' also define green and blue respectively. You can use the

RGB function to construct these colour numbers from their red, green and blue components: for

example

CALCULATE xgold = RGB(255; 215; 0)
PEN 2; CSYMBOL=xgold

sets xgold to the colour gold (which has red, green and blue values 255, 215 and 0 respectively),

and uses this as the colour for symbols drawn by pen 2. The numbers give you access to the

complete spectrum supported by most colour graphics devices. (Note, though, that the colours

are mapped automatically onto a grey scale if the device is defined with a grey-scale palette; see

DEVICE). Alternatively, the pre-defined colours define the standard colours used by many web

browsers, and mainly use the same names. The names, and their corresponding red, green and

blue values, are listed in Methods section. They can be given in either upper or lower case, or

in any mixture, but they must not be abbreviated.

There are two special strings that can be used for colours. The string 'background' uses the

colour defined in the BACKGROUND option or parameter of FRAME. The string 'match' which

can be used with CFILL to take the colour from CSYMBOL, or with CAREA to take the colour from

CLINE. For example,

PEN 1,2,3; COLOUR='red','blue','green'; CFILL='match'
PEN 4,5,6; CLINE='red','blue','green'; CAREA='match'

plots filled symbols in the same colour as their outlines for pens 1 to 3, and filled areas in the

same colour as their outlines for pens 4 to 5. Note, COLOUR sets all of CSYMBOL, CLINE and

CAREA to the same value, so you only need to set CFILL='match' to set all colours of a pen to

the same value. Also, if you want all your symbols filled, you could specify

PEN 1...256; CFILL='match'

You can also use the number �1 to specify the background colour. A missing value represents

a hollow symbol for CFILL or the background colour for CSYMBOL, CLINE and CAREA.

The TSYMBOL, TLINE, TFILL and TAREA parameters accompany the parameters CSYMBOL,

CLINE, CFILL and CAREA, respectively, and define the transparency of the corresponding

colours. Their values can range from 0 (opaque) to 255 (completely transparent). The pens all

have initial defaults of 0 for the transparencies.

The SYMBOL parameter defines the symbol that is drawn at each point, for example by

DGRAPH. You can mark different points with different symbols (for example to indicate

groupings in the data) by setting the PEN parameter of DGRAPH to a variate or factor specifying

a pen with the appropriate symbol for each point.

Genstat provides a choice of standard symbols, listed below, that can be specified either by

giving the name (in a text with a single value), or the number (in a scalar).

1 'Cross'

2 'Circle'

3 'Plus'

4 'Star'

5 'Square'

6 'Diamond'

368 Directives in Release 22

7 'Triangle'

8 'Nabla'

9 'Asterisk'

10 'Minus'

11 'Heavyminus'

12 'Heavyplus'

13 'Heavycross'

14 'Smallcircle'

15 'Tinycircle'

16 'Female'

17 'Male'

18 'Rhombus'

19 'Circlecross'

20 'Circleplus'

21 'Squarecross'

22 'Squareplus'

�1 'Sphere'

�2 'Cone'

�3 'Cylinder'

�4 'Cube'

The final four symbols (numbered �1 to �4) are intended mainly for 3-dimensional plots, and

may not be available on some devices. You can set SYMBOL='none' or SYMBOL=0 if you do not

want to plot symbols at the data points, as for example if you only want to draw a line through

the points. You can also use SYMBOL=0 together with the LABELS parameter (described below)

to plot a character at the data points instead of a symbol. For example

PEN 1; SYMBOL='none'; LABEL='A'

or

PEN 1; SYMBOL=0; LABEL='A'

will identify the points plotted by pen 1 with the letter A.

To define a symbol of your own, you can set SYMBOL to a pointer containing a pair of variates

defining the coordinates of a set of points to be joined by straight line segments. The points

should be within a notional square with bounds �1.0 to 1.0 in each direction. The square is

centred on the data point, and scaled to the same size as the standard symbols. Missing values

can be included in the coordinates, to use separate pen strokes to draw the line segments. The

final possibility is to set SYMBOL to a matrix of RGB colour values, representing a bitmap.

The LABELS parameter allows you to label each point with a string or number. You can set

it to a text structure to specify strings to be plotted at each point. If the text has a single string,

this will be be plotted at every point; otherwise the text must have the same number of values

as the Y and X variates that are to be plotted. You can also set LABELS to a factor. If the factor

has labels, then these are used; otherwise the points are labelled by its levels. This provides

another way of representing grouped data.

The positioning of the labels with respect to the points is controlled by the YLPOSITION and

XLPOSITION parameters. The initial default is to determine the positions automatically

according to their type (e.g. labels for points, or for tick marks on the y-axis, or on the x-axis,

and so on). The labels are plotted into text boxes whose widths in the x- and y-directions can be

defined by the YLSIZE and XLSIZE parameters; if these are not set, the boxes are defined to plot

the labels as a single line of characters. The amounts by which the boxes are offset in the the x-

and y-directions can be defined by the YLOFFSET and XLOFFSET parameters; if these are not set,

the positions of the boxes are defined automatically as appropriate for the positions defined by

the YLPOSITION and XLPOSITION parameters. The BOXUNITS option defines what units to use

PEN 369

when defining the sizes and positions of the text boxes. The initial default is to measure these

in numbers of characters of an average width in the defined font and size (see parameters FONT

and SMLABEL), but you can set option BOXUNITS=distance to use the distances as defined by

the axes of the graph.

The graphical symbols are drawn so that they are centred at the specified position. If LABELS

are specified they are aligned alongside the markers, unless you have set SYMBOL=0 to suppress

the markers, in which case the labels start from the specified (x,y) position. For compatibility

with previous releases of Genstat you can also set SYMBOL to a factor, which has the same effect

as setting LABELS with SYMBOL=0.

The Genstat Graphics Viewer with Genstat for Windows has a "Data Information" tool that

allows you to display information about each point when you place the cursor over the point. If

you want to replace the default information, you can set the DESCRIPTION parameter to a text

(with one line for each point) containing your own information.

The METHOD parameter specifies the type of object to be plotted: points, lines or filled

polygons. The initial default for every pen, METHOD=point, will result in points being plotted

using the corresponding symbols, labels, colours and fonts. Various types of line can be drawn

through the plotted points; either straight lines (line and polygon) or smooth curves

(monotonic, open, closed and spline). The line and polygon settings differ in that, with

polygon, a line is drawn also to connect the first and last points. The monotonic setting

specifies that a smooth single-valued curve is to be drawn through the data points. The name is

derived from the requirement that the x-values (rather than the fitted curve) must be strictly

monotonic, so that there is only one y-value for each distinct x-value. To ensure this, a copy of

the data is made and sorted before the curve is fitted. This setting is recommended for plotting

curves fitted to data, for example with FITCURVE. You should ensure that the points are close

enough for the plotted line to be a reasonable approximation. When you know the functional

form of the curve, it may be advantageous to calculate extra points. The open and closed

settings specify that a smooth, possibly multi-valued, curve is to be drawn through the data

points, using the method of McConalogue (1970); the resulting curve is rotationally invariant,

although it is not invariant under scaling. The closed setting connects the last point to the first.

McConalogue's method (open or closed) is more suited to the situation where the plotted curve

is intended to represent the shape of an object. Alternatively, the spline setting plots a

smoothing spline fitted through the points. The DFSPLINE parameter specifies how many

degrees of freedom to use in the spline (initial default 4). The YMISSING parameter controls

whether to break the spline at a missing y-value or to interpolate y-value, and the XMISSING

parameter controls whether to break the spline at a missing x-value or to ignore the point; the

initial default for both parameters is to break the spline. The setting METHOD=fill joins the data

points by straight lines to produce one or more polygons. Each polygon is then filled in the

colour specified by CFILL (see below). The plotting method also determines how contours will

be drawn. Also, the combination of SYMBOL=0 and METHOD=point will produce no plotting at

all (and no warning) within DGRAPH.

If the requested plotting method produces a line through the points, the LINESTYLE parameter

will specify what sort of line is drawn (for example a solid, dotted or dashed line). The type of

style can be specified either by giving the name (in a text with a single value), or the number (in

a scalar).

1 'Solid'

2 'Dot' or '.'

3 'Dash' or '-'

4 'Dotdash' or '.-'

5 'Tightdash' or 'T-'

6 'Longdash' or 'L-'

7 'Shortdash' or 'S-'

370 Directives in Release 22

8 'Closedot' or 'C-'

9 'Finedot' or 'F.'

10 'Doubledotdash' or '..-'

Each text can all be abbreviated to the minimum number of characters required to distinguish

it from the earlier styles.

The JOIN parameter controls the order in which points are connected when lines are to be

drawn or the points define a polygon to be shaded. Given requests that the data are to be plotted

in the order in which they are stored, whereas ascending implies that the data are copied and

sorted so that the x-values are in ascending order before plotting. This parameter is ignored when

METHOD=monotonic, as this requires that the data must always be sorted.

On some devices the BRUSH parameter allowed you to control how areas are shaded when

METHOD is set to fill, or when plotting histograms and pie charts. There were 16 available

patterns indicated by the integers 1 to 16. In general, the higher the number, the denser the

hatching. In Genstat for Windows BRUSH is unavailable, and the areas are shaded in full. The

CFILL parameter defines which colour is used by the pen to fill the areas.

The THICKNESS parameter allows you to specify an amount by which the standard thickness

of plotted lines is to be multiplied. This allows you to increase the thickness of lines, perhaps to

highlight some feature of a plot. You can also use thickness to emphasize the axes, by redefining

the appropriate pen. For some devices, it is not possible to control the thickness of plotted lines;

the THICKNESS parameter is then ignored. Similarly, the BARTHICKNESS parameter can provide

a multiplier for the line thickness when the pen is used to draw an error bar, and the

BARCAPWIDTH parameter can give a multiplier to adjust the standard width of the lines at the top

and bottom of error bars.

The default sizes of symbols and the characters in labels are determined from the dimensions

of the current window. The SIZEMULTIPLIER parameter can be used to modify the sizes of both

of these, by specifying a value by which this default size is to be multiplied. Alternatively, you

can use the SMSYMBOL parameter to modify just the symbol size, or the SMLABEL parameter to

modify just the size of characters in labels. For example when plotting a graph in a small window

you may wish to increase the size of annotation in order to make it legible. They can each be set

to a scalar, or to a variate to allow the different points to be scaled in different ways.

The ROTATION parameter controls the angle (in degrees) at which to plot text or user-defined

symbols. The initial setting of zero will produce text "conventionally" orientated. You can set

ROTATION to a scalar value that will apply to all points, or to a variate that allows a different

angle to be used at each point.

The FONT parameter defines the font family to be used by each pen to plot textual information,

for example, in titles, axis annotation, plotting symbols and keys. This can be set to a text

containing the name of a font family, or to a scalar containing an integer between 1 and 25. The

initial default for each pen is to use the default graphics font, which can be defined either by

using menus in the Genstat Client or Graphics Viewer, or by using the DFONT directive. You can

find out the names of the fonts, available to specify in a text, by looking at any of the controls

for specifying fonts in the Client or Graphics Viewer. The integers refer to fonts that should

always be available. You can list these using the DHELP procedure. Font 1 has a special status,

in that it automatically maps to the currently-defined default graphics font. If you change the

default graphics font, this will be used as the default font in any graphs that are then displayed

or redisplayed, including those that have been stored in Genstat graphics meta files (i.e. files

with the gmf suffix). If you specify a font that is unavailable on your computer, the default font

is used instead.

The current settings of each pen can be saved in a pointer supplied by the SAVE parameter.

The elements of the pointer are labelled to identify the components. Initial default settings are

represented by missing values; the actual values used for these attributes when plotting will

depend on the output device.

PEN 371

Options: RESET, BOXUNITS.

Parameters: NUMBER, COLOUR, LINESTYLE, METHOD, SYMBOL, LABELS, ROTATION, JOIN,

BRUSH, FONT, THICKNESS, SIZEMULTIPLIER, CSYMBOL, CLINE, CFILL, CAREA, SMSYMBOL,

SMLABEL, DFSPLINE, YMISSING, XMISSING, YLPOSITION, XLPOSITION, YLSIZE, XLSIZE,

YLOFFSET, XLOFFSET, BARTHICKNESS, BARCAPWIDTH, DESCRIPTION, TSYMBOL, TLINE,

TFILL, TAREA, SAVE.

Method

The names of the standard pre-defined colours are listed below with their corresponding red,

green and blue values for use e.g. in the RGB function.

Red colors

IndianRed RGB(205; 92; 92)
LightCoral RGB(240; 128; 128)
Salmon RGB(250; 128; 114)
DarkSalmon RGB(233; 150; 122)
LightSalmon RGB(255; 160; 122)
Crimson RGB(220; 20; 60)

Red RGB(255; 0; 0)
FireBrick RGB(178; 34; 34)
DarkRed RGB(139; 0; 0)

Pink colors

Pink RGB(255; 192; 203)
LightPink RGB(255; 182; 193)
HotPink RGB(255; 105; 180)
DeepPink RGB(255; 20; 147)
MediumVioletRed RGB(199; 21; 133)
PaleVioletRed RGB(219; 112; 147)

Orange colors

LightSalmon RGB(255; 160; 122)
Coral RGB(255; 127; 80)
Tomato RGB(255; 99; 71)
OrangeRed RGB(255; 69; 0)
DarkOrange RGB(255; 140; 0)
Orange RGB(255; 165; 0)

Yellow colors

Gold RGB(255; 215; 0)
Yellow RGB(255; 255; 0)
LightYellow RGB(255; 255; 224)
LemonChiffon RGB(255; 250; 205)
LightGoldenrodYellow RGB(250; 250; 210)
PapayaWhip RGB(255; 239; 213)
Moccasin RGB(255; 228; 181)
PeachPuff RGB(255; 218; 185)
PaleGoldenrod RGB(238; 232; 170)
Khaki RGB(240; 230; 140)
DarkKhaki RGB(189; 183; 107)

Purple colors

Lavender RGB(230; 230; 250)
Thistle RGB(216; 191; 216)

Plum RGB(221; 160; 221)
Violet RGB(238; 130; 238)
Orchid RGB(218; 112; 214)
Fuchsia RGB(255; 0; 255)
Magenta RGB(255; 0; 255)
MediumOrchid RGB(186; 85; 211)
MediumPurple RGB(147; 112; 219)
BlueViolet RGB(138; 43; 226)

372 Directives in Release 22

DarkViolet RGB(148; 0; 211)
DarkOrchid RGB(153; 50; 204)
DarkMagenta RGB(139; 0; 139)
Purple RGB(128; 0; 128)
Indigo RGB(75; 0; 130)
SlateBlue RGB(106; 90; 205)
DarkSlateBlue RGB(72; 61; 139)

Green colors

GreenYellow RGB(173; 255; 47)
Chartreuse RGB(127; 255; 0)
LawnGreen RGB(124; 252; 0)

Lime RGB(0; 255; 0)
LimeGreen RGB(50; 205; 50)
PaleGreen RGB(152; 251; 152)
LightGreen RGB(144; 238; 144)
MediumSpringGreen RGB(0; 250; 154)
SpringGreen RGB(0; 255; 127)
MediumSeaGreen RGB(60; 179; 113)
SeaGreen RGB(46; 139; 87)
ForestGreen RGB(34; 139; 34)
Green RGB(0; 128; 0)
DarkGreen RGB(0; 100; 0)
YellowGreen RGB(154; 205; 50)
OliveDrab RGB(107; 142; 35)
Olive RGB(128; 128; 0)
DarkOliveGreen RGB(85; 107; 47)
MediumAquamarine RGB(102; 205; 170)
DarkSeaGreen RGB(143; 188; 143)
LightSeaGreen RGB(32; 178; 170)
DarkCyan RGB(0; 139; 139)

Teal RGB(0; 128; 128)

Blue colors

Aqua RGB(0; 255; 255)

Cyan RGB(0; 255; 255)
LightCyan RGB(224; 255; 255)
PaleTurquoise RGB(175; 238; 238)
Aquamarine RGB(127; 255; 212)
Turquoise RGB(64; 224; 208)
MediumTurquoise RGB(72; 209; 204)
DarkTurquoise RGB(0; 206; 209)
CadetBlue RGB(95; 158; 160)
SteelBlue RGB(70; 130; 180)
LightSteelBlue RGB(176; 196; 222)
PowderBlue RGB(176; 224; 230)
LightBlue RGB(173; 216; 230)
PurwaBlue RGB(155; 225; 255)
SkyBlue RGB(135; 206; 235)
LightSkyBlue RGB(135; 206; 250)
DeepSkyBlue RGB(0; 191; 255)
DodgerBlue RGB(30; 144; 255)
CornflowerBlue RGB(100; 149; 237)
MediumSlateBlue RGB(123; 104; 238)
RoyalBlue RGB(65; 105; 225)

Blue RGB(0; 0; 255)
MediumBlue RGB(0; 0; 205)
DarkBlue RGB(0; 0; 139)

Navy RGB(0; 0; 128)
MidnightBlue RGB(25; 25; 112)

Brown colors

Cornsilk RGB(255; 248; 220)

PEN 373

BlanchedAlmond RGB(255; 235; 205)
Bisque RGB(255; 228; 196)
NavajoWhite RGB(255; 222; 173)
Wheat RGB(245; 222; 179)
BurlyWood RGB(222; 184; 135)

Tan RGB(210; 180; 140)
RosyBrown RGB(188; 143; 143)
SandyBrown RGB(244; 164; 96)
Goldenrod RGB(218; 165; 32)
DarkGoldenrod RGB(184; 134; 11)

Peru RGB(205; 133; 63)
Chocolate RGB(210; 105; 30)
SaddleBrown RGB(139; 69; 19)
Sienna RGB(160; 82; 45)
Brown RGB(165; 42; 42)
Maroon RGB(128; 0; 0)

White colors

White RGB(255; 255; 255)

Snow RGB(255; 250; 250)
Honeydew RGB(240; 255; 240)
MintCream RGB(245; 255; 250)
Azure RGB(240; 255; 255)
AliceBlue RGB(240; 248; 255)
GhostWhite RGB(248; 248; 255)
WhiteSmoke RGB(245; 245; 245)
Seashell RGB(255; 245; 238)
Beige RGB(245; 245; 220)
OldLace RGB(253; 245; 230)
FloralWhite RGB(255; 250; 240)
Ivory RGB(255; 255; 240)
AntiqueWhite RGB(250; 235; 215)
Linen RGB(250; 240; 230)
LavenderBlush RGB(255; 240; 245)
MistyRose RGB(255; 228; 225)

Grey colors

Gainsboro RGB(220; 220; 220)

LightGray or LightGrey RGB(211; 211; 211)
Silver RGB(192; 192; 192)

DarkGray or DarkGrey RGB(169; 169; 169)

Gray or Grey RGB(128; 128; 128)

DimGray or DimGrey RGB(105; 105; 105)

LightSlateGray or LightSlateGrey
RGB(119; 136; 153)

SlateGray or SlateGrey RGB(112; 128; 144)

DarkSlateGray or DarkSlateGrey
RGB(47; 79; 79)

Black RGB(0; 0; 0)

In addition, the string Background can be used to refer to the background colour that has

been defined (e.g. by FRAME) for the particular part of the screen where the pen is being used,

and the string Transparent can be used for example to define a colour that will not obscure

anything that is plotted below it (e.g. in another window). Alternatively, you can define the

colour intensity with three pairs of hexadecimal digits (00-FF), by using a string that starts with

either #, 0x or 0X, and then contains the three pairs of digits: i.e. you can specify either '#rgb',

'0xrgb' or '0Xrgb', where rgb are the pairs of hexadecimal digits that give the red, green

and blue intensities of the colour respectively.

The roles of the negatively-numbered pens are listed below:

�1 initial default for PENTITLE parameter of XAXIS, YAXIS and ZAXIS

374 Directives in Release 22

�2 initial default for PENAXIS parameter of XAXIS, YAXIS and ZAXIS

�3 initial default for PENLABEL parameter of XAXIS, YAXIS and ZAXIS

�4 initial default for PENGRID parameter of FRAME

�5 initial default for PENTITLE parameter of FRAME

�6 initial default for PENKEY parameter of FRAME

�7 default for PENGRID option of DSHADE

default for PENGRID option of DBITMAP

�8 default for PENOUTLINE option of DHISTOGRAM

�9 default for PENOUTLINE option of BARCHART

�10 default for PENOUTLINE option of DPIE

�11 default for XBARPEN and YBARPEN parameters of DGRAPH

default for PENERRORBARS parameter of BARCHART

�12 pen for title in DSTART

Reference

McConalogue, D.J. (1970). A quasi-intrinsic scheme for passing a smooth curve through a

discrete set of points. Computer Journal, 13, 392-396.

See also

Directives: DFONT, DLOAD, DSAVE, COLOUR.

Procedures: DHELP, GETRGB.

Functions: BLUE, GREEN, GRAY, GREY, RED, RGB.

Genstat Reference Manual 1 Summary section on: Graphics.

POINTER 375

POINTER

Declares one or more pointer data structures.

Options

NVALUES = scalar or text Number of values, or labels for values; default *

VALUES = identifiers Values for all the pointers; default *

SUFFIXES = variate or scalar Defines an integer number for each of the suffixes;

default * indicates that the numbers 1,2,... are to be used

CASE = string token Whether to distinguish upper and lower case in the

labels of the pointers (significant, ignored); default
sign

ABBREVIATE = string token Whether or not to allow the labels to be abbreviated

(yes, no); default no

FIXNVALUES = string token Whether or not to prohibit automatic extension of the

pointers (yes, no); default no

RENAME = string token Whether to reset the default names of elements of the

pointer if they do not have their own identifiers (yes,

no); default no

MODIFY = string token Whether to modify (instead of redefining) existing

structures (yes, no); default no

IPRINT = string tokens Information to be used by default to identify the pointers

in output (identifier, extra); if this is not set, they

will be identified in the standard way for each type of

output

EXTEND = string token Whether to extend (instead of redefining) an existing

pointer (yes, no); default no

Parameters

IDENTIFIER = identifiers Identifiers of the pointers

VALUES = pointers Values for each pointer

EXTRA = texts Extra text associated with each identifier

Description

Lists of data structures can be stored in a Genstat pointer structure to save having to type the list

in full every time it is used. For example

POINTER [VALUES=Rain,Temp,Windspeed] Vars
VARIATE #Vars
READ [CHANNEL=2] #Vars
PRINT #Vars; DECIMALS=2,1,2

defines Rain, Temp and Windspeed to be variates, and then reads and prints their values. When

none of the structures in the list is itself a pointer, the substitution symbol (#) simply replaces

the pointer by its values. If, however, there are pointers in the list, they too are substituted, as are

any pointers to which they point. An example is given below.

The individual elements of a pointer can also be referred to by the use of suffixes. We can refer

to Rain above either using its own identifier, or as the first element of Vars by using the suffix

[1]: so

Vars[1] is Rain

Vars[2] is Temp

Vars[3] is Windspeed

Furthermore, we can put a list within the brackets:

Vars[3,1] is Windspeed,Rain.

376 Directives in Release 22

Also, you can put a null list to mean all the available suffixes of the pointer:

Vars[] is Rain,Temp,Windspeed.

Identifiers like Vars[1], Vars[2] and Vars[3] are called suffixed identifiers and, in fact,

you can use these even without defining the identifier of the pointer explicitly. Whenever a

suffixed identifier is used, Genstat automatically sets up a pointer for the unsuffixed part of the

identifier if it does not already exist. Furthermore the pointer will automatically be extended

(whether it has been set up by you or by Genstat) if you later use a new suffix, like Vars[93]

for example. Notice that the suffixes do not need to be a contiguous list, nor need they run from

one upwards, although they must be integers; if you give a decimal number it will be rounded

to the nearest integer (for example, �27.2 becomes �27).

The SUFFIXES option of the POINTER directive allows you to specify the required suffixes

for pointers that are defined explicitly. For example

VARIATE [VALUES=1990,1991,1992,1993] Suffs
POINTER [NVALUES=4; SUFFIXES=Suffs] Profit

defines Profit to be a pointer of length four, with suffixes 1990 to 1993. If you are setting the

suffixes explicitly, you might want to forbid Genstat to extend the pointer if another suffix is

encountered later in the program; this can be done by setting option FIXNVALUES=yes.

We could actually omit the NVALUES option in the definition of the pointer Profit above,

as Genstat can determine the length of the pointer by counting the number of values. However,

by supplying a text instead of a scalar for NVALUES you can define labels for the suffixes of the

pointer. The length of the text defines the number of values of the pointer, and its values give

the labels. For example

TEXT [VALUES=name,salary,grade] Labs
POINTER [NVALUES=Labs] Employee

would allow you to refer to Employee['name'], Employee['salary'], and so on.

Usually, when the pointer is later used, Genstat requires the labels to be given exactly as in

the definition. However, you can set option CASE=ignored to indicate that case is unimportant,

so they can be specified in capitals, or lower case, or in any mixture. You can also set option

ABBREVIATE=yes to allow each one to be abbreviated to the minimum number of characters

required to distinguish it from the labels of earlier elements of the pointer.

The identifiers in a suffix list can be of scalars, variates or texts; this of course includes

numbers and strings as unnamed scalars and texts respectively. If one of these structures contains

several values, it defines a sub-pointer: for example Vars[!(3,2)] is a pointer with two

elements, Windspeed and Temp. You must thus be careful not to confuse a sub-pointer with a

list of some of the elements of a pointer: for example Vars[!(3,2)] is a single pointer with

two elements, whereas Vars[3,2] is a list of the two structures Windspeed and Temp.

As mentioned above, a pointer can be extended automatically to include a new suffix, if that

suffix is used with the pointer in your program. However, it is not possible to extend the pointer

automatically to include a new label, as Genstat would not know which suffix to give it and an

automatic choice could lead to errors or confusion. So, the POINTER directive has an option

EXTEND which can be set to yes to do this explicitly. The pointer elements that are defined are

then added to the existing elements of the pointer. So, we could add additional labels to the

pointer Employee, above, by the statements

TEXT [VALUES=department,room] Newlabs
VARIATE [VALUES=4,5] Newsuffs
POINTER [NVALUES=Newlabs; SUFFIXES=Newsuffs; EXTEND=yes] Employee

adds Employee['department'] as suffix 4, and Employee['room'] as suffix 5. If you do

not specify a label, the new suffix is still added (but unlabelled). If you do not specify a suffix,

the new label is given a suffix of one plus the largest suffix already in the pointer. When

EXTEND=yes, the EXTRA parameter and the CASE, ABBREVIATE, FIXNVALUES, MODIFY and

POINTER 377

IPRINT options are ignored.

Elements of pointers can themselves be pointers, allowing you to construct trees of structures.

For example

VARIATE A,B,C,D,E
POINTER R; VALUES=!P(D,E)
& S; VALUES=!P(B,C)
& Q; VALUES=!P(A,S)
& P; VALUES=!P(Q,R)

You can refer to elements within the tree by giving several levels of suffixes: for example

P[2][1] is R[1] which is D; P[2,1][1,2] is (R,Q)[1,2] or D,E,A,S. The special symbol

allows you to list all the structures at the ends of the branches of the tree: #P replaces P by the

identifiers of the structures to which it points (Q and R); then, if any of these is a pointer, it

replaces it by its own values, and so on. Thus #P is the list A,B,C,D,E.

As you have seen, structures need not have an identifiers of their own, but may simply be

identifiable as a member of a pointer using the suffix notation. Where a structure like this is a

member of more than one pointer, Genstat will refer to it in output using the pointer with which

it was first associated. So, for example, in

POINTER [NVALUES=2] P
& [VALUES=P[1,2],C] Q
VARIATE [VALUES=1,2,3,4] Q[]
PRINT Q[]

the output will be labelled as P[1], P[2] and C. However, we can set option RENAME=yes when

Q is defined

POINTER [VALUES=P[1,2],C; RENAME=yes]

to request that the pointer Q takes precedence over earlier definitions, so the labels become Q[1],

Q[2] and C.

Options: NVALUES, VALUES, SUFFIXES, CASE, ABBREVIATE, FIXNVALUES, RENAME, MODIFY,

IPRINT, EXTEND.

Parameters: IDENTIFIER, VALUES, EXTRA.

See also

Directives: ASSIGN, STRUCTURE, DECLARE, DUMMY, LRV, SSPM, TSM, TREE.

Procedure: PDUPLICATE.

Functions: VSUMS, VTOTALS, VMEANS, VMEDIANS, VMINIMA, VMAXIMA, VRANGE,

VCOVARIANCE, VCORRELATION, VSD, VSEMEANS, VSKEWNESS, VKURTOSIS,

VVARIANCES, VNOBSERVATIONS, VNVALUES, VNMV, VPOSITIONS.

Genstat Reference Manual 1 Summary section on: Data structures.

378 Directives in Release 22

PREDICT

Forms predictions from a linear or generalized linear model.

Options

PRINT = string token What to print (description, lsd, predictions, se,

sed, vcovariance); default desc, pred, se

CHANNEL = scalar Channel number for output; default * i.e. current output

channel

COMBINATIONS = string token Which combinations of factors in the current model to

include (full, present, estimable); default esti

ADJUSTMENT = string token Type of adjustment (marginal, equal); default marg

WEIGHTS = table Weights classified by some or all of the factors in the

model; default *

OFFSET = scalar Value of offset on which to base predictions; default

mean of offset variate

METHOD = string token Method of forming margin (mean, total); default
mean

ALIASING = string token How to deal with aliased parameters (fault, ignore);

default faul

BACKTRANSFORM = string token What back-transformation to apply to the values on the

linear scale, before calculating the predicted means

(link, none); default link

SCOPE = string token Controls whether the variance of predictions is

calculated on the basis of forecasting new observations

rather than summarizing the data to which the model has

been fitted (data, new); default data

NOMESSAGE = string tokens Which warning messages to suppress (dispersion,

nonlinear); default *

DISPERSION = scalar Value of dispersion parameter in calculation of s.e.s;

default is as set in the MODEL statement

DMETHOD = string token Basis of estimate of dispersion, if not fixed by

DISPERSION option (deviance, Pearson); default is

as set in the MODEL statement

NBINOMIAL = scalar Supplies the total number of trials to be used for

prediction with a binomial distribution (providing a

value n greater than one allows predictions to be made of

the number of "successes" out of n, whereas the value

one predicts the proportion of successes); default 1

PREDICTIONS = table, scalar or pointer

Saves predictions for each y variate; default *

SE = table, scalar or pointer Saves standard errors of predictions for each y variate;

default *

SED = symmetric matrix or pointer Saves standard errors of differences between predictions

for each y variate; default *

LSD = symmetric matrix or pointer Saves least significant differences between predictions

for each y variate (models with Normal errors only);

default *

LSDLEVEL = scalar Significance level (%) to use in the calculation of least

significant differences; default 5

VCOVARIANCE = symmetric matrix or pointer

Saves variance-covariance matrices of predictions for

PREDICT 379

each y variate; default *

SAVE = identifier Specifies save structure of model from which to predict;

default * i.e. that from latest model fitted

Parameters

CLASSIFY = vectors Variates and/or factors to classify table of predictions

LEVELS = variates, scalars or texts To specify values of variates, levels of factors

PARALLEL = identifiers For each vector in the CLASSIFY list, allows you to

specify another vector in the CLASSIFY list with which

the values of this vector should change in parallel (you

then obtain just one dimension in the table of predictions

for these vectors)

NEWFACTOR = identifiers Identifiers for new factors that are defined when LEVELS

are specified

Description

The PREDICT directive can be used after the FIT directive to summarize the results of the

regression, by using the fitted relationship to predict the values of the response variate at

particular values of the explanatory variables. CLASSIFY, the first parameter of PREDICT,

specifies those variates or factors in the current regression model whose effects you want to

summarize. Any variate or factor in the current model that you do not include will be

standardized in some way, as described below.

The LEVELS parameter specifies values at which the summaries are to be calculated, for each

of the structures in the CLASSIFY list. For factors, you can select some or all of the levels, while

for variates you can specify any set of values. A single level or value is represented by a scalar;

several levels or values must be combined into a variate (which may of course be unnamed).

Alternatively, if the factor has labels, you can use these to select the levels for the summaries by

setting LEVELS to a text. A missing value in the LEVELS parameter is taken by Genstat to stand

for all the levels of a factor, or for the mean value of a variate.

The PARALLEL parameter allows you to indicate that a factor or variate should change in

parallel to another factor or variate. Both of these should have same number of values specified

for it by the LEVELS parameter of PREDICT. The predictions are then formed for each

corresponding set of values rather than for every combination of these values. For example,

suppose we had fitted a quadratic model with explanatory variates X and Xsquared. We could

then put

PREDICT Xsquared,X; PARALLEL=X,*;\
 LEVELS=!(0,4,16,36,64,100),!(0,2,4,6,8,10)

The PARALLEL parameter specifies that Xsquared should change in parallel to X, so that we

obtain predictions only for matching values.

When you specify LEVELS, PREDICT needs to define a new factor to classify that dimension

of the table. By default this will be an unnamed factor, but you can use the NEWFACTOR

parameter to give it an identifier. The EXTRA attribute of the factor is set to the name of the

corresponding factor or variate in the CLASSIFY list; this will then be used to label that

dimension of the table of predictions.

You can best understand how Genstat forms predictions by regarding its calculations as

consisting of two steps. The first step, referred to below as Step A, is to calculate the full table

of predictions, classified by every factor in the current model. For any variate in the model, the

predictions are formed at its mean, unless you have specified some other values using the

LEVELS parameter; if so, these are then taken as a further classification of the table of

predictions. The second step, referred to as Step B, is to average the full table of predictions over

the classifications that do not appear in the CLASSIFY parameter: you can control the type of

380 Directives in Release 22

averaging using the COMBINATIONS, ADJUSTMENT and WEIGHTS options. By default, the

predictions are made at the mean of any offset variate, but option OFFSET can be used to specify

another value at which the predictions should be made instead.

Printed output is controlled by settings of the PRINT option:

description describes the standardization policies used when forming

the predictions,

predictions prints the predictions,

se produces predictions and standard errors,

sed prints standard errors for differences between the

predictions,

lsd prints least significant differences between the predictions

(ordinary linear regression models or generalized linear

models with the Normal distibution only), and

vcovariance prints the variance and covariances of the predictions.

By default descriptions, predictions and standard errors are printed. The standard errors (and

sed's) are relevant for the predictions when considered as means of those data that have been

analysed, with the means formed according to the averaging policy defined by the options of

PREDICT. The word prediction is used because these are predictions of what the means would

have been if the factor levels been replicated differently in the data; see Lane & Nelder (1982)

for more details. The LSDLEVEL option specifies the significance level (%) to use in the

calculation of least significant differences (default 5%).

By default, the standard errors (and sed's) are not augmented by any component corresponding

to the estimated variability of a new observation. However, you can set option SCOPE=new to

request that the variance of predictions should be calculated on the basis of forecasting new

observations rather than of summarizing the data to which the model has been fitted. This setting

cannot be used if the predictions are to be standardized for the effects of any factors in the

model; in other words, all factors in the current model must be listed in the CLASSIFY parameter

of the PREDICT statement. In addition, it cannot be used when making predictions from

generalized linear models with option BACKTRANSFORMATION=none, nor with weighted

regression. The effect of SCOPE=new is to form variances for each predicted value by combining

the variance of the estimated mean value of the prediction (as produced for SCOPE=data)

together with the estimated variance of a new observation with the same values of explanatory

variates and factors:

"new" variance = "data" variance + (dispersion × variance function)

The DISPERSION and DMETHOD options allow you to change the method by which the variance

of the distribution of the response values is obtained for calculating the standard errors. These

options operate like the corresponding options of MODEL (except that they apply only to the

current statement). The default is to use the method as originally defined by the MODEL

statement.

The NBINOMIAL parameter can be used to supply the total number of trials to be used for

prediction with a binomial distribution when option BACKTRANSFORMATION is set to link. If

you provide a value n greater than one, Genstat will predict the number of "successes" out of n.

The default, NBINOMIAL=1, causes Genstat to predict the proportion of successes.

You can send the output to another channel, or to a text structure, by setting the CHANNEL

option.

The COMBINATIONS option specifies which cells of the full table in Step A are to be filled for

averaging in Step B. The default, COMBINATIONS=estimable, uses all the cells other than

those that involve parameters that cannot be estimated, for example because of aliasing.

Alternatively, you can set COMBINATIONS=present to exclude cells for factor combinations

that do not occur in the data, or COMBINATIONS=full to use all the cells. When

COMBINATIONS=estimable or COMBINATIONS=present the LEVELS parameter is overruled.

PREDICT 381

Any subsets of factor levels in the LEVELS parameter are ignored, and predictions are formed

for all the factor levels that occur in the data or are estimable. Likewise, the full table cannot then

be classified by any sets of values of variates; the LEVELS parameter must then supply only

single values for variates.

The ADJUSTMENT and WEIGHTS options define how the averaging is done in Step B. Values

in the full table produced in Step A are averaged with respect to all those factors that you have

not included in the settings of the CLASSIFY parameter. By default, the levels of any such factor

are combined with what we call marginal weights: that is, by the number of occurrences of each

of its levels in the whole dataset. The ADJUSTMENT and WEIGHTS options allow you to change

the weights. The setting ADJUSTMENT=equal specifies that the levels are to be weighted

equally. (This corresponds to the default weighting used by VPREDICT.) The WEIGHTS option

is more powerful than the ADJUSTMENT option, allowing you to specify an explicit table of

weights. This table can be classified by any, or all, of the factors over whose levels the

predictions are to be averaged; the levels of remaining factors will be weighted according to the

ADJUSTMENT option. Moreover, you can classify the weights by the factors in the CLASSIFY

parameter as well, to provide different weightings for different combinations of levels of these

factors. If you supply explicit weights in the WEIGHTS option, any setting of the COMBINATIONS

option is ignored. You will find explicit weights useful in particular when you have population

estimates of the proportions of each level of a factor � proportions which may not be matched

well in the available data.

If a model contains any aliased parameters, predicted values cannot be formed for some cells

of the full table without assuming a value for the aliased parameters. With the default setting,

COMBINATIONS=estimable, no predictions are formed for these cells. When

COMBINATIONS=full, if the aliased parameters simply represent effects of variates that are

correlated with other explanatory variables in the model, it may be sufficient just to ignore them.

This can be done by setting the ALIASING option to ignore. The aliased parameters are then

taken to be zero, and fitted values are calculated for all cells of the table from the remaining

parameters in the model. Aliasing can also occur if there are some combinations of factors that

do not occur in the data, and here it may be more sensible to set option

COMBINATIONS=present so that these cells are all excluded from the calculation of

predictions. The final way to overcome aliasing is to supply explicit weights using the WEIGHTS

option.

Averaging is usually the appropriate way of combining predicted values over levels of a factor.

But sometimes summation is needed, for example in the analysis of counts by log-linear models.

You can achieve this by setting the METHOD option to total. The rules about weights and so on

still apply. In a generalized linear model, averaging is done by default on the scale of the original

response variable, not on the scale transformed by the link function. In other words, linear

predictors are formed for all the combinations of factor levels and variate values specified by

PREDICT, and then transformed by the link function back to the natural scale. This back-

transformation may be useful when you are reporting results, since the tables from PREDICT can

then be interpreted as natural averages of means predicted by the fitted model. You can set

option BACKTRANSFORM=none if you want the averaging to be done on the scale of the linear

predictor; PREDICT will then form averages and report predictions on the transformed scale.

PREDICT calculates the standard errors of predictions from iterative models by using first-

order approximations that allow for the effect of the link function. Thus you should interpret

them only as a rough guide to the variability of individual predictions.

The PREDICTIONS, SE, SED, LSD and VCOVARIANCE options let you save the results of

PREDICT as well as, or instead of, printing them. They are saved in a single data structure if

there is only one y-variate, or a pointer to several if there is more than one.

The SAVE option allows you to specify the regression save structure of the analysis on which

the predictions are based. If SAVE is not set, the most recent regression model is used.

382 Directives in Release 22

The NOMESSAGE option controls printing of messages. The nonlinear setting suppresses

messages about the approximate nature of standard errors of predictions in generalized linear

models, and the dispersion setting prevents reminders appearing about the basis of the

standard errors.

Options: PRINT, CHANNEL, COMBINATIONS, ADJUSTMENT, WEIGHTS, OFFSET, METHOD,

ALIASING, BACKTRANSFORM, SCOPE, NOMESSAGE, DISPERSION, DMETHOD, NBINOMIAL,

PREDICTIONS, SE, SED, LSD, LSDLEVEL, VCOVARIANCE, SAVE.

Parameters: CLASSIFY, LEVELS, PARALLEL, NEWFACTOR.

Reference

Lane, P.W. & Nelder, J.A. (1982). Analysis of covariance and standardization as instances of

prediction. Biometrics, 38, 613-621.

See also

Directives: FIT, RDISPLAY, VPREDICT.

Procedure: HGPREDICT.

Genstat Reference Manual 1 Summary section on: Regression analysis.

PRINT 383

PRINT

Prints data in tabular format in an output file, unformatted file or text.

Options

CHANNEL = identifier Channel number of file, or identifier of a text to store

output; default current output file

SERIAL = string token Whether structures are to be printed in serial order, i.e.

all values of the first structure, then all of the second,

and so on (yes, no); default no, i.e. values in parallel

IPRINT = string tokens What identifier and/or text to print for the structure

(identifier, extra, associatedidentifier), for

a table associatedidentifier prints the identifier of

the variate from which the table was formed (e.g. by

TABULATE), IPRINT=* suppresses the identifier

altogether; default iden

RLPRINT = string tokens What row labels to print (labels, integers,

identifiers), RLPRINT=* suppresses row labels

altogether; default labe, iden

CLPRINT = string tokens What column labels to print (labels, integers,

identifiers), CLPRINT=* suppresses column labels

altogether; default labe, iden

RLWIDTH = scalar Field width for row labels; default 13

INDENTATION = scalar Number of spaces to leave before the first character in

the line; default 0

WIDTH = scalar Last allowed position for characters in the line; default

width of current output file

SQUASH = string token Whether to omit blank lines in the layout of values (yes,

no); default no

MISSING = text What to print for missing value; default uses '*' for

numbers and blanks in texts

ORIENTATION = string token How to print vectors or pointers (down, across);

default down, i.e. down the page

ACROSS = scalar or factors Number of factors or list of factors to be printed across

the page when printing tables; default for a table with

two or more classifying factors prints the final factor in

the classifying set and the notional factor indexing a

parallel list of tables across the page, for a one-way table

only the notional factor is printed across the page

DOWN = scalar or factors Number of factors or list of factors to be printed down

the page when printing tables; default is to print all other

factors down the page

WAFER = scalar or factors Number of factors or list of factors to classify the

separate "wafers" (or slices) used to print the tables;

default 0

PUNKNOWN = string token When to print unknown cells of tables (present,

always, zero, missing, never); default pres

UNFORMATTED = string token Whether file is unformatted (yes, no); default no

REWIND = string token Whether to rewind unformatted file before printing

(yes, no); default no

WRAP = string token Whether to wrap output that is too long for one line onto

subsequent lines, rather than putting it into a subsequent

384 Directives in Release 22

"block" (yes, no); default no

STYLE = string token Style to use for an output file (plaintext,

formatted); default * uses the current style of the

channel

PMARGIN = string tokens Which margins to print for tables (full, columns,

rows, wafers); default full

OMITMISSINGROWS = string token Whether to omit rows of tables that contain only missing

values (yes, no); default no

VSPECIAL = scalar or variate Special values to be modified in the output

TSPECIAL = text Strings to be used for the special values; must be set if

VSPECIAL is set

Parameters

STRUCTURE = identifiers Structures to be printed

FIELDWIDTH = scalars Field width in which to print the values of each structure

(a negative value -n prints numbers in E-format in width

n); if omitted, a default is determined (for numbers, this

is usually 12; for text, the width is one more character

than the longest line)

DECIMALS = structures Number of decimal places for numerical data structures,

a scalar if the same number of decimals is to be used for

all values of the structure, or a data structure of the same

type and size to use different numbers of decimals for

each value; if omitted or set to a missing value, a default

is determined which prints the mean absolute value to 4

significant figures

CHARACTERS = scalars Number of characters to print in strings

SKIP = scalars or variates Number of spaces to leave before each value of a

structure (* means a new line before structure)

FREPRESENTATION = string tokens How to represent factor values (labels, levels,

ordinals); default is to use labels if available,

otherwise levels

JUSTIFICATION = string tokens How to position values within the field (right, left,

center, centre); if omitted, right is assumed

MNAME = string tokens Name to print for table margins (margin, total,

nobservd, mean, minimum, maximum, variance,

count, median, quantile); if omitted, "Margin" is

printed

DREPRESENTATION = scalars or texts

Format to use for dates and times (stored in numerical

structures)

HEADING = texts Heading to be used for vectors printed in columns down

the page; default is to use the information requested by

the IPRINT option

TLABELS = texts If this is specified for a table STRUCTURE, the values of

the table are interpreted as references to lines within the

TLABELS text that are to be printed instead of the values

of the table itself

PRINT 385

Description

The contents of Genstat data structures can be displayed, with appropriate labelling, using the

PRINT directive. Output can be printed in the current output channel, or sent to other channels,

or put into a text structure. PRINT has many options and parameters to allow you to control the

style and format of the output but, in most cases, these can be left with their default settings.

For a quick display of the contents of a list of data structures, you need only give the name of

the directive, PRINT, and then list their identifiers. For example

PRINT Source,Amount,Gain

The output is fully annotated with the identifiers, and with row and column labels or numbers,

where appropriate. Factors are represented by their labels if available, and otherwise by their

levels. The layout of the values is determined automatically by the size and shape of the

structures to be printed, and by the space needed to print individual values. The output is

arranged in columns; the structures are split if the page is not wide enough, so that one set of

columns is completed before the next is printed.

With vectors, the default is to print their values in parallel. Alternatively, you can request that

structures are printed in series, one below another, by setting option SERIAL=yes. Of course,

if the structures to be printed have different shapes or sizes, their values can be printed only in

series. The setting SERIAL=no is then ignored except that, to save space, any vectors or pointers

are then printed across the page (that is, as though you had set ORIENTATION=across).

Genstat annotates each set of values by the identifier of the structure (but this can be

controlled by the IPRINT option or the HEADING parameter described below), and it

automatically chooses a suitable format. For a numerical structure, the default is to use a field

of f characters. Generally, the value of f is 12, but another value can be defined using the

FIELDWIDTH option of the SET directive. If the DECIMALS parameter was set when the structure

was declared, this will define the number of decimal places in the output; otherwise, the number

of decimal places is determined by calculating the number that would be required to print its

mean absolute value to at least d significant figures. Generally, d is four, but this can be

redefined using the SIGNIFICANTFIGURES option of the SET directive. Texts (and labels of

factors) are usually printed in a field of f characters but this is extended if any of the strings in

the text requires a wider field. You can define your own formats using the parameters

FIELDWIDTH, DECIMALS, CHARACTERS, SKIP and JUSTIFICATION.

FIELDWIDTH and DECIMALS both operate in a straightforward way. The only potential

complication is that a negative FIELDWIDTH can be used to print numbers in scientific format

(for example 7.3 E1 instead of 73), with DECIMALS significant places. The DECIMALS parameter

is ignored for strings, like the labels of the factors Source and Amount. For a numerical data

structure, you can either set DECIMALS to a scalar to use the same number of decimals for all the

values of the structure. Alternatively, if you want to use a different number of decimals for each

value, you can supply a data structure of the same type and size as STRUCTURE. If DECIMALS

is omitted or if it contains a missing value, a default is used which prints the mean absolute value

to d significant figures, as above.

In the same way, the CHARACTERS parameter is ignored for numbers; for strings, it allows you

to control the number of characters that are printed. By default, Genstat prints all the characters

in each string of a text or factor label, unless the CHARACTERS parameter was set to a lesser

number when the text or factor was declared.

Textual strings can contain typesetting commands to represent Greek and special symbols.

(These are most useful in PRINT, but can be used in any directive that generates output.) The

commands are converted automatically by Genstat to match the style of output (HTML, LaTeX,

plain-text or RTF). The commands are all introduced by the character tilde (~). So, to use tilde

as an ordinary character, you need to specify the special symbol ~{~} as defined below.

If Genstat finds a mistake in the syntax of a command, it will not issue a failure diagnostic but

will output the remainder of the string (including any commands) as plain text. So, for example,

386 Directives in Release 22

legacy code containing tilde characters should continue to generate the output in its previous

form. The following comands define Greek characters and various special symbols.

~{~} tilde symbol; also see ~{tilde}

~{alpha} Greek character alpha

~{beta} Greek character beta

~{gamma} Greek character gamma

~{delta} Greek character delta

~{epsilon} Greek character epsilon

~{varepsilon} Greek character epsilon (variant)

~{zeta} Greek character zeta

~{eta} Greek character eta

~{theta} Greek character theta

~{vartheta} Greek character theta (variant)

~{iota} Greek character iota

~{kappa} Greek character kappa

~{lambda} Greek character lambda

~{mu} Greek character mu

~{nu} Greek character nu

~{xi} Greek character xi

~{omicron} Greek character omicron

~{pi} Greek character pi

~{varpi} Greek character pi (variant)

~{rho} Greek character rho

~{varrho} Greek character rho (variant)

~{sigma} Greek character sigma

~{varsigma} Greek character sigma (terminal version)

~{tau} Greek character tau

~{upsilon} Greek character upsilon

~{phi} Greek character phi

~{varphi} Greek character phi (variant)

~{chi} Greek character chi

~{psi} Greek character psi

~{omega} Greek character omega

~{bull} or ~{bullet} bullet

~{cdot} decimal point; also see ~{middot}

~{div} or ~{divide} divide symbol

~{gg} ">>" symbol; also see ~{raquo}

~{laquo} "<<" symbol; also see ~{ll}

~{ll} "<<" symbol; also see ~{laquo}

~{middot} alternative way of specifying a decimal point; also see
~{cdot}

~{minus} minus symbol

~{plusminus} "+ or minus" symbol; also see ~{pm}

~{pm} "+ or minus" symbol; also see ~{plusminus}

~{raquo} ">>" symbol; also see ~{gg}

~{sqrt} square-root symbol

~{oplus} + within circle

~{ominus} minus symbol within circle

~{otimes} multiply symbol within circle

~{oslash} slash symbol within circle

~{odot} dot within circle

PRINT 387

~{tilde} tilde symbol; also see ~{~}

~{times} multiply symbol

~{break} starts a new line in captions

The character definitions (within the curly brackets) can be abbreviated. Genstat checks through

the possibilities, in the order defined above, until it finds the first match. Greek characters in

capital letters can be obtained by beginning the name of the character with a capital letter, for

example ~{Sigma}; subsequent capital letters are irrelevant.

The style of font can be changed to bold or italic.

~bold or ~b introduces a sequence of bold characters; these must be

placed within curly brackets and any spaces between

~bold and the opening curly bracket are ignored.

 e.g. ~bold {Please note:}

~italic or ~i introduces a sequence of italic characters; these must be

placed within curly brackets and any spaces between

~italic and the opening curly bracket are ignored.

 e.g. ~italic {Passer domesticus}

You can also produce output in the same style as Genstat uses when it echoes commands in

the output.

~genstat or ~g introduces some output in the style that Genstat uses to

echo commands; it must be placed within curly brackets

and any spaces between ~genstat and the opening curly

bracket are ignored.

You can define subscripts and superscripts to use, for example, in equations.

~_ introduces a subscript; if the subscript is a single character

it can be placed immediately after _, otherwise it must be

placed within curly brackets; any spaces between ~_ and

the opening curly bracket are ignored.

~^ introduces a superscript; if the superscript is a single

character it can be placed immediately after ^, otherwise

it must be placed within curly brackets; any spaces

between ~^ and the opening curly bracket are ignored.

You can use special characters in subscripts or superscripts, but fonts must be specified outside

the subscript or superscript. For example:

~i {x~_{i,j}} defines xi,j,

x~^ {2n} defines x2n, and

~i{x~_{i,j}}~^2 defines xi,j
2

~b{X}~i{~_{i,j}}~^2 defines Xi,j
2.

For additional flexibility, you can specify output information in either HTML, LaTeX or RTF.

This will be inserted only into output constructed by Genstat in the same style. You can also

supply information to be included only in plain-text output (which may, for example, be your

translation of the HTML, LaTeX or RTF information).

~html or ~h introduces a sequence of information in HTML; the

information must be placed within curly brackets and any

spaces between ~html and the opening curly bracket are

ignored.

~latex or ~l introduces a sequence of information in LaTeX; the

information must be placed within curly brackets and any

spaces between ~latex and the opening curly bracket are

ignored. The information may itself contain curly brackets.

These are assumed to be paired according to the usual

rules of LaTeX, except that any curly brackets preceded by

388 Directives in Release 22

the LaTeX escape character \ are ignored.

~plain or ~p introduces a sequence of information to be inserted only in

plain-text output; the information must be placed within

curly brackets and any spaces between ~plain and the

opening curly bracket are ignored.

~rtf or ~r introduces a sequence of information in RTF; the output

must be placed within curly brackets and any spaces

between ~rtf and the opening curly bracket are ignored.

The information may itself contain curly brackets. These

are assumed to be paired according to the usual rules of

RTF, except that curly brackets preceded by the RTF

escape character \ are ignored.

The DREPRESENTATION parameter is used to specify how to print numbers that represent

dates and times. The DECIMALS parameter is then ignored. The setting of DREPRESENTATION

is either a scalar indicating a predefined format, or a string defining a custom format. The string

for a custom format contains a sequence of keys to represent the required components of the date

and time. The available keys are:

d day number within the month, using the minimum number

of digits (e.g. 3, 12)

dd day number within the month, using two digits (e.g. 03, 12)

dth day number with one digit and suffix (e.g. 3rd, 12th)

m month number, using the minimum number of digits

mm month number, using two digits

mmm abbreviated month name (Jan, Feb, Mar, Apr, May, June,

July, Aug, Sept, Oct, Nov, Dec)

mmmm month name in full

yy year as a two-digit number (omitting the century)

yyyy year as a four-digit number (including the century)

weekday day of the week (Monday, Tuesday, and so on)

wday abbreviated day of the week (Mon, Tue, Wed, Thur, Fri,

Sat, Sun)

time24 time, including seconds, using a 24 hour clock

time12 time, including seconds, using a 12 hour clock (with a.m.

and p.m.)

time100 time, using 24 hour clock and including hundredths of

seconds

hours elapsed time in hours, minutes and seconds

hours100 elapsed time in hours, minutes, seconds and hundredths of

seconds

minutes elapsed time in minutes and seconds

minutes100 elapsed time in minutes, seconds and hundredths of

seconds

seconds elapsed time in seconds

seconds100 elapsed time in seconds and hundredths of second

You can also insert one or more separators between the keys, any combination of space (), slash

(/), hyphen (-) and comma (,).

Note: the operation of the 2-digit representation of a year is controlled by a "break point". This

has the initial default of 30, but that can be changed by the YEAR2DIGITBREAK option of SET,

or in the DateFormat tab of the Options menu in Genstat for Windows. With the initial default

of 30, for example, years from 1930 to 2029 will be represented as two digits, but others will be

printed with four digits.

PRINT 389

To simplify the specification of the most commonly used formats, a range of standard pre-

defined formats are available. These are specified by supplying a scalar containing one of the

numerical codes in the left-hand column of the table below.

code format example

1 dd/mm/yy 03/08/98

2 dd/mm/yyyy 03/08/1998

3 d/m/yy 3/8/98

4 d/m/yyyy 3/8/1998

5 ddmmyy 030898

6 ddmmyyyy 03081998

7 ddmmmyy 03Aug98

8 ddmmmyyyy 03Aug1998

9 dd-mmm-yy 03-Aug-98

10 dd-mmm-yyyy 03-Aug-1998

11 dmmmyy 3Aug98

12 dmmmyyyy 3Aug1998

13 d-mmm-yy 3-Aug-98

14 d-mmm-yyyy 3-Aug-1998

15 d-mmmm-yy 3-August-98

16 d-mmmm-yyyy 3-August-1998

17 yymmdd 980803

18 yyyymmdd 19980803

19 yy/mm/dd 98/08/03

20 yyyy/mm/dd 1998/08/03

21 mmddyy 080398

22 mmddyyyy 08031998

23 mm/dd/yy 08/03/98

24 mm/dd/yyyy 08/03/1998

25 mmm-dd-yy Aug-03-98

26 mmm-dd-yyyy Aug-03-1998

27 yyyy-mm-dd 1998-08-03

28 weekday, dth mmmm yyyy Monday, 3rd August 1998

29 weekday Monday

30 mmm-yy Aug-98

31 yy 98

32 yyyy 1998

33 dd-mmm-yyyy time100 03-Aug-1998 18:55:30.35

34 yyyy-mm-dd time

(ODBC Standard format)

1998-08-03 18:55:30

35 dd-mmm-yyyy time12 03-Aug-1998 6:55:30 pm

36 time24 18:55:30

37 time12 6:55:30 pm

390 Directives in Release 22

38 hours 48:55:30

39 seconds 68538.35

40 dd/mm/yyyy time24 03/08/1998 18:55:30

41 m-yy 8-98

42 m-yyyy 8-1998

43 mm-yy 08-98

44 mm-yyyy 08-1998

45 d/m 3/8

46 dd/mm 03/08

47 d-mmm 8-Aug

48 dd-mmm 08-Aug

49 mmm Aug

You can also use the custom date formats supported by the client in Genstat for Windows. See

the Date Formats page in the on-line help for details.

The SKIP parameter allows you to place extra spaces between the values of each structure.

By default, no extra spaces are inserted unless a value fills the field completely, when a single

space will be inserted; there is also a blank line before the first printed line. SKIP can be set to

either a scalar or a variate in which a positive integer n requests that n spaces are left and a

missing value can be used to request a blank line.

The values can be left-justified by setting the JUSTIFICATION parameter to left, or centred

by setting it to center or centre.

The FREPRESENTATION parameter controls the printing of the factor values. By default

Genstat will print labels if there are any; if there are none, it prints the levels. The ordinals

setting represents the values by the integers 1 upwards.

The ORIENTATION option is relevant only when you are printing vectors or pointers. By

setting ORIENTATION=across, the values are printed in alternate lines, across the page. To

ensure that these line up correctly, the fieldwidth is taken as the maximum of those specified for

the printed structures, while the field used to print their identifiers is given by the RLWIDTH

option (by default 13).

When there is too much output to fit across the page, Genstat will print the output in more than

one block unless option WRAP is set to yes. Then Genstat simply wraps each line onto

subsequent lines. This is likely to be useful mainly if you are printing the contents of the

structures to be read by another program. You might then also wish to suppress the identifiers

by setting option IPRINT=* and remove blank lines by setting option SQUASH=yes.

The default option setting, IPRINT=identifier, will label the output with the identifier of

the structure. Putting IPRINT=identifier,extra will also include any text that has been

associated with the structure by the EXTRA parameter when it was declared, while the setting

associatedidentifier can be used when a table has been produced by the TABULATE and

AKEEP directives, to request that the output be labelled with the identifier of the variate from

which the table was formed.

If you are printing vectors in parallel columns down the page, you can use the HEADING

parameter to specify a text for each vector. This will then be used as a heading for that column,

instead of the information requested by IPRINT. Note, though, that setting IPRINT=* will

suppress any heading texts of the vectors as well as their identifiers.

The width of each line can be controlled by the WIDTH option; the default is to take the full

available width. The INDENTATION option specifies the number of spaces to leave before each

line; by default there are none.

The CHANNEL option determines where the output appears. By default, the output is placed

PRINT 391

in the current output channel, but CHANNEL can be set to a scalar to send it to another output

channel; the correspondence between channels and files on the computer is explained in the

description of the OPEN directive. Alternatively, you can set CHANNEL to the identifier of a text

to store the output. The text need not be declared in advance; any undeclared structure that is

specified by CHANNEL will be defined automatically as a text. Each line of output becomes one

value of the text and if the text already has values they will be replaced. You are most likely to

want to do this in order to manipulate the text further. Remember, however, that if you print the

text later on, its strings will be right-justified by default, so you will need to set

JUSTIFICATION=left in the later PRINT statement to achieve the normal appearance of your

output. The maximum (and default) line length of this text is the length of what is called the

output buffer. This is likely to be 200 on most computers. If you intend to print it to an output

file, you should set the WIDTH option as appropriate.

The MISSING option allows you to specify a string to represent missing values, instead of the

default that uses the asterisk symbol for missing numbers, and blanks for missing values in texts.

For example, you could set MISSING='unknown' or MISSING=' '.

The VSPECIAL and TSPECIAL options allow you to substitute textual strings for other values

of numerical structures. The values are specified, in either a scalar or a variate, using the

VSPECIAL option. The TSPECIAL option then specifies a text, with as many values as the

VSPECIAL scalar or variate, to define the strings to be printed instead. For example, in the

following program, values of prob less than 0.001 are set to �1, and then printed as '<0.001'.

CALCULATE prob = prob * (prob .GE. 0.001) - (prob .LT. 0.001)
PRINT [VSPECIAL=-1; TSPECIAL='<0.001'] prob

PRINT can easily be used to print matrices and tables, by taking the default layout and

labelling. For tables with more than one dimension, the usual layout has one factor across the

page and the others down the page; tables with only one dimension are printed down the page.

Several tables can be printed in parallel, provided they all have the same classifying factors. The

tables are then printed in alternate columns, as though they formed a larger table with an extra

factor (called the table-factor) representing the list of tables. This extra factor thus becomes

another (in fact, the final) factor to be printed across the page.

This default layout can be changed using the ACROSS, DOWN and WAFER options. You may

wish to do this simply by changing the factors which appear down and across the page. The

ACROSS option can be set to a scalar to specify how many factors should be printed across the

page, or to a list of factors to say which ones they should be. DOWN similarly specifies the factors

to be printed down the page. However, you cannot specify a list of factors for one of these

options and a scalar for any of the others. The table-factor can be represented in these lists by

inserting a * in the required position; if you do not mention the table-factor in either list it

remains as the last factor in the ACROSS list.

The WAFER option allows you to split the output up into subtables or "wafers". This is

particularly useful if the tables have many classifying factors, or if the factors have very long

labels. The setting can again be either a scalar or a list of factors (possibly including the table-

factor). Each subtable has a heading indicating its position in the full table. If the table-factor is

included in the wafer, the identifier of the appropriate table will be printed at the beginning of

the label for that wafer; this does not mean that the table-factor itself has been moved, simply

that the labelling has been rearranged to make it easier to read.

You need not specify all the options DOWN, ACROSS and WAFER. If you leave any of them out

PRINT will deduce the missing information.

When a table has margins, usually they will all be printed. However, you can control which

are printed, by specifying the following settings of the PMARGIN option:

full print all margins (default),

columns print margins over column factors,

rows print margins over row factors, and

392 Directives in Release 22

wafers print margins over wafer factors.

The OMITMISSINGROWS option also operates only on tables; if you set it to yes, PRINT will

omit any lines of output where the tables contain only missing values.

You can control the space allowed for labels of the DOWN factors by using the RLWIDTH option.

By default this is set to 13, but you might want something else if the labels are very small. If the

width provided (by you, or implicitly) is inadequate, PRINT automatically resets it to

accommodate the longest row label. The labelling of rows by the down factors is controlled by

the RLPRINT option. The default, RLPRINT=labels,identifiers, prints the identifiers of

the factors and their levels or labels. Similarly, the CLPRINT controls the labelling of columns

by the across factors.

When tables are produced by TABULATE Genstat sets an internal indicator for use by PRINT

to indicate the appropriate label for any margins. When a single table is printed this name will

be used by default. When printing tables in parallel, if they all have the same setting of the

margin name indicator, the appropriate name is used. If they have different settings, or none at

all (tables from sources other than TABULATE) the margins will be labelled Margin by default.

You can change the label by setting the MNAME parameter. Tables printed in parallel must have

the same label throughout, and Genstat will take the one specified for the first table in the list.

But in serial printing, you can use a different margin name for each table.

The TABULATE and AKEEP directives also record the identifier of the variate from which the

table was formed, and you can request that this be used to label the output, instead of the

identifier of the table itself, by setting the IPRINT option to associatedidentifier.

The PUNKNOWN option controls the printing of the "unknown" cell of a table. The default

action is to print this cell, labelled with the table identifier, but only if it contains a value other

than missing value or zero. You can select one of five settings:

present (default) print value if not missing or zero

always print the unknown cell regardless of value

zero print unless the value is zero

missing print unless the value is missing

never do not print the unknown cell whatever its value

Genstat tables can only contain numbers. However, you can use the TLABELS parameter to

print tables of textual strings. You first need to form a Genstat text structure containing all the

strings that may occur. Then form a table with the required classifying factors and, in each cell

of the table, put the number of the line (within the text) of the string that you want to print there.

For example

FACTOR [LABELS=!t(April,May,June)] Month
TEXT [VALUES=North,South,East,West] Direction
TABLE [CLASSIFICATION=Month; VALUES=12.2,5.8,10.7] MeanSpeed
& [VALUES=4,2,4] MainDirection
PRINT MeanSpeed,MainDirection; TLABELS=*,Direction

will print 'West' in the first and third cells of the table for MainDirection (April and June),

and 'South' in the second cell (May).

Options ACROSS, DOWN, WAFER, RLPRINT and CLPRINT also apply to matrices. By default,

though, if you have several matrices they will be printed one after another on the page.

With symmetric matrices the only options of these that are relevant are RLPRINT and

CLPRINT; a further setting integer is available for these to request that the rows or columns

be labelled by the integers 1 onwards, as well as, or instead of the labels provided with the

symmetric matrix: for example setting RLPRINT=integers and CLPRINT=integers,

labels would identify the rows by integers and the columns with integers and labels.

The UNFORMATTED option can be used to send output to unformatted files. These can store

values of data structures, so that they can later be input again using READ. This provides a

convenient of way to free some space temporarily. It can also save computing time if you have

PRINT 393

a large data set that may need to be read several times. Input from character files is slow. So after

vetting a large data set, it will be read more efficiently on future occasions if you transfer its

contents to an unformatted file. As an alternative you could use backing store, but this stores the

attributes of the structures as well as their values, and so access will take longer. You can also

use these facilities to transfer data between Genstat and other programs. The only other options

that are relevant to unformatted files are CHANNEL, REWIND and SERIAL. Genstat automatically

creates an unformatted workfile, on channel 0, to which unformatted output is sent by default (by

PRINT), and from which unformatted input is taken by default (by READ). This file is deleted

automatically at the end of a Genstat run. It is usually quicker to read and write structures in

series. Also the values of the structures transferred in parallel must all be of the same mode.

Neither texts nor factors can be stored in parallel with values of the other, numerical, structures:

scalars, variates, matrices or tables. As an example, we first open a file, and declare some

variates, matrices and factors.

OPEN 'BDAT'; CHANNEL=3; FILETYPE=unformatted
VARIATE X,Y,Z; VALUES=!(11...19),!(21...29),!(31...39)
MATRIX [ROWS=2; COLUMNS=3; VALUES=11,12,13,21,22,23] M
FACTOR [LEVELS=3; VALUES=1,3,2,3,1,2,2,2,1,3] F

The next three statements store data for M and F on the file named BDAT and data for X, Y and Z

(in parallel) on the workfile.

PRINT [CHANNEL=3; SERIAL=yes; UNFORMATTED=yes] M,F
PRINT [UNFORMATTED=yes] X,Y,Z

You can now free the space for numerical data for other purposes, by putting

DELETE X,Y,Z,F,M

By rewinding the files we can read the data back into Genstat.

READ [UNFORMATTED=yes; REWIND=yes] X,Y,Z
READ [CHANNEL=3; SERIAL=yes; UNFORMATTED=yes; REWIND=yes] M,F

You can also re-use the external file BDAT in a later job. If you change the lengths of structures,

you must remember to reset them to their original values before you use unformatted READ to

recover the data values from the file. Only the data values are stored in unformatted files, and

not the attributes (such as lengths) as in backing-store files.

The style in which the output is generated will depend on how the channel has been opened

(see the OPEN directive). An ordinary output file (i.e. one with option UNFORMATTED=no) may

have been opened to take output as either plain text, HTML (as used for example by web

browsers), RTF (as used by word processors such as Microsoft Word) or LaTeX. Plain-text

output assumes that all characters occupy an equal width, so columns are aligned by use of space

characters. The other styles use special codes to define the columns. However, you can set option

STYLE=plain to request that output to files with these other styles should use spaces instead.

This is useful particularly in procedures, when you may want to print a "sentence" containing

information from several different data structures. The output of blank lines is still controlled

by the SQUASH option.

Options: CHANNEL, SERIAL, IPRINT, RLPRINT, CLPRINT, RLWIDTH, INDENTATION, WIDTH,

SQUASH, MISSING, ORIENTATION, ACROSS, DOWN, WAFER, PUNKNOWN, UNFORMATTED,

REWIND, WRAP, STYLE, PMARGIN, OMITMISSINGROWS, VSPECIAL, TSPECIAL.

Parameters: STRUCTURE, FIELDWIDTH, DECIMALS, CHARACTERS, SKIP, FREPRESENTATION,

JUSTIFICATION, MNAME, DREPRESENTATION, HEADING.

Action with RESTRICT

You can restrict any vector (variate, factor or text) to specify that only a subset of its units should

be printed. When printing in series the vectors can be restricted to different subsets; but with

parallel printing any restriction is applied to all the vectors (and any pointers) so, if more than

394 Directives in Release 22

one vector is restricted, they must all be restricted in the same way.

See also

Directives: CAPTION, COPY, OPEN, PAGE, SKIP, DUMP, LIST.

Procedures: DECIMALS, MINFIELDWIDTH.

Genstat Reference Manual 1 Summary section on: Input and output.

PROCEDURE 395

PROCEDURE

Introduces a Genstat procedure.

Options

PARAMETER = string token Whether to process the structures in each parameter list

of the procedure sequentially using a dummy to store

each one in turn, or whether to put them all into a pointer

so that the procedure is called only once (dummy,

pointer); default dumm

RESTORE = string tokens Which aspects of the Genstat environment to store at the

start of the procedure and restore at the end (inprint,

outprint, outstyle, diagnostic, errors, pause,

prompt, newline, case, run, units,

blockstructure, treatmentstructure,

covariate, asave, dsave, msave, rsave, tsave,

vsave, vcomponents, seeds, captions, cmethod,

actionafterfault, unsetdummy, all); default *

SAVE = text Text to save the contents of the procedure (omitting

comments and some spaces)

WORDLENGTH = string token Length of word (32 or 8 characters) to check in

identifiers, directives, options, parameters and

procedures within the procedure (long, short); default

* i.e. no change

Parameter

text Name of the procedure

Description

Once you start to write programs for complicated tasks, you may wish to keep them to use again

in future. The most convenient way of doing this is to form them into procedures. You may also

wish to use procedures written by other people. The use of a Genstat procedure looks exactly the

same as the use one of the standard Genstat directives. Thus, you simply give the name of the

procedure, and then specify options and parameters as required. As with directives, the name can

be abbreviated to as few as four characters, provided there is no ambiguity with the names of

directives or other procedures. Directives and procedures in the official Genstat library are all

defined to have names that are distinct within the first four characters so there should be no

problem unless you (or your site) have defined procedures with ambiguous names.

When Genstat meets a statement with a name that it does not recognize as one of the standard

Genstat directives, it first looks to see whether you have a procedure of that name already stored

in your program. Then it looks in any procedure library that you may have attached explicitly

to your program, taking these in order of their channel number (see the OPEN directive). The

people that manage your computer can define a special site library and arrange for this to be

attached to Genstat automatically when it is run. If they have done so, this library will be

examined next. Finally Genstat looks in the official Genstat Procedure Library, which is also

attached automatically to your program. After locating the required procedure, Genstat reads it

in, if necessary, and then executes it. So you do not have to do any more than you would to use

a Genstat directive.

The official library thus allows new facilities to be offered to all users. Or your computer

manager can make procedures available that cover the special needs of the users at your site, and

these will over-ride any procedures of the same name in the official library. Or you can form

your own libraries of the procedures that you find particularly useful, and these will always be

396 Directives in Release 22

taken in preference to procedures in the site or the official library. Note however that a procedure

cannot have the same name as any of the Genstat directives.

Information is transferred to and from a procedure only by means of its options and

parameters. Otherwise the procedure is completely self-contained. Anyone who uses it does not

need to know how the program inside operates, what data structures it contains, nor what

directives it uses. The data structures inside the procedure are local to the procedure and cannot

be accessed from outside.

To write your own procedures, you start by giving a PROCEDURE statement. This has a single

parameter which defines the name of the procedure. The name can be up to 32 characters with

the same rules as for the identifiers of data structures: the first character must be a letter, the

second to the 32nd can be either letters or digits, and characters beyond the 32nd are ignored.

However the name cannot be suffixed, and Genstat will warn you if the first four characters are

the same as those of a Genstat directive. If so, you will be unable to abbreviate the name fully

(down to as few as four characters), but you will need to give enough characters to distinguish

it from the directive. If there is ambiguity in the name of a command, Genstat selects the

directive or procedure to use according to the following order of priority: directives, user-defined

procedures, procedures in libraries attached by the user (in order of channel number), procedures

in the site library, and procedures in the official library.

The PARAMETER option indicates whether the settings in any list specified for the parameters

of the procedure are to be taken one at a time, or whether they need to be processed together. The

difference between these alternatives can be illustrated by considering some of the Genstat

directives. For example, with

ANOVA Height,Weight; RESIDUALS=Hres,Wres

Genstat will first do an analysis with the values in the Height variate and store the resulting

residuals in the variate Hres; it then analyses Weight and stores the residuals in Wres. This

action corresponds to the default setting PARAMETER=dummy; inside the procedure, each

parameter will then be a dummy data structure which will point to each item of the list in turn,

in the same way as the parameters of a FOR loop. Conversely, in the statement

PRINT Height,Hres

the values of Height and Hres are printed together down the page, and this is possible only if

PRINT is able to access both variates simultaneously. In a procedure this would require the

setting PARAMETER=pointer; each parameter is then a pointer, storing the whole list.

You may change some aspects of the Genstat environment within a procedure. This may be

the intended purpose of the procedure; but if it is an unwanted side effect, you should reset them

afterwards. The RESTORE option allows you to list aspects that would like Genstat to reset

automatically when it finishes executing the procedure. The settings of RESTORE mainly

correspond to the various items that can be saved by the ENVIRONMENT and SPECIAL options

of the GET directive. The outstyle setting restores the output style of the current output

channel (see OPEN and OUTPUT). The setting all which has the same effect as listing all the

other settings. Alternatively, you can save and restore the environment explicitly using the GET,

SET, ENQUIRE and OUTPUT directives, although this is usually less efficient.

The SAVE option allows you to store the contents of the procedure, up to and including

ENDPROCEDURE, in a text so that you can edit and redefine it or, for example, print it to a file or

save it on backing store. The saved version is a modified form of the original input. Each line

of the text contains a single statement; thus, where a statement spans several lines of input, these

are concatenated into a single line in the text (deleting the continuation characters). Any line that

contains several statements is split. Comments are removed, and any occurrence of several

contiguous spaces is replaced by a single space. Also, a colon is placed at the end of each line.

Finally, the WORDLENGTH option allows you to set the wordlength to be used for identifiers,

directives, options, parameters and procedures within the procedure. If WORDLENGTH=long, up

PROCEDURE 397

to 32 characters of each of these names are stored and checked; while if WORDLENGTH=short,

no more than eight characters are used. The default is to keep the existing setting of the

wordlength (as in the program defining the procedure).

After the PROCEDURE statement, you must define what options and parameters the procedure

is to have; this is done by the directives OPTION and PARAMETER respectively. Only one of each

of these should be given, and they must appear immediately after the PROCEDURE statement, but

it does not matter which of the two you give first. They have very similar syntaxes, except that

OPTION has an extra parameter which allows you to indicate whether a list of values or of

identifiers is allowed. If you do not wish to define options or parameters for a procedure you can

simply omit these directives; alternatively you can use OPTION or PARAMETER but with none of

their parameters set, which has precisely the same effect. You can alse use the CALLS directive

to list any procedures that your procedure calls. (This can be useful when you are defining a suite

of procedures that may call each other.)

After the OPTION, PARAMETER and CALLS statements, you then list the statements that are to

be executed when the procedure is called: these statements are the sub-program that makes up

the procedure. Any data structures defined within the procedure are local to the procedure and

cannot be accessed from outside. So you can use any identifiers for the structures, without

having to worry about whether they may also be used outside by someone who may later use the

procedure. You end these statements making up the procedure by an ENDPROCEDURE statement.

You are allowed to redefine an existing procedure if you wish to change any of the statements

that it contains. To do this you specify the PROCEDURE statement, as usual, followed by the

statements making up the new version of the procedure, and then an ENDPROCEDURE statement.

However, you are not allowed to change the option or parameter definitions, and if there are any

changes in the OPTION or PARAMETER statements, Genstat will give an error diagnostic.

Options: PARAMETER, RESTORE, SAVE, WORDLENGTH.

Parameter: unnamed.

See also

Directives: OPTION, PARAMETER, CALLS, ENDPROCEDURE, FAULT, COMMANDINFORMATION,

WORKSPACE.

Procedure: CHECKARGUMENT.

Genstat Reference Manual 1 Summary section on: Program control.

398 Directives in Release 22

QDIALOG

Produces a modal dialog box to obtain a response from the user.

Options

DIALOG = string token Type of dialog box (checkbox, pushbutton,

radiobutton, text, integer, real, variable,

query, message); no default, must be specified

TITLE = text Title for the dialog box; default * i.e. none

PREAMBLE = text Informative text that appears above any controls on the

dialog; default * i.e. none

LABEL = text Label for the data entry field; default * i.e. none

RESPONSE = identifier Structure to store the response

STATUS = scalar Stores the exit status as 1 for OK, 2 for cancel, 3 for no,

or 4 for yes

DEFAULT = identifier Default setting or settings to appear in the menu; default

* i.e. none

LIST = string token Whether an interger, real or variable entry field can

contain a list of settings (yes, no); default no

HELP = texts Help on the menu, to be displayed in a pop-up window;

default * i.e. none

ICON = string token Type of icon to display in the dialog box

(information, warning, error, query); default *

i.e. none

TIMEOUT = scalar Permits the dialog to continue and return a default value

after a specified period (in seconds); default * i.e. no

timeout

MINIMUM = scalar Minimum value for numerical input fields; default * i.e.

none

MAXIMUM = scalar Minimum value for numerical input fields; default * i.e.

none

Parameters

BOXLABEL = texts Label for each checkbox or radio button

BOXRESPONSE = scalars Indicates the selection status of each checkbox or radio

button

Description

QDIALOG displays dialog box to obtain a response from the user. The dialog is modal i.e. the

Genstat server pauses until an exit button(e.g. OK or Cancel) is pressed on the dialog.

The TITLE option supplies a line of text to appear in the title bar of the dialog box, and the

PREAMBLE specified a text of general description to appear at the top of the box. You can use

the HELP option to supply additional information, which will be displayed in a pop-up window

if the user clicks on a Help button. The ICON option can specify one of the standard windows

icons to appear in advance of the preamble. The DEFAULT option can specify a default response

to be shown when the dialog appears. The TIMEOUT option can specify a time in seconds, after

which the dialog will close automatically, and return the default.

The DIALOG option specifies the type of dialog box, with the following settings.

checkbox allows the user to make a multiple-choice selection from a

set of values. The BOXLABEL parameter specifies textual

descriptions for each checkbox. The results selected for the

boxes are saved in a list of scalars supplied by the

QDIALOG 399

BOXRESPONSE parameter; each scalar is set to 0 or 1 (false

or true) according to whether or not the corresponding box

is checked. The DEFAULT option can be set to a scalar or

variate containing an index number or numbers defining

the check boxes to be checked when the menu first

appears. The STATUS option returns the value 1 (for OK)

or 2 (for Cancel) depending on how the user exits from the

menu.

radiobutton is similar to the checkbox dialog but only one choice is

permitted. So, if a different choice is selected, the original

is automatically cleared. The options and parameters are

used in the same way as the checkbox dialog, with two

small changes. The DEFAULT option must be set, and the

user's choice can be saved (in a scalar) by RESPONSE

option, as an alternative to the BOXRESPONSE parameter.

The RESPONSE scalar stores the number of the selected

button, or zero if the dialog is cancelled.

pushbutton works in the same way as a radio button dialog. However,

it differs in appearance, as the strings specified in

BOXLABEL are displayed on push-buttons. If set, the

DEFAULT option specifies the button that is initially

selected, and the value that is returned if the user presses

the return or space keys.

text, integer and real each contain a field into which a string or number can be

typed, as appropriate. The LABEL option can supply a

description or prompt for the input field. The input is saved

by the RESPONSE option in a text or scalar (or variate if

option LIST=yes) as appropriate . The STATUS option

returns the value 1 (for OK) or 2 (for Cancel). The

MINIMUM and MAXIMUM options can be used to supply

constraints for numerical responses.

variable contains a field into which identifiers can be typed. The

LIST option indicates whether there should be only one

identifier, or whether there can be several separated by

commas. The LABEL option can supply a description or

prompt for the input field. The results are saved by the

RESPONSE option, in a pointer. The STATUS option returns

the value 1 (for OK) or 2 (for Cancel).

query displays the preamble text and icon, followed by the

question or query specified by the LABEL option. The

dialog has buttons for no and yes. The STATUS option

returns the value 1 (for OK), 3 (for no) or 4 (for yes).

message displays the preamble text and icon, with an OK button. It

exits when the OK button is pressed, with STATUS set to 1

(OK).

Options: DIALOG, TITLE, PREAMBLE, LABEL, RESPONSE, STATUS, DEFAULT, LIST, HELP,

ICON, TIMEOUT, MINIMUM, MAXIMUM.

Parameters: BOXLABEL, BOXRESPONSE.

400 Directives in Release 22

See also

Procedures: QFACTOR, QLIST. QUESTION.

Genstat Reference Manual 1 Summary sections on: Program control, Calculations and

manipulation.

QRD 401

QRD

Calculates QR decompositions of matrices.

Option

PRINT = string tokens Printed output required (orthogonalmatrix,

uppertriangularmatrix); default * i.e. no printing

Parameters

INMATRIX = matrices or symmetric matrices

Matrices to be decomposed

ORTHOGONALMATRIX = matrices Orthogonal matrix of each decomposition

UPPERTRIANGULARMATRIX= matrices

Upper-triangular matrix of each decomposition

Description

The QR decomposition of a matrix is a decomposition of an m by n matrix A into an orthogonal

matrix Q (i.e. Q�Q = I), and an n by m matrix R, so that A = Q R. If m 	 n, the top n rows of R

are triangular and the lower m�n rows contain zeros. If m < n, R is trapezoidal, i.e. it has the

form (R1 | R2) where R1 is an upper triangular matrix and R2 is a rectangular matrix.

The matrix A to be composed is specified by the INMATRIX parameter, and the matrices Q and

R can be saved using the ORTHOGONALMATRIX, and UPPERTRIANGULARMATRIX parameters,

respectively.

The PRINT option allows you to print either of the components of the decomposition; by

default, nothing is printed.

Option: PRINT.

Parameters: INMATRIX, ORTHOGONALMATRIX, UPPERTRIANGULARMATRIX.

Method

QRD uses subroutines F08AEF and F08AFF from the NAG Library.

See also

Directives: MATRIX, CALCULATE, NAG, FLRV, SVD.

Genstat Reference Manual 1 Summary sections on: Calculations and manipulation,

Multivariate and cluster analysis.

402 Directives in Release 22

RANDOMIZE

Randomizes the units of a designed experiment or the elements of a factor or variate.

Options

BLOCKSTRUCTURE = formula Block model according to which the randomization is to

be carried out; default * i.e. as a completely-randomized

design

EXCLUDE = factors (Block) factors whose levels are not to be randomized

SEED = scalar Seed for the random-number generator; default 0

Parameter

factors or variates Structures whose units are to be randomized according

to the defined block model

Description

In its simplest form, RANDOMIZE performs a random permutation of the units of a list of factors

or variates. You list these structures with the parameter of RANDOMIZE. Genstat gives them all

exactly the same permutation, which is produced by a set of random numbers generated from the

SEED option. For example

RANDOMIZE [SEED=144556] X,Y

puts the values of X and Y into an identical random order. The seed can be any positive integer,

but only the last six digits of its integer part are used. Thus the seeds 2144556 and 7144556.3

are both equivalent to the seed 144556. The default of zero continues the existing sequence of

random numbers if RANDOMIZE has already been used in the current Genstat job. If RANDOMIZE

has not yet been used, Genstat picks a seed at random. On the other hand, if you use the same

(non-zero) seed more than once, you will get the same random numbers, and hence the same

randomization.

The main use of RANDOMIZE, however, is to randomize the allocation of treatments to units

in a designed experiment. In the analysis of designed experiments, the underlying structure of

an experiment is defined by the block formula, as explained in the description of the

BLOCKSTRUCTURE directive. Provided the only operators in a block formula are the nesting (/)

and crossing (*) operators, this also specifies the correct randomization of the experiment.

The nesting operator specifies that one factor is to be randomized within another one. The

simplest example is the randomized block design: its block formula is Blocks/Plots; a

separate randomization of plots is done for each block. Another example is a split-plot design,

the formula for which is Blocks/Wplots/Subplots; this means randomize first the levels of

Blocks, then the levels of Wplots within levels of Blocks, and finally the levels of Subplots

within the levels of Blocks and Wplots. In other words, there is a separate randomization of

Wplots for each Block, and a separate randomization of Subplots for each Wplot. A similar

formula and randomization would apply to a resolvable incomplete-block design.

The crossing operator specifies that the factors are to be randomized independently of each

other. For example the formula Rows*Cols means randomize the levels of Rows and Cols

separately. Thus the same randomization of Cols appears within each Row. This is the block

formula associated with a row and column design, for example a Latin square.

You specify the block formula by the BLOCKSTRUCTURE option, which thus defines the way

in which the randomization is to be carried out. Genstat does not randomize the factors in the

block structure themselves, unless you put them into the parameter list. This is because the

original order of the block-factor levels often describes actual positions in the experiment; for

example, in a field. So you are most likely to want to keep these values, rather than the random

ordering of them that is used to allocate treatments. The block formula for RANDOMIZE must

index all the units; so a randomized block block design must be specified for example as

RANDOMIZE 403

Blocks/Plots and not just Blocks. To put a formula of just Blocks would not give Genstat

any information about what to do with the elements of the blocks.

You should use the EXCLUDE option if you want to restrict the randomization so that one or

more of the factors in the block formula is not randomized. The most common instance where

this is required is when one of the treatment factors is time-order, which cannot be randomized.

Options: BLOCKSTRUCTURE, EXCLUDE, SEED.

Parameter: unnamed.

Action with RESTRICT

You can randomize only a subset of the units by applying a restriction to any of the vectors in

the parameter list. All the vectors will be be treated as though they were restricted and, if more

than one is restricted, they must all be restricted in exactly the same way.

See also

Directive: GENERATE.

Procedures: AKEY, ARANDOMIZE, APERMTEST, RPERMTEST, SAMPLE, SVSAMPLE.

Functions: GRBETA, GRBINOMIAL, GRCHISQUARE, GRF, GRGAMMA, GRHYPERGEOMETRIC,

GRLOGNORMAL, GRNORMAL, GRPOISSON, GRSAMPLE, GRSELECT, GRT, GRUNIFORM.

Genstat Reference Manual 1 Summary sections on: Design of experiments, Analysis of

variance, Calculations and manipulation.

404 Directives in Release 22

RBDISPLAY

Displays output from a radial basis function model fitted by RBFIT.

Option

PRINT = strings Controls fitted output (description, estimates,

fittedvalues, summary); default desc, esti, summ

Parameter

pointers Save structure with details of the fitted model

Description

RBDISPLAY displays results from the fit of a radial basis function model by RBFIT. Details of

the fitted model can be supplied using the parameter of RBDISPLAY. This must have been saved

using the SAVE parameter of RBFIT. If this is not set, the output is from the most recent model

fitted by RBFIT.

Printed output is controlled by the PRINT option, with settings:

description a description of the model,

estimates estimates of the parameters,

fittedvalues fitted values, and

summary summary (lack of fit etc.).

Option: PRINT.

Parameter: unnamed.

See also

Directives: RBFIT, RBPREDICT.

Genstat Reference Manual 1 Summary section on: Data mining.

RBFIT 405

RBFIT

Fits a radial basis function model.

Options

PRINT = string tokens Controls fitted output (description, estimates,

fittedvalues, summary); default desc, esti, summ

RBTYPE = string token Type of radial basis function (linear, cubic,

thinplate, gaussian, multiquadric,

inversemultiquadric, cauchy); default line

METRIC = string token How to calculate distances for the radial basis functions

(euclidean, cityblock, manhattan,

pythagorean); default eucl

SCALING = string token Type of scaling used to compute distances (sd,

mahalanobis, supplied); default sd

ALPHA = scalar Specifies the value for the constant á, used to calculate

radial distances for RBTPYE settings multiquadric,

inversemultiquadric and cauchy; default 1

LAMBDA = scalar Specifies the value of the penalty constant ë

TOLERANCE = scalar Tolerance for setting eigenvalues equal to zero in the

singular value decomposition; default 0.000001

Parameters

Y = variates Response variates

X = pointers Independent variates

CENTRES = pointers Centres of the radial basis functions for the dependent

variates

RBSCALING = scalars or variates Scaling parameters for the radial distance calculations

when SCALING=supplied; default 1

FITTEDVALUES = variates Fitted values generated for each y-variate by the model

ESTIMATES = variates Saves the estimated model parameters

EXIT = scalars Saves the exit code

SAVE = pointers Saves details of the model and the estimated parameters

for RBDISPLAY or RBPREDICT

Description

RBFIT estimates the parameters of a radial basis function model. The response variate is

supplied by the Y parameter, and the independent (or x-) variates are supplied in a pointer by the

X parameter.

The model assumes that the y-value on each unit is related to the vector x of x-values (x1 ...

xp) on that unit, according to the model

y = f(x) + å

for some unknown function f() and noise å drawn at random from a Normal distribution with

zero mean and unit variance. A radial basis function (RBF) model approximates the function f(
)
by a linear combination of t basis functions, giving an approximate fitted value f for the

dependent value

f = �k=1...t wk hk + wt+1 b

where b is a scalar intercept term and hk is the value given by an RBF for a radial distance zk

between x and a centre location ck defined for the kth RBF.

The centre locations are supplied in a pointer by the CENTRES parameter. This should have

a variate for each x-variate, with a unit for each RBF.

The METRIC option defines how the radial distances are calculated. The default setting,

406 Directives in Release 22

euclidean, uses a scaled Euclidean distance

zk = [(x � ck) S
�1 (x � ck)�]

1/2

where the form of the scaling matrix S is controlled by the SCALING option (see below). The

cityblock setting calculates the distance as

zk = �k=1...t |xj � ckj| / sj

where sj is the jth diagonal element of the scaling matrix S. METRIC also has settings

pythagorean and manhattan which act as synonyms of euclidean and cityblock.

The available forms of the scaling matrix, and corresponding settings of the SCALING option

are as follows:

sd diagonal matrix containing the standard deviations of the

x-variates (default),

mahalanobis variance-covariance matrix of the data values of x-

variables (to give the Mahalanobis distance),

supplied user-defined scaling parameters, supplied by the

RBSCALING parameter.

The mahalanobis setting is available only for the euclidean or pythagorean settings of

the METRIC option. The setting of RBSCALING can be either a scalar or a variate, depending

upon the parameters are the same or different over the x-variates; the values must all be greater

then zero.

The form ö() of the radial basis functions is specified by the RNTYPE option, by selecting one

of the following settings:

linear ö(z) = z,

cubic ö(z) = z3,

thinplate ö(z) = z2 loge(z),

gaussian ö(z) = exp(�z2),

multiquadric ö(z) = �{z2+ á2},

inversemultiquadric ö(z) = 1 / �{z2+ á2},

cauchy ö(z) = 1 / (z2+ á2).

The value of the constant á (which must be positive) is specified by the ALPHA option, with a

default of one.

The RBF model is fitted by estimating values for the weights wk. This is done by minimizing

the penalized (regularized) sum of squares error function:

(y � f)� (y � f) + ë �k=1...t+1 wk
2

where the penalty constant ë must be specified by the LAMBDA option.

The inverse-matrix calculations required during the fit are formed using a singular value

decomposition. In the calculations, singular values that are less than the largest singular value

multiplied by a tolerance are treated as zero. This tolerance is specified by the TOLERANCE

option; default 0.000001.

Printed output is controlled by the PRINT option, with settings:

description a description of the model,

estimates estimates of the parameters,

fittedvalues fitted values,

summary summary (lack of fit etc.).

The SAVE parameter can save full detail of the RBF model; this can then be used by the

RBDISPLAY directive to give further output, or by the RBPREDICT directive to form predictions.

The estimated weights can be saved using the ESTIMATES parameter, and the fitted values vcan

be saved by the FITTEDVALUES parameter.

Options: PRINT, RBTYPE, METRIC, SCALING, ALPHA, LAMBDA, TOLERANCE.

Parameters: Y, X, CENTRES. RBSCALING, FITTEDVALUES, ESTIMATES, EXIT, SAVE.

RBFIT 407

Method

RBFIT uses the function nagdmc_rbf from the Numerical Algorithms Group's library of Data

Mining Components (DMCs).

Action with RESTRICT

You can restrict the set of units used for the estimation by applying a restriction to the y-variate

or any of the x-variates. If several of these are restricted, they must all be restricted to the same

set of units.

See also

Directives: RBDISPLAY, RBPREDICT, ASRULES, NNFIT.

Procedures: KNEARESTNEIGHBOURS, RADIALSPLINE.

Genstat Reference Manual 1 Summary section on: Data mining.

408 Directives in Release 22

RBPREDICT

Forms predictions from a radial basis function model fitted by RBFIT.

Option

PRINT = strings Controls fitted output (description, predictions);

default desc, pred

Parameters

X = pointers X-values at which to predict

PREDICTIONS = variates Predictions

SAVE = pointers Details of the fitted model

Description

RBPREDICT forms predictions using radial basis function model fitted by RBFIT. Details of the

the model and the estimated parameters are supplied using the SAVE parameter. This must have

been saved using the SAVE parameter of RBFIT. If this is not set, the output is from the most

recent model fitted by RBFIT. The values of the x-variates at which to predict are supplied, in

a pointer, using the X parameter. The variates in the pointer must be in exactly the same order

as the equivalent variates in the pointer defined for the X parameter in the original RBFIT

command.

The output is controlled by the PRINT option, with settings:

description a description of the model,

predictions predicted values.

Option: PRINT.

Parameters: X, PREDICTIONS, SAVE.

Method

RBPREDICT uses the function nagdmc_predict_RBF from the Numerical Algorithms Group's

library of Data Mining Components (DMCs).

Action with RESTRICT

You can restrict the set of units used for the prediction by applying a restriction to any of the x-

variates. If several of these are restricted, they must all be restricted to the same set of units.

See also

Directives: RBDISPLAY, RBFIT.

Genstat Reference Manual 1 Summary section on: Data mining.

RCYCLE 409

RCYCLE

Controls iterative fitting of generalized linear, generalized additive and nonlinear models, and

specifies parameters, bounds etc for nonlinear models.

Options

MAXCYCLE = scalars Maximum number of iterations for Fisher-scoring

algorithm (used in generalized linear models), back-

fitting algorithm (used in additive models) and nonlinear

algorithms; single setting implies the same limit for all;

default 15, 15, 30

TOLERANCE = scalar or variate Scalar or first unit of a variate defines the convergence

criterion for the relative change in deviance and, if

required, the second element of a variate defines the

criterion for convergence to a zero deviance; default
!(0.0001,1.0E�11)

FITTEDVALUES = variate Initial fitted values for generalized linear model; default
*

METHOD = string token Algorithm for fitting nonlinear model (GaussNewton,

NewtonRaphson, FletcherPowell); default Gaus, but

Newt for scalar minimization

LINEARPARAMETERS = scalars Scalars to hold current values of linear parameters used

in nonlinear model, for reference within model

calculations

Parameters

PARAMETER = scalars Nonlinear parameters in the model

LOWER = scalars Lower bound for each parameter

UPPER = scalars Upper bound for each parameter

STEPLENGTH = scalars Initial step length for each parameter

INITIAL = scalars Initial value for each parameter

Description

RCYCLE can be used, after MODEL, to modify aspects of the optimization process used by later

FIT, FITCURVE and FITNONLINEAR directives.

The MAXCYCLE option can be set to a list of three scalars to specify respectively the maximum

number of iterations to be used in the Fisher-scoring algorithm used to fit a generalized linear

model, the back-fitting algorithm used in generalized additive models, and the algorithms for

nonlinear models. These have the defaults 15, 15 and 30. If a single value is supplied, it is taken

to apply to all three situations.

The TOLERANCE option can be set to a scalar or a variate to control the criterion for

convergence in generalized linear and generalized additive models. A scalar or the first unit of

a variate defines the convergence criterion for the relative change in deviance (default 0.0001).

The iteration stops when the absolute change in deviance in successive cycles is less than the

tolerance multiplied by the current value of the deviance. The second element of a variate defines

the criterion for convergence to a zero deviance. If TOLERANCE is unset, or if it is set to a scalar,

the default criterion for zero deviance is 1.0E�11.

The algorithm for generalized linear models has to start by estimating an initial set of fitted

values. Genstat usually obtains these by a simple transformation of the observed responses. It

may be that better estimates are available, for example from a previously fitted model; if so, you

can supply them by the FITTEDVALUES option.

The PARAMETER, STEPLENGTH and INITIAL parameters can be used to supply initial step

lengths and initial values for the nonlinear parameters in the standard curves fitted by FITCURVE,

410 Directives in Release 22

although this will usually not be necessary; FITCURVE has effective ways of its own to ascertain

good starting value for each parameter, for example by a short grid search or by some

manipulation of the data values. The parameters must be listed in the same order as Genstat uses

to print them. RCYCLE defines the identifiers as scalars holding the initial values that you have

supplied; after the model has been fitted they contain the estimated values of the parameters.

The other parameters are relevant only to general nonlinear models fitted by FITNONLINEAR

or FIT. The PARAMETER parameter then merely lists the scalars that are used to represent the

nonlinear parameters in the model calculations, the LOWER and UPPER parameters specify

bounds, the STEPLENGTH parameter specifies initial step lengths, and the INITIAL parameter

specifies initial values. The METHOD option is also relevant only for general nonlinear models,

when it specifies the optimization method to be used. (Bounds are determined automatically for

standard curves, and Genstat then always uses a modified Newton method.)

Options: MAXCYCLE, TOLERANCE, FITTEDVALUES, METHOD, LINEARPARAMETERS.

Parameters: PARAMETER, LOWER, UPPER, STEPLENGTH, INITIAL.

See also

Directives: FIT, FITCURVE, FITNONLINEAR.

Genstat Reference Manual 1 Summary section on: Regression analysis.

RDISPLAY 411

RDISPLAY

Displays the fit of a linear, generalized linear, generalized additive or nonlinear model.

Options

PRINT = string tokens What to print (model, deviance, summary,
estimates, correlations, fittedvalues,

accumulated, confidence); default
mode,summ,esti

CHANNEL = identifier Channel number of file, or identifier of a text to store

output; default current output file

DENOMINATOR = string token Whether to base ratios in accumulated summary on rms

from model with smallest residual ss or smallest residual

ms (ss, ms); default ss

NOMESSAGE = string tokens Which warning messages to suppress (dispersion,

leverage, residual, vertical, df, inflation);

default *

FPROBABILITY = string token Printing of probabilities for variance and deviance ratios

(yes, no); default no

TPROBABILITY = string token Printing of probabilities for t-statistics (yes, no);

default no

SELECTION = string tokens Statistics to be displayed in the summary of analysis

produced by PRINT=summary, seobservations is

relevant only for a Normally distributed response, and

%cv only for a gamma-distributed response

(%variance, %ss, adjustedr2, r2,

seobservations, dispersion, %cv,

%meandeviance, %deviance, aic, bic, sic); default

%var, seob if DIST=normal, %cv if DIST=gamma, and

disp for other distributions

DISPERSION = scalar Dispersion parameter to be used as estimate for

variability in s.e.s; default is as set in the MODEL

statement

RMETHOD = string token Type of residuals to display (deviance, Pearson,

simple); default is as set in the MODEL statement

DMETHOD = string token Basis of estimate of dispersion, if not fixed by

DISPERSION option (deviance, Pearson); default is

as set in the MODEL statement

PROBABILITY = scalar Probability level for confidence intervals for parameter

estimates; default 0.95

DFDISPERSION = scalar Allows you to specify the number of degrees of freedom

for a dispersion parameter specified by the DISPERSION

option; default is as set in the MODEL statement

SAVE = identifier Specifies save structure of model to display; default *

i.e. that from latest model fitted

Options

No parameters

Description

RDISPLAY produces further output from a linear, generalized linear, generalized additive or

nonlinear model. The PRINT option has the same settings as in the FIT directive, except that no

412 Directives in Release 22

monitoring is available. The CHANNEL option selects the output channel to which the results are

output, as in the PRINT directive; this may be a text structure, allowing output to be stored prior

to display. The DENOMINATOR, NOMESSAGE, FPROBABILITY, TPROBABILITY, SELECTION and

PROBABILITY options are also as in the FIT directive.

The RMETHOD option allows you temporarily to change the method of forming residuals, for

the output of the current statement only, in the same way as the corresponding option in the

MODEL directive sets the default method of formation. Similarly, the DMETHOD option temporarily

changes the method used to calculate the residual variability to be displayed for a generalized

linear model, the DISPERSION option allows you (temporarily) to set the dispersion parameter,

and the DFDISPERSION option allows you to define the number of degrees of freedom for a

specified dispersion parameter. These again operate like the corresponding options of MODEL

(except that they apply only to the current statement).

The SAVE option lets you specify the identifier of a regression save structure; the output will

then relate to the most recent regression model fitted with that structure.

Options: PRINT, CHANNEL, DENOMINATOR, NOMESSAGE, FPROBABILITY, TPROBABILITY,

SELECTION, DISPERSION, RMETHOD, DMETHOD, PROBABILITY, DFDISPERSION, SAVE.

Parameters: none.

See also

Directives: MODEL, FIT, FITCURVE, FITNONLINEAR, PREDICT.

Procedures: RCHECK, RGRAPH, RDESTIMATES, RCOMPARISONS, RTCOMPARISONS, RWALD,

FIELLER, RFUNCTION.

Genstat Reference Manual 1 Summary section on: Regression analysis.

READ 413

READ

Reads data from an input file, an unformatted file or a text.

Options

PRINT = string tokens What to print (data, errors, summary); default erro,
summ

CHANNEL = identifier Channel number of file, or text structure from which to

read data; default current file

SERIAL = string token Whether structures are in serial order, i.e. all values of

the first structure, then all of the second, and so on (yes,

no); default no, i.e. values in parallel

SETNVALUES = string token Whether to set number of values of vectors from the

number of values read (yes, no); default no causes the

number of values to be set only for structures whose

lengths are not defined already (e.g. by declaration or by

UNITS)

LAYOUT = string token How values are presented (separated, fixedfield);

default sepa

END = text What string terminates data (* means there is no

terminator); default ':'

SEQUENTIAL = scalar To store the number of units read (negative if terminator

is met); default *

ADD = string token Whether to add values to existing values (yes, no);

default no (available only in serial read)

MISSING = text What character represents missing values; default '*'

SKIP = scalar Number of characters (LAYOUT=fixe) or values

(LAYOUT=sepa) to be skipped between units (* means

skip to next record); default 0 (available only in parallel

read)

BLANK = string token Interpretation of blank fields with LAYOUT=fixe

(missing, zero, error); default miss

JUSTIFIED = string tokens How values are to be assumed justified with

LAYOUT=fixe (left, right); default righ

ERRORS = scalar How many errors to allow in the data before reporting a

fault rather than a warning, a negative setting, -n, causes

reading of data to stop after the nth error; default 0

FORMAT = variate Allows a format to be specified for situations where the

layout varies for different units, option SKIP and

parameters FIELDWIDTH and SKIP are then ignored (in

the variate: 0 switches to fixed format; 0.1, 0.2, 0.3 or

0.4 to free format with space, comma, colon or

semi-colon respectively as separators; * skips to the

beginning of the next line; in fixed format, a positive

integer n indicates an item in a field width of n, �n skips

n characters; in free format, n indicates n items, �n skips

n items); default *

QUIT = scalar Channel number of file to return to after a fatal error;

default * i.e. current input file

UNFORMATTED = string token Whether file is unformatted (yes, no); default no

REWIND = string token Whether to rewind the file before reading (yes, no);

default no

414 Directives in Release 22

SEPARATOR = text Text containing the (single) character to be used in free

format; default ' '

SETLEVELS = string token Whether to define factor levels or labels (according to

the setting of FREPRESENTATION) automatically from

those that occur in the data (yes, no); default no causes

them to be set only when they are not defined already

TRUNCATE = string tokens Truncation of leading or trailing spaces of strings read in

fixed format (leading, trailing); default * i.e. none

CASE = string token Whether the case of letters (small and capital) should be

regarded as significant or ignored when forming factor

labels automatically (significant, ignored); default
sign

LDIRECTION = string token How to define the ordering of levels or labels when these

are formed automatically (ascending, given); default
asce

Parameters

STRUCTURE = identifiers Structures into which to read the data

FIELDWIDTH = scalars Field width from which to read values of each structure

(LAYOUT=fixe only)

DECIMALS = scalars Number of decimal places for numerical data containing

no decimal points

SKIP = scalars Number of values (LAYOUT=sepa) or characters

(LAYOUT=fixe) to skip before reading a value

FREPRESENTATION = string tokens How factor values are represented (labels, levels,

ordinals); default leve

Description

Data values can be read into any Genstat data structure using the READ directive. In its simplest

form, you merely list the structure whose values are to be read: for example

READ Weight

The data values for Weight are then assumed to come on the following line or lines. They are

assumed to be in free format, separated one from another by one or more spaces or tabs or new

lines, and to be terminated by a colon.

READ has a PRINT option with settings:

summary to print a summary of the data

data to print a copy of the input lines

errors to print a detailed report on any errors in the data

By default PRINT=summary,errors.

The CHANNEL option allows you to read data from another file; this must already have been

opened (see the OPEN directive). You can also read data from a Genstat text structure. Each line

of input is then treated as if it had been read from a file. Note: you should use CHANNEL if you

want to use READ in an IF or CASE structure, a FOR loop or a procedure.

You can read values for more than one structure in a single READ statement. The values can

be taken either serially or in parallel. The default is to take the values in parallel: the first

element of each structure is read, then the second element of each, until all the data are read. For

example:

a1 b1 c1

a2 b2 c2

a3 b3 c3

a4 b4 c4 :

READ 415

or

a1 b1 c1 a2

b2 c2

a3 b3 c3 a4 b4 c4 :

Here A, B and C are in parallel, each with four values. The complete set of values for all three

structures is given, followed by one terminating colon. The term parallel merely indicates the

order in which READ is to read the values: that is, the first element of each structure, then the

second element of each, and so on. It is not necessary for the data to be laid out in neat columns,

although this may make a data file easier to work with. Different types of structures can be read

in parallel and they may have different kinds of values (numerical or text).

Alternatively, you can set option SERIAL=yes to read the structures in series. Then all the

values of the first structure are read, followed by all the values for the second structure, and so

on, until all the data structures have been read. For example

x1 x2 x3 :
y1 y2 :
z1 z2 z3 z4 z5 z6 :

Here all the values of X are given first, followed by all the values for Y, and then all the values

for Z. Unlike the parallel layout, each set of values must end with the terminating colon, so that

READ can tell when to move on to the next structure; this means that the structures can be of

different lengths.

When you are working interactively, Genstat produces a prompt indicating the name of the

data structure and the unit number of the next value it expects to read. If Genstat knows how

many values to expect, it will terminate the input automatically, without asking for the

terminating colon, if the last value is at the end of a line. However, it is quite correct to include

the colon at the end of that line of data if you want. If you type too many values by mistake you

will get a warning message telling you that the extra data has been ignored.

If a structure whose values are to be read has not already been declared, Genstat will define

it automatically as a variate. Likewise, if the length of a vector is undefined, this too will be set

automatically. READ first checks whether the vector is being read in parallel with other vectors

whose lengths have been defined, then it looks to see if a default length has been defined for

vectors using the UNITS directive. If neither of these is available to define the length, it is set to

the number of data values that are provided in the input. Lengths of vectors can also be redefined

according to the number of data values that are read, by setting option SETNVALUES=yes. The

END option allows you to define another string of characters to be used instead of a colon to mark

the end of the data, or you can set END=* to indicate that there is no terminating string.

The values of numerical structures (scalars, variates, matrices, symmetric and diagonal

matrices and tables) can be entered in any of the standard forms: for example

1.20 �.2 3e1 �1.25E�2 27

are all valid.

Textual values (strings) in free format must be enclosed within single quotes if they contain

any characters that have special meaning to READ (space, tab, comma, colon, asterisk, backslash,

single or double quote). The quotes can be omitted for other strings. For example:

TEXT [NVALUES=5] Country
READ Country
Australia Canada 'Great Britain' U.S.A. 'New Zealand' :

The rules for strings in READ are thus slightly different to those for lists of strings, where quotes

are required for any string that does not start with a letter or contains any character other than

letters or digits. Thus Newcastle-on-Tyne and 500Km are both valid when read in as data, but

not in a TEXT declaration. Rules for strings in fixed format are described later.

The values of factors are usually represented by their levels. You can change this by setting

the FREPRESENTATION parameter. If you set it to labels, READ will accept as values the labels

416 Directives in Release 22

of the factor, using the same rules as for reading textual strings. The strings given as data values

must match exactly the labels of the factor if they have been declared. The setting

FREPRESENTATION=ordinals causes READ to expect an integer in the range 1 up to n, the

number of levels declared for the factor. As FREPRESENTATION is a parameter it can be set to

a list of values which are cycled in parallel with the structures to be read. Thus, you are allowed

to read several factors in one READ statement, possibly using a different method for reading each

one. The setting of this parameter is ignored for any structures that are not factors, but remember

that the list will still be cycled in parallel with these other structures.

If you set option SETLEVELS=yes, READ will set up the factor levels or labels according to

the values that it finds when reading the data. By default it distinguishes between capital and

small letters when forming factor labels, but you can set option CASE=ignored to ignore the case

of letters. Also, by default the levels or labels are sorted into ascending order, but you can set

option LDIRECTION=given to leave them in the order in which they are found in the data file.

The values of pointers are identifiers, that is, names of other data structures. When reading a

pointer only simple identifiers are allowed: suffixes cannot be used. For example, Winston is

allowed but Orwell[1984] is not.

You cannot read formulae or expressions directly. The easiest way to do this is to read the

required value into a text which can then be used in an appropriate declaration using either the

macro-substitution symbols ## or the EXECUTE directive. You cannot read values into compound

data structures; these should be formed using the appropriate directives or by reading their

components individually.

By default, a missing value should be indicated by an asterisk (*); this means that any data

item that begins with * is treated as missing. For example, any of the three strings

* *** *789

will be treated as missing. You can use the MISSING option to change this to any other single

character; for example, if you set MISSING='-' then any negative numbers will be read as

missing values.

In free format, values are usually separated by spaces or tabs. The SEPARATOR option can be

used to specify another character to use as a separator. For example you can use a comma:

READ [SEPARATOR=','] Weights
24.3, 25.6, 57.3, 43.8, 45.3,
46.5, 47.9, 97.0, 77.5, 64.3 :

You can use spaces and tabs in addition to the specified separator, so long as the separator is

present between each pair of values (except at the end of line, when it may be omitted).

The SEPARATOR, END and MISSING strings are all case-sensitive; for example,

END=enddata is different from END=EndData. The missing-value and separator characters must

be distinct and neither may be part of the END string.

In free format, the SKIP option can be used to skip values between complete units of data. For

example, with a file in channel 2 containing five columns of data, the statement

READ [CHANNEL=2; SKIP=3] X,Y

would read X and Y from the first two columns, and then skip the final three columns: Genstat

reads the first value for X and Y, the next three values are skipped before reading the second

value of X; so READ moves onto the next line of the file, and so on. You can also set SKIP=* to

skip directly to the next line of data; you could use this if there were varying numbers of

additional columns in the file. By default, SKIP is zero, so no values are skipped. The SKIP

parameter is interpreted in parallel with the structures whose values are to be read, and indicates

how many values should be skipped before reading the value for the corresponding structure.

In fixed format, data values are arranged in specific fields on each line of the file. Each field

consists of a fixed number of characters. There is no need for separating spaces; the tab character

is not permitted, nor are comments. So, depending on how the fields are defined, the sequence

READ 417

of digits 123456 could be interpreted for example as the single number 123456, or two numbers

123 and 456, or three numbers 123, 4 and 56. Data like this are usually produced by special-

purpose programs or equipment; for example, automatic data recorders.

To read data in fixed format you set the LAYOUT option to fixed, and then specify the format

to be used. If the values for a structure always occupy the same number of character positions,

you can do this with the FIELDWIDTH parameter. For example,

READ [CHANNEL=2; LAYOUT=fixed] Weight,Height; FIELDWIDTH=3,5

takes data from channel 2 in fixed format. The data are in parallel: that is, reading across lines

of the file, values for Weight and Height appear alternately. The FIELDWIDTH parameter is

processed in parallel with the structures to be read, so each item of Weight data takes up three

characters, and each item of Height data takes up five. If the fieldwidth for a structure is not

constant, that is if different layouts are used for different units of the data, then you need to use

the FORMAT option, described later.

Suppose there are 80 characters per line in the file; each pair of Weight and Height values

takes up 8, and so you have 10 pairs per line. The first line looks like:

Weight1Height1Weight2Height2 ... Weight10Height10

Suppose that the first two values for Weight were 1 and 200, and that the first two for Height

were 10 and 1200. Then, using � to represent a space, the first four items on this line would be:

��1���10200�1200

Genstat is able to identify the separate values 10 and 200 because it is reading a fixed number

of characters for each structure.

Genstat input files have a nominal width, set by default to 80. This can be altered by an OPEN

statement to a different value if necessary. When reading in fixed format, each line of input is

taken to be exactly this width; shorter lines are extended with spaces (blanks). It is important to

make sure that you account for this when setting the options for READ, otherwise you may read

some values from these blank fields (the BLANK option, described below, explains how the blank

fields would be interpreted). In the example above, if the values for Height occupied four

characters instead of five there would be 11 pairs of values per line of 77 characters. Using the

default settings, the final three characters on the first line would be read as the 12th value of

Weight, and READ would then be out of step as the 12th value of Height would be read in from

the beginning of the next line. The simplest solution is to set the file width to 77 in the OPEN

statement, but you can also use the SKIP option and parameter (see below) or the FORMAT option

to avoid this sort of problem.

When you are using fixed format, the data terminator must begin within the first field to be

read after the final data value: so you must ensure that you set the field widths and position the

terminator appropriately. If you are using either the SKIP option or parameter, you must take

care not to skip accidentally over the terminator, as READ will continue to take input - and

probably generate many error messages.

Normally Genstat treats a blank field in fixed-format data as a missing value, and the only

indication will be in the count of missing values in the printed summary. You can request

warning messages for blank fields by setting the option BLANK=error. Alternatively, you can

cause blanks to be interpreted as zeroes, by setting BLANK=zero.

Data in fixed format are normally taken to be right-justified: that is, their right-hand ends are

flush with the right-hand end of the field; you can have either blanks or leading zeroes (for

numbers) in the redundant spaces at the left of the field. You can change this default by setting

the JUSTIFIED option. For example the value 123 can appear in a field of width 5 as:

��123 JUSTIFIED=right there may be leading blanks (the default),

123�� JUSTIFIED=left there may be trailing blanks,
00123 JUSTIFIED=left,right

there must be no blanks, or

418 Directives in Release 22

�123� JUSTIFIED=* there may be leading or trailing blanks.

In this way, JUSTIFIED allows you to check the blanks in each field. If a data field contains any

blanks that are not allowed by the current setting, an error will be reported. Note that when

reading numerical data embedded blanks are never permitted. So a field containing, for example

1�2�3, will always produce an error message.

As an example, we can read the values of five scalars using a fixed format with values left-

justified in their fields by the following:

SCALAR V,W,X,Y,Z
READ [LAYOUT=fixed;JUSTIFIED=left] V,W,X,Y,Z; \
 FIELDWIDTH=4,5,7,4,5
1.235.62�678.9��3.7810.31:

This reads the values 1.23, 5.62, 678.9, 3.78 and 10.31 into V, W, X, Y and Z respectively.

The general principles of the SKIP option and parameter are discussed in the context of a free

format read in the previous section. When reading in fixed format the same ideas apply, but the

SKIP settings now specify numbers of characters to be ignored, instead of numbers of values.

Thus, you can obtain exactly the same effect as in the example above by putting

READ [LAYOUT=fixed] V,W,X,Y,Z; FIELDWIDTH=4,4,5,4,5; \
 SKIP=0,0,1,2,0

Sometimes fixed format data can be further compressed by omitting the decimal point. The

DECIMALS parameter allows you to re-scale data automatically when it is read (in either fixed

of free format).

When reading textual data in fixed format, the contents of each field are taken exactly as they

appear in the input file. There is no need to enclose values in quotes; in fact if you do so, the

quotes are treated as part of the data. For example,

TEXT [NVALUES=1] T1,T2,T3,T4
READ [LAYOUT=fixed; SKIP=*] T1,T2,T3,T4; FIELDWIDTH=6,3,4,7
'What's�it�all�about?':

gives text T1 the value 'What's, text T2 the value �it, text T3 the value �all, and text T4 the

value �about?'. Consequently, the only way to represent a missing string in fixed format is by

a blank field, as '' or * would both be treated literally and stored as data values.

The TRUNCATE option has settings leading and trailing, allowing you to remove initial

or trailing spaces in strings that are read in fixed format. For example, if we set

TRUNCATE=leading above, T2 would just contain the two letters it. By default no truncation

takes place.

The rules for reading textual data in fixed format also affect the reading of factors. If you set

FREPRESENTATION=labels and do not request any truncation, the width of the field must

equal the number of characters in the label, as for example no� is not the same as no.

The FORMAT option allows you to use use a variable format. By this we mean that the layout

of the values may vary from unit to unit of the data, and may also vary within each unit. For

example, suppose you have some meteorological data which was measured daily and that the file

also contains some additional summary values at the end of each week. The first eleven lines are

reproduced to illustrate the structure of the file:

Monday 5.5 -0.4 0.0 1.9 10.0
Tuesday -1.1 -2.1 0.0 0.0 34.0
Wednesday 0.6 -8.3 1.3 5.4 142.0
Thursday 6.8 -5.7 1.1 0.0 158.0
Friday 10.6 0.5 8.1 0.0 141.0
Saturday 10.7 6.4 8.3 0.0 152.0
Sunday 10.0 1.9 1.0 0.1 237.0
Summary week 1> 10.7 -8.3 4 19.8 7.4 10.0 124.8 237.0
Monday 9.9 2.5 0.0 4.4 229.0
Tuesday 11.4 2.1 8.5 0.3 237.0
Wednesday 11.9 6.3 18.7 0.0 520.0

READ 419

Suppose the file contains data for 28 days. If you try to read a text and five variates of length 28

then the summaries found after the 7th, 14th, 21st and 28th days would cause an error in READ.

You need to read seven lines, skip one, read seven more, and so on. This can be done by setting

the option FORMAT=!((6)7,*,*). This means "read six values, do this seven times, skip to

the next line, skip again, then return to the beginning of the format and repeat, until enough data

has been read". The format is made clear by using (6)7 which corresponds to the physical

layout of the data, but 42 could have been specified instead, meaning read the next 42 values.

You can use FORMAT when reading in either free format or fixed format, and can also switch

between the two during the READ. When you have set FORMAT, Genstat ignores the SKIP option

and the FIELDWIDTH and SKIP parameters, and READ is controlled entirely by the values of the

FORMAT. These values are not in parallel with the list of structures: they apply to data values in

turn, recycling from the beginning when necessary. You set FORMAT to a variate, which may be

declared in advance or can be an unnamed structure as shown above. Each value of this variate

is interpreted as follows (where n is a positive integer):

+n read n values (in free format) or one value from a field of n characters (in fixed format);

-n skip the next n values (in free format) or n characters (in fixed format)

* skip to the beginning of the next line

0.0 switch to fixed format

0.1 switch to free format using space as a separator

0.2 switch to free format using comma as a separator

0.3 switch to free format using colon as a separator

0.4 switch to free format using semicolon as a separator

0.5 switch to free format using the setting of the SEPARATOR option

Using the FORMAT variate READ will start in either free format or fixed format, according to the

setting of LAYOUT (by default, LAYOUT=separated; that is, free format). You can switch

between these at any time by specifying a value in the range 0-0.5. Remember that if you use free

format, spaces and tabs can also be used in addition to the specified separator, and you must use

a separator that is distinct from the END and MISSING indicators.

You can read from unformatted files by setting option UNFORMATTED=yes. The only options

that are then relevant are CHANNEL, REWIND and SERIAL. Details of how to create the

unformatted files are given in the description of the PRINT directive.

If you have more data to read than can be stored in the space available within Genstat, you can

use the SEQUENTIAL option of READ to process the data in smaller batches. This works by

reading in some of the data, partially processing it to form an intermediate result, and then

overwriting the original data with a new batch that is used to update the intermediate results.

This can be repeated until all the data has been read and the final summary is obtained. There

are two directives that include facilities specifically designed to work with sequential data input:

TABULATE which forms tabular summaries, and FSSPM which forms SSPM data structures for use

in linear regression. You can also use other directives, such as CALCULATE, to process data

sequentially, but you will have to program the sequential aspects yourself.

You should first declare the structures to be of some convenient size, such that you will not

use up all the work space. You then use READ as normal, but with the SEQUENTIAL option set

to the identifier of a scalar, which will be used to keep track of how the input is progressing. For

example, to read in 10 variates of length 272500:

VARIATE [NVALUES=10000] X[1...10]
READ [CHANNEL=2; SEQUENTIAL=N] [1...10]

The number of values declared for X[1...10] defines the size of batch to read (10000 in this

example). So, READ will read the first 10000 units of data (100,000 values), and set N to 10000

to indicate that is the number of units read. This should be followed by the statements to process

the first batch of data, then the READ can be repeated. Once again N is set to 10000, indicating

that another 10000 units have been read. This can be continued until READ finds the data

420 Directives in Release 22

terminator, when it sets the sequential indicator to minus the number of values found in the last

batch. If this is less than the declared size of the data structures they will be filled out with

missing values. In the example given above, after the 28th READ the variates will each contain

2500 values followed by 7500 missing values, and N will be set to �2500, indicating that all the

data has been read and that the final batch contains only 2500 values. Usually you will use the

SEQUENTIAL facility in conjunction with FSSPM or TABULATE which are designed to recognize

the different settings of the scalar N.

The SEQUENTIAL option is best used within a FOR loop. You should set the NTIMES option

to a value large enough to ensure that sufficient batches of data are read. The loop should contain

the READ statement and any other statements required to process the data. For example

VARIATE [NVALUES=10000] X[1...10]
SSPM [TERMS=X[]] S
FOR [NTIMES=9999]
 READ [PRINT=*;CHANNEL=2;SEQUENTIAL=N] X[]
 FSSPM [SEQUENTIAL=N] S
 EXIT N.LE.0
ENDFOR

The EXIT directive is used to jump out of the loop once all the data has been read and processed;

this is safer than trying to program an exact number of iterations for the loop. The exit condition

includes the case when N is equal to zero, as this will arise when the batch size exactly divides

the total number of units. In the above example, if there were 280000 units of data altogether,

the 28th READ would terminate with N set to 10000. This is because READ is unable to look ahead

for the terminator, as there may be other statements in the loop, such as SKIP, which affect how

the file is read. The next READ would immediately find the data terminator, so would exit with

N set to zero. This special case is treated appropriately by FSSPM and TABULATE, but you should

remember to allow for it if you are programming the sequential processing explicitly.

You can use the SEQUENTIAL option to read data from more than one input channel, perhaps

when a large data set is split into two or more files, but you are not allowed to read data from the

current input channel (that is, the channel containing the READ statement). If you want to process

several structures sequentially from the same file, you must read them in parallel. You must also

be careful not to modify the value of the scalar, N, within the loop when using sequential data

input with FSSPM or TABULATE, as that could interfere with the sequential processing.

Another means of handling large amounts of data is provided by the ADD option. This allows

you to add values to those already stored in a structure, thus forming cumulative totals without

having to store all the individual data values. You must set SERIAL=yes with ADD=yes; and it

is allowed only for variates. For example:

VARIATE [NVALUES=6] A
READ [ADD=yes; SERIAL=yes] 3(A)
5 12 9 * * 9 :
8 1 3 * 2 10 :
3 4 0 * 11 * :

This starts by assigning the values 5, 12, 9, *, *, and 9 to A. Then A is read again, and its values

become 13, 13, 12, *, 2, 19: with ADD=yes (and only then) missing values are interpreted as

zeroes when being added to non-missing values. Finally A contains the values 16, 17, 12, *, 13,

19.

If you have used the UNITS directive to specify a variate or text containing unit labels, READ

will respect the order of these values when reading other structures in parallel with the units

structure; in other words the data are re-ordered to match the order of the unit labels. If the units

structure does not already have values, READ will define order of the units as the order in which

it finds them in the data. This means that if you are reading several sets of data, each having a

column for the unit number (or label), the first use of READ will define the unit order and

subsequent READ statements will ensure that this order is maintained consistently in the

READ 421

remaining data. If a value is specified more than once when defining the units structure, READ

will only ever locate the first occurrence of that unit label. If a unit label is repeated in the data

then only the final set of values corresponding to that unit will be stored; earlier occurrences are

overwritten by subsequent ones. If you try to read a value that is not present in the units structure

this is regarded as a fault. Also, if the units structure contains missing values it cannot be used

to re-order the data and will instead be overwritten by the new values: a warning message is

printed out to tell you if this occurs. If you use the option SETNVALUES=yes when reading

structures in parallel with the units vector, the other structures will all be set to the current unit

length.

When you are working interactively and typing data from the keyboard, READ will halt

immediately it finds an invalid value. You should type the correct value and then continue with

the rest of the data. If you had typed several items of data then all those before the erroneous

value will have been read and stored, but any remaining values will have been discarded, and so

will need to be retyped. When you are reading data in batch, it is not possible to recover from

errors in this way. Instead, READ will continue processing the data, substituting missing values

for any data that it cannot read, and printing out a message for every error that is found.

If errors occur when running in batch, a fault will be generated when READ terminates, thus

terminating the job. This is to avoid spurious output being produced from analyses based on

incorrect data. You can override this by using the options ERRORS and QUIT. If you set

ERRORS=n, where n is a positive integer, then up to n errors are allowed in the data before READ

generates a fault. You might want to do this if you knew certain items of data were going to

generate errors, but were prepared to accept them as missing values so that you could analyse

the rest of the data. Obviously, you need to be very careful when doing this, as there may be

other unexpected errors in the data. Usually you would have to try reading the data once without

setting ERRORS, so you could check all the messages, and find what value of n is appropriate.

Then the READ statement would have to be repeated, setting ERRORS and REWIND in order to

read the data. For example, if missing values of a factor had been typed in as the letter X, you

would not want to define X as an extra level of the factor, but if you set MISSING='X' any

numerical data that used * for missing value could not be read either.

READ produces a message for every data value that contains an error. This can be very useful,

as you then have the opportunity to correct all the errors at once, before trying to read the data

again. However, the error messages may not be due to errors in the data, but may be caused by

an incorrectly specified READ statement. For example, if you are reading many structures in

parallel and specify texts and variates in the wrong order in the list of structures to be read, you

will get an error message every time Genstat finds a piece of text rather than a number in the

position specified for a variate. This is not likely to be a problem, unless you are reading large

amounts of data, when you might end up with thousands of lines of needless error messages. A

sensible precaution then is to request Genstat to abort the READ if more than a specified number

of errors occur. You can do this by setting ERRORS to a negative integer, �n. This means that up

to n errors are allowed in the data, but READ will abort if any more occur, switching control to

the channel specified by QUIT (that is, starting or continuing to read Genstat statements from that

channel). If you are working in batch a fault will be generated that inhibits execution of further

statements, but interactively you have the opportunity to examine the data that have been read

in so far, which may help identify any problems in the original READ statement or declarations

of your data.

Options: PRINT, CHANNEL, SERIAL, SETNVALUES, LAYOUT, END, SEQUENTIAL, ADD, MISSING,

SKIP, BLANK, JUSTIFIED, ERRORS, FORMAT, QUIT, UNFORMATTED, REWIND, SEPARATOR,

SETLEVELS, TRUNCATE, CASE, LDIRECTION.

Parameters: STRUCTURE, FIELDWIDTH, DECIMALS, SKIP, FREPRESENTATION.

422 Directives in Release 22

Action with RESTRICT

READ ignores any restrictions.

See also

Directives: OPEN, COPY, RETRIEVE, SKIP, SPLOAD.

Procedures: FILEREAD, IMPORT, DBIMPORT, TX2VARIATE.

Genstat Reference Manual 1 Summary section on: Input and output.

RECORD 423

RECORD

Dumps a job so that it can later be restarted by a RESUME statement.

Option

CHANNEL = scalar Channel number of the backing-store file where

information is to be dumped; default 1

No parameters

Description

The RECORD directive sends all the relevant information about the current state of your Genstat

job to the backing-store file specified by the CHANNEL option. You can then use the RESUME

directive, either later in your program, or during a completely different Genstat run, to recover

all this information and continue your use of Genstat from that point. This can be useful if you

need to abandon an analysis and resume it at some later date, or if you want to save the current

state of a program in case your next operations turn out to be unsuccessful. The information

includes the attributes and values of all your data structures, procedures, and the current graphics

settings, but no details are kept of the files that are open on any of the channels. If you use

RECORD with the same channel number again, the earlier information is overwritten.

Option: CHANNEL.

Parameters: none.

See also

Directives: RESUME, OPEN.

Genstat Reference Manual 1 Summary section on: Input and output.

424 Directives in Release 22

REDUCE

Forms a reduced similarity matrix referring to the GROUPS instead of the original units

(synonym of HREDUCE).

Options

PRINT = string token Printed output required (similarities); default * i.e.

no printing

METHOD = string token Method used to form the reduced similarity matrix

(first, last, mean, minimum, maximum,

zigzag); default firs

Parameters

SIMILARITY = symmetric matrices Input similarity matrix

REDUCEDSIMILARITY = symmetric matrices

Output (reduced) similarity matrix

GROUPS = factors Factor defining the groups

PERMUTATION = variates Permutation order of units (for METHOD = firs, last or

zigz)

Description

This directive was renamed HREDUCE in Release 14, but the original name of REDUCE is

currently still retained as a synonym. However, it may be removed in a future release.

Sometimes you may want to regard an n-by-n similarity matrix S as being partitioned into b-

by-b rectangular blocks. You might then want to form a reduced matrix of similarities, between

the different blocks instead of between the individual units. To do this you have to arrange for

each of the b2 blocks of the full matrix to be replaced by a single value. Each diagonal block

must be replaced by unity. The METHOD option specifies how to replace the off-diagonal blocks,

for example the maximum, minimum or mean similarity within the block. The zigzag method

(Rayner 1966) is relevant in particular when the data consist of b soil samples for each of which

information is recorded on several soil horizons, possibly different in the different samples. The

method recognizes that certain horizons might be absent from some soil samples; this leads to

finding successive optimal matches, conditional on the constraint that one horizon cannot match

a horizon that has already been assigned to a higher level; after finding these optima, an average

is taken for each horizon.

The SIMILARITY parameter specifies the similarity matrix for the full set of n observations;

this must be present and have values. The REDUCEDSIMILARITY parameter specifies an

identifier for the reduced similarity matrix, of order b; this will be declared implicitly if you have

not declared it already. The factor that defines the classification of the units into groups must be

specified by the GROUPS parameter. The units can be in any order, so that for example the units

of the first group need not be all together nor given first. The labels of the factor label the

reduced similarity matrix.

The PERMUTATION parameter, if present, must specify a variate. It defines the ordering of

samples within each group, and so must be specified for methods first, last and zigzag.

Within each group, the unit with the lowest value of the permutation variate is taken to be the

first sample, and so on. Genstat will, if necessary, use a default permutation of one up to the

number of rows of the similarity matrix.

If you set option PRINT=similarities, the values of the reduced symmetric matrix are

printed, as percentages.

Options: PRINT, METHOD.

Parameters: SIMILARITY, REDUCEDSIMILARITY, GROUPS, PERMUTATION.

REDUCE 425

Reference

Rayner, J.H. (1966). Classification of soils by numerical methods. Journal of Soil Science, 17,

79-92.

See also

Directive: HREDUCE.

Genstat Reference Manual 1 Summary section on: Multivariate and cluster analysis.

426 Directives in Release 22

REFORMULATE

Modifies a formula or an expression to operate on a different set of data structures.

Options

OLDFORMULA = formula or expression structures

Original formula or expression

NEWFORMULA = formula or expression structures

New formula or expression, modified to operate on the

new structures

Parameters

OLDSTRUCTURE = identifiers Data structures in the OLDFORMULA to be replaced in the
NEWFORMULA

NEWSTRUCTURE = identifiers Identifier of the new data structure to replace each
OLDSTRUCTURE

Description

The REFORMULATE directive allows you to modify a formula or expression to operate on a

different set of data structures. The original formula or expression is specified by the

OLDFORMULA option, and the new formula or expression is specified by the NEWFORMULA option.

If NEWFORMULA is not specified, the new formula or expression replaces the old one in

OLDFORMULA. The data structures to be replaced in OLDFORMULA are listed by the

OLDSTRUCTURE parameter, and the corresponding data structures for NEWFORMULA are provided

by the NEWSTRUCTURE parameter.

The example below shows how you could convert formula A*B (stored in Old) into formula

Y*Z (stored in New).

FORMULA [VALUE=A*B] Old
REFORMULATE [OLDFORMULA=Old; NEWFORMULA=New]\
 OLDSTRUCTURE=A,B; NEWSTRUCTURE=Y,Z

Options: OLDFORMULA, NEWFORMULA.

Parameters: OLDSTRUCTURE, NEWSTRUCTURE.

See also

Directives: EXPRESSION, FORMULA, FARGUMENTS, FCLASSIFICATION, SET2FORMULA.

Genstat Reference Manual 1 Summary section on: Calculations and manipulation.

RELATE 427

RELATE

Relates the observed values on a set of variates or factors to the results of a principal

coordinates analysis (synonym of PCORELATE).

Options

COORDINATES = matrix Points in reduced space; no default i.e. this option must

be specified

NROOTS = scalar Number of latent roots for printed output; default *

requests them all to be printed

Parameters

DATA = variates or factors The data variables

TEST = string tokens Test type, defining how each variable is treated in the

calculation of the similarity between each unit

(simplematching, jaccard, russellrao, dice,

antidice, sneathsokal, rogerstanimoto,

cityblock, manhattan, ecological, euclidean,

pythagorean, minkowski, divergence, canberra,

braycurtis, soergel); default * ignores that variable

RANGE = scalars Range of possible values of each variable; if omitted, the

observed range is takenz

Description

This directive was renamed PCORELATE in Release 14, but the original name of RELATE is

currently still retained as a synonym. However, it may be removed in a future release.

One way of interpreting the principal coordinates obtained from a similarity matrix by PCO

is by relating them to the original data variables. For each coordinate and each data variable, an

F-statistic can be computed as if the variable and the coordinate vector were independent. This

is not the case but, although the exact distribution of these pseudo F-values is not known, they

do serve to rank the variables in order of importance of their contribution to the coordinate

vector.

The DATA parameter lists the variables (variates or factors) that are to be related to the PCO

results and the TEST parameter indicates their "type" as in the FSIMILARITY directive. The

RANGE parameter contains a list of scalars, one for each variable in the DATA list, allowing you

to standardize quantitative variates.

Qualitative variables (variates or factors with TEST settings simplematching -

rogerstanimoto) are treated as grouping factors, and the mean coordinate for each group is

calculated. Only 10 groups are catered for; group levels above 10 are combined. The pseudo F-

statistic gives the between-group to within-group variance ratio. Missing values are excluded.

Quantitative variables (i.e. variates with other settings) are grouped on a scale of 0-10 (where

zero signifies a value up to 0.05 of the range), and mean coordinates for each group are

calculated. The printed pseudo F statistic is for a linear regression of the principal coordinate on

the ungrouped data variate, after standardizing the data variate to have unit range; the regression

coefficient is also printed.

The COORDINATES option must be present and must be a matrix. This represents the units in

reduced space. Usually the coordinates will be from a principal coordinates analysis. The number

of rows of the matrix must match the number of units present in the variables, taking account of

any restriction.

The output from RELATE can be extensive. You may not be interested in relating the variables

to the higher dimensions of the principal coordinates analysis even though you may have saved

these in the coordinate matrix. The NROOTS option can request that results for only some of the

428 Directives in Release 22

dimensions are printed. If NROOTS is not specified, RELATE prints information for all the saved

dimensions: that is, for the number of columns of the coordinates matrix.

Options: COORDINATES, NROOTS.

Parameters: DATA, TEST, RANGE.

See also

Directive: PCORELATE.

Genstat Reference Manual 1 Summary section on: Multivariate and cluster analysis.

REML 429

REML

Fits a variance-components model by residual (or restricted) maximum likelihood.

Options

PRINT = string tokens What output to present (model, components,

effects, means, stratumvariances, monitoring,

vcovariance, deviance, Waldtests,

missingvalues, covariancemodels); default mode,

comp, Wald, cova

PTERMS = formula Terms (fixed or random) for which effects or means are

to be printed; default * implies all the fixed terms

PSE = string token Standard errors to be printed with tables of effects and

means (differences, estimates, alldifferences,

allestimates, none); default diff

WEIGHTS = variate Weights for the analysis; default * implies all weights 1

MVINCLUDE = string tokens Whether to include units with missing values in the

explanatory factors and variates and/or the y-variates

(explanatory, yvariate); default * i.e. omit units

with missing values in either explanatory factors or

variates or y-variates

SUBMODEL = formula Defines a submodel of the fixed model to be assessed

against the full model (for METHOD=Fisher only)

RECYCLE = string token Whether to reuse the results from the estimation when

printing or assessing a submodel (yes, no); default no

RMETHOD = string token Which random terms to use when calculating

RESIDUALS (final, all, notspline); default fina

METHOD = string token Indicates whether to use the standard Fisher-scoring

algorithm or the new AI algorithm with sparse matrix

methods (Fisher, AI); default AI

MAXCYCLE = scalar Limit on the number of iterations; default 30

TOLERANCES = variate Tolerances for matrix inversion; default * i.e.

appropriate default values

PARAMETERIZATION = string token

Parameterization to use for the variance component

estimation (gammas, sigmas); default * i.e. use

whichever is most appropriate for model

CFORMAT = string token Whether printed output for covariance models gives the

variance matrices or the parameters

(variancematrices, parameters); default vari

FMETHOD = string token Controls whether and how to calculate F-statistics for

fixed terms (automatic, none, algebraic,

numerical); default auto

WORKSPACE = scalar Number of blocks of internal memory to be set up for

use by the algorithm

Parameters

Y = variates Variates to be analysed

RESIDUALS = variates Residuals from each analysis

FITTEDVALUES = variates Fitted values from each analysis

EXIT = scalar Exit status of the fit (0 if successful)

SAVE = REML save structures Saves the details of each analysis for use in subsequent

430 Directives in Release 22

VDISPLAY and VKEEP directives

Description

REML estimates the treatment effects and variance components in a linear mixed model: that is,

a linear model with both fixed and random effects. The model to be fitted is specified using the

VCOMPONENTS directive, covariance models for the random effects can be defined using the

VSTRUCTURE directive, and the VRESIDUAL directive can define covariance models for the

residual term or specify the residual term for the individual experiments in a meta-analysis.

Further output can be produced following REML using VDISPLAY, and output can be saved in

Genstat data structures using VKEEP. REML can be used in situations where you would normally

use ANOVA but have unbalanced or correlated data, or where you would normally use linear

regression, but have more than one source of variation or correlation in the data.

REML can be used to analyse data from a wide variety of applications. It can obtain information

on sources and sizes of variability in data sets. This can be of interest where the relative size of

different sources of variability must be assessed, for example to identify the least reliable stages

in an industrial process, or to design more effective experiments. REML also provides efficient

estimates of treatment effects in unbalanced designs with more than one source of error. It can

be used to provide estimates of treatment effects that combine information from all the strata of

a partially balanced design, or to combine information over similar experiments conducted at

different times or in different places. You can thus obtain estimates that make use of the

information from all the experiments, as well as the separate estimates from each individual

experiment. Examples from several different areas of application can be found in Robinson

(1987). The facilities for estimation of covariance models allow estimates of treatment effects

and standard errors to be obtained using an appropriate variance model and taking account of the

correlation structure of the data.

The method of residual maximum likelihood (REML) was introduced by Patterson &

Thompson (1971). It was developed in order to avoid the biased variance component estimates

that are produced by ordinary maximum likelihood estimation: because maximum likelihood

estimates of variance components take no account of the degrees of freedom used in estimating

treatment effects, they have a downwards bias which increases with the number of fixed effects

in the model. This in turn leads to under-estimates of standard errors for fixed effects, which may

lead to incorrect inferences being drawn from the data. Estimates of variance parameters which

take account of the degrees of freedom used in estimating fixed effects, like those generated by

ANOVA in balanced data sets, are more desirable.

Once a mixed model has been specified (using VCOMPONENTS) and any covariance structures

have been defined (using VSTRUCTURE and VRESIDUAL) you can fit the model to the data (the

y-variates) using the REML directive.

The Y parameter lists the variates that are to be modelled. For example, given appropriate

factor definitions, the following command sets up a model and analyses the data held in variate

Yield:

VCOMPONENTS [FIXED=Nitrogen*Variety] RANDOM=Block/Wplot/Splot
REML Yield; FITTED=Fit; RESIDUALS=Res

The FITTEDVALUES and RESIDUALS parameters allow you to store the fitted values and

residuals from the fitted model � above they are stored in variates Fit and Res. The EXIT

parameter saves the "exit status" of each analysis. This is set to zero if it was completed

successfully; for details of the other codes, see VKEEP. The SAVE parameter can be used to name

the REML save structure for use with later VKEEP and VDISPLAY directives.

The three options PRINT, PTERMS and PSE all control the printed output. The PRINT option

selects the output to be displayed:

model description of model fitted

REML 431

components estimates of variance components and estimated

parameters of covariance models

effects estimates of parameters á and â, the fixed and random

effects

means predicted means for factor combinations

stratumvariances approximate stratum variances from a decomposition of

the information matrix for the variance components

(available only when METHOD=Fisher)

monitoring monitoring information at each iteration

vcovariance variance-covariance matrix of the estimated components

deviance deviance of the fitted model (�2 × log-likelihood RL) plus

deviance of submodel when fitted

waldtests Wald tests for all fixed terms in model

missingvalue estimates of missing values

covariancemodels estimated covariance models

The default setting of PRINT=model,components,Wald,cova, gives a description of the

model and covariance models that have been fitted, plus estimates of the variance components

and the Wald tests. By default if tables of means and effects are requested, tables for all terms

in the fixed model are given together with a summary of the standard error of differences

between effects/means. Options PTERMS and PSE can be used to change the terms or obtain

different types of standard error. For example,

VCOMPONENTS [FIXED=Nitrogen*Variety] RANDOM=Block/Wplot/Splot
REML [PRINT=means; PTERMS=Nitrogen.Variety; \
 PSE=allestimates] Yield

means that a Nitrogen by Variety table of predicted means will be produced with a standard

error for each cell.

The FMETHOD option controls whether to accompany the Wald tests for fixed effects with

approximate F statistics and corresponding numbers of residual degrees of freedom. The

computations, using the method devised by Kenward & Roger (1997), can be time consuming

with large or complicated models. So, with the default setting FMETHOD=automatic, Genstat

assesses the model itself and decides automatically whether to do the computations and which

method to use. The other settings allow you to control what to do yourself:

none no F statistics are produced;

algebraic F statistics are calculated using algebraic derivatives

(which may involve large matrix calculations);

numerical F statistics are calculated using numerical derivatives

(which require an extra evaluation of the mixed model

equations for every variance parameter).

The CFORMAT option controls the type of output produced for the estimated covariance

models. The default setting, variancematrices, produces the variance-covariance matrices

for the components, whereas the setting parameters prints their parameters.

The MVINCLUDE option allows the inclusion of units with missing values. By default, units

where there is a missing value in the y-variate or in any of the factors or variates in the model

terms are excluded. The setting explanatory allows units with missing values in factors or

variates in the model to be included. For missing covariate values, this is equivalent to

substituting the mean value. The setting yvariate includes units with missing values in the y-

variate. This can be useful to retain the balanced structure of the data for use with direct product

covariance matrices (see VSTRUCTURE), or to produce predictions of data values for given values

of explanatory factors and/or variates.

The WEIGHTS option can be used to specify a weight for each unit in the analysis. This is

useful when it is suspected that the size of the random error varies between units. For example,

432 Directives in Release 22

if the random error for unit i is known to have variance vió
2, a weight variate should be used

containing values wi=1/vi.

The RMETHOD option controls the way in which residuals and fitted values are formed. For the

default setting RMETHOD=final, the fitted values are calculated from all the fixed and random

effects. The residuals are the difference between the data and the fitted values and, in this case,

are estimates of the *units* random error and can be used to check the Normality and variance

homogeneity assumptions for the random error. To get fitted values constructed from the fixed

terms alone, omitting all random terms, the setting RMETHOD=all must be used. The setting

RMETHOD=notspline means that the residuals will be formed from all the random effects,

excluding spline terms.

Option SUBMODEL is used to specify a submodel of the fixed model (but only applies when

METHOD=Fisher). This model will be fitted as well as the full fixed model, using a slightly

modified version of the algorithm, and the difference in deviances between the full and submodel

can be used as a likelihood-based test to assess the importance of the fixed terms dropped from

the full model, as described by Welham & Thompson (1997). Once the full model has been

fitted, the RECYCLE option can be used to test a series of submodels of the fixed model. If option

RECYCLE=yes is set, then only the estimation for the submodel is performed. Information for

the full fixed model is picked up from the corresponding save structure. When the RECYCLE

option is set, only the deviance and model settings of PRINT can be used.

The METHOD option specifies whether to use the AI (Average Information) algorithm (Gilmour

et al. 1995) with sparse matrix methods to maximize the residual likelihood, or Fisher scoring

with full matrix manipulation. By default, the sparse Average Information algorithm is used. The

AI algorithm generally runs faster per iteration than Fisher scoring and uses much less

workspace, but it may require slightly more iterations to reach convergence. When sparse matrix

methods are used, standard errors of differences will not be available for random effects,

although standard errors are available. Note that when METHOD=AI, the SUBMODEL and RECYCLE

options do not apply. The WORKSPACE option (default 1) specifies the number of blocks of

internal memory to be allocated for use by the estimation algorithm when METHOD=AI.

Option MAXCYCLE can be used to change the maximum number of iterations performed by the

algorithm from the default of 30.

The TOLERANCES option gives tolerances for three matrix inversions. The first two values are

matrix inversion tolerances for the information matrix and the mixed model equations

respectively and take the value 10�5 by default. The third value is used to detect zero frequency

counts for factor combinations in the mixed model equations: 10�6 is used by default.

Options: PRINT, PTERMS, PSE, WEIGHTS, MVINCLUDE, SUBMODEL, RECYCLE, RMETHOD,

METHOD, MAXCYCLE, TOLERANCES, PARAMETERIZATION, CFORMAT, WORKSPACE.

Parameters: Y, RESIDUALS, FITTEDVALUES, EXIT, SAVE.

Action with RESTRICT

Any of the y-variates or any of the factors or variates in the fixed and random models (defined

by VCOMPONENTS) may be restricted to indicate that only a subset of the units is to be used in

the analysis. However, if more than one of these vectors is restricted, all must be restricted to the

same set of units. Any restrictions on the variates supplied to save residuals or fitted values are

ignored.

References

Gilmour, A.R., Thompson, R. & Cullis, B. (1995). AIREML, an efficient algorithm for variance

parameter estimation in linear mixed models. Biometrics, 51, 1440-1450.

Kenward, M.G. & Roger, J.H. (1997). Small sample inference for fixed effects from restricted

maximum likelihood. Biometrics, 53, 983-997.

REML 433

Patterson, H.D. & Thompson, R. (1971). Recovery of inter-block information when block sizes

are unequal. Biometrika, 58, 545-554.

Robinson, D.L. (1987). Estimation and use of variance components. The Statistician, 36, 3-14.

Welham, S.J. & Thompson, R. (1997). Likelihood ratio tests for fixed model terms using residual

maximum likelihood. Journal of the Royal Statistical Society, Series B, 59, 701-714.

See also

Directives: VCOMPONENTS, VSTRUCTURE, VRESIDUAL, VDISPLAY, VPREDICT, VKEEP,

VPEDIGREE, VCYCLE, VSTATUS.

Procedures: VAIC, VALLSUBSETS, VBOOTSTRAP, VCHECK, VCRITICAL, VFRESIDUALS,

VGRAPH, VPLOT, VDEFFECTS, VDFIELDRESIDUALS, VFIXEDTESTS, VFLC, VFPEDIGREE,

VFUNCTION, VHERITABILITY, VLSD, VMETA, VMCOMPARISON, VPERMTEST, VPOWER,

VRACCUMULATE, VRCHECK, VRFIT, VRMETAMODEL, VRPERMTEST, VSAMPLESIZE,

VSCREEN, VSOM, VSPREADSHEET, VSURFACE, VTCOMPARISONS, VABLOCKDESIGN,

VAMETA, VAROWCOLUMNDESIGN, VASERIES, VALINEBYTESTER, VLINEBYTESTER,

FCONTRASTS, FDIALLEL, AOVANYHOW.

Genstat Reference Manual 1 Summary sections on: REML analysis of linear mixed models,

Analysis of variance.

434 Directives in Release 22

RENAME

Assigns new identifiers to data structures.

No options

Parameters

OLDIDENTIFIER = identifiers Specifies the data structures to rename

NEWIDENTIFIER =identifiers Specifies a new identifier for each data structure

Description

RENAME allows you to assign a different identifier to a data structure. For example, if you put

RENAME OLDIDENTIFIER=A; NEWIDENTIFIER=B

the data structure previously known as A would be renamed to have the identifier B, and the data

structure previously known as B would lose its identifier and become unnamed. The identifier

A would then no longer belong to anyone (and could if required be reused).

In the simplest situations, the first appearance of the new identifier will be in the RENAME

command. So there will be no consequences from the fact that the "orphan" data structure that

it previously identified becomes unnamed.

If the identifier has already been used, the orphan data structure will be deleted, unless it is

found to belong to another (named) data structure. So, for example, if the full program was

SCALAR B; VALUE=1
POINTER [VALUES=B] Q
RENAME OLDIDENTIFIER=A; NEWIDENTIFIER=B

the scalar 1 would survive as the first element of the pointer Q. So it could still be referred to as

Q[1], although of course no longer as B. You would get the same effect be specifying

RENAME OLDIDENTIFIER=A; NEWIDENTIFIER=Q[1]

as RENAME looks only for the (named) identifier of the data structure specified by

NEWIDENTIFIER. So, in this case, A takes over the identifier B of Q[1]. If Q[1] did not have

a separate identifier of its own, A would become unnamed. (So this provides a way of removing

the identifier of a pointer element.)

You can also specify a pointer element for the setting of OLDIDENTIFIER and, again, RENAME

will operate only on its identifier (if it has one). For example, in the program

SCALAR C; VALUE=7
POINTER [NVALUES=2] P
RENAME OLDIDENTIFIER=P[1]; NEWIDENTIFIER=C

the pointer element P[1] gains the identifier C, and so can be referred to as C in future (as well

as P[1]).

So, to summarize, for the data structures specified by both the OLDIDENTIFIER and

NEWIDENTIFIER parameters, RENAME ignores any memberships that they may have of pointers,

or e.g. as classifying factors of a table, or as levels or labels vectors of factors. It operates only

on their own identifiers, reassigning the one (if any) belonging to the NEWIDENTIFIER data

structure to become the identifier of the data structure specified by the OLDIDENTIFIER

parameter.

Finally note that, if either OLDIDENTIFIER or NEWIDENTIFIER is set to a dummy, RENAME

will operate on the data structure to which it points, not on the dummy itself (i.e. dummies are

always substituted). So, this allows you to rename data structures in your main program from

inside a procedure.

Options: none.

Parameters: OLDIDENTIFIER, NEWIDENTIFIER.

RENAME 435

See also

Directives: DUMMY, POINTER, PROCEDURE.

Genstat Reference Manual 1 Summary sections on: Calculations and manipulation, Data

structures.

436 Directives in Release 22

RESTRICT

Defines a restricted set of units of vectors for subsequent statements.

No options

Parameters

VECTOR = vectors Vectors to be restricted

CONDITION = expression Logical expression defining the restriction for each

vector; a zero (false) value indicates that the unit

concerned is not in the set

SAVESET = variates List of the units in each restricted set

NULL = scalars Indicator for each restricted set, set to 1 or 0 according

to whether or not it contains no units

Description

The RESTRICT directive defines a restriction on the units of a vector, so that future operations

will involve only a subset of the units.

The VECTOR parameter specifies the vector or vectors that are to be restricted. These can be

variates, factors or texts, but all the vectors listed must be of the same length.

The CONDITION parameter specifies a logical expression which indicates which units of the

vectors are in the defined subset. For example,

VARIATE [VALUES=1,2,3,2,3,4,3,4,5] V
RESTRICT V; CONDITION=V.EQ.2

restricts the vector V to those units with the value 2. Genstat evaluates the expression to generate

internally a variate of zeroes and ones, of the same length as the vectors being restricted. A zero

value indicates that the corresponding unit is to be excluded. The logical expression can involve

any vector of the same length as the vector to be restricted. For example, to restrict variate V and

text T to the units with levels 1 or 2 or 4 of factor F, you could use the statement

RESTRICT V,T; CONDITION=(F.LE.2).OR.(F.EQ.4)

When using a text to define a restriction, remember that you cannot use logical operators like

.EQ. and .NE. Instead you should use operators .IN., .NI., .EQS. and .NES.:

TEXT [VALUES=London,Madrid,Nairobi,Ottawa,Paris,Quito,Rome]\
 City
& [VALUES=London,Madrid,Paris,Rome] Europe
RESTRICT City; CONDITION=City.IN.Europe

restricts the text City to lines 1, 2, 5 and 7 only.

Of course, the expression may just contain a single variate of the of the same length as the

vectors to be restricted. Again a zero indicates that the corresponding unit in the vector to be

restricted is excluded, while any non-zero entry causes inclusion. Thus the restriction above on

the text City could also be specified by

RESTRICT T; CONDITION=!(1,1,0,0,1,0,1)

The same effect can be achieved by using the EXPAND function:

RESTRICT City; CONDITION=EXPAND(!(1,2,5,7))

Another function that may be useful is RESTRICTION; this allows you to generate a variate of

ones and zeros indicating the units to which a vector is currently restricted. It thus provides a

very convenient way of transferring a restriction from one vector to another. For example,

RESTRICT Timezone,Distance; CONDITION=RESTRICTION(City)

restricts the vectors Timezone and Distance to the same units as those to which City is

currently restricted.

RESTRICT 437

Finally, if you omit the CONDITION parameter, this removes any restrictions on the vectors

are removed. For example

RESTRICT City,Timezone,Distance

removes any restrictions that have been set on City, Timezone and Distance.

Note that if the vectors used in the CONDITION expression are themselves restricted these

restrictions will remain in force during the current calculation of the condition. A danger here,

therefore, is that you may accidentally end up restricting out all the elements of a vector by using

RESTRICT repeatedly. The safest way to avoid this is to remove the restrictions on any vectors

to be used in the CONDITION expression before you use them to restrict vectors in some different

way.

The SAVESET parameter can be used to save the numbers of the units that are in the restricted

set. These are saved in a variate with one value for each unit retained by the restriction. Thus,

if the example above with variate V were to become

VARIATE [VALUES=1,2,3,2,3,4,3,4,5] V
RESTRICT V; CONDITION=V.EQ.2; SAVESET=S

S would be created as a variate of length 2, with values 2 and 4.

The NULL parameter can specify a list of scalars, one for each vector in the VECTOR list, that

will be set to one if its restricted set contains no units; otherwise it is set to zero. Also, when

NULL set, RESTRICT suppresses the warnings that it normally gives if a restricted set is null.

Not all directives take account of RESTRICT. For those that do, usually only one vector in the

list of parameters has to be restricted for the directive to treat them all as being restricted in the

same way. A fault is reported if any vectors in such a list are restricted in different ways.

Options: none.

Parameters: VECTOR, CONDITION, SAVESET.

See also

Directives: EXPRESSION, CALCULATE.

Procedures: FRESTRICTEDSET, SUBSET.

Genstat Reference Manual 1 Summary section on: Calculations and manipulation.

438 Directives in Release 22

RESUME

Restarts a recorded job.

Options

CHANNEL = scalar Channel number of the backing-store file where the

information was dumped; default 1

CLOSE = string token Whether to close the file afterwards (yes, no); default
no

No parameters

Description

RESUME recovers the information stored by a previous RECORD statement so that you can

continue your use of Genstat as though nothing had happened in between. Genstat deletes all the

data structures that were created in the current job prior to RESUME, and reinstates the data

structures that were available in Genstat at the time the RECORD statement took place. In

addition, the current graphics settings are replaced by those that were in force when RECORD was

used, but any external files that are attached to Genstat remain unaffected.

If the RECORD directive was used within a procedure or a FOR loop, the job is not resumed at

that point. Instead, it restarts at the statement after the procedure call, or after the outermost

ENDFOR statement.

The CHANNEL option specifies the channel to which the file has been connected (this can be

done using the OPEN directive). You can set the CLOSE option to yes to close the file after the

information has been recovered.

Options: CHANNEL, CLOSE.

Parameters: none.

See also

Directives: RECORD, OPEN.

Genstat Reference Manual 1 Summary section on: Input and output.

RETRIEVE 439

RETRIEVE

Retrieves structures from a subfile.

Options

CHANNEL = scalar Specifies the channel number of the backing-store or

procedure-library file containing the subfile (FILETYPE

settings 'back' or 'proc'); default 0 (i.e. the workfile)

for FILETYPE=back, no default for FILETYPE=proc,

not relevant with other FILETYPE settings

SUBFILE = identifier Identifier of the subfile; default SUBFILE

LIST = string token How to interpret the list of structures (inclusive,

exclusive, all); default incl

MERGE = string token Whether to merge structures with those already in the

job (yes, no); default no, i.e. a structure whose

identifier is already in the job overwrites the existing

one, unless it has a different type

FILETYPE = string token Indicates the type of file from which the information is

to be retrieved (backingstore,
procedurelibrary, siteprocedurelibrary,

Genstatprocedurelibrary); default back

Parameters

IDENTIFIER = identifiers Identifiers to be used for the structures after they have

been retrieved

STOREDIDENTIFIER = identifiers Identifier under which each structure was stored

Description

You can recover information from a subfile of a backing-store file using the RETRIEVE directive.

The CHANNEL option specifies the backing-store file, and the SUBFILE option indicates the

subfile. Both these options can be omitted; by default the file will be the workfile, and the subfile

will be called SUBFILE.

When you retrieve a structure Genstat may also retrieve a chain of associated structures: that

is, all the structures to which it points, and the structures to which they point, and so on. For

example, suppose you store the three structures with identifiers T, V and F, along with an

unnamed structure storing information about T, in a subfile called SUBFILE in backing-store file

FILE1:

OPEN 'FILE1'; CHANNEL=1; FILETYPE=backingstore
TEXT [VALUES=a,b,c] T
VARIATE V; EXTRA=T
FACTOR [LABELS=T] F
STORE [CHANNEL=1] T,V,F

Then the statement

RETRIEVE [CHANNEL=1] V

will retrieve not only V but also T (which was associated with T by the EXTRA parameter of the

VARIATE statement), and the unnamed structure that is associated with T. The structures V, T and

the unnamed structure, are said to be a complete set from the subfile.

The IDENTIFIER parameter specifies the structures to be retrieved. You can use the

STOREDIDENTIFIER parameter to give a structure a different name from the one within the

subfile. For example

RETRIEVE IDENTIFIER=Weeks; STOREDIDENTIFIER=Time

You are not allowed to give identical identifiers to two retrieved structures, nor are you allowed

440 Directives in Release 22

to have the same identifier referring to a structure of one type in a subfile, and to a structure of

a different type in your job.

As with STORE, if you want to rename only some of the structures, you can either respecify

the existing identifier, or insert * at the appropriate point in the STOREDIDENTIFIER list.

Genstat knows whether you are retrieving a procedure by the type of file that you are

accessing, as set by the FILETYPE option. You are not allowed to rename a procedure as a

suffixed identifier or as the name of a directive.

You can even rename a structure so that it is unnamed in the job. Suppose, for example, that

a structure T already exists within Genstat, and that you want to retrieve the variate V stored in

the file FILE1 above. Then, as we have seen, the structure T will also be retrieved. However, you

can avoid the existing structure T in the job being overwritten by making the retrieved version

of T unnamed:

OPEN 'FILE1'; CHANNEL=1; FILETYPE=backingstore
RETRIEVE [CHANNEL=1] V,!T(a); STOREDIDENTIFIER=V,T

The value, a, of the unnamed text !T(a) will be replaced by the values stored for T, and this

unnamed text will become the EXTRA text for V. Alternatively you could rename T to be Tnew

by

RETRIEVE [CHANNEL=1] V,TNew; STOREDIDENTIFIER=V,T

When you are retrieving a suffixed identifier, Genstat matches the numerical suffix only, and not

the whole structure that is denoted by the identifier. For example, suppose pointer P stored in a

subfile points to structures with identifiers A, B, C and D, and that P has numerical suffixes 1 to

4 respectively. Also suppose that in your current job, you have never mentioned pointer P either

directly or indirectly. Then the statement

RETRIEVE [CHANNEL=1] P[2]

will retrieve the structure B from backing store but, as it has not been referenced only as P[2]

in the RETRIEVE statement, the identifier B will not be recovered and it will be known only as

P[2] within Genstat.

A structure that you are retrieving from a subfile may sometimes overwrite the values of an

existing structure in your program. If this structure is a pointer or a compound structure, the

existing suffixes will be overwritten by those of the stored structure, so some existing structures

with suffixed identifiers may in effect be lost. For example, suppose that userfile FILE2 contains

a pointer P, with suffixes 1 and 2 pointing to structures A and B. If we set up a variate P[3], and

then retrieve the pointer P

OPEN 'FILE2'; CHANNEL=1; FILETYPE=backingstore
VARIATE [VALUES=1...6] P[5,6,7]
RETRIEVE [CHANNEL=1] P

P will now have suffixes 1 and 2 pointing to A and B, but the variate P[3] will have been lost.

The LIST option controls how the IDENTIFIER list is interpreted. The default setting

inclusive simply retrieves the structures that have been listed. Alternatively, if you set

LIST=all Genstat will retrieve all the structures in the subfile that have identifiers and whose

types have been defined. Finally, you can see LIST=exclusive to retrieve everything in the

subfile that you have not listed in the IDENTIFIER parameter. Note, though, that some of the

structures in the IDENTIFIER list may be retrieved if they are needed to complete the set of

structures to be retrieved. If you use this setting, the STOREDIDENTIFIER parameter is ignored.

The FILETYPE option specifies whether you wish to retrieve information from backing store

files that have been attached as normal backing store files or as procedure libraries by the OPEN

directive, or from Genstat Procedure library or from the site procedure library. The CHANNEL

setting is ignored if the siteprocedurelibrary or Genstatprocedurelibrary settings

are used. The source code of the procedures in the Genstat Procedure library can be accessed

using the LIBEXAMPLE procedure.

RETRIEVE 441

Normally when you retrieve a complete subset of structures, Genstat overwrites all structures

in the job that have the same identifier (after any renaming). As a result, some other structures

already in the job may become inconsistent and will be destroyed. You can avoid this happening

by setting the MERGE option to yes. Genstat then does not overwrite any structures with the same

name and type. However, a consequence is that some of the retrieved structures may now be

inconsistent and thus need to be destroyed in the program (although they will of course remain

in the subfile).

Options: CHANNEL, SUBFILE, LIST, MERGE, FILETYPE.

Parameters: IDENTIFIER, STOREDIDENTIFIER.

See also

Directives: STORE, CATALOGUE, MERGE, OPEN, RECORD, RESUME.

Genstat Reference Manual 1 Summary section on: Input and output.

442 Directives in Release 22

RETURN

Returns to a previous input stream (text vector or input channel).

Options

NTIMES = scalar Number of streams to ascend; default 1

CLOSE = string token Whether to close the channel (or text) after the return

(yes, no); default no

DELETE = string token Whether to delete the text or the file to which the

channel was attached (only relevant if CLOSE=yes) after

the return (yes, no); default no

Parameter

expression Logical expression controlling whether or not to return

to the previous input stream; default 1 (i.e. true)

Description

In its simplest form, you can type

RETURN

to make Genstat stop taking statements from the current input channel and to go back to the

channel that was previously active, and contained the INPUT statement that switched to the

current file. Input then continues from the line following the original INPUT statement, but a

marker is left in the channel that contains the RETURN statement, so that you can use INPUT to

continue from the next line after RETURN later in your programme.

Sometimes you may want to return only if a particular condition is satisfied, for example if

you have discovered that the data are unsatisfactory for whatever operations occur later in the

file. To do this, you set the parameter to an appropriate logical expression; this must return a

scalar result, which is interpreted as true if it is equal to 1, and false otherwise. For example

RETURN MIN(Height)<0

If you have use INPUT several times, you may wish to return through several channels. The

NTIMES option can be set to a number, or a scalar, to control how many returns take place. For

example, with input starting on channel 1, supposing you had used INPUT 2 to switch to a file

on channel 2, and then INPUT 3 to switch to a further file (on channel 3). If this file then

contained the statement RETURN [NTIMES=2] you would return to channel 1. You can never

return from input channel 1, so if you set NTIMES to a number greater than the number of

currently active input channels, Genstat simply returns to channel 1.

You can set option CLOSE=yes to close the file; also, if you do have CLOSE=yes, you can set

DELETE=yes to delete the file.

If Genstat meets the end of the file on the current input channel, it will try to return control

to the channel from which it was called. This is called an implicit return. The channel is closed

automatically when this happens, and a warning message will be printed.

In order to maintain control over the different input channels, and know where to go after a

RETURN, Genstat keeps an internal stack of input channels. Suppose you specify channel k, by

typing INPUT k. There are three possible actions:

(a) if k is the current input channel, the statement is ignored;

(b) if k is not in the stack, it is added to it;

(c) if k is already in the stack (that is, the current state is: 1 � ... � k � k1 � k2 � ... � kn) then

the intermediate channels k1 ... kn are suspended at their current positions and removed

from the stack.

Input then switches to channel k, taking statements from the beginning of the file if it has never

been used before, or from the point at which it was last suspended. Subsequent INPUT statements

will re-start the other channels from where they were suspended. When a RETURN statement is

RETURN 443

used, Genstat steps back NTIMES through the stack, removing any intermediate channels from

the stack. This means that, using the above representation of the input stack, if channel kn

contained the statement INPUT k2 and channel k2 then had a RETURN, this would return to

channel k1.

If you use ## to execute macros, these are treated in the same way as input channels and added

to the input stack. You can use INPUT to temporarily halt a macro and switch to a file, and

RETURN to get back to the macro.

Options: NTIMES, CLOSE, DELETE

Parameter: unnamed.

See also

Directives: INPUT, CALCULATE.

Genstat Reference Manual 1 Summary section on: Input and output.

444 Directives in Release 22

RFUNCTION

Estimates functions of parameters of a linear, generalized linear, generalized additive or

nonlinear model.

Options

PRINT = string tokens What to print (estimates, se, correlations);

default esti,se

CHANNEL = identifier Channel number of file, or identifier of a text to store

output; default current output file

CALCULATION = expression structures

Calculation of functions involving nonlinear and/or

linear parameters; no default

SE = variate To save approximate standard errors; default *

VCOVARIANCE = symmetric matrix To save approximate variance-covariance matrix; default
*

SAVE = identifier Specifies save structure of regression model; default *

i.e. that from last model fitted

Parameter

scalars Identifiers of scalars assigned values of the functions by

the calculations

Description

The RFUNCTION directive provides estimates of functions of parameters in regression models,

together with approximate standard errors and correlations. It can be used after any regression

model except after fitting standard curves with separate nonlinear parameters for each level of

a factor (option NONLINEAR=separate in FITCURVE, ADD, DROP and SWITCH). However, if

there are any linear parameters in a general nonlinear model for which standard errors have not

been estimated, standard errors and correlations cannot be estimated for functions that depend

on those parameters.

The functions are defined by the expressions supplied by the CALCULATION option of

RFUNCTION. These define how to calculate the function from the values of the parameters.

In linear and generalized linear models, the parameters have no identifiers associated with

them. You should then refer to each parameter by using a text structure containing the name of

the parameter as displayed, for example, by the option PRINT=estimates of the FIT directive.

The text structure can, of course, just be a string, for example 'Constant'. However, it must

match exactly, including case, the name displayed by FIT.

Unless initial values have been specified using the RCYCLE directive, parameters in standard

curves (fitted by FITCURVE) usually also have no identifiers and so should be referred to using

texts as for linear regression models. However, in nonlinear models (fitted by FITNONLINEAR)

identifiers are specified for the nonlinear parameters using RCYCLE. Names can be specified for

the linear parameters of nonlinear models using the LINEARPARAMETERS option of RCYCLE; if

not, texts must be used as in linear regression models.

The parameter of RFUNCTION provides a list of scalars that are to hold the estimated values

of the functions. These need not be declared in advance, but will be defined automatically if

necessary. The CALCULATION option specifies a list of one or more expressions to define the

calculations necessary to evaluate the functions from the parameters of the model, and place the

results into the scalars.

The PRINT option controls output as usual. By default, the estimates of the function values

are formed � as could be done simply by a CALCULATE statement using the expressions if the

parameters were available in scalars. In addition, approximate standard errors are calculated,

RFUNCTION 445

using a first-order approximation based on difference estimates of the derivatives of each

function with respect to each parameter. Approximate correlations can also be requested.

The SE and VCOVARIANCE options allow standard errors and the approximate variance-

covariance matrix of the functions to be stored; the estimates of the functions themselves are

automatically available in the scalars listed by the parameter of RFUNCTION. The SAVE option

specifies which fitted model is to be used, as in the RDISPLAY and RKEEP directives.

Options: PRINT, CHANNEL, CALCULATION, SE, VCOVARIANCE, SAVE.

Parameter: unnamed.

See also

Directives: EXPRESSION, FIT, FITCURVE, FITNONLINEAR.

Procedures: NLAR1, FIELLER.

Genstat Reference Manual 1 Summary section on: Regression analysis.

446 Directives in Release 22

RKEEP

Stores results from a linear, generalized linear, generalized additive or nonlinear model.

Options

EXPAND = string token Whether to put estimates in the order defined by the

maximal model for linear or generalized linear models

(yes, no); default no

DISPERSION = scalar Dispersion parameter to be used as estimate for

variability in s.e.s; default as set in the MODEL directive

RMETHOD = string token Type of residuals to form if parameter RESIDUALS is set

(deviance, Pearson, simple); default as set in MODEL

DMETHOD = string token Basis of estimate of dispersion, if not fixed by

DISPERSION option (deviance, Pearson); default as

set in MODEL

PROBABILITY = scalar Probability level for confidence limits; default 0.95

OMODEL = pointer Pointer to settings of options of the current MODEL

statement, given unit labels corresponding to the option

names of MODEL (starting with 'distribution')

PMODEL = pointer Pointer to settings of parameters of the current MODEL

statement, given unit labels corresponding to the

parameter names of MODEL (starting with 'y'), only

refers to the first setting of Y, FITTEDVALUES and
RESIDUAL

STATISTICS = variates Saves all the statistics that could be displayed for the

first Y variate by the 'summary' setting of the PRINT

option of the fitting directives FIT, ADD etc

CIMETHOD = string token Method to use to calculate confidence intervals for

nonlinear models (exact, quadratic); default quad

IGNOREFAILURE = string Whether to ignore failure to fit a generalized linear

model (yes, no); default no

MAXIMALMODEL = formula structure

Saves the maximal model (as defined by TERMS)

FITMODEL = formula structure Saves the currently-fitted model (including any contrast

functions)

FITCONSTANT = scalar Saves a scalar containing the value one if the constant is

included in the fitted model, or zero otherwise

FITTYPE = scalar Saves a scalar to indicate the type of model that has been

fitted

SAVE = identifier Specifies save structure of model; default * i.e. that from

latest model fitted

Parameters

Y = variates Response variates for which results are to be saved;

default is the list of response variates in the most recent

MODEL statement

RESIDUALS = variates Residuals for each Y variate, as specified by the

RMETHOD option

FITTEDVALUES = variates Fitted values for each Y variate

LEVERAGES = variate Leverages of the units for each Y variate

ESTIMATES = variates Estimates of parameters for each Y variate

SE = variates Standard errors of the estimates

RKEEP 447

INVERSE = symmetric matrix Inverse matrix from a linear or generalized linear model,

inverse of second derivative matrix from a nonlinear

model

VCOVARIANCE = symmetric matrix Variance-covariance matrix of the estimates

DEVIANCE = scalars Residual ss or deviance

DF = scalar Residual degrees of freedom

TERMS = pointer or formula structure

Fitted terms (excluding constant)

ITERATIVEWEIGHTS = variate Iterative weights from a generalized linear model

LINEARPREDICTOR = variate Linear predictor from a generalized linear model

YADJUSTED = variate Adjusted response of a generalized linear model

EXIT = scalar Exit status from a generalized linear or nonlinear model

GRADIENTS = pointer Derivatives of fitted values with respect to parameters in

a nonlinear model

GRID = variate Grid of function or deviance values from a nonlinear

model

DESIGNMATRIX = matrix Design matrix whose columns are explanatory variates

and dummy variates

PEARSONCHISQUARE = scalar Pearson chi-square statistic from a generalized linear

model

STERMS = pointer Saves the identifiers of the variates that have been

smoothed in the current model

SCOMPONENTS = pointer Saves a pointer to variates holding the nonlinear

components of the variates that have been smoothed

NOBSERVATIONS = scalar Number of units used in regression, excluding missing

data and zero weights and taking account of restrictions

SEFITTEDVALUES = variate Saves standard errors of the fitted values

SELINEARPREDICTOR = variate Saves standard errors of the linear predictor

INFLATION = variate Saves the variance inflation factors of the parameter

estimates

UPPER = variates Saves upper confidence limits for the parameter

estimates

LOWER = variates Saves lower confidence limits for the parameter

estimates

MEANDEVIANCE = scalars Saves the residual mean deviance (or mean square)

TDEVIANCE = scalars Saves the total deviance (or sum of squares)

TDF = scalars Saves the total degrees of freedom (corrected for the

mean or uncorrected as displayed by the fitting

directives)

TMEANDEVIANCE = scalars Saves the total mean deviance (or mean square)

SUMMARY = pointer Saves the summary analysis-of-variance (or deviance)

table as a pointer with a variate or text for each column

(source, d.f. etc)

ACCUMULATED = pointer Saves the accumulated analysis-of-variance (or

deviance) table as a pointer with a variate or text for

each column (source, d.f. etc)

STATISTICS = variates Saves all the statistics that could be displayed for the Y

variate by the 'summary' setting of the PRINT option

of the fitting directives FIT, ADD etc

448 Directives in Release 22

Description

RKEEP allows you to copy information from a regression analysis (performed, for example, by

a FIT, FITCURVE or FITNONLINEAR statement) into Genstat data structures. You do not need

to declare the structures in advance; Genstat will declare them automatically to be of the correct

type and length.

The Y parameter specifies the response variates for which the results are to be saved.

Unusually for the first parameter of a directive, this has a default: if you leave it out, Genstat

assumes that results are to be saved for all the response variates, as given in the previous MODEL

statement.

The RESIDUALS, FITTEDVALUES, LEVERAGES, SEFITTEDVALUES and

SELINEARPREDICTOR parameters allow you to save the standardized residuals, the fitted values,

the leverages, the standard errors of the fitted values and the standard errors of the linear

predictor. For example, RESIDUALS=R puts the residuals in a variate R. The RMETHOD option

controls the type of residuals that are formed. You cannot save these values if you have set

RMETHOD=* in the MODEL statement. The standard errors of fitted values are defined by:

s.e. = �(leverage × variance function × dispersion / weight)

where the variance function is calculated from the fitted value according to the setting of the

DISTRIBUTION option of the current MODEL statement, and the dispersion is the fixed or

estimated value of dispersion, as controlled by the DISPERSION and DMETHOD options of the

MODEL and RKEEP directives.

The ESTIMATES and SE parameters save the parameter estimates and their standard errors;

RKEEP puts them in variates, using the same order as in the display produced by the PRINT

option of the directive used to fit the model. Alternatively, if you have used TERMS to define a

maximal model, you can set option EXPAND=yes to reorder the estimates to their order in the

maximal model (including missing values for the parameters not currently in the model). The

variates saving these values are set up with labels; thus, you can refer to individual values in

expressions using the labels as displayed when the estimates are printed. For example, to get the

estimate of the constant into a scalar, you could put:

RKEEP ESTIMATES=Esti
SCALAR Const
CALCULATE Const = Esti$['Constant']

The UPPER and LOWER parameters allow you to save upper and lower confidence limits for

the parameter estimates. The probability for the confidence interval is specifed by the

PROBABILITY option, with default 0.95. The CIMETHOD option controls the method used with

nonlinear models. The default setting, quadratic, uses the same method as for other types of

regression, basing the limits on a quadratic surface fitted to the likelihood surface around the

optimum. These may be poor approximations if the surface is very non symmetric. The

alternative setting, exact, calculates the limits directly from the likelihood surface.

The INFLATION parameter allows the variance inflation factors of the parameters to be saved.

The INVERSE parameter allows you to save the inverse matrix as a symmetric matrix: that is,

(X�X)�1 where X is the design matrix. This matrix is the same for all response variates.

The VCOVARIANCE parameter saves the variance-covariance matrix of the estimates for each

response variate: these are formed by multiplying the inverse matrix by the relevant variance

estimate based on the estimated dispersion, or on the dispersion that you have supplied.

The DEVIANCE parameter lets you save the residual sum of squares, or the deviance for

distributions other than Normal. The DF parameter saves the residual degrees of freedom, and

the MEANDEVIANCE parameter saves the residual mean deviance. The TDEVIANCE parameter

saves the total deviance, the TDF parameter saves the total degrees of freedom (corrected for the

mean or uncorrected as displayed by the fitting directives), and the TMEANDEVIANCE parameter

saves the total mean deviance.

The LINEARPREDICTOR parameter lets you save the linear predictor of a generalized linear

RKEEP 449

model; the values of the linear predictor are the same as the fitted values if the link function is

the identity function.

The ITERATIVEWEIGHTS parameter saves a variate containing the iterative weights used in

the last cycle of the iteration for fitting a generalized linear model. The iterative weights do not

contain any contribution from the weights that can be specified, whether or not the model is

iterative, by the WEIGHTS option of the MODEL directive, and they are 1.0 for ordinary linear

regression.

The YADJUSTED parameter saves the adjusted response variate used in the last cycle of the

iteration for fitting a generalized linear model; with the identity link function this is the same as

the response variate.

The Pearson chi-square statistic can be saved using the PEARSONCHI parameter of RKEEP. It

is calculated as the sum of the squared Pearson residuals. This can be used as an alternative to

the deviance for testing goodness of fit; see Nelder & McCullagh (1989).

The EXIT parameter of RKEEP provides a code that indicates the success or type of failure of

an iterative fit. Codes 0-7 are relevant to standard curves and general nonlinear models, and

codes 0 and 8-13 are for generalized linear models:

0 Successful fitting

1 Limit on number of cycles has been reached without convergence

2 Parameter out of bounds

3 Likelihood appears constant

4 Failure to progress towards solution

5 Some standard errors are not available because the information matrix is nearly singular

6 Calculated likelihood may be incorrect because of missing fitted values

7 Curve is close to a limiting form

8 Data incompatible with model

9 Predicted mean or linear predictor out of range

10 Invalid calculation for calculated link or distribution

11 All units have been excluded from the analysis

12 Iterative process has diverged

13 Failure due to lack of space or data access

14 Function returned a missing value

With a generalized linear model, unless you set option IGNOREFAILURE=yes, the EXIT code

is the only information that you can save if the fit has been unsuccessful. Alternatively, with a

nonlinear model or when IGNOREFAILURE=yes, RKEEP will save any information that may be

available. (You may thus, for example, be able to discover more about the cause of the failure.)

The derivatives of the fitted values with respect to each parameter in a standard curve or

general nonlinear model can be stored in variates using the GRADIENTS parameter. You can use

these quantities to assess the relative influence of each observation on a parameter; you can also

construct a measure of leverage by summing the gradients for all the parameters.

The GRID parameter can be used to store a grid of values of the deviance (or any general

function) following FITNONLINEAR.

The DESIGNMATRIX parameter allows you to save the matrix X. The columns correspond to

the parameters of the model, ordered as for the ESTIMATES parameter. For simple linear

regression with a constant this has only two columns, the first containing ones and the second

containing the values of the explanatory variate. Columns corresponding to aliased parameters

are omitted, but you can use the corresponding option of TERMS to construct the full design

matrix.

The PEARSONCHI parameter provides the Pearson chi-square statistic for dispersion, which

is the same as the residual sum of squares for the Normal distribution, but is different to the

deviance for other distributions. The STERMS and SCOMPONENTS parameters are relevant to

generalized additive models. The STERMS parameter can be used to store a pointer to those

450 Directives in Release 22

variates whose effects in the model are smoothed. The SCOMPONENTS parameter stores a pointer

to variates, one for each smoothed variate in the same order as in STERMS, containing the fitted

nonlinear component of each smoothed variate � this does not include the linear component or

the constant term.

The NOBSERVATIONS parameter allows you to save the number of units used in the analysis,

omitting units with missing values or excluded by restrictions. This will be the same as the total

number of degrees of freedom plus one, except in a regression with no constant term and no

explanatory factors when it will equal the total number of degrees of freedom.

The SUMMARY parameter can be used to save the summary analysis-of-variance (or deviance)

table for each response variate. The summary table is saved as a pointer with a variate or text for

each of its columns (source, d.f. etc). Similarly, the ACCUMULATED parameter can save the

accumulated analysis-of-variance (or deviance) tables.

The STATISTICS parameter saves all the statistics that could be displayed for each response

variate by the 'summary' setting of the PRINT option of the fitting directives FIT, ADD etc.

Alternatively, the STATISTICS option can be used to save the statistics for the first response

variate specified by the MODEL statement.

The DISPERSION option allows you to define the value to be used for the dispersion

parameter when calculating the standard errors. The DMETHOD option indicates how this should

be calculated if DISPERSION is not set. By default the deviance is used but you can set

DMETHOD=Pearson to request the Pearson chi-square statistic to be used instead.

Options OMODEL and PMODEL allow you to save pointers containing information about the

current model. The labels of the pointers can be specified in either lower or upper case, or any

mixture. OMODEL can be set to a pointer to store information about each of the options set in the

previous MODEL statement. For example, the statement

RKEEP [OMODEL=Om]

will allow you to refer to the current variate of weights (if one was set in the WEIGHTS option

of MODEL) as Om['weights']. Whether or not a variate was set, the statement

MODEL [WEIGHTS=Om['weights']] Newobs

will allow a new analysis with the same weighting as the old.

The pointer Om has 16 values, with suffixes corresponding to the options of MODEL in the

defined order. Similarly, the statement

RKEEP [PMODEL=Pm]

will set up a pointer storing the (eight) current parameter settings of the previous MODEL

statement. However, if there was more than one response variate, the first value of the pointer

will be the identifier of the first response variate only: the others are not stored. Similarly, only

the fitted-values and residuals variates for the first response will be pointed at. For example, the

identifier Pm[1] or Pm['y'] can be used to refer to the current response variate after the RKEEP

statement above.

The MAXIMALMODEL option saves the maximal model (as defined by TERMS). The FITMODEL

option saves the model that has currently been fitted, including any contrast functions (i.e. POL,

REG, COMPARISON, SSPLINE or LOESS). The FITCONSTANT option saves a scalar containing

the value one if the constant is included in the fitted model, or zero otherwise. The FITTYPE

option saves a scalar to indicate the type of model that has been fitted: 1 for an ordinary

regression or generalized linear model (FIT), 2 for a generalized nonlinear model (FIT with the

CALCULATION option set), 3 for a standard curve (FITCURVE) and 4 for a nonlinear model

(FITNONLINEAR).

Options: EXPAND, DISPERSION, RMETHOD, DMETHOD, PROBABILITY, OMODEL, PMODEL,

STATISTICS, CIMETHOD, IGNOREFAILURE, MAXIMALMODEL, FITMODEL, FITCONSTANT,

FITTYPE, SAVE.

RKEEP 451

Parameters: Y, RESIDUALS, FITTEDVALUES, LEVERAGES, ESTIMATES, SE, INVERSE,

VCOVARIANCE, DEVIANCE, DF, TERMS, ITERATIVEWEIGHTS, LINEARPREDICTOR,

YADJUSTED, EXIT, GRADIENTS, GRID, DESIGNMATRIX, PEARSONCHISQUARE, STERMS,

SCOMPONENTS, NOBSERVATIONS, SEFITTEDVALUES, SELINEARPREDICTOR, INFLATION,

UPPER, LOWER, MEANDEVIANCE, TDEVIANCE, TDF, TMEANDEVIANCE, SUMMARY,

ACCUMULATED, STATISTICS.

Reference

McCullagh, P. & Nelder, J.A. (1989). Generalized Linear Models (second edition). Chapman

and Hall, London.

See also

Directives: FIT, FITCURVE, FITNONLINEAR, RKESTIMATES.

Genstat Reference Manual 1 Summary section on: Regression analysis.

452 Directives in Release 22

RKESTIMATES

Saves estimates and other information about individual terms in a regression analysis.

Options

FACTORIAL = scalar Limit on number of factors and variates in a model term;

default 3

Y = variate Response variate for which results are to be saved;

default is the last response variate in the save structure

SAVE = identifier Provides the regression save structure for the analysis

from which the estimates are to be saved; default * takes

the save structure from the most recent regression

Parameters

TERMS = formula Model terms for which information is required

ESTIMATES = tables or scalars Table or scalar to store the estimated regression

coefficients for each term

SE = tables or scalars Table or scalar to store the standard errors of the

estimated regression coefficients

VCOVARIANCE = symmetric matrices

Symmetric matrix or scalar to store the variances and

covariances between the estimates of each term

DF = scalars Number of degrees of freedom for each term

POSITIONS = tables or scalars Positions of the estimates in the variate of estimates as

saved from RKEEP when option EXPAND=yes

Description

RKESTIMATES allows you to save estimates and other information about terms in a regression

or generalized linear model analysis into Genstat data structures. You do not need to declare the

structures in advance; Genstat will declare them automatically to be of the correct type and size.

By default the results are saved from the most recent analysis, that is for the last y-variate in

the most recent MODEL statement. Alternatively, you can use the SAVE option to specify the save

structure from another analysis (see the SAVE option of MODEL). Again, the default is to save the

information for the last y-variate, but you can use the Y option to specify another one.

The TERMS parameter specifies a model formula, which Genstat expands to form the series

of model terms about which you wish to save information. As in FIT, the FACTORIAL option

sets a limit on the number of factors and variates in each term. Any term containing more than

that limit is deleted. You can include the single-line text 'constant' (in any case) to refer to

the constant term.

The subsequent parameters allow you to specify identifiers of data structures to store the

various types of information for each of the terms that you have specified. The ESTIMATES

parameter saves estimates for each term, in a table if the term involves factors or in a scalar if

it involves only variates. Similarly the SE parameter saves standard errors for the estimates. The

VCOVARIANCE parameter saves the variances and covariances between the estimates of each

term, in a symmetric matrix if the term involves factors or in a scalar if it involves only variates.

The DF parameter saves the number of degrees of freedom for the terms, in scalars. Finally, the

POSITIONS parameter saves the positions where the estimates can be found in the variate of

estimates that would be saved by the ESTIMATES parameter of RKEEP when its option

EXPAND=yes. (This allows you, for example, to obtain correlations between the estimates of

different terms out of the variance-covariance matrix that can be saved by the VCOVARIANCE

parameter of RKEEP.)

RKESTIMATES 453

Options: FACTORIAL, Y, SAVE.

Parameters: TERMS, ESTIMATES, SE, VCOVARIANCE, DF, POSITIONS.

See also

Directives: FIT, FITCURVE, FITNONLINEAR, RKEEP.

Genstat Reference Manual 1 Summary section on: Regression analysis.

454 Directives in Release 22

ROTATE

Does a Procrustes rotation of one configuration of points to fit another.

Options

PRINT = string tokens Printed output required (rotations, coordinates,

residuals, sums); default * i.e. no printing

SCALING = string token Whether or not isotropic scaling is allowed (yes, no);

default no

STANDARDIZE = string tokens Whether to centre the configurations (at the origin),

and/or to normalize them (to unit sum of squares) prior

to rotation (centre, normalize); default cent,norm

SUPPRESSREFLECTION = string token

Whether to suppress reflection (yes, no); default no

Parameters

XINPUT = matrices Inputs the fixed configuration

YINPUT = matrices Inputs the configuration to be fitted

XOUTPUT = matrices To store the (standardized) fixed configuration

YOUTPUT = matrices To store the fitted configuration

ROTATION = matrices To store the rotation matrix

RESIDUALS = matrices or variates To store distances between the (standardized) fixed and

fitted configurations

RSS = scalars To store the residual sum of squares

Description

The ROTATE directive provides orthogonal Procrustes rotation. You must set the parameters

XINPUT and YINPUT, which specify respectively the fixed configuration and the configuration

that you want to be translated and rotated; these are called X and Y above. The other parameters

are used for saving results from the analysis. For X and Y to refer to the same set of objects they

must have the same number of rows, and each object must be represented by the same row in

both X and Y. If the XINPUT matrix is n×p and the YINPUT matrix is n×q, Genstat does the

analysis using matrices that are n×r, where r is max(p, q). The smaller matrix is expanded with

columns of zeros, as explained above.

The PRINT option specifies which results you want to print; the settings are as follows.

coordinates specifies that the fixed and fitted configurations are to be

printed; note that the fixed configuration is printed after

any standardization (see below), and the fitted

configuration is printed after standardization and rotation.

residuals prints the residual distances of the points in the fixed

configuration from the fitted points; this is after any

standardization and rotation.

rotations prints the orthogonal rotation matrix.

sums prints an analysis of variance giving the sums of squares of

each configuration, and the residual sum of squares; if

scaling is used, the scaling factor is also printed.

The three other options of the ROTATE directive control the form of analysis. The SCALING

option specifies whether you want least-squares scaling to be applied to the standardized YINPUT

matrix when finding the best fit to the fixed configuration. You should set SCALING=yes if you

want scaling; Genstat will then print the least-squares scaling factor with the analysis of

variance. By default there is no scaling.

The STANDARDIZE option specifies what preliminary standardization is to be applied to the

ROTATE 455

XINPUT and YINPUT matrices. It has settings:

centre centre the matrices to have zero column means;

normalize normalize the matrices to unit sums of squares.

The default is STANDARDIZE=centre,normalize. The initial centring ensures that the

configurations are translated to have a common centroid, and thus automatically provides the

best translation of Y to match X. The normalization arranges that the residual sum of squares

from rotating X to Y is the same as that for rotating Y to X. Switching off both centring and

standardization is rarely advisable, but can be requested by putting STANDARDIZE=*.

With some methods of multivariate analysis, for example the analysis of skew-symmetry, the

direction of travel about the origin is important. It is then undesirable to perform a reflection as

part of the rotation: the SUPPRESSREFLECTION option can be used to prevent this. The default

setting is no, which allows reflection to take place.

Options: PRINT, SCALING, STANDARDIZE, SUPPRESSREFLECTION.

Parameters: XINPUT, YINPUT, XOUTPUT, YOUTPUT, ROTATION, RESIDUALS, RSS.

See also

Procedures: GENPROCRUSTES, PCOPROCRUSTES, SAGRAPES.

Genstat Reference Manual 1 Summary section on: Multivariate and cluster analysis.

456 Directives in Release 22

SCALAR

Declares one or more scalar data structures.

Options

VALUE = scalar Value for all the scalars; default is a missing value

MODIFY = string token Whether to modify (instead of redefining) existing

structures (yes, no); default no

IPRINT = string tokens Information to be used to identify the scalars in output

(identifier, extra); if this is not set, they will be

identified in the standard way for each type of output

Parameters

IDENTIFIER = identifiers Identifiers of the scalars

VALUE = scalars Value for each scalar

DECIMALS = scalars Number of decimal places for printing

EXTRA = texts Extra text associated with each identifier

MINIMUM = scalars Minimum value for the contents of each structure

MAXIMUM = scalars Maximum value for the contents of each structure

DREPRESENTATION = scalars or texts

Default format to use when the contents represents a

date and time

Description

A scalar data structure stores a single number. The IDENTIFIER parameter lists the identifiers

of the scalars that are to be declared.

Values can be assigned to the scalars by either the VALUE option or the VALUE parameter. The

option defines a common value for all the structures in the declaration, while the parameter

allows them each to be given a different value. If both the option and the parameter are specified,

the parameter takes precedence. However, if you do not define a value explicitly for a scalar,

Genstat gives it a missing value.

The DECIMALS parameter allows you to define a number of decimal places to be used by

default when each symmetric matrix is printed. You can associate a text of extra annotation with

each scalar using the EXTRA parameter. The MINIMUM and MAXIMUM parameters allow you to

define lower and upper limits on the values in each symmetric matrix. Genstat then prints

warnings if any values outside that range are allocated to the scalar. The DREPRESENTATION

parameter allows a scalar or a single-valued text to be specified for each scalar to indicate that

the scalar stores a date and time, and to define a format to be used for this, by default, when it

is printed; details are given in the description of the PRINT directive.

If the MODIFY option is set to yes any existing attributes and values of the scalars are retained;

otherwise these are lost. The IPRINT option can be set to specify how the scalars will be

identified in output. If IPRINT is not set, they will be identified in whatever way is usual for the

section of output concerned. For example, the PRINT directive generally uses their identifiers

(although this can be changed using the IPRINT option of PRINT itself), while the ANOVA

directive will print the identifier and the extra text for each y-variate.

Options: VALUE, MODIFY, IPRINT.

Parameters: IDENTIFIER, VALUE, DECIMALS, EXTRA, MINIMUM, MAXIMUM,

DREPRESENTATION.

SCALAR 457

See also

Directive: VARIATE.

Genstat Reference Manual 1 Summary section on: Data structures.

458 Directives in Release 22

SET

Sets details of the "environment" of a Genstat job.

Options

INPRINT = string tokens Printing of input as in PRINT option of INPUT

(statements, macros, procedures, unchanged);

default unch

OUTPRINT = string tokens Additions to output as in PRINT option of OUTPUT

(dots, page, unchanged); default unch

DIAGNOSTIC = string tokens Defines the least serious class of Genstat diagnostic

which should still be generated (messages, warnings,

faults, extra, unchanged); default unch

ERRORS = scalar Number of errors that a job may contain before it is

abandoned (0 implies no limit); default is to leave

unchanged

FAULT = text Sets the Genstat fault indicator (for example, FAULT=*

clears the last fault); default is to leave the indicator

unchanged

PAUSE = scalar Number of lines to output before pausing (interactive use

only; 0 implies no pausing); default is no change

PROMPT = text Characters to be printed for the input prompt; default is

to leave unchanged

NEWLINE = string token How to treat a new line (significant, ignored);

default is no change

CASE = string token Whether lower- and upper-case (small and capital)

letters are to be regarded as identical in identifiers

(significant, ignored); default is no change

FIELDWIDTH = scalar Fieldwidth to be used as a default minimum by PRINT

and other output commands

SIGNIFICANTFIGURES = scalar Minimum number of significant figures to be supplied in

the default formats determined by PRINT and other

output commands

SEEDS = pointer or scalar Defines the current default seeds to be used for random

numbers in various parts of Genstat

RUN = string token Whether or not the run is interactive (interactive,

batch); by default the current setting is left unchanged

UNITS = identifier To (re)set the current units structure; default is to leave

unchanged

BLOCKSTRUCTURE = identifier To (re)set the internal record of the most recent

BLOCKSTRUCTURE statement; default is to leave

unchanged

TREATMENTSTRUCTURE = identifier

To (re)set the internal record of the most recent

TREATMENTSTRUCTURE statement; default is to leave

unchanged

COVARIATE = identifier To (re)set the internal record of the most recent

COVARIATE statement; default is to leave unchanged

ASAVE = identifier To (re)set the current ANOVA save structure; default is to

leave unchanged

MSAVE = identifier To (re)set the current save structure for multivariate

analysis; default is to leave unchanged

SET 459

DSAVE = identifier To (re)set the current save structure for the

high-resolution graphics environment; default is to leave

unchanged

RSAVE = identifier To (re)set the current regression save structure; default is

to leave unchanged

TSAVE = identifier To (re)set the current time-series save structure; default

is to leave unchanged

VSAVE = identifier To (re)set the current REML save structure; default is to

leave unchanged

VCOMPONENTS = identifier To (re)set the current REML model definitions, as

specified by VCOMPONENTS and VSTRUCTURE; default is

to leave unchanged

WORDLENGTH = string token Length of word (8 or 32 characters) to check in

identifiers, directives, options, parameters and

procedures (long, short); default * i.e. no change

CAPTIONS = string tokens Controls which captions are displayed (minor, major,

meta, unchanged); default unch

TYPESET = string tokens Controls when typesetting commands within textual

strings are used (output, graphics); if unset, the

existing setting is left unchanged

CMETHOD = string token Controls whether number settings for colour options and

parameters are interpreted as RGB values or as numbers

of standard colours (rgb, standard); if unset, the

existing setting is left unchanged

DATASPACE = scalar or variate Updates the current data space allocations; if unset, the

existing allocations are left unchanged

WORKINGDIRECTORY = text Sets the working directory; default is to leave this

unchanged

ALGORITHMS = string token Controls the use of enhanced computing algorithms

(standard, mkl); if unset, the existing setting is left

unchanged

ACTIONAFTERFAULT = string token

Controls what happens after a fault (continue, stop);

if unset, the existing setting is left unchanged

UNSETDUMMY = string token Controls what happens if you specify an unset dummy as

the setting of an option or parameter that expects another

type of data structure (fault, ignore, warn); if unset,

the existing setting is left unchanged

LANGUAGE = text Text with either one or two values to specify a preferred

language for output and (optionally) a second choice in

case the preferred language is unavailable

YEAR2DIGITBREAK = scalar Controls how 2 digits can be used to specify years
†TIMEWITHSECONDS = string token Controls whether seconds are included with the time12

and time24 date representations; (absent, present,

unchanged); default unch

No parameters

Description

The default of SET is to do nothing: that is, each option by default leaves the corresponding

attribute of the environment unchanged. Of course you have to start somewhere, so an initial

460 Directives in Release 22

environment is defined at the start of any Genstat program; the corresponding initial settings of

the options of SET, known as the initial defaults, are described below.

The INPRINT option controls what parts of a Genstat job supplied in the current input channel

are recorded in the current output file; the input channel can be either an input file or the

keyboard. Three parts are distinguished: explicit statements; statements, or parts of statements,

that you have supplied in macros using either the ## notation or the EXECUTE directive; and

statements that you have supplied in procedures. The initial default is to record nothing if the

output is to the screen, otherwise to record the statements. This aspect of the environment can

be modified also by the PRINT option of the INPUT directive and by the INPRINT option of JOB.

The OUTPRINT option controls how the output from many Genstat directives starts: the output

can be preceded by a move to the top of a new page, or by a line of dots beginning with the line

number of the statement producing the analysis, or by both. If output is directly to the screen, no

new pages are given. The initial default is to give neither if output is to the screen, otherwise to

give a new page and a line of dots. Alternatively, this aspect can be modified by the PRINT

option of the OUTPUT directive or by the OUTPRINT option of JOB. The lines of dots are

produced by the directives for regression analysis, analysis of designed experiments, REML

analysis, multivariate analysis and time series; also from the FLRV, FSSPM and SVD directives.

If you give an analysis statement within a FOR loop, the line number preceding the line of dots

is that of the ENDFOR statement rather than of the analysis statement. New pages are produced

with any of the above, and with the GRAPH, HISTOGRAM and CONTOUR directives.

The DIAGNOSTIC option lets you control the level of diagnostic reporting. You might want

to do this within a procedure, to prevent faults being reported to a user who does not need to

know in detail what is going on inside the procedure. By initial default, all diagnostics �
messages, warnings and faults � are printed. You can switch off messages by setting

DIAGNOSTIC=warning, or switch off both messages and warnings by setting

DIAGNOSTIC=fault. If you set DIAGNOSTIC=*, then no diagnostics will appear. The extra

setting gives you extra information, in the form of a dump of the current state of the job; but this

is likely to be useful only for developers of Genstat. Printing of diagnostics can also be

controlled by the DIAGNOSTIC option of JOB.

The ERRORS option controls what Genstat does when many faults happen within a single job

while in batch mode. By initial default, up to five errors per job are reported, and successive

faults will not generate diagnostic messages. This ensures, for example, that input intended to

be read by a READ statement will not generate many lines of diagnostics if execution halts

because of a fault before the READ statement. Note, however, that this option does not affect the

detailed error messages printed by the READ directive itself: these are controlled separately by

the corresponding ERRORS option of READ. In interactive mode, the count of errors is restarted

after each successful statement is issued, though the option is unlikely to be useful in this mode.

The FAULT option is provided primarily to allow procedure writers to modify the internal

record that is kept of the most recent fault indicator. Setting FAULT=* clears the record; you can

then use the GET directive to ascertain whether a fault has occurred since the record was cleared.

You can also set the fault indicator to a particular diagnostic, for example

SET [FAULT='VA4']

A subsequent DISPLAY statement will then report the chosen fault in the standard way. The fault

indicator is automatically cleared at the start of each job.

The PAUSE option lets you specify how many lines of output are produced at a time; you

might, for example, want to read the output on a terminal screen before more output replaces it.

Obviously this is relevant only in interactive mode, and may not be needed in the

implementations of Genstat that provide a scrollable output window. By initial default, all output

is sent to the current output channel as soon as it is available. Some computers can store the

output, irrespective of whether Genstat itself has a scrollable window, and let you scroll forward

and back to read it at leisure: others just provide keys to freeze the output while you are reading

SET 461

a section, and then to continue to the next segment of output. If you set PAUSE=n, then after

every n lines of output Genstat gives a prompt:

Press RETURN to continue

After you have read the displayed section of output, you can press the <RETURN> key to get the

next n lines. The counting of lines is restarted each time you give a statement from the keyboard:

it is not restarted between separate statements in a macro, procedure or auxiliary input channel.

If you have specified that Genstat should echo input lines, these are included among the n. Once

all the output has been displayed, Genstat prompts for further statements.

The PROMPT option specifies the characters used to prompt for interactive input. The initial

default is the greater-than character followed by a space "> ". The prompt can also be modified

by the PROMPT option of JOB. Other prompts are used by READ and EDIT, and these cannot be

altered.

The NEWLINE option allows you to cancel the initial default whereby a new line (<RETURN>)

is a terminator both for strings within a string list (1.6.2) and for a statement (1.8). Thus, for

example, if you specify

SET [NEWLINE=ignored]

you need no longer use a backslash (\) to continue a statement onto a new line, since <RETURN>

is no longer interpreted as the end of a statement. But you will then have to terminate each

statement explicitly with a colon.

The CASE option specifies whether upper-case and lower-case letters are to be treated as the

same in identifiers. The initial default is that upper and lower case are not the same; thus, an

identifier X is distinct from an identifier x. If CASE is set to ignored, then in later statements,

both x and X are treated as the same identifier, X. Thus the structure with identifier x cannot be

referenced, unless CASE is later reset to significant.

The FIELDWIDTH option allows you to control the minimum fieldwidth that is used as a

default by PRINT and other output commands. The initial default is 12.

In PRINT the default number of decimal places for a numerical structure is determined by

calculating the number that would be required to print its mean absolute value to at least d

significant figures. The initial default for d is four, but you can redefine this using the

SIGNIFICANTFIGURES option.

The SEEDS option specifies the default seeds to be used to generate random numbers in

various areas of Genstat. You can set SEED to a scalar to define a single seed to be used for all

the areas. Alternatively, you can supply a pointer to define a different seed for each area. The

elements of the pointer should be labelled to indicate the area concerned: for example

'calculate', and 'randomize' for random-number functions and the RANDOMIZE directive

respectively. The easiest way to see the possibilities is to save the current seeds using the SEEDS

option of the GET directive; this saves a pointer with elements labelled automatically. You will

notice, though, that the GET pointer represents each seed as a variate (with several values) rather

than a scalar. This is because, once any randomization has been done in an area, there is too

much seed information to store in a single number. Variates are equally valid for the elements

of the SET pointer. So you can save the current seeds using GET, and then restore them by using

the same pointer in SET.

The RUN option controls whether Genstat interprets the program as being in batch or in

interactive mode; this assumed mode is independent of whether the program really is being run

in batch or interactively. Initially, a program is taken to be in interactive mode only if the first

input channel and the first output channel are both connected to a terminal. The setting of the

assumed mode has two effects � on recovery from faults, and on how EDIT operates.

The UNITS option provides another way of setting the units structure in addition to the UNITS

directive. The setting can be the identifier of a variate or text structure; this will become the

default labelling structure of other variates, texts or factors with the same length, in those

462 Directives in Release 22

directives that use such labels. The setting can also be a scalar to specify the default number of

units. The setting of the UNITS option is lost at the end of each job within a program.

The BLOCKSTRUCTURE, TREATMENTSTRUCTURE, COVARIATE, ASAVE, DSAVE, MSAVE,

RSAVE, TSAVE, VSAVE and VCOMPONENTS options specify special save structures for graphical

and analysis directives. You can set the options only to an identifier that you have previously

established by the SPECIAL option of the GET directive or by the SAVE options of the various

analysis directives themselves. For example, if two sets of regression analyses are in progress

in one job, the SET directive can be used to switch between them:

MODEL [SAVE=S1] Y1
FIT X1
MODEL [SAVE=S2] Y2
FIT X1
SET [RSAVE=S1]
FIT X1,X2

This program fits the regression of Y1 on X1, using save structure S1, then the regression of Y2

on X1 with save structure S2. Finally, it fits the regression of Y1 on X1 and X2, because the

current regression save structure is changed to S1 before the last FIT statement. The settings of

these options are all lost at the end of a job.

The WORDLENGTH option controls the number of characters that are stored and checked in

identifiers and names of directives, procedures, options, parameters and functions. In releases

prior to 4.2 this was always eight, but from 4.2 onwards you can choose between eight

(WORDLENGTH=short) and 32 (WORDLENGTH=long). This can also be controlled by the JOB

directive and, within a procedure, by the PROCEDURE directive. The default is to leave the setting

unchanged.

The CAPTIONS option controls which captions are displayed by directives and procedures.

This can be used inside a procedure to suppress irrelevant captions that would be produced by

the procedures or directives that it calls. The setting can be restored by the RESTORE option of

the PROCEDURE statement, or by saving the current setting using GET, and then restoring it by

using another SET. The initial default is to display all types of caption.

The TYPESET option controls whether typesetting commands within textual strings (see

PRINT) are recognised used in output and in labels and titles on graphs. The initial default is to

use them in both.

The CMETHOD option is useful if you have programs from Release 10 or earlier that use the old

way of specifying graphics colours. Prior to Release 11, you had to use one of Genstat's 256

standard colours, and redefine its RGB definition, if necessary, using the COLOUR directive. In

Release 11, the representation of colours was changed to allow you to use standard colour names

(see PEN for details). So virtually all options and parameters of the directives and library

procedures that define colours were modified to take strings or texts as their settings. Further

flexibility was given by interpreting numeric settings directly as RGB values. However, if you

have a program from Release 10 or earlier that relies on the old standard colours, you can put

SET [CMETHOD=standard]

to interpret numeric settings of colour options and parameters later in your program as standard

colour numbers instead of RGB values.

The DATASPACE option allows you to increase the current data space allocations. You can set

this to a variate of length three to specify a different size for each of the three types of data: real

numbers (for numeric data), integers (for factors and system information) and characters (for

texts). Alternatively, you can set it to a scalar to specify the same size for all three types. The

sizes are measured in blocks of 32768 values. If any of the data spaces is already larger than the

specified size, its size is left unchanged. This option can be useful if you know that your next

analysis is likely to require lot of space � it is more efficient to reserve all the space at once,

rather than leaving it to Genstat to expand each allocation every time that it becomes full.

SET 463

The WORKINGDIRECTORY option allows you to set the working directory (the default directory

where Genstat will open or save files).

The ALGORITHMS option allows you to request the use of enhanced computing algorithms.

The initial default, at the start of any Genstat run, is to use only the standard algorithms.

However, if you set ALGORITHMS=mkl, it will use algorithms from the Intel® Math Kernel

Library for operations such as eigenvalue decompositions and matrix inversion. These should

provide much faster performance with large problems.

The ACTIONAFTERFAULT option allows you to control what happens if a fault occurs inside

a procedure or during a batch run. The initial default, at the start of any Genstat run, is that

execution of the procedure or the batch script stops. However, you can set ACTIONAFTERFAULT

to continue to request that it continues instead. The FAULT option of GET can be used to access

the most recent fault code, so that you can make your own decision about what to do next if a

fault occurs.

A dummy is a data structure that stores the identifier of a data structure. This can be useful

with options and parameters that expect another type of data structure. If you supply a dummy,

it will be replaced by the identifier that it stores. The UNSETDUMMY option controls what happens

if the dummy is unset. The initial default is to give a warning, and replace the dummy by the

default for the option or parameter if one has been defined, or otherwise to treat the option or

parameter as though it had not been set. If you set UNSETDUMMY to ignore, no warning is given.

Finally, if you set it to fault, unset dummies are treated as faults.

Some Genstat commands can now provide output in languages other than English. The

LANGUAGE option allows you to supply a text with either one or two values to specify your

preferred language in its first value, and (optionally) your second choice in its second value.

Output will then be generated in your preferred language if that is available. Otherwise it may

be in your second-choice language or, if neither are available, the command will generate the

ordinary English output.

The YAR2DIGITBREAK option controls how two digits can be used to specify years: whether

thse represent years in the 1900's or the 2000's. YAR2DIGITBREAK specifies the cut-off date:

dates less than this value represent years beginning 20, and two digit dates greater than or equal

to this value will represent years beginning 19. For example, if it is set to 30, years in the range

00 - 29 will represent the years 2000 - 2029 and years in the range 30 - 99 represent the years

1930 - 1999. Alternatively, the value 0 ensures that all 2 digit dates belong to the 1900's, while

the value 100 means that they all belong to the 2000's.

The TIMEWITHSECONDS option controls whether seconds will be present or absent in output

with the time12 and time24 date representations. The default is to leave the current setting

unchanged.

Options: INPRINT, OUTPRINT, DIAGNOSTIC, ERRORS, FAULT, PAUSE, PROMPT, NEWLINE,

CASE, FIELDWIDTH, SIGNIFICANTFIGURES, SEEDS, RUN, UNITS, BLOCKSTRUCTURE,

TREATMENTSTRUCTURE, COVARIATE, ASAVE, DSAVE, MSAVE, RSAVE, TSAVE, VSAVE,

VCOMPONENTS, WORDLENGTH, CAPTIONS, TYPESET, CMETHOD, DATASPACE,

WORKINGDIRECTORY, ALGORITHMS, ACTIONAFTERFAULT, UNSETDUMMY, LANGUAGE,

YEAR2DIGITBREAK.

Parameters: none.

See also

Directives: GET, PROCEDURE.

Genstat Reference Manual 1 Summary section on: Program control.

464 Directives in Release 22

SETALLOCATIONS

Runs through all ways of allocating a set of objects to subsets.

Options

NREQUIRED = scalar Number of allocations that are required; default 1

UNIQUE = string token Whether only unique allocations are to be formed,

allowing the reordering of the subsets (yes, no); default
no

NFOUND = scalar Number of allocations that has been found

NPOSSIBLE = scalar Saves the total of allocations that can be formed

GROUPS = factor or pointer Saves the allocations, in a single factor if NREQUIRED =

1, otherwise in a pointer to NFOUND factors

UNITS = variate Supplies numbers for the objects; if unset, the positive

integers 1, 2 ... are used

START = factor Previous allocation; if unset the allocations start as a

partitioning of the objects in the ordering in the UNITS

variate

Parameters

SETSIZE = scalars Number of objects in each subset

ELEMENTS = variates or pointers Saves the objects allocated to each subset, in a single

variate if NREQUIRED = 1, otherwise in a pointer to

NFOUND variates

Description

The SETALLOCATIONS directive allows you to form all the ways in which a set of objects can

be allocated to subsets. For example, suppose we have 4 objects numbered 1 ... 4 to allocate to

two subsets of size 2. There are 6 possible ways of forming the allocations: {1, 2 : 3, 4}, {1, 3

: 2, 4}, {1, 4 : 2, 3}, {2, 3 : 1, 4}, {2, 4 : 1, 3} and {3, 4 : 1, 2}. If, however, the ordering of the

subsets is unimportant, there are only three. For example {1, 2 : 3, 4} is then the same as {3, 4

: 1, 2}.

The sizes of the subsets are specified by the SETSIZE parameter, and the UNIQUE option can

be set to yes to indicate that their ordering is unimportant (so only unique allocations are then

formed). The NREQUIRED option indicates how many allocations you want to form (default 1).

If you set NREQUIRED to a scalar containing a missing value, SETALLOCATIONS will save as

many allocations as it can find.

You can use the NPOSSIBLE option to find out how many allocations are possible. The

NFOUND option is useful if you request more allocations than are possible � it indicates how

many allocations SETALLOCATIONS has actually been able to find.

The GROUPS option saves the allocations in factors (each with a level for each subset). If

NREQUIRED = 1, it saves a single factor. Alternatively, if NREQUIRED is greater than one, it saves

a pointer containing NFOUND factors.

As an alternative, the ELEMENTS parameter allows you to save the allocations in variates. For

example

SETALLOCATIONS 2,2; ELEMENTS=Sub1, Sub2

saves the first subset in variate Sub1 and the second in variate Sub2. Just one allocation has been

formed here as the NREQUIRED option has default 1. If several allocations are formed, ELEMENTS

saves them in pointers to variates. For example

SETALLOCATIONS [NREQUIRED=3] 2,2; ELEMENTS=Sub1, Sub2

saves three allocations: (Sub1[1] : Sub2[1]), (Sub1[2] : Sub2[2]), and (Sub1[3] :

Sub2[3]). By default, the variates will contain the positive integers 1, 2 upwards, but you can

SETALLOCATIONS 465

supply a variate containing others using the UNITS option.

By default, the first allocation is a partitioning of the objects in the same ordering as in the

UNITS variate (or numerical order if UNITS is not set). However, if you want to run through the

allocations in order, you can save the current allocation using the GROUPS option, and then use

this as the setting of the START option to get the next one. For example, the following program

runs through all the allocations of seven objects into subsets of size 2, 3 and 2.

SETALLOCATIONS [NPOSSIBLE=Nposs; GROUPS=Alloc] 2,3,2
CALCULATE Ntimes = Nposs - 1
FOR [INDEX=i; NTIMES=Ntimes]
 DUPLICATE Alloc; NEWSTRUCTURE=Start
 SETALLOCATIONS [NREQUIRED=1; GROUPS=Alloc; START=Start]\
 2,3,2
 " use allocation Alloc "
ENDFOR

Options: NREQUIRED, UNIQUE, NFOUND, NPOSSIBLE, GROUPS, UNITS, START.

Parameters: SETSIZE, ELEMENTS.

Action with RESTRICT

Not relevant.

See also

Directives: SETCALCULATE, SETRELATE.

Procedure: SUBSET.

Genstat Reference Manual 1 Summary section on: Calculations and manipulation.

466 Directives in Release 22

SETCALCULATE

Performs Boolean set calculations on the contents of vectors or pointers.

Options

NULL = scalar Returns either 1 or 0 according to whether or not the

result is a null (i.e. empty) set

FREPRESENTATION = string token How to represent factors in a calculation that contains

only factors (levels, labels); default leve

TOLERANCE = scalar Tolerance to use when comparing numerical values;

default 10�6

SUBSTITUTE = string token Whether to substitute dummies within pointers in the

expression (yes, no); default no

NOMESSAGE = string tokens Which warning messages to suppress (novalues);

default * i.e. none

Parameter

expression Expression defining the calculation to be performed

Description

The SETCALCULATE directive allows you to perform set operations. The calculation must have

a single assignment, setting a pointer, variate, text or factor to the result of a set calculation

involving other compatible structures. Calculations on pointers must involve only pointers, those

on variates and those on texts can involve factors, while those on factors can involve either

variates or texts but not both.

For example, you can form a variate All that contains all the distinct values that occur in

either of a pair of variates x and y using the .OR. operator

SETCALCULATE all = x .OR. y

or all the (distinct) values that occur in both of them using the .AND. operator

SETCALCULATE both = x .AND. y

The available operators are as follows:

.OR. represents the Boolean "or" operation: for example

x.OR.y produces a vector that contains any item that is in

either x or y

.AND. represents the Boolean "and" operation: for example

x.AND.y produces a vector that contains any item that is

in both x and y

.EOR. represents "either or": for example x.EOR.y produces a

vector that contains any item that is in either x or y but not

both of them

- represent "not", for example x-y produces a vectors that

contains the items that are in x but not in y

+ synonym of .OR.

, synonym of .OR.

* synonym of .AND.

The NULL option can save a scalar whose value is 1 if the calculation generates an null set (i.e.

one that has no members); otherwise the scalar is set to 0. The FREPRESENTATION option

determines whether the values of factors are compared using their levels or their labels; by

default the levels are used. The TOLERANCE option defines the tolerance to be used when

comparing numbers. The default value 10�6 should be suitable, however, unless the variates

contain very small values. If the calculation is operating on pointers, the SUBSTITUTE option

SETCALCULATE 467

controls whether or not to replace any dummies that they contain by the structures to which they

point. Finally, the NOMESSAGES option allows you to suppress the warning message that

SETCALCULATE produces if one of the data structures in the calculation has no values.

Options: NULL, FREPRESENTATION, TOLERANCE, SUBSTITUTE, NOMESSAGES.

Parameter: unnamed.

Action with RESTRICT

SETCALCULATE ignores any restrictions on vectors in the expression.

See also

Directives: SETALLOCATIONS, SETRELATE, SET2FORMULA, CALCULATE.

Procedure: FDISTINCTFACTORS.

Genstat Reference Manual 1 Summary section on: Calculations and manipulation.

468 Directives in Release 22

SETOPTION

Sets or modifies defaults of options of Genstat directives or procedures.

Option

DIRECTIVE = string token Directive (or procedure) to be modified

Parameters

NAME = string tokens Option names

DEFAULT = identifiers New default values

Description

The SETOPTION directive changes the default settings of options of a directive or procedure for

the remainder of the current job. If you use this directive in your start-up file you can make the

changed default apply in all your use of Genstat.

To achieve any effect, the option and both parameters of the directive must be set. The

DIRECTIVE option specifies the name of the directive or procedure that is affected, and the NAME

parameter indicates the option whose default is to be changed. The settings are strings, so need

not be quoted because all directive and procedure names are valid as unquoted strings. The

DEFAULT parameter is then set to a data structure to provide the new default that you want to be

assumed. For example, the following statement modifies the PRINT option of the FIT directive.

SETOPTION [DIRECTIVE=FIT] PRINT; DEFAULT='deviance'

The usual default of the PRINT option in FIT is to print a statement of the model, a summary of

the analysis, and the parameter estimates: this corresponds to the setting

PRINT=model,summary,estimates. This SETOPTION statement therefore redefines the

default so that any subsequent FIT statement in the job will report only the residual deviance

unless you explicitly set the PRINT option.

The defined mode of the PRINT option of FIT is "strings" (8.1.2). However, the DEFAULT

parameter of SETOPTION expects a data structure (to allow for all the other modes that might

occur), and so it must be set to a text structure containing the string (or strings) that you want to

be the default. Similarly, if the defined mode of the option is "numbers", "expression" or

"formula", you must supply a variate, an expression structure or a formula structure containing

the new default. If the defined mode is "identifier", the setting of DEFAULT is simply an

identifier, which must be of the required type if this is specified in the definition of the directive

or procedure.

To reset the PRINT option of FIT back to its usual default, you would need to give the

statement

SETOPTION [DIRECTIVE=FIT] PRINT; DEFAULT=!t(model,summary,\
 estimates)

The SETOPTION directive can also be used to change defaults of any procedure: this may be a

procedure in the standard Procedure Library, the Site Library or a personal library that you have

already opened in the current program, or it may be a procedure that you have defined explicitly

in the job.

Option: DIRECTIVE.

Parameters: NAME, DEFAULT.

See also

Directives: OPTION, PROCEDURE.

Genstat Reference Manual 1 Summary section on: Program control.

SETPARAMETER 469

SETPARAMETER

Sets or modifies defaults of parameters of Genstat directives or procedures.

Option

DIRECTIVE = string token Directive (or procedure) to be modified

Parameters

NAME = string tokens Parameter names

DEFAULT = identifiers New default values

Description

The SETPARAMETER directive changes the default settings of parameters of a directive or

procedure for the remainder of the current job. If you use this directive in your start-up file you

can make the changed default apply in all your use of Genstat. The option and parameters are

used in exactly the same way as by the SETOPTION directive to change the defaults of options

of directives and procedures. For full details see the description of SETOPTION.

Option: DIRECTIVE.

Parameters: NAME, DEFAULT.

See also

Directives: PARAMETER, PROCEDURE.

Genstat Reference Manual 1 Summary section on: Program control.

470 Directives in Release 22

SETRELATE

Compares the distinct values contained in two data structures.

Options

FREPRESENTATION = string token How to represent factors in a comparison between two

factors (levels, labels, ordinals); default leve

LFACTORIAL = scalar Limit on number of factors or variates in the terms

formed from a LEFT formula; default * i.e. none

RFACTORIAL = scalar Limit on number of factors or variates in the terms

formed from a RIGHT formula; default * i.e. none

TOLERANCE = scalar Tolerance to use when comparing numerical values;

default 10�6

SUBSTITUTE = string token Whether to substitute dummies within LEFT or RIGHT

pointers and formulae (yes, no); default no

Parameters

LEFT = identifiers First structures in each comparison

RIGHT = identifiers Second structures in each comparison

CONTAINS = scalars Returns 1 or 0 according to whether or not LEFT

contains RIGHT

EQUALS = scalars Returns 1 or 0 according to whether or LEFT and RIGHT

contain exactly the same distinct set of items

INCLUDEDIN = scalars Returns 1 or 0 according to whether or not LEFT is

included in RIGHT

DISTINCT = scalars Returns 1 or 0 according to whether or not LEFT and

RIGHT are distinct

Description

SETRELATE can compare the distinct values of any numerical structure (scalar, variate, table,

matrix, diagonal matrix or symmetric matrix) with another numerical structure or with a factor.

It can compare a factor either with another factor, or with a variate or a text. It can compare a

text with another text, or two pointers. Finally, it can compare two formulae.

The LEFT and RIGHT parameters specify the structures to compare. The other parameters

provide the results of the comparison as scalars containing the values 0 or 1. CONTAINS is set

to 1 if the LEFT structure contains every (distinct) value in the RIGHT structure. EQUALS returns

1 if the sets of distinct values in the LEFT and RIGHT structures are identical. INCLUDEDIN

equals 1 if the RIGHT structure contains every (distinct) values in the LEFT structure. DISTINCT

equals 1 if the LEFT and RIGHT structures are have a null intersection, i.e. they have no values

in common.

When comparing two factors, the FREPRESENTATION option specifies whether to use levels,

labels or ordinal values. (The ordinal values are formed representing the levels, in numerical

order, by the numbers 1, 2 and so on.) By default levels are used.

When comparing pointers and formulae, the SUBSTITUTE option controls whether any

dummies that they contain are substituted by the data stuctures to which they point, before the

comparison is made. Note, if any of those data structures is a dummy, it too is replaced, and so

on until we reach a data structure that is not a dummy. However, if the original dummy (or any

of the dummies to which it points) is unset, the original dummy is retained.

The LFACTORIAL and RFACTORIAL options can be used to set a limit on number of factors

or variates in the terms formed from a LEFT or RIGHT formula, respectively; by default there are

no limits.

The TOLERANCE option defines the tolerance to be used when comparing numbers. The

SETRELATE 471

default value 10�6 should be suitable, however, unless the numbers are very small.

Options: FREPRESENTATION, LFACTORIAL, RFACTORIAL, TOLERANCE, SUBSTITUTE.

Parameters: LEFT, RIGHT, CONTAINS, EQUALS, INCLUDEDIN, DISTINCT.

Action with RESTRICT

SETRELATE ignores any restrictions on LEFT or RIGHT vectors.

See also

Directives: SETALLOCATIONS, SETCALCULATE, SET2FORMULA, CALCULATE.

Genstat Reference Manual 1 Summary section on: Calculations and manipulation.

472 Directives in Release 22

SET2FORMULA

Forms a model formula using a set of structures supplied in a pointer.

Option

METHOD = string token Relationship of the structures within the formula

(combined, crossed, nested); default comb

Parameters

POINTER = pointers Sets of structures to be used to form the formulae

FORMULA = formula structures Formulae constructed from the sets

Description

SET2FORMULA forms a model formula using the contents (factors and/or variates) of a pointer.

The pointer is specified by the POINTER parameter, and the formula is saved by the FORMULA

parameter.

The METHOD option defines how the formula is constructed. With the combined setting, the

formula has a single model term combining all the structures: for example

SET2FORMULA !p(A,B,C); FORMULA=Fcomb

sets up Fcomb as the formula

A.B.C

The crossed setting links the contents of the pointer using the operator *, so it would form the

formula

A*B*C

The nested setting uses the operator /, so it would form

A/B/C

Option: METHOD.

Parameters: POINTER, FORMULA.

See also

Directives: FORMULA, FCLASSIFICATION, REFORMULATE, SETCALCULATE, SETRELATE.

Genstat Reference Manual 1 Summary section on: Calculations and manipulation.

SHELLEXECUTE 473

SHELLEXECUTE

Launch executables or open files in another application using their file extension, PC

Windows only.

No options

Parameters

FILE = text Name of the file to execute

STATUS = scalar Indicates whether the execution of the file was

successful (0) or not (1)

MESSAGE = text Saves the error message associated with a failure to

execute the file

Description

The SHELLEXECUTE directive can be used to launch executables or start an application

associated with a given document extension without knowing the name of the associated

application under Windows. For example, you could start a web browser by using the file

extension .html.

The FILE parameter specifies the name of the file to execute as a text. This must contain the

absolute or relative pathname, for example

'C:/Consult/Data/Info.html'

or

'../../Project/Main.html'

Note we have used a forward slash (/) above as the directory separator character. The the

backwards slash (\) is the Genstat continuation character, and would need to be doubled up (\\)

to avoid it being interpreted as a continuation.

The STATUS parameter saves a scalar indicating whether the file execution was successful (0)

or not (1). If the file execution was unsuccessful you can save the associated error message in

a text using the MESSAGE parameter.

Options: none.

Parameters: FILE, STATUS, MESSAGE.

See also

Directive: SUSPEND.

474 Directives in Release 22

SKIP

Skips lines in input or output files.

Options

CHANNEL = scalar Channel number of file; default current channel of the

specified type

FILETYPE = string token Type of the file concerned (input, output); default
inpu

STYLE = string token Style to use when skipping output (plaintext,

formatted); default * uses the current style of the

channel

Parameter

identifiers How many lines to skip; for input files, a text means skip

until the contents of the text have been found, further

input is then taken from the following line

Description

SKIP can be used with either input or output files. The FILETYPE and CHANNEL options

indicate which file is to be skipped. By default this is the current input channel.

For input files you can skip over unwanted lines, which might be comments describing the

data that is to follow, or might be some statements that you do not want to use in your current

job. You can skip a specified number of lines, n say, by setting the parameter to a scalar

containing the value n. Alternatively, you can skip everything up to and including a particular

string of characters by setting the parameter to a text containing that string. For example,

SKIP [CHANNEL=2] 'Section 2'

will skip the contents of the input file on channel 2 from the current position until the string

Section 2 is found. The next line to be read from channel 2 will then be the one immediately

after the line containing Section 2.

For output files you can use SKIP to print blank lines to separate one section of output from

another. You might want to do this if you had set the PRINT option SQUASH=yes to suppress the

automatic blank lines within a section of output. For example,

PRINT [CHANNEL=2; IPRINT=*; SQUASH=yes] Heading
SKIP [CHANNEL=2; FILETYPE=output] 2
PRINT [CHANNEL=2; IPRINT=*; SQUASH=yes] Table

places two blank lines between Heading and Table when printing their values to channel 2.

For an output file that has been opened in a style other than plain text (see OPEN), you can use

the STYLE option to control whether the skipping is done in formatted or plain-text styles. If

STYLE is not set, the default is to use the current style (as controlled by the OUTPUT directive).

Options: CHANNEL, FILETYPE, STYLE.

Parameter: unnamed.

See also

Directives: PAGE, READ, PRINT, CAPTION.

Genstat Reference Manual 1 Summary section on: Input and output.

SORT 475

SORT

Sorts units of vectors according to an index vector.

Options

INDEX = vectors Variates, texts or factors whose values are to define the

ordering; default is to use the first vector in the

OLDVECTOR list

DIRECTION = string token Order in which to sort (ascending, descending);

default asce

DECIMALS = scalar Number of decimal places to which to round before

sorting numbers; default * i.e. no rounding

Parameters

OLDVECTOR = vectors or pointers Factors, pointers, texts or variates whose values are to be

sorted

NEWVECTOR = vectors or pointers Structure to receive each set of sorted values; if any are

omitted, the values are placed in the corresponding
OLDVECTOR

Description

The SORT directive allows you to reorder the units of a list of vectors or pointers according to

one or more "index" vectors. These can be specified explicitly using the INDEX option (and they

need not be among the vectors actually sorted). If you omit the INDEX option, Genstat uses the

first vector in the OLDVECTOR list. The DECIMALS option allows you to define the number of

decimal places that are taken into account for an index variate: for example DECIMALS=0 would

round each value to the nearest integer. If you do not set this, there is no rounding. The

DIRECTION option controls whether the ordering is into ascending or descending order; by

default DIRECTION=ascending.

The vectors or pointers whose values are to be sorted are listed by the OLDVECTOR parameter.

The units of each structure are permuted in exactly the same way, into an ordering determined

from the index vectors. The NEWVECTOR parameter allows you to specify new vectors to contain

the sorted values, and thus keep the unsorted values in the original vectors. For example

SORT [INDEX=Name] Age,Income,Name,Sex; NEWVECTOR=A,*,N,S

would place the sorted values of Age, Name and Sex into A, N and S; as there is a null entry (*)

corresponding to Income in the NEWVECTOR list, the sorted incomes would replace the original

values of Income. Any undeclared vector in the NEWVECTOR list is declared implicitly to match

the corresponding OLDVECTOR.

Options: INDEX, DIRECTION, DECIMALS.

Parameters: OLDVECTOR, NEWVECTOR.

Action with RESTRICT

You can restrict the index vector, or any of the oldvectors, to sort only a subset of the units. Each

of the units that is not in the subset is left in its original position.

See also

Directive: CALCULATE.

Function: SORT

Genstat Reference Manual 1 Summary section on: Calculations and manipulation.

476 Directives in Release 22

SPLOAD

Loads Genstat spreadsheet files.

Options
†PRINT = string token What to print (catalogue, directory, summary);

default cata

SCOPE = string token When SPLOAD is used within a procedure, this allows

the data structures to be created in program that called

the procedure (SCOPE=external) or in the main

program itself (SCOPE=global) rather than within the

procedure (local, external, global); default loca

REDEFINE = string token Whether to allow existing structures to have their type

redefined (no, yes); default no

SYSTEM = string token Whether to include Genstat system structures in the

catalogue (yes, no); default no

UNNAMED = string token Whether to include unnamed structures in the catalogue

(yes, no); default no

TEMPMISSING = string token Whether to read temporarily missing values as missing

(yes, no); default no

Parameters

FILENAME = texts Names of spreadsheet files

SHEETNAME = texts, variates or scalars

Names or numbers of the sheets to read from each file;

default * reads them all

ISAVE = pointers Stores the identifiers of the structures loaded from each

file

Description

The SPLOAD directive can be used to load data from a Genstat (i.e. GSH) spreadsheet file,

specified using the FILENAME parameter. If the file is a multi-paged spreadsheet, the SHEETNAME

parameter can be used to specify which sheet (or page) to read. If SHEETNAME is not set, all the

pages are read. By default, a summary is produced listing the data that have been read; this can

be suppressed by setting option PRINT=*. The SYSTEM and UNNAMED options control whether

to include system and unnamed structures in the summary.

The PRINT option controls printed output, with the following settings:

catalogue lists the contents of the file (default),

directory includes the directory details with the name of the file in

the catalogue, and

summary prints a summary of the values in each data structure in the

file.

By default, unnamed structures are excluded from the catalogue, but you can set the UNNAMED

option to yes to include them.

The SCOPE option is useful when SPLOAD is being used within a procedure. By default, the

structures are created within the procedure. Alternatively, you can set SCOPE=external, to

request that they are created in the program that called the procedure (which may itself be a

procedure). Or you can set SCOPE=global to create them in the main program itself. However,

care needs to be taken to ensure that there is no conflict with any existing structures.

If SPLOAD reads a structure from the spreadsheet file that has the same name as an existing

structure, it will overwrite the values and attributes of the existing one, so long as the type is the

same. Otherwise a VA 8 diagnostic message will be generated and SPLOAD will fail. To force

SPLOAD 477

SPLOAD to change the type of existing structures you can set the option REDEFINE=yes.

The TEMPMISSING option controls the input of temporarily missing values. These are values

that have been set to missing temporarily in the spreadsheet, and for which the original (non-

missing) values are still available. The default is to read the original values, but you can set

TEMPMISSING=yes to read them as missing values instead.

The ISAVE parameter can be set to a pointer to store the identifiers (i.e. column names) read

from the file. The pointer can then be used to refer to the loaded data (within a procedure, for

example).

Options: PRINT, SCOPE, REDEFINE, SYSTEM, UNNAMED, TEMPMISSING.

Parameters: FILENAME, SHEETNAME, ISAVE.

See also

Directive: READ.

Procedures: FILEREAD, GRIBIMPORT, IMPORT, EXPORT, SPCOMBINE.

Genstat Reference Manual 1 Summary section on: Input and output.

478 Directives in Release 22

SSPM

Declares one or more SSPM data structures.

Options

TERMS = formula Terms for which sums of squares and products are to be

calculated; default *

FACTORIAL = scalar Maximum number of vectors in a term; default 3

FULL = string token Full factor parameterization (yes, no); default no

GROUPS = factor Groups for within-group SSPMs; default *

DF = scalar Number of degrees of freedom for sums of squares;

default *

Parameters

IDENTIFIER = identifiers Identifiers of the SSPMs

SSP = symmetric matrices Symmetric matrix to contain the sums of squares and

products for each SSPM

MEANS = variates Variate to contain the means for each SSPM

NUNITS = scalars Number of units or sum of weights for each SSPM

WMEANS = pointers Pointers to variates of group means for each SSPM

Description

The SSPM structure stores a matrix of corrected sums of squares and products, and associated

information, as used for regression and some multivariate analyses. You can form values for

SSPM structures by the FSSPM directive. However, most multivariate and regression analyses

can be done without declaring and forming an SSPM explicitly.

An SSPM comprises four structures (identified by their suffixes). Their labels can be specified

in either upper or lower case, or any mixture.

[1] or ['Sums'] is a symmetric matrix containing the sums of squares and products. The

number of rows and columns of this matrix will equal the number of parameters defined by the

expanded terms list: that is, the number of variates plus the number of dummy variates generated

by the model formula. (See the TERMS directive.)

[2] or ['Means'] is a variate containing the mean for each variate or dummy variate.

[3] or ['Nunits'] is a scalar holding the total number of units used in constructing the

sums of squares and products matrix. If the SSPM is weighted, this scalar will hold the sum of

the weights.

A within-group SSPM has one additional element:

[4] or ['Wmeans'] is a pointer, pointing to variates holding within-group means. There is

one variate for each row of the 'Sums' matrix plus one extra. They are all of the same length,

namely the number of levels of the GROUPS factor. The extra variate holds counts of the number

of units in each group.

The TERMS option of the SSPM directive defines the model for whose components the sums

of squares and products are to be calculated. In the simplest case the model is just a list of

variates, but you can use more complex model formulae, involving variates and factors; this is

done in conjunction with the FACTORIAL and FULL options.

You can form a within-group matrix of sums of squares and products by specifying the

relevant factor with the GROUPS option.

Sometimes you may already have calculated values for the matrix of sums of squares and

products. You can then assign them to the component structures of the SSPM for example by

READ. You would still, however, need to set the number of degrees of freedom associated with

the matrix, and for that you use the DF option.

The parameter lists let you specify identifiers for the four components of an SSPM. You can

SSPM 479

have declared them previously (and you can have given them values), but if so they must be of

the correct type.

Options: TERMS, FACTORIAL, FULL, GROUPS, DF.

Parameters: IDENTIFIER, SSP, MEANS, NUNITS, WMEANS.

See also

Directives: FSSPM, CVA, FCA, PCO, PCP, TERMS, FORMULA, SCALAR, SYMMETRICMATRIX,

VARIATE.

Procedures: FCORRELATION, FVCOVARIANCE, ROBSSPM.

Genstat Reference Manual 1 Summary sections on: Data structures, Multivariate and cluster

analysis.

480 Directives in Release 22

STEP

Selects terms to include in or exclude from a linear, generalized linear or generalized additive

model according to the ratio of residual mean squares.

Options

PRINT = string tokens What to print (model, deviance, summary,
estimates, correlations, fittedvalues,

accumulated, monitoring, changes,

confidence); default mode,summ,esti,chan

FACTORIAL = scalar Limit for expansion of model terms; default * i.e. that in

previous TERMS statement

POOL = string token Whether to pool ss in accumulated summary between all

terms fitted in a linear model (yes, no); default no

DENOMINATOR = string token Whether to base ratios in accumulated summary on rms

from model with smallest residual ss or smallest residual

ms (ss, ms); default ss

NOMESSAGE = string tokens Which warning messages to suppress (dispersion,

leverage, residual, aliasing, marginality,

vertical, df, inflation); default *

FPROBABILITY = string token Printing of probabilities for variance and deviance ratios

(yes, no); default no

TPROBABILITY = string token Printing of probabilities for t-statistics (yes, no);

default no

SELECTION = string tokens Statistics to be displayed in the summary of analysis

produced by PRINT=summary, seobservations is

relevant only for a Normally distributed response, and

%cv only for a gamma-distributed response

(%variance, %ss, adjustedr2, r2,

seobservations, dispersion, %cv,

%meandeviance, %deviance, aic, bic, sic); default

%var, seob if DIST=normal, %cv if DIST=gamma, and

disp for other distributions

INRATIO = scalar Criterion for inclusion of terms; default 1.0

OUTRATIO = scalar Criterion for exclusion of terms; default 1.0

MAXCYCLE = scalar Limit on number of times to repeat stepwise selection,

unless no change is made; default 1

PROBABILITY = scalar Probability level for confidence intervals for parameter

estimates; default 0.95

Parameter

formula List of explanatory variates and factors, or model

formula

Description

STEP modifies the current regression model, which may be linear, generalized linear or

generalized additive, in order to achieve the biggest "improvement". Terms in the specified

formula are dropped from the current model if they are already there, or are added to it if they

are not. For each term, the residual sum of squares (or deviance) and the residual degrees of

freedom are recorded; then Genstat reverts to the original model before trying the next term.

The current model is finally modified by the best term, according to a criterion based on the

variance (or deviance) ratios. In a linear model, suppose that the residual sum of squares and

STEP 481

residual degrees of freedom of the current model are s0 and d0, and of the model after making a

one-term change are s1 and d1. If the variance ratio for any term that is dropped is less than the

value of the setting of the OUTRATIO option, then the term that most reduces or least increases

the residual mean square is dropped. That is, when the dispersion is being estimated, a term will

be dropped only if at least one term has

{(s1�s0) / (d1�d0)} / {s0/d0} < OUTRATIO

When the dispersion is fixed, the equation becomes

{(s1�s0) / (d1�d0)} < OUTRATIO

If you have set OUTRATIO=*, then no term is dropped. Note that, though the criteria are ratios

of variances, you should not interpret them as F-statistics with the usual interpretation of

significance. The probability levels would need to be adjusted to take account of correlations

between the explanatory variables concerned, and the number of changes being considered.

If no term satisfies the criterion for dropping, then the term that most reduces the residual

mean square will be added to the model if its variance ratio is greater than the setting of the

INRATIO option. That is, when the dispersion is being estimated, if

{(s0�s1) / (d0�d1)} / {s1/d1} > INRATIO

When the dispersion is fixed, the equation becomes

{(s0�s1) / (d0�d1)} > INRATIO

Likewise, if you have set INRATIO=*, no term will be added.

If neither criterion is met, the current model is left unchanged.

Usually, the effect of the STEP directive is to make one change of a stepwise regression

search. You can make STEP do forward selection by setting the MAXCYCLE option to define a

maximum number of changes; STEP will stop at this limit, or earlier if no further changes can

be made.

The changes setting of the PRINT option produces a list of terms with the corresponding

residual mean squares (or deviances) and residual degrees of freedom, ordered according to the

sizes of the residual mean squares; this list is not available for display later by the RDISPLAY

directive. The INRATIO and OUTRATIO options are explained above. The rest of the options are

as in the FIT directive, except that there is no CONSTANT option.

Options: PRINT, FACTORIAL, POOL, DENOMINATOR, NOMESSAGE, FPROBABILITY,

TPROBABILITY, SELECTION, INRATIO, OUTRATIO, MAXCYCLE, PROBABILITY.

Parameter: unnamed.

Action with RESTRICT

If a TERMS statement was given before fitting the model, any restrictions on the variates or

factors in the model will have been implemented then. So any restrictions on vectors involved

in the model specified by STEP will be ignored. If no TERMS statement has been given and STEP

involves new terms not already in the model, restrictions on the variates or factors in these terms

will be taken into account and may cause the units involved in the regression to be redefined.

See also

Directives: MODEL, TERMS, FIT, ADD, DROP, SWITCH, TRY.

Procedures: RSCREEN, RSEARCH.

Genstat Reference Manual 1 Summary section on: Regression analysis.

482 Directives in Release 22

STOP

Ends a Genstat program.

No options or parameters

Description

The STOP directive indicates the end of a Genstat program, thus telling the computer that you

have finished using Genstat. It also ends the existing job, so there is no need to give an ENDJOB

statement beforehand. Any input that follows a STOP statement is ignored.

Options: none.

Parameters: none.

See also

Directives: JOB, ENDJOB.

Genstat Reference Manual 1 Summary section on: Program control.

STORE 483

STORE

To store structures in a subfile of a backing-store file.

Options

PRINT = string token What to print (catalogue); default *

CHANNEL = scalar Channel number of the backing-store file where the

subfile is to be stored; default 0, i.e. the workfile

SUBFILE = identifier Identifier of the subfile; default SUBFILE

LIST = string token How to interpret the list of structures (inclusive,

exclusive, all); default incl

METHOD = string token How to append the subfile to the file (add, overwrite,

replace, update); default add, i.e. clashes in subfile

identifiers cause a fault (note: replace overwrites the

complete file)

PASSWORD = text Password to be stored with the file; default *

PROCEDURE = string token Whether subfile contains procedures only (yes, no);

default no

UNNAMED = string token Whether to list unnamed structures (yes, no); default
no

MERGE = string token Whether or not to merge the structures with the existing

contents of the subfile (yes, no); default no

Parameters

IDENTIFIER = identifiers Identifiers of the structures to be stored

STOREDIDENTIFIER = identifiers Identifier to be used for each structure when it is stored

Description

The STORE directive allows you to store data structures or procedures in a backing-store file. The

file can be opened using the OPEN directive, and there is also a backing-store workfile attached

to channel 0 which is automatically deleted at the end of a Genstat run.

Each backing-store file contains a number of subfiles. Each subfile starts with a catalogue,

recording which structures it stores. Then come the attributes and the values of each data

structure. A subfile name can be either an unsuffixed identifier or a suffixed identifier with a

numerical suffix. The identifiers of subfiles are kept in a separate catalogue to the identifiers of

data structures, so you do not need to worry about keeping the identifiers of data structures and

subfiles distinct. However, if you use a suffixed identifier for a subfile, Sub[1] say, you cannot

also use the identifier Sub. There are two types of subfiles. Ordinary subfiles can hold any type

of structures except procedures; procedure subfiles hold only procedures (and their dependent

structures).

Whenever you store a structure in a subfile, Genstat automatically stores also all the associated

structures to which it points. If these associated structures also point to further structures, then

they are stored too, and so on. Some of the structures may be unnamed and some structures may

be system structures. For example

TEXT [VALUES=A,B,C] T
FACTOR [LABELS=T; VALUES=1...3] F
STORE F

creates a subfile containing factor F. The complete definition of factor F depends on text T to

supply level names. So T is stored too. The text T depends on a system structure (indicating the

length of each line), which is therefore also stored. Hence to save factor F, Genstat has actually

saved three structures. However, this is all automatic, so you do not need to worry about any of

the details of the system structures.

484 Directives in Release 22

When you store a structure with a suffixed identifier, Genstat may have to set up a series of

pointer structures if they are not already present. An example is:

VARIATE [VALUES=1,2] V[1,2]
STORE [PRINT=catalogue] V[1]

The first line sets up a pointer structure V, pointing to V[1] and V[2]. To store variate V[1],

a pointer structure V has to be set up in the subfile, pointing to V[1] only. Thus two structures

are saved on backing store, namely V and V[1]. The original pointer V in the program is left

unchanged. (If the example had stored the whole of V, no such complications would have arisen.)

The structures to be stored are specified by the IDENTIFIER parameter. The CHANNEL option

indicates the backing-store file to use, and the SUBFILE option specifies the subfile that is

created. Both these options can be omitted; by default the file will be the workfile, and the

subfile will be called SUBFILE. The structures that are stored in the subfile are merely copies

of the structures in the job, so the original structures remain available for further use within the

job.

The STOREDIDENTIFIER parameter allows you to give a structure a different name within

the subfile: For example,

VARIATE [VALUES=10.2,15.3,21.4,16.8,22.3] Weight
STORE Weight; STOREDIDENTIFIER=WtWeek2

stores a structure with identifier Weight within Genstat as a structure with identifier WtWeek2

in the backing-store file. If you want to rename only some of the structures, you can either

respecify the existing identifier, or insert * at the appropriate point in the list. For example, you

could store X and Y, renaming only Y as Yy, by

STORE X,Y; STOREDIDENTIFIER=X,Yy

or by

STORE X,Y; STOREDIDENTIFIER=*,Yy

You can give an unnamed structure in the list of either parameter. For example

STORE !(10.2,15.3,21.4,16.8,22.3); STOREDIDENTIFIER=WtWeek2

But of course you will not be able to retrieve any structure that has been stored as an unnamed

structure (except perhaps as a dependent structure of another structure).

All the structures in a subfile must have distinct identifiers, and Genstat will report a fault if

you try to give two the same name. You thus need to be careful if you are storing structures

inside a procedure, as the same identifier can be used for one structure within the procedure, and

for another one outside; you cannot store both in the same subfile.

Procedures that have been retrieved automatically from libraries cannot be stored by STORE.

You can set option PRINT=catalogue to obtain a catalogue of the subfiles in the backing-

store file, and of the structures in the subfile just created. If you also set option UNNAMED=yes

Genstat will also list any unnamed structures, with details of how they depend on each other.

The LIST option controls how the IDENTIFIER list is interpreted. The default setting

inclusive simply stores the structures that have been listed.

Alternatively, if you set LIST=all Genstat will store all the structures in the current job that

have identifiers and whose types have been defined. If the statement is inside a procedure, then

only the structures defined within the procedure are stored. If you are storing procedures, then

this setting will store all procedures that you have created explicitly in this job, by PROCEDURE

or RETRIEVE statements.

Finally, you can set LIST=exclusive to store everything that you have not included in the

IDENTIFIER parameter: that is, all the other named structures that are currently accessible, or

all the other procedures that have been created in this job. Note, though, that some of the

structures in the IDENTIFIER list may be stored if they are needed to complete the set of

structures to be stored. If you use this setting, the STOREDIDENTIFIER parameter is ignored. For

example

STORE 485

TEXT [VALUES=a,b] T
FACTOR [LABELS=T] F
TEXT [VALUES='variate text'] Vt
VARIATE V; EXTRA=Vt

creates four named structures, T, F, V and Vt. The statement

STORE [LIST=inclusive] T

stores the text T;

STORE [LIST=all]

stores all the four structures that have identifiers;

STORE [LIST=exclusive] F,T

stores Vt and V; and

STORE [LIST=exclusive] Vt,T

results in all four structures being saved, because V points to Vt, and F points to T.

If a subfile of the specified name already exists on the backing-store file, the storing operation

will usually fail. You can then set option METHOD=overwrite to overwrite the old subfile, that

is, to replace the old subfile with a new subfile; alternatively, you can put METHOD=replace to

form a new backing-store file containing only the new subfile. Setting METHOD=update adds

new structures to an existing subfile. The MERGE option then controls what happens if a data

structure that is being added to the file is already present; by default it overwrites the previous

version but, if you put MERGE=yes, only new structures are added to the file.

To make your files secure, you can specify a password using the PASSWORD option. Once you

have done this, you must include the same password in any future use of STORE or MERGE with

this same userfile; spaces, case and new lines are significant in the password. You cannot change

the password in a userfile once you have set it, but you can use the MERGE directive to create a

new userfile with no password or with a new password. If you set the password to be a text

whose values have been restricted, the restriction is ignored.

The PROCEDURE option indicates whether the subfile is to store procedures

(PROCEDURE=yes), or ordinary data structures.

Options: PRINT, CHANNEL, SUBFILE, LIST, METHOD, PASSWORD, PROCEDURE, UNNAMED,

MERGE.

Parameters: IDENTIFIER, STOREDIDENTIFIER.

See also

Directives: RETRIEVE, CATALOGUE, MERGE, OPEN, RECORD, RESUME.

Procedures: EXPORT, DBEXPORT.

Genstat Reference Manual 1 Summary section on: Input and output.

486 Directives in Release 22

STRUCTURE

Defines a compound data structure.

Options

NAME = text Single-valued text defining a name for the type of

structure, which must not clash with the name of any

existing type of structure

STRUCTURELIST = string token Whether or not the structure consists of a list (of any

length) of structures of the same type or types (yes, no);

default no

Parameters

LABEL = texts Single-valued texts defining the labels of the elements of

the structure

SUFFIX = scalars Suffix numbers for the elements; default assumes the

numbers 1, 2 ...

TYPE = texts Texts defining the allowed types for each element

COMPATIBLE = texts Defines aspects to check for compatibility with the first

element

Description

The STRUCTURE directive allows you to define customized compound data structures for use,

for example, in procedures. The NAME option supplies a single-valued text to define the name to

be used for the new "type" of data structure. This can then be used as a setting for the TYPE

parameter in either the OPTION or PARAMETER directives within a procedure, to indicate that the

option or parameter concerned must be supplied with this type of structure. The case of the

letters in the name is not significant. So they can be specified in capitals, or in lower case, or in

any mixture.

The parameters of the directive define the contents of the structure. The LABEL parameter lists

the labels to be used with each element of the structure, and the SUFFIX parameter lists the

corresponding suffix numbers (by default the numbers 1, 2, etc.). The TYPE parameter allows

you to define the types of structure that are allowed in each element (which may be any of the

standard Genstat data structures, or other customized types), and the COMPATIBLE parameter

allows you to define aspects that must be compatible with the first element of the structure

similarly to the COMPATIBLE parameter of the OPTION and PARAMETER directives. These are

checked when the structure is declared, and when it is used as an option or parameter setting of

a procedure that requests that type.

For example, we could define a complex matrix structure by

STRUCTURE [NAME='complex_matrix'] 'real','imaginary'; \
 TYPE='matrix'; COMPATIBLE=!t(rows,columns)

A particular complex matrix, Cmat say, could then be declared using the DECLARE directive:

DECLARE [TYPE='complex_matrix'] Cmat

The elements of the compound structure can be referred to like those of an ordinary pointer

declared using the POINTER directive with options CASE=ignored, ABBREVIATE=yes and

FIXNVALUES=yes. So, the labels can be given in either upper or lower case or in any mixture,

and each can be abbreviated to the minimum number of characters required to distinguish it from

the previous labels. So the imaginary part of the complex matrix above could, for example, be

referred to as Cmat['imaginary'] or Cmat['IMAGINARY'] or simply Cmat['i'].

Options: NAME, STRUCTURELIST.

Parameters: LABEL, SUFFIX, TYPE, COMPATIBLE.

STRUCTURE 487

See also

Directives: DECLARE, POINTER, LRV, SSPM, TSM.

Genstat Reference Manual 1 Summary section on: Data structures.

488 Directives in Release 22

SUSPEND

Suspends execution of Genstat to carry out commands in the operating system; this directive

may not be available on some computers.

Options

SYSTEM = text Commands for the operating system; default: prompt for

commands (interactive mode only)

CONTINUE = string token Whether to continue execution of Genstat without

waiting for commands to complete (yes, no); default no

MINIMIZE = string token Whether to minimize the console window (yes, no);

default no

No parameters

Description

If you run the command

SUSPEND

(with no options) in Genstat for Windows, a command window will open, in which you can enter

commands in the usual way. You can return to Genstat by closing the window (e.g. by typing

EXIT).

You can use the SYSTEM option to specify the commands to run in the operating system. By

default, Genstat then pauses while the commands run, and continues after they finish. This

provides a convenient way to run an external program. For example, it is used by the _CDCALL

procedure, included with CDNBLOCKDESIGN, to run the CycDesigN engine. CDNBLOCKDESIGN

(and other CDN procedures that use _CDCALL) use the OPEN directive to open a file to contain

the data for the engine, and the PRINT directive (with the CHANNEL option set to the filename)

to form its contents. _CDCALL uses TXCONSTRUCT to construct the command for SUSPEND. The

CycDesigN engine writes its output to another file, which can be read afterwards by

CDNBLOCKDESIGN (or the other CDN procedures).

You can set option CONTINUE=yes if the operating-system commands do not need to run

before your subsequent Genstat commands. For example, you might simply want to post a

message to say that your Genstat run is executing.

You can set option MINIMIZE=yes to minimize the console window in which the comands

run.

Note, however, that SUSPEND may not be available in all implementations of Genstat.

Options: SYSTEM, CONTINUE, MINIMIZE.

Parameters: none.

See also

Directives: PASS, EXTERNAL.

Genstat Reference Manual 1 Summary section on: Program control.

SVD 489

SVD

Calculates singular value decompositions of matrices.

Option

PRINT = string tokens Printed output required (left, singular, right);

default * i.e. no printing

Parameters

INMATRIX = matrices Matrices to be decomposed

LEFT = matrices Left-hand matrix of each decomposition

SINGULAR = diagonal matrices Singular values (middle) matrix

RIGHT = matrices Right-hand matrix of each decomposition

Description

Suppose that we have a rectangular matrix A with m rows and n columns, and that p is the

minimum of m and n. The singular value decomposition can be defined as

m An = mUp p Sp pVn�
The diagonal matrix S contains the p singular values of A, ordered such that

s1 	 s2 	 ... 	 sp 	 0

The matrices U and V contain the left and right singular vectors of A, and are orthonormal:

U�U = V�V = Ip

The smaller of U and V will be orthogonal. So, if A has more rows than columns, m>n, p=n and

VV�=Ip.

The least-squares approximation of rank r to A can be formed as

Ar = Ur Sr Vr�
where Ur and Vr are the first r columns of U and V, and Sr contains the first r singular values of

A (Eckart & Young 1936).

The INMATRIX parameter specifies the matrices to be decomposed. The algorithm uses

Householder transformations to reduce A to bi-diagonal form, followed by a QR algorithm to

find the singular values of the bi-diagonal matrix (Golub & Reinsch 1971). The other parameters

allow you to save the component parts of the decomposition: LEFT, SINGULAR and RIGHT for

U, S and V respectively.

The PRINT option allows you to print any of the components of the decomposition; by default,

nothing is printed. If any of the matrices is to be printed, all p columns are shown, even if you

are storing only the first r columns.

Genstat will decide how many columns and singular values r to store, and will store that

number for any of the components that you specify. If none of the matrices in the LEFT,

SINGULAR and RIGHT lists has been declared in advance, the full number of singular values

(r=p) is stored; otherwise Genstat sets r to the maximum number of columns contained in any

of the matrices. If r<p, the first r singular values will be saved, along with the corresponding

columns of singular vectors.

One practical application of the singular value decomposition is to form generalized inverses

of matrices. If you use the singular value decomposition you obtain the Moore-Penrose

generalized inverse, sometimes called the pseudo-inverse, and this is the method used by the

GINVERSE procedure.

Option: PRINT.

Parameters: INMATRIX, LEFT, SINGULAR, RIGHT.

490 Directives in Release 22

References

Eckart, C. & Young, G. (1936). The approximation of one matrix by another of lower rank.

Psychometrika, 1, 211-218.

Golub, G.H. & Reinsch, C. (1971). Singular value decomposition and least squares solutions.

Numerische Mathematik, 14, 403-420.

See also

Directives: DIAGONALMATRIX, MATRIX, NAG, FLRV, QRD.

Functions: SVALUES, LSVECTORS, RSVECTORS.

Genstat Reference Manual 1 Summary sections on: Calculations and manipulation,

Multivariate and cluster analysis.

SWITCH 491

SWITCH

Adds terms to, or drops them from a linear, generalized linear, generalized additive or

nonlinear model.

Options

PRINT = string tokens What to print (model, deviance, summary,
estimates, correlations, fittedvalues,

accumulated, monitoring, confidence); default
mode,summ,esti

NONLINEAR = string token How to treat nonlinear parameters between groups

(common, separate, unchanged); default unch

CONSTANT = string token How to treat the constant (estimate, omit,

unchanged, ignore); default unch

FACTORIAL = scalar Limit for expansion of model terms; default * i.e. that in

previous TERMS statement

POOL = string token Whether to pool ss in accumulated summary between all

terms fitted in a linear model (yes, no); default no

DENOMINATOR = string token Whether to base ratios in accumulated summary on rms

from model with smallest residual ss or smallest residual

ms (ss, ms); default ss

NOMESSAGE = string tokens Which warning messages to suppress (dispersion,

leverage, residual, aliasing, marginality,

vertical, df, inflation); default *

FPROBABILITY = string token Printing of probabilities for variance and deviance ratios

(yes, no); default no

TPROBABILITY = string token Printing of probabilities for t-statistics (yes, no);

default no

SELECTION = string tokens Statistics to be displayed in the summary of analysis

produced by PRINT=summary, seobservations is

relevant only for a Normally distributed response, and

%cv only for a gamma-distributed response

(%variance, %ss, adjustedr2, r2,

seobservations, dispersion, %cv,

%meandeviance, %deviance, aic, bic, sic); default

%var, seob if DIST=normal, %cv if DIST=gamma, and

disp for other distributions

PROBABILITY = scalar Probability level for confidence intervals for parameter

estimates; default 0.95

AOVDESCRIPTION = text Description for line in accumulated analysis of variance

(or deviance) table when POOL=yes

Parameter

formula List of explanatory variates and factors, or model

formula

Description

SWITCH modifies the current regression model, which may be linear, generalized linear,

generalized additive, standard curve or nonlinear. Terms in the specified formula are dropped

from the current model if they are already there, or are added to it if they are not. It is best to give

a TERMS statement before investigating sequences of models using SWITCH, in order to define

a common set of units for the models to be explored. If no model is fitted after the TERMS

492 Directives in Release 22

statement, the current model is taken to be the null model.

If the current model contains a smoothed term (specified e.g. by SSPLINE or LOESS) which

is included in the formula specified by the parameter of SWITCH with a different number of

degrees of freedom (or with the smoothing parameter set), SWITCH will then refit the smoothed

term.

The model fitted by SWITCH will include a constant term if the previous model included one,

and will not include one if the previous model did not. You can, however, change this using the

CONSTANT option.

The options of SWITCH are the same as those of the FIT directive, but with the extra

NONLINEAR option which controls whether separate nonlinear parameters are fitted to different

groups when fitting curves, as in FITCURVE.

Options: PRINT, NONLINEAR, CONSTANT, FACTORIAL, POOL, DENOMINATOR, NOMESSAGE,

FPROBABILITY, TPROBABILITY, SELECTION, PROBABILITY, AOVDESCRIPTION.

Parameter: unnamed.

Action with RESTRICT

If a TERMS statement was given before fitting the model, any restrictions on the variates or

factors in the model will have been implemented then. So any restrictions on vectors involved

in the model specified by SWITCH will be ignored. If no TERMS statement has been given and

SWITCH introduces new terms into the model, restrictions on the variates or factors in these terms

will be taken into account and may cause the units involved in the regression to be redefined.

See also

Directives: MODEL, TERMS, FIT, FITCURVE, ADD, DROP, STEP, TRY.

Functions: COMPARISON, POL, REG, LOESS, SSPLINE.

Genstat Reference Manual 1 Summary section on: Regression analysis.

SYMMETRICMATRIX 493

SYMMETRICMATRIX

Declares one or more symmetric matrix data structures.

Options

ROWS = scalar, vector or pointer or text

Number of rows, or labels for rows (and columns);

default *

VALUES = numbers Values for all the symmetric matrices; default *

MODIFY = string token Whether to modify (instead of redefining) existing

structures (yes, no); default no

IPRINT = string tokens Information to be used by default to identify the

symmetric matrices in output (identifier, extra); if

this is not set, they will be identified in the standard way

for each type of output

Parameters

IDENTIFIER = identifiers Identifiers of the symmetric matrices

VALUES = identifiers Values for each symmetric matrix

DECIMALS = scalars Number of decimal places for printing

EXTRA = texts Extra text associated with each identifier

MINIMUM = scalars Minimum value for the contents of each structure

MAXIMUM = scalars Maximum value for the contents of each structure

DREPRESENTATION = scalars or texts

Default format to use when the contents represent dates

and times

Description

A symmetric square matrix is symmetric about its leading diagonal: that is, the value in column

i of row j is the same as that in column j of row i. For example:

1 2 3
2 1 4
3 4 1

Symmetric matrices often occur in statistics. Suppose, for example, that we have n random

variables X1 ... Xn. Then the covariance of Xi with Xj is the same as the covariance of Xj with Xi.
The covariance matrix of the random variables is therefore symmetric: the off-diagonal elements

of the matrix are the covariances (and the diagonal elements are the variances).

Because of this symmetry, Genstat stores only the diagonal elements and those below it; this

is called the lower triangle. So you must specify only these values, whether in the declaration

by SSPM or in a READ statement. (As always, you give them in row order: so if there are n rows,

then for the first you supply one value, for the second two, and so on.) Likewise, Genstat prints

only the lower triangle in output, for example with PRINT.

The ROWS option defines both the number of rows and the number of columns. The simplest

way of doing this is to use a scalar to define the number of rows and columns explicitly.

Alternatively, you can set ROWS to a variate, text or pointer, whose length then defines the

number of rows and whose values will then be used as labels, for example when the symmetric

matrix is printed. Finally, if you specify a factor, the number of levels defines the number of

rows and the labels if available, or otherwise the levels, are used for labelling.

Values can be assigned to the symmetric matrices by either the VALUES option or the VALUES

parameter. The option defines a common value for all the matrices in the declaration, while the

parameter allows them each to be given a different value. If both the option and the parameter

are specified, the parameter takes precedence.

494 Directives in Release 22

If the MODIFY option is set to yes any existing attributes and values of the symmetric matrices

are retained (if still appropriate); otherwise these are lost.

The DECIMALS parameter allows you to define a number of decimal places to be used by

default when each symmetric matrix is printed. You can associate a text of extra annotation with

each symmetric matrix using the EXTRA parameter. The MINIMUM and MAXIMUM parameters

allow you to define lower and upper limits on the values in each symmetric matrix. Genstat then

prints warnings if any values outside that range are allocated to the matrix. The

DREPRESENTATION parameter allows a scalar or a single-valued text to be specified for each

symmetric matrix to indicate that the matrix stores dates and times, and to define a format to be

used for these, by default, when they are printed; details are given in the description of the

PRINT directive.

The IPRINT option can be set to specify how the symmetric matrices will be identified in

output. If IPRINT is not set, they will be identified in whatever way is usual for the section of

output concerned. For example, the PRINT directive generally uses their identifiers (although

this can be changed using the IPRINT option of PRINT itself).

Options: ROWS, VALUES, MODIFY, IPRINT.

Parameters: IDENTIFIER, VALUES, DECIMALS, EXTRA, MINIMUM, MAXIMUM,

DREPRESENTATION.

See also

Directives: DIAGONALMATRIX, LRV, MATRIX, SSPM.

Genstat Reference Manual 1 Summary section on: Data structures.

SYNTAX 495

SYNTAX

Obtains details of the syntax of a command and the source code of a procedure.

No options

Parameters

COMMAND = texts Single-line texts specifying the commands

NOPTIONS = scalars Number of options for each command

NPARAMETERS = scalars Number of parameters for each command

NAME = texts Names of the options, and then the parameters, of each

command

MODE = texts Modes of the options and parameters

NVALUES = pointers Number of values allowed for the options and

parameters

VALUES = pointers Allowed values for the options and parameters

DEFAULT = pointers Default values for the options and parameters

SET = texts Whether the options and parameters must be set

DECLARED = texts Whether the options and parameters must have been

declared

TYPE = pointers Allowed types for the options and parameters

COMPATIBLE = pointers Aspects of the options and parameters that must be

compatible with the first parameter

PRESENT = texts Whether the options and parameters must have values

LIST = texts Whether the options have more than one setting (not

relevant for the parameters

INPUT = texts Whether the options and parameters only supply input

information

DEFINITION = texts Saves statements to define the syntax

SOURCE = texts Saves the source code of a procedure

Description

SYNTAX enables you to obtain details about the syntax of a command (i.e. a directive or a

procedure). The name of the command must be supplied in a single-value text, using the

COMMAND parameter. The NOPTIONS parameter gives its number of options, and the

NPARAMETERS parameter gives the number of parameters.

The other parameters give details of the options and parameters. These correspond to the

parameters of the OPTION and PARAMETER directives.

The NAMES parameter saves a text containing the names of the options (if any), followed by

the names of any parameters.

The MODE parameter saves a text giving the modes of the options and parameters: whether

their settings should be a number (v), or an identifier of a data structure (p), or a string (t), or

an expression (e), or a formula (f). These codes are exactly the same as those that indicate the

mode of the values to appear within the brackets containing an unnamed structure.

The NVALUES saves a pointer defining how many values the structures that are supplied for

options and parameters of mode p may contain. The element of the pointer is a scalar there is

only one possibility, and a variate if there are several.

The VALUES saves a pointer containing the allowed set of values that may have been defined

for options and parameters with modes t and v. The element of the pointer will be a text for an

option or parameter of mode t, and either a scalar or a variate for an option or parameter of

mode v.

The DEFAULT parameter saves a pointer containing the default settings that may have been

496 Directives in Release 22

defined for the options and parameters with modes t and v.

The SET parameter saves a text containing 'yes' or 'no' according to whether or not the

options and parameters must be set.

The DECLARED parameter saves a text containing 'yes' or 'no' according to whether or not

the options and parameters of mode p must be set to a data structure that has already been

declared.

The TYPE parameter saves a pointer containing a text to indicate the allowed types of the

structures to which each option and parameter of mode p can be set.

The COMPATIBLE parameter saves a pointer containing a texts to specify aspects of the

options and parameters that must be compatible with the first parameter.

The PRESENT parameter saves a text containing 'yes' or 'no' according to whether or not

the options and parameters must be set to a data structure that has values.

The INPUT parameter saves a text containing 'yes' or 'no' according to whether or not the

options and parameters are be used only to provide input to the command.

The DEFINITION parameter can save statements, in a text, to define the syntax. These start

with a DEFINE statement for a directive or a PROCEDURE statement for a procedure, then an

OPTION statement to define any options, and a PARAMETER statement to define any parameters.

The SOURCE parameter can save the source code of a procedure. This can be useful if you have

a library containing the procedure, but no longer have the original source file. Note, though, that

the source that you save will not be identical to the original source. When procedures are defined

within Genstat, their source code is processed to remove comments and extraneous spaces in

order to save storage space.

Parameters: COMMAND, NOPTIONS, NPARAMETERS, NAME, MODE, NVALUES, VALUES, DEFAULT,

SET, DECLARED, TYPE, COMPATIBLE, PRESENT, LIST, INPUT, DEFINITION, SOURCE.

See also

Directives: COMMANDINFORMATION, OPTION, PROCEDURE.

Procedures: SPSYNTAX.

Genstat Reference Manual 1 Summary section on: Program control.

TABLE 497

TABLE

Declares one or more table data structures.

Options

CLASSIFICATION = factors Factors classifying the tables; default *

MARGINS = string token Whether to add margins (yes, no); default no

VALUES = numbers Values for all the tables; default *

MODIFY = string token Whether to modify (instead of redefining) existing

structures (yes, no); default no

IPRINT = string tokens Information to be used by default to identify the tables in

output (identifier, extra,

associatedidentifier); if this is not set, they will

be identified in the standard way for each type of output

Parameters

IDENTIFIER = identifiers Identifiers of the tables

VALUES = identifiers Values for each table

DECIMALS = scalars Number of decimal places for printing

EXTRA = texts Extra text associated with each identifier

UNKNOWN = identifiers Identifier for scalar to hold summary of unclassified data

associated with each table

MINIMUM = scalars Minimum value for the contents of each structure

MAXIMUM = scalars Maximum value for the contents of each structure

DREPRESENTATION = scalars or texts

Default format to use when the contents represent dates

and times

DATAVARIATE = variates Records the identifier of the variate whose summaries

are in the table

SUMMARYTYPE = string tokens Records the type of summary that the table contains

(counts, totals, nobservations, means, minima,

maxima, variances, quantiles, sds, skewness,

kurtosis, semeans, seskewness, sekurtosis);

default * i.e. not recorded

PERCENTQUANTILE = scalars Records the percentage points for which quantiles have

been formed; default * i.e. not recorded

%MARGIN = pointers Records the factors defining the margin over which the

table has been converted to percentages

Description

Tables are used to store numerical summaries of data that are classified into groups. With

Genstat, the classification into groups is specified by a set of factors. The table contains an

element, called a cell, for each combination of the levels of the factors that classify it.

Tables are declared using the TABLE directive. The CLASSIFICATION option specifies the

factors classifying the table.

Values can be assigned to the tables by either the VALUES option or the VALUES parameter.

The option defines a common value for all the tables in the declaration, while the parameter

allows them each to be given a different value. If both the option and the parameter are specified,

the parameter takes precedence.

If the MODIFY option is set to yes any existing attributes and values of the tables are retained

(if still appropriate); otherwise these are lost.

The DECIMALS parameter allows you to define a number of decimal places to be used by

498 Directives in Release 22

default when each table is printed. You can associate a text of extra annotation with each table

using the EXTRA parameter. The MINIMUM and MAXIMUM parameters allow you to define lower

and upper limits on the values in each table. Genstat then prints warnings if values outside that

range are allocated to the table. The DREPRESENTATION parameter allows a scalar or a single-

valued text to be specified for each table to indicate that the table stores dates and times, and to

define a format to be used for these, by default, when they are printed; details are given in the

description of the PRINT directive.

A table can also have margins. There is then a margin for each classifying factor; this contains

some sort of summary over the levels of that factor. For example, if you have a table in which

the cells contain totals of the observations, you would want the marginal cells to contain totals

across the levels of the factor. You can define a table to have margins when you declare it, by

setting the MARGINS option of the TABLE directive to yes. Alternatively you can add margins

later by the MARGIN directive.

Tables also have an associated scalar which collects a summary of all the observations for

which any of the classifying factors has a missing value; these observations cannot be assigned

to any cell of the table itself. This scalar is known as the unknown cell of the table. It can be

given an identifier, so that you can refer to it, using the UNKNOWN parameter of the TABLE

directive.

The IPRINT option can be set to specify how the tables will be identified in output:

identifier uses the identifier;

extra uses the EXTRA text;

associatedidentifier uses the "associated identifier", if available; this is the

identifier of the data variate from which the summaries in

the table have been formed.

If IPRINT is not set, the tables will be identified in whatever way is usual for the section of

output concerned.

The attribute of the table that records its data variate is set automatically when a table of

summaries is formed by the TABULATE directive. If you have formed the summaries in some

other way, you can use the DATAVARIATE parameter to record the relevant variate yourself. The

SUMMARYTYPE parameter can set an attribute recording the type of summary that the table

contains, and the PERCENTQUANTILE parameter can set an attribute recording the corresponding

percentage if the table contains quantiles. (These are alse set automatically for tables formed by

TABULATE.) The %MARGIN parameter can be set to a pointer of factors defining the margin of

the table over which it has been converted to percentages. The pointer may contain just a scalar

if the percentages have been formed over the "grand" margin (e.g. the grand total or grand mean).

See the PERCENT procedure (which will set this attribute automatically) for further details. If any

of these parameters is not set, the default is to leave the corresponding attribute of the table

unchanged. To clear the existing value of one of these attributes, you can put a missing value

into the corresponding parameter setting. For example

TABLE Tab; DATAVARIATE=*; SUMMARYTYPE=*; PERCENTQUANTILE=*;\
 %MARGIN=*

clears all these attributes for the table Tab.

Options: CLASSIFICATION, MARGINS, VALUES, MODIFY, IPRINT.

Parameters: IDENTIFIER, VALUES, DECIMALS, EXTRA, UNKNOWN, MINIMUM, MAXIMUM,

DREPRESENTATION, DATAVARIATE, SUMMARYTYPE, PERCENTQUANTILE, %MARGIN.

TABLE 499

See also

Directives: FACTOR, TABULATE, MARGIN, COMBINE.

Procedures: DTABLE, MTABULATE, PERCENT, SVSTRATIFIED, SVTABULATE, TABMODE,

TABINSERT, TABSORT, T%CONTROL.

Genstat Reference Manual 1 Summary section on: Data structures.

500 Directives in Release 22

TABULATE

Forms summary tables of variate values.

Options

PRINT = string tokens Printed output required (counts, totals,

nobservations, means, minima, maxima,

variances, quantiles, sds, skewness, kurtosis,

semeans, seskewness, sekurtosis); default * i.e. no

printing

CLASSIFICATION = factors Factors classifying the tables; default * i.e. these are

taken from the tables in the parameter lists

COUNTS = table Saves a table counting the number of units with each

factor combination; default *

SEQUENTIAL = scalar Used for sequential formation of tables; a positive value

indicates that formation is not yet complete (see READ);

default *

MARGINS = string token Whether the tables should be given margins if not

already declared (yes, no); default no

IPRINT = string token Whether to print the identifier of the table or the

identifier of the (associated) variate that was used to

form it (identifier, extra,

associatedidentifier); default iden

WEIGHTS = variate Weights to be used in the tabulations; default * indicates

that all units have weight 1

PERCENTQUANTILES = scalar or variate

Percentage points for which quantiles are required;

default 50 (i.e. median)

OWN = scalar or variate Specifies option settings for the OWNTAB subroutine and

indicates that this is to supply the data values instead of

the variates in the DATA list; default *

OWNFACTORS = factors Factors whose values are to be read by OWNTAB (must

include the factors of the classification set); default *

OWNVARIATES = variates Variates whose values are to be read by OWNTAB (must

include the DATA variates); default *

INCHANNEL = scalar Channel number of the file from which the OWNTAB

subroutine is to read the data (previously opened by an

OPEN statement)

INFILETYPE = string token Type of the OWN data file (input, unformatted);

default inpu

Parameters

DATA = variates Data values to be tabulated

TOTALS = tables Tables to contain totals

NOBSERVATIONS = tables Tables containing the numbers of non-missing values in

each cell

MEANS = tables Tables of means

MINIMA = tables Tables of minimum values in each cell

MAXIMA = tables Tables of maximum values in each cell

VARIANCES = tables Tables of cell variances

QUANTILES = tables or pointers Table to contain quantiles at a single

PERCENTQUANTILE or pointer of tables for several

TABULATE 501

PERCENTQUANTILEs (not available for sequential or

OWN tabulation)

SDS = tables Tables of standard deviations

SKEWNESS = tables Tables of skewness coefficients

KURTOSIS = tables Tables of kurtosis coefficients

SEMEANS = tables Tables of standard errors of means

SESKEWNESS = tables Tables of standard errors of skewness coefficients

SEKURTOSIS = tables Tables of standard errors of kurtosis coefficients

Description

TABULATE allows you to produce the various types of tabular summary listed in the settings of

its PRINT option. The variates whose values are to be summarized are listed with the DATA

parameter. If you want to save the summaries in tables, for manipulating or for printing later on,

you should list identifiers of the tables in the appropriate parameter list: for example, you would

save the totals in a table T by including T in the list for the TOTALS parameter. The other

parameters similarly give the other kinds of summary: numbers of non-missing values, means,

minima, maxima, variances, quantiles, standard deviations, skewness, kurtosis and (within-cell)

standard errors of means, skewness or kurtosis.

If you specify less tables in the lists than the number of DATA variates, Genstat produces

accumulated summaries. For example, with

TABULATE Sales2001,Costs2001,Sales2002,Costs2002;\
 TOTALS=Totalsales,Totalcosts

the TOTALS list is recycled. So Totalsales will correspond to Sales2001 and Sales2002,

and accumulate the totals from both variates. Similarly Totalcost will contain the totals from

the variates Costs2001 and Costs2002. To avoid confusion, however, you are not allowed to

specify table lists with differing lengths.

The simplest quantile, and the one produced by default, is the median (50% quantile), but the

PERCENTQUANTILE option allows you to request any percentage point (between 0 and 100, of

course). Moreover, by specifying a variate as the setting for PERCENTQUANTILE, you can obtain

several quantiles at the same time. However, if you then want to save the results the setting of

the QUANTILE parameter must be a pointer with length equal to the required number of quantiles,

instead of a single table.

If you merely want to print the summaries, you do not usually need to list any tables; you need

only specify the PRINT option. The only exception to this is with sequential tabulation, described

at the end of this subsection.

The CLASSIFICATION option defines the classifying factors for the tables. This need not be

set if at least one of the tables has already been declared (but then all the declared tables must

have the same classifying factors). The MARGINS option determines whether or not the tables

will have margins, if none have already been declared (and those that have been declared must

be either all with margins or all without margins).

In the tables that correspond to the parameters of TABULATE, missing values of the data

variates are ignored. So the NOBSERVATIONS parameter and the nobservations setting of the

PRINT option provide the numbers of non-missing units of the data variates for each factor

combination. You can however obtain a count of the numbers of units that would have

contributed to each group if no values had been missing: you use the COUNTS option if you want

to save the table, or put PRINT=counts if you want to print it. If any of the factor values are

missing Genstat ascribes the corresponding units to the unknown cell associated with the table

(see the TABLE directive).

If there are no observations in one of the groups, the corresponding cell will be zero in a table

of numbers of observations or counts; in a table of totals, means, minima, maxima, variances,

standard deviations, skewness, kurtosis or standard errors of means, skewness or kurtosis the cell

502 Directives in Release 22

will contain a missing value.

Weighted tables can be obtained by setting the WEIGHT option to a variate of weights. You

can, in general, think of weights as a set of multipliers which are applied to the data before any

operations are performed. Thus, for most aspects of weighted tabulation you can replace x by wx

and 1 by w (that is, n by Ów) in the standard formulae; see the table below. This is not what

happens in the case of variances, standard deviations (which are square roots of the variances)

and quantiles, but it is true for the other functions (including counts).

Unweighted Weighted

Count n Ó w

Total Ó x Ó wx

Nobservations n Ó w (x not missing)

Mean Ó x/n Ó wx / Ó w

Minimum Min(x) Min(wx)

Maximum Max(x) Max(wx)

Variance Ó(x � (Óx/n))2 / n�1 Ów(x � (Ówx/Ów))2 / Ó w�1

Skewness Ó(x � (Óx/n))3

/ (Ó(x � (Óx/n))2)3/2

Ó w (x � (Ówx/Ów))3

/ (Ó w (x � (Ówx/Ów))2)3/2

Kurtosis Ó(x � (Óx/n))4

/ (Ó(x � (Óx/n))2)2 � 3

Ó w (x � (Ówx/Ów))4

/ Ó w (x � (Ówx/Ów))2)2 � 3

s.e. skewness �({ 6n × (n�1) }

/ { (n�2) × (n+1) × (n+3) })

�({ 6Ów × (Ów � 1) }

/ { (Ów � 2) × (Ów + 1) ×

 (Ów + 3) })

(x not missing)

s.e. kurtosis �({ 24 × n × (n�1)2 }

/ { (n�2) × (n�3) × (n+5) ×

 (n+3) })

�({ 24 × Ów × (Ów � 1)2 }

/ { (Ów � 2) × (Ów � 3) ×

 (Ów + 5) × (Ów + 3) })

(x not missing)

A quick look at the formula used for the weighted variance (or the standard deviation) or

skewness or kurtosis shows that it breaks down for Ów<1; in fact it is valid only when the

weights are integer values greater than or equal to zero. Similarly, with quantiles the weights are

assumed to specify replicated observations; so these must also be non-negative integers. If an

invalid weight is found during the calculation of a variance, skewness, kurtosis or quantile a fault

will be reported. Temporary tables will be deleted, but named tables may contain partial results.

However, non-integer weights are allowed in other contexts. The standard deviation is the square

root of the variance, and the standard error of the mean is the standard deviation divided by the

square root of the number of observations.

If you have many observations to summarize, there may be insufficient space within Genstat

for you to read them all and then form the tables. To cater for such situations, Genstat allows you

to process the data in sections, using the SEQUENTIAL option of TABULATE in conjunction with

the SEQUENTIAL option of READ. After READ, the absolute value of the option indicates the

number of units that have been read in this particular section; the value is positive during interim

sections and negative or zero once the terminator at the end of the data is reached. TABULATE

will not print any tables until the final section has been processed. If you want to see the

TABULATE 503

intermediate tables, you can include a PRINT statement after the TABULATE statement. To allow

Genstat to keep contact with the working tables in which the results are accumulating, you must

save at least one out of the various types of table for every DATA variate. Genstat can then link

the working tables to this named table during the course of the sequential tabulation, so that the

information is not lost between the successive uses of TABULATE.

The final five options of TABULATE (OWN, OWNFACTORS, OWNVARIATES, INCHANNEL and

INFILETYPE) allow you to link your own Fortran subroutine, G5XZIT, to Genstat to allow you

to handle complicated arrangements of data, as can occur for example in hierarchical surveys.

To implement this, you must get access to some of the Genstat source code. The relevant section

of the code is named Module X, and is distributed with Genstat to all sites, probably in a file

called X.FOR. The documentation of G5XZIT is included with the Fortran and so is not repeated

here. G5XZIT is thus a Fortran subprogram, to be modified by you, which is called from within

TABULATE for each unit to be tabulated. It contains switches to tell TABULATE when a data error

occurs or when all the data have been read. To use it you have to link your own version of

Genstat, as when using the OWN directive. Then your version of G5XZIT will be used instead of

the standard version supplied as part of Genstat.

The subprogram can be as simple or as complicated as you like (or need), provided it obeys

a few simple rules. A very simple version, reading two variates and two factors, is supplied with

Genstat. This should provide sufficient information for you to write your own version, and link

it into your own private version of Genstat.

The OWN option should be set to a variate allowing you to communicate between your Genstat

code and your G5XZIT subprogram. The OWNFACTORS option provides the list of factors to be

read by G5XZIT. It must include the classifying factors needed in the current TABULATE

instruction, but it may contain others as well. The OWNVARIATES option should provide a similar

list of variates. The INCHANNEL option should be set to the Genstat channel number of the data

file, as specified in a previous OPEN statement or in the Genstat command line. The

INFILETYPE option specifies whether the data file is character (input) or binary (unformatted).

TABULATE allows only one classification set to be used at a time. If the data set is complicated

enough to require G5XZIT, then several tabulations with different classifying sets are likely to

be needed. Rather than have a separate branch in G5XZIT for each tabulation, you can put all

the factors and all the variates that you will need into the settings of the OWNFACTORS and

OWNVARIATES options, and leave TABULATE to extract the ones it needs each time. If you have

several TABULATE statements as suggested, you will have to close the data file and re-open it

between them.

Options: PRINT, CLASSIFICATION, COUNTS, SEQUENTIAL, MARGINS, IPRINT, WEIGHTS,

PERCENTQUANTILES, OWN, OWNFACTORS, OWNVARIATES, INCHANNEL, INFILETYPE.

Parameters: DATA, TOTALS, NOBSERVATIONS, MEANS, MINIMA, MAXIMA, VARIANCES,

QUANTILES, SDS, SKEWNESS, KURTOSIS, SEMEANS, SESKEWNESS, SEKURTOSIS.

Action with RESTRICT

If any of the DATA variates, or the WEIGHTS variate, or any of the classifying factors of the tables

is restricted, TABULATE will form the tables using only the defined subset of units. If more than

one variate or factor is restricted, the restrictions must be the same.

504 Directives in Release 22

See also

Directives: TABLE, MARGIN, COMBINE.

Procedures: FBETWEENGROUPVECTORS, MTABULATE, PERCENT, SVSTRATIFIED,

SVTABULATE, TABINSERT, TABMODE, TABSORT, VSUMMARY.

Genstat Reference Manual 1 Summary sections on: Basic and nonparametric statistics,

Calculations and manipulation, Survey analysis.

TDISPLAY 505

TDISPLAY

Displays further output after an analysis by TFIT.

Options

PRINT = string tokens What to print (model, summary, estimates,

correlations); default mode,summ,esti

CHANNEL = scalar Channel number for output; default * i.e. current output

channel

SAVE = identifier Save structure to supply fitted model; default * i.e. that

from the last model fitted

No parameters

Description

You can use TDISPLAY to print further output from an TFIT statement. The PRINT option has

the same interpretation as in TFIT, except that information is not available to monitor

convergence. Also, if the TFIT statement used the setting METHOD=initialize you will not

be able to print the standard errors or correlations between the parameter estimates.

The CHANNEL option allows you to send the output to another output channel.

You can use the SAVE option to specify the time-series save structure (from TFIT) from which

the output is to be taken. By default TDISPLAY uses the structure from the most recent TFIT

statement.

Options: PRINT, CHANNEL, SAVE.

Parameters: none.

See also

Directives: TSM, FTSM, TFILTER, TFIT, TFORECAST, TKEEP, TRANSFERFUNCTION,

TSUMMARIZE.

Procedures: BJESTIMATE, BJFORECAST, BJIDENTIFY.

Genstat Reference Manual 1 Summary section on: Time series.

506 Directives in Release 22

TERMS

Specifies a maximal model, containing all terms to be used in subsequent linear, generalized

linear, generalized additive and nonlinear models.

Options

PRINT = string tokens What to print (correlations, wmeans, SSPM,

monitoring); default *

FACTORIAL = scalar Limit for expansion of model terms; default 3

FULL = string token Whether to assign all possible parameters to factors and

interactions (yes, no); default no

SSPM = SSPM Gives sums of squares and products on which to base

calculations; default *

TOLERANCE = scalar Criterion for testing for linear dependence; default is

107å, where å is the smallest real value such that 1+å is

greater than 1 on the computer

DESIGNMATRIX = matrix Saves the design matrix for the maximal model

MVINCLUDE = string token Whether to include units with missing values in the

explanatory factors and variates (explanatory);

default * i.e. omit these

RIDGE = scalar or variate Supplies values to add to the diagonal of the sums-of-

squares-and-products matrix, to enable ridge methods to

be used; default 0

CLDESIGNMATRIX = text Saves the column labels of the design matrix for the

maximal model i.e. the names of the parameters

estimated in the maximal model

CLSSP = text Saves the labels of the sum-of-squares-and-products

matrix

Parameter

formula List of explanatory variates and factors, or model

formula

Description

You can use the TERMS directive before starting to explore different subsets of explanatory

variables, to allow Genstat to define a common set of units for the regression and to carry out

some initial calculations. TERMS thus initializes Genstat ready for an exploration using the

directives ADD, DROP, SWITCH, TRY or STEP. It overrules any model that has already been fitted

with FIT, FITCURVE or FITNONLINEAR and resets the current model to be the null model

containing only the constant term.

TERMS need not be specified before exploring a linear, generalized linear or generalized

additive model, that is one that is fitted initially using FIT with its CALCULATION option unset.

However, it is essential before exploring a nonlinear model, that is one fitted initially by FIT

with CALCULATION set, or by FITCURVE or FITNONLINEAR. Furthermore, if some of the

explanatory variables to be used in a linear, generalized linear or generalized aditive model

contain missing values or have restrictions, the use of TERMS ensures that the sequence of models

are fitted using a common set of units. Otherwise, if a variate or factor which is introduced into

the model has a missing value where previous explanatory variates or factors did not, or is

restricted whereas previous ones were not, the set of units has to be changed. The previous model

is automatically refitted with the new set of units before the new model is fitted, but the

accumulated summary will then show only these two fits.

The formula specified by the parameter of TERMS should contain all the explanatory variables

TERMS 507

and model terms that you may wish to use in the subsets. The model containing all the terms

specified in the formula, excluding the response variates, is called the maximal model.

The calculations are weighted if you have specified weights in the MODEL statement, and they

are made within groups if you have specified a grouping factor. All units of the variates are used

unless there are restrictions or missing values. Genstat will look for restrictions on response

variates, explanatory variates, the weight variate, the offset variate and the grouping factor (but

these must not be restricted in different ways). A missing value in any of these structures except

a response variate will also exclude the corresponding unit.

The PRINT option controls printed output, with settings:

SSPM sums of squares and products between the variates in the

model (including the response variates and dummy variates

set up to represent any factors and their interactions), the

means of the variates and the degrees of freedom;

correlation the matrix of correlations between variables;

wmeans group means for a within-group regression;

monitoring monitoring information from the fit of the null model.

The FACTORIAL option controls the inclusion of interaction terms in the model. All terms

involving more than the specified number of factors and variates are omitted. By default

FACTORIAL is set to three. The FULL option can be set to yes to ensure that Genstat allocates

a parameter to every level of each factor in a linear, generalized linear or generalized additive

model; otherwise it will exclude the reference level of the factor (and its estimates will represent

the differences between the estimated parameters for the other levels and the estimate for the

reference level).

The SSPM option lets you use values that you have already calculated for an SSPM structure.

This is feasible only with ordinary linear regression but it can be useful when you are analysing

very large sets of data: you can accumulate an SSPM sequentially with the FSSPM directive to

avoid storing all the data at one time. Later regression calculations will be based on the supplied

values of the SSPM, though no fitted values, residuals or leverages will be available. However,

the values of a supplied SSPM are accepted without checking by the TERMS directive: Genstat

simply assumes you are giving it something sensible.

The TOLERANCE option controls the detection of aliasing in subsequent model fitting. By

default, a parameter in a linear or generalized linear model will be deemed to be aliased if the

ratio between the original diagonal value of the SSPM corresponding to this parameter and the

current diagonal value of the partially inverted SSPM is less than 107å. The quantity å depends

on the computer and is defined to be the smallest number such that the computer recognizes 1.0

+ å as greater than 1.0 in double precision. Any positive value can be supplied by the

TOLERANCE option to replace this default criterion in subsequent linear regression and

generalized linear regression.

The DESIGNMATRIX option can be set to a matrix to save the design matrix corresponding to

the maximal model. The CLDESIGNMATRIX option can save the column labels of the design

matrix without saving the design matrix itself. (These are the names of the parameters estimated

in the maximal model.)

The MVINCLUDE option allows units with missing values with missing values in factors or

variates in the model to be included (by default these are excluded). Where this occurs, the factor

or variate is taken to make no contribution to the fitted value for the unit concerned. This is an

option that should be set only under very special circumstances, for example it is required

internally by some of the procedures that fit hierarchical generalized linear models (see

HGANALYSE). It should not be used during ordinary analyses.

The RIDGE option enables ridge methods to be implemented. It can be set to a scalar, to define

a constant to add to all the diagonal elements of the sums-of-squares-and-products matrix that

correspond to the parameters in the model. Alternatively you can set RIDGE to a variate, to add

508 Directives in Release 22

a different value to each diagonal element. You may then want to use the CLSSP option to save

the row labels of the sum-of-squares-and-products matrix, so that you see which rows correspond

to model parameters, and which ones correspond to the y-variates. By default nothing is added

(i.e. RIDGE = 0).

Options: PRINT, FACTORIAL, FULL, SSPM, TOLERANCE, DESIGNMATRIX, MVINCLUDE, RIDGE,

CLDESIGNMATRIX, CLSSP.

Parameter: unnamed.

Action with RESTRICT

You can restrict the units that Genstat will use for the regression by putting a restriction on any

of the vectors involved in the MODEL statement (response variates, weight variate, offset variate,

grouping factor or variate of binomial totals), or on any explanatory variate or factor in the

TERMS statement. However, you are not allowed to have different restrictions on the different

vectors. You should not alter the restriction applied to the vectors between the TERMS statement

and subsequent fitting statements.

See also

Directives: FIT, FITCURVE, FITNONLINEAR, MODEL.

Genstat Reference Manual 1 Summary section on: Regression analysis.

TEXT 509

TEXT

Declares one or more text data structures.

Options

NVALUES = scalar or vector Number of strings, or vector of labels; default * takes

the setting from the preceding UNITS statement, if any

VALUES = strings Values for all the texts; default *

MODIFY = string token Whether to modify (instead of redefining) existing

structures (yes, no); default no

IPRINT = string tokens Information to be used by default to identify the texts in

output (identifier, extra); if this is not set, they will

be identified in the standard way for each type of output

Parameters

IDENTIFIER = identifiers Identifiers of the texts

VALUES = texts Values for each text

CHARACTERS = scalars Numbers of characters of the lines of each text to be

printed by default

EXTRA = texts Extra text associated with each identifier

Description

Each unit of a Genstat text structure is a string which you can regard as a line of textual

description. Texts can be used to label vectors and pointers, for captions or pieces of explanation

within output, to store Genstat statements and to store output.

The IDENTIFIER parameter lists the texts that are to be declared. Values can be assigned to

the texts by either the VALUES option or the VALUES parameter. The option defines a common

value for all the texts in the declaration, while the parameter allows them each to be given a

different value. If both the option and the parameter are specified, the parameter takes

precedence.

The NVALUES option allows the number of values in the texts to be defined. If this is not set,

the lengths of the texts are defined from the numbers that are supplied by the VALUES option or

parameter. If these too are unset, Genstat takes the length specified by the preceding UNITS

statement, if any.

The CHARACTERS parameter allows you to define the number of characters to be printed by

default when the strings of each text are printed. You can associate a text of extra annotation

with each table using the EXTRA parameter.

If the MODIFY option is set to yes any existing attributes and values of the texts are retained

(if still appropriate); otherwise these are lost. The IPRINT option can be set to specify how the

texts will be identified in output. If IPRINT is not set, they will be identified in whatever way

is usual for the section of output concerned. For example, the PRINT directive generally uses

their identifiers (although this can be changed using the IPRINT option of PRINT itself).

The text can contain any of the characters that you can generate on your computer. The text

has an internal logical attribute, known as coding, to indicate whether it contains characters like

Chinese, Korean or Thai characters, which need to be coded internally in a more complicated

way than ordinary letters, numbers etc. (Technically they are stored as multi-byte UTF-8

characters.) Some applications may not be able to display output containing these characters

successfully. You can access the coding attribute using the GETATTRIBUTE directive.

Options: NVALUES, VALUES, MODIFY, IPRINT.

Parameters: IDENTIFIER, VALUES, CHARACTERS, EXTRA.

510 Directives in Release 22

See also

Directives: CONCATENATE, EDIT, TXBREAK, TXCONSTRUCT, TXFIND, TXINTEGERCODES,

TXPOSITION, TXREPLACE, TX2VARIATE, FACTOR, VARIATE, UNITS.

Procedures: TXPAD, TXPROGRESSION, TXSPLIT.

Functions: CHARACTERS, GETFIRST, GETLAST, GETPOSITION, POSITION.

Genstat Reference Manual 1 Summary section on: Data structures.

TFILTER 511

TFILTER

Filters time series by time-series models.

Option

PRINT = string tokens What to print (series); default *

Parameters

OLDSERIES = variates Time series to be filtered

NEWSERIES = variates To save filtered series

FILTER = TSMs Models to filter with respect to

ARIMA = TSMs ARIMA models for time series

Description

Filtering is a means of processing a time series in order to produce a new series. The purpose is

usually to reveal some features and remove other features of the original series. Filters in Genstat

are one-sided: that is, each value in the new series depends only on present and past values of

the original series. However, you can do two-sided filtering by using the SHIFT and REVERSE

functions of CALCULATE.

TFILTER was originally called FILTER, but was renamed in Release 14 to emphasize its status

as a time-series command. The earlier name (FILTER) was retained to allow previous programs

to continue to run, but this may be removed in a future release.

The OLDSERIES and NEWSERIES parameters of TFILTER specify respectively the time series

to be filtered, and the series that result from filtering. A new series must not have the same

identifier as the series from which it was calculated. Genstat interprets any missing values in the

old series as zero. But if you use the ARIMA parameter (see below), Genstat replaces them by

interpolated values when it calculates the filtered series; the missing values remain in the old

series.

The FILTER parameter specifies the TSMs to be used for filtering. If the TSM is a transfer-

function model, the new series yt is calculated from the old series xt by

yt = { ù(B)Bb / ä(B)�d } xt.

The filter does not use the power transformation nor the reference constant. This lets you

apply a single filter conveniently to a set of time series, for which different transformations and

different constants might be appropriate. You can always use the CALCULATE directive to apply

a transformation to a series before using TFILTER.

If the TSM is an ARIMA model, then the new series at is calculated from the old series yt by

at = { ö(B)�d / è(B)} yt.

Note that the TSM does not have to be the model appropriate for yt. Again, Genstat ignores the

parameters ë, c and óa
2; you can set them to 1,0,0, for example.

The ARIMA parameter specifies a time-series model for the old series. The purpose is to reduce

transient errors that arise in the early part of the new series: these arise because Genstat does not

know the values of the old series that came before those that have been supplied. If you do not

use this parameter, then Genstat takes these earlier values to be zero. This can cause

unacceptable transients which can only be partially removed by procedures such as mean-

correcting the old series. If you do use the ARIMA parameter, then Genstat uses the specified

model to estimate (or back-forecast) the values of the old series earlier than those that have been

supplied.

You do not have to have a good ARIMA model for the old series in order to achieve

worthwhile reductions in the transients. Thus a model with orders (0,1,1) and parameters

(1,0,0,0.7) would estimate the prior values to be constant, at a level that is a backward EWMA

of the early values of the series.

For a seasonal monthly time series, an appropriate ARIMA model could have orders

512 Directives in Release 22

(0,1,1,0,1,1,12) and parameters (1,0,0,0.7,0.7). However you must give the supplied model a

transformation parameter ë=1. Any other value for ë breaks the assumption of linearity that

underlies the calculations for correcting the transients. The constant term in the ARIMA model

can be non-zero, and should be if that is appropriate for the old series. Note that the ARIMA

model does not define the filter.

If you specify the ARIMA parameter, Genstat uses this model to interpolate any missing values

in the old series before it calculates the new series. Suppose for example that the filter is the

identity, defined by a transfer-function model with orders (0,0,0,0) and parameters (1,0,0); then

the new series will be the old series with any missing values replaced.

Option: PRINT.

Parameters: OLDSERIES, NEWSERIES, FILTER, ARIMA.

Action with RESTRICT

The OLDSERIES variate can be restricted, but this must be to a contiguous set of units.

See also

Directives: TSM, FTSM, TDISPLAY, TFIT, TFORECAST, TKEEP, TRANSFERFUNCTION,

TSUMMARIZE, CORRELATE, FOURIER.

Procedures: BJESTIMATE, BJFORECAST, BJIDENTIFY.

Genstat Reference Manual 1 Summary section on: Time series.

TFIT 513

TFIT

Estimates parameters in Box-Jenkins models for time series.

Options

PRINT = string tokens What to print (model, summary, estimates,

correlations, monitoring); default
mode,summ,esti

LIKELIHOOD = string token Method of likelihood calculation (exact,

leastsquares, marginal); default exac

CONSTANT = string token How to treat the constant (estimate, fix); default
esti

RECYCLE = string token Whether to continue from previous estimation (yes, no);

default no

WEIGHTS = variate Weights; default *

MVREPLACE = string token Whether to replace missing values by their estimates

(yes, no); default no

FIX = variate Defines constraints on parameters (ordered as in each

model, tf models first): zeros fix parameters, parameters

with equal numbers are constrained to be equal; default
*

METHOD = string token Whether to carry out full iterative estimation, to carry

out just one iterative step, to perform no steps but still

give parameter standard deviations, or only to initialize

for forecasting by regenerating residuals (full,

onestep, zerostep, initialize); default full

MAXCYCLE = scalar Maximum number of iterations; default 15

TOLERANCE = scalar Criterion for convergence; default 0.0004

SAVE = identifier To name save structure, or supply save structure with

transfer-functions; default * i.e. transfer-functions taken

from the latest model

Parameters

SERIES = variate Time series to be modelled (output series)

TSM = TSM Model for output series

BOXCOXMETHOD = string token How to treat transformation parameter in output series

(fix, estimate); default fix

RESIDUALS = variate To save residual series

Description

The main use of TFIT is to fit parameters to time-series models, although you can also use it to

initialize for the TFORECAST directive, even when the model parameters are already known.

TFIT was originally called ESTIMATE, but was renamed in Release 14 to emphasize its status

as a time-series command. The earlier name (ESTIMATE) was retained to allow previous

programs to continue to run, but this may be removed in a future release.

You need to define a TSM structure before using TFIT, to provide the setting for the TSM

parameter. You may also wish to give a TRANSFERFUNCTION statement, for example if you wish

to specify explanatory variables for regression with ARIMA errors, or to define transfer-function

models. In many applications of estimating a univariate ARIMA model, you will need only a

simple form of the directive, such as:

TFIT Daylength; TSM=Erp

The SERIES parameter specifies the variate holding the time series data to which the model

514 Directives in Release 22

is to be fitted.

The TSM parameter specifies the ARIMA model that is to be fitted to the time-series data. This

TSM must already have been declared and its ORDERS must have been set. If the LAGS parameter

of the TSM has been set, the lags must have been given values. However, if the PARAMETERS

of the TSM model have been set, these need not have been declared previously nor given values.

When the parameter values are not set, default values are used: these are all zero, except for the

transformation parameter, which is set to 1.0 if it is not to be estimated (see BOXCOXMETHOD and

FIX below). Any parameter values that you do specify will be used as initial values for the

parameters in the model; Genstat replaces any missing values by the default values. If any group

of autoregressive or moving-average parameters do not satisfy the required conditions for

stationarity or invertibility, all the parameters to be estimated are reset by Genstat to the default

values. After TFIT, the parameters of the TSM contain the estimated parameter values.

The BOXCOXMETHOD parameter allows you to estimate the transformation parameter ë.

The RESIDUALS parameter saves the estimated innovations (or residuals). The residuals are

calculated for t=t0...N, where t0=1+p+d�q for a simple ARIMA model. If t0>1, missing values

will be inserted for t=1...t0�1.

The PRINT option controls printed output. If you specify monitoring, then at each cycle of

the iterative process of estimation, Genstat prints the deviance for the current fitted model,

together with the current estimates of model parameters. The format is simple with the minimum

of description, to let you judge easily how quickly the process is converging. The other settings

of PRINT control output at the end of the iterative process. If you specify model, the model is

briefly described, giving the identifier of the series and the time-series model, together with the

orders of the model. If you specify summary, the deviance of the final model is printed, along

with the residual number of degrees of freedom. If you specify estimates, the estimates of the

model parameter are printed in a descriptive format, together with their estimated standard errors

and reference numbers. If you specify correlations, the correlations between estimates of

parameters are printed, with reference numbers to identify the parameters.

The LIKELIHOOD option specifies the criterion that Genstat minimizes to obtain the estimates

of the parameters: this is described in the next section. The default setting exact is

recommended for most applications.

You can use the CONSTANT option to specify whether Genstat is to estimate the constant term

c in the model. If CONSTANT=fix, the constant is held at the value given in the initial parameter

values; this need not be zero.

The RECYCLE option allows a previous TFIT statement to continue; this can save computing

time. If RECYCLE=yes, the most recent TFIT statement is continued, unless the SAVE option has

been set to the save structure from some other TFIT statement. The SERIES and TSM settings

are then taken from this previous TFIT statement: Genstat ignores any specified in the current

statement. Most of the settings of other parameters and options are carried over from the

previous statement, and new values are ignored. However, there are some exceptions. You can

change the RESIDUALS variate, you can reset MAXCYCLE to the number of further iterations you

require, and you can change the settings of TOLERANCE and PRINT. You can also change the

values of the variate in the WEIGHTS option; you can thus get reweighted estimation. You can

change the values of the SERIES itself, although you cannot change missing values; if the

MVREPLACE option was previously set to yes, you must put the original missing values back into

the SERIES variate before the new TFIT statement.

The WEIGHTS option includes in the likelihood a weighted sum-of-squares term

�t = t0 ... N { wt at
2 }

where wt, t=1...N are provided by the WEIGHTS variate. The values of wt must be strictly positive.

If t0<1, where t0=1+d+p�q, then wt is taken as 1 for t<1.

The MVREPLACE option allows you to request any missing values in the time-series to be

replaced by their estimates after estimation. Genstat will always estimate the missing values,

TFIT 515

irrespective of the setting of MVREPLACE; so you can also obtain these estimates later from

TKEEP.

The FIX option allows you to place simple constraints on parameter values throughout the

estimation. The units of the FIX variate correspond to the parameters of the TSM, excluding the

innovation variance. The values of the FIX variate are used to define the parameter constraints

and must be integers. If an element of the FIX variate is set to 0, the corresponding parameter

is constrained to remain at its initial setting. If an element is not 0, and the value is unique in the

FIX variate, the parameter is estimated without any special constraint. If two or more values are

equal, the corresponding parameters are constrained to be equal throughout the estimation. The

number that you give to a parameter by FIX will appear as the reference number of the parameter

in the printed model and correlation matrix. This option overrides any setting of CONSTANT and

BOXCOXMETHOD.

The MAXCYCLE option specifies the maximum number of iterations to be performed.

The TOLERANCE option specifies the convergence criterion. Genstat decides that convergence

has occurred if the fractional reduction in the deviance in successive iterations is less than the

specified value, provided also that the search is not encountering numerical difficulties that force

the step length in the parameter space to be severely limited. You can use monitoring to judge

whether, for all practical purposes, the iterations have converged. Genstat gives warnings if the

specified number of iterations is completed without convergence, or if the search procedure fails

to find a reduced value of the deviance despite a very short step length. Such an outcome may

be due to complexities in the likelihood function that make the search difficult, but can be due

to your specifying too small a value for TOLERANCE.

The SAVE option allows you to save the time-series save structure produced by TFIT. You can

use this in further TFIT statements with RECYCLE=yes, or in TFORECAST statements. It can also

be used by the TDISPLAY and TKEEP directives. Genstat automatically saves the structure from

the most recent TFIT statement, but this is over-written when the next TFIT statement is

executed, unless you have used SAVE to give it an identifier of its own. You can access the

current time-series save structure by the SPECIAL option of the GET directive, and reset it by the

TSAVE option of the SET directive.

The METHOD option has four possible settings. The default setting is full which gives the

usual estimation to convergence or until the maximum number of iterations has been reached.

With the setting METHOD=initialize, TFIT carries out only the residual regeneration steps

(that is, calculation of at for t=t0...N) which are needed before TFORECAST can be used. If the

model has just been estimated using the default full setting, this is unnecessary. The setting

initialize is useful when the time series is supplied with a known model and a minimal

amount of calculation is wanted to prepare or initialize for forecasting. None of the model

parameters are changed, and no standard errors of parameter estimates are available. Missing

values in the series are estimated so this setting provides an efficient way of getting their values

when the time series model is known; they can then be obtained using TKEEP. The deviance

value is also available from TKEEP. This setting is therefore useful for efficient calculation of

deviance values when you want to plot the shape of the deviance as a function of parameter

values.

With the setting METHOD=zerostep the effect is the same as for initialize except that

TFIT also calculates the standard errors of the parameters as if they had just been estimated.

These can be used together with other quantities available from TKEEP to construct confidence

intervals and carry out tests on the parameter values, which remain unchanged except that the

innovation variance in the ARIMA model is replaced by its estimate conditional on all other

parameters.

The setting METHOD=onestep gives the same results as specifying the option MAXCYCLE=1

in TFIT. It is convenient for carrying out quick tests of model parameters.

To explain the LIKELIHOOD option, we need to describe the estimation of ARIMA models

516 Directives in Release 22

in more detail. You may want to skip this if you are doing fairly routine work.

The first step in deriving the likelihood for a simple model is to calculate

wt = �dyt � c , t = 1+d ... N

This has a multivariate Normal distribution with dispersion matrix Vóa
2, where V depends only

on the autoregressive and moving-average parameters. The likelihood is then proportional to

{ óa
2m*V* } �½ exp{ �w�V�1w/2óa

2 }
where m=N�d. In practice Genstat evaluates this by using the formula

w� V�1 w = W + �t = t0 ... N { at
2 } = S

where t0=1+d+p�q. The term W is a quadratic form in the p values w1+d�q ... wp+d�q: it takes

account of the starting-value problem for regenerating the innovations at, and avoids losing

information as would happen if the process used only a conditional sum-of-squares function. If

q>0, Genstat introduces unobserved values of w1+d�q ... wd in order to calculate the sum S. Genstat

uses linear least-squares to calculate these q starting values for w, thus minimizing S. We shall

call them back-forecasts, though if p>0 they are actually computationally convenient linear

functions of the proper back-forecasts. We shall call S the sum-of-squares function: it is the sum

of the quadratic form and the sum-of-squares term, and is identical to the value expressed by Box

& Jenkins (1970) as

�t = �� ... N { at
2 }

using infinite back-forecasting; that is, using:

W = �t = �� ... t0�1 { at
2 }

The values at for t=t0...N agree precisely with those of Box and Jenkins.

To clarify all this, consider examples with no differencing; that is, d=0. If p=0 and q=1 then

W=0 and t0=0, and one back-forecast w0 is introduced. If p=1 and q=0 then W=(1�ö1
2)w1

2 and

t0=2, and no back-forecasts are needed. If p=q=1 then W=(1�ö1
2)w0

2 and t0=1, and so one back-

forecast w0 is needed. In this case the proper back-forecast is in fact w0 /(1�è1ö1).

The value of *V* is a by-product of calculating W and the back-forecast. For example, if p=0

and q=1, then

V = (1 + è1
2 + ... + è1

2N)

If p=1 and q=0,

V = 1 / (1 � ö1
2)

and if p=q=1,

V = 1 + (ö1 � è1)
2 (1 + è1

2 + ... + è1
2N�2) / (1 � ö1

2)

Concentrating the likelihood over óa
2 by setting óa

2=S/m yields a value proportional to { *V*1/m

S }�m/2.

The default setting of the LIKELIHOOD option is exact. In this case the concentrated

likelihood is maximized, by minimizing the quantity

D = *V*1/m S

which is called the deviance.

The setting leastsquares specifies that Genstat is to minimize only the sum-of-squares term

S. This criterion corresponds to the back-forecasting sum-of-squares used by Box & Jenkins

(1970), and will in many cases give estimates close to those of the exact likelihood. However,

some discrepancy arises if the series is short or the model is close to the invertibility boundary.

This is because of limitations on the back-forecasting procedure, as described in the algorithms

of Box & Jenkins (1970). The deviance value D that Genstat prints is, with this setting, simply

S.

When you use exact likelihood, the factor *V*1/m reduces bias in the estimates of the

parameter; you would get bias if you used leastsquares instead. However, *V*1/m is generally

close to one, unless the series is short or the model is either seasonal or close to the boundaries

of invertibility or stationarity. The leastsquares setting is therefore adequate for most long,

non-seasonal sets of data; using it may reduce the computation time by up to 50%. When you

specify that Genstat is to estimate the parameter ë of the Box-Cox transformation, Genstat also

TFIT 517

includes the Jacobian of the transformation in the likelihood function. The result is an extra

factor G�2(ë�1) in the definition of the deviance, G being the geometric mean of the data,

G = (�t = 1 ... N { yt }) ** (1 / N)

Note that this is not included unless ë is being estimated, even if ë�1.

You can treat differences in Nlog(D) as a chi-square variable in order to test nested models:

this is supported by asymptotic theory, and by experience with models that have moderately

large sample sizes. Similarly, you can select between different models by using Nlog(D)+2k as

an information criterion, k being the number of estimated parameters. But both of these test

procedures are questionable if the estimated models are close to the boundaries of invertibility

or stationarity. Provided all the models that are being compared have the same orders of

differencing, with the differenced series being of length m, it is recommended that mlog(D) be

used rather than Nlog(D) in these tests since mlog(D) is precisely minus two multiplied by the

log-likelihood as defined above.

The setting marginal is relevant mainly when TFIT is used for regression with ARIMA

errors. (This requires a TRANSFERFUNCTION statement beforehand to specify the explanatory

variables.) The likelihood for the model is defined as that of the univariate error series et which

is defined in general by

et = yt � b1x1,t � ... � bmxm,t

(the xi being m explanatory variables). The constant term therefore appears in the model after any

differencing of et; for example

�et = c + (1 � è1B)at

You can get bias in the estimates of the parameters of an ARIMA model because the regression

is estimated at the same time. You can guard against this by specifying

LIKELIHOOD=marginal. This can be particularly important if the series are short or if you use

many explanatory variables (Tunnicliffe Wilson 1989). The deviance is now defined as

D = S (*X�V�1X* *V*)1/m

where m is reduced by the number of regressors (including the constant term) and the columns

of X are the differenced explanatory series: the other terms are as in the exact likelihood.

You can use the marginal setting also for univariate ARIMA modelling, when the constant

term is the only explanatory term. Furthermore, Genstat deals with missing values in the

response variate by doing a regression on indicator variates; these too are included in the X

matrix. However, you cannot use marginal likelihood and estimate a transformation parameter

in either the transfer-function model or an ARIMA model. Neither can you use it if you set the

FIX option in TFIT. In these cases Genstat automatically resets the LIKELIHOOD option to

exact.

At every iteration with the setting LIKELIHOOD=marginal, the regression coefficients are

the maximum-likelihood estimates conditional upon the estimated values of the parameters of

the ARIMA model: these are also the generalized least-squares estimates, conditioned in the

same way. This is so even if MAXCYCLE=0; that is, the coefficients of the regression are re-

estimated even at iteration 0. Therefore you must not use the marginal setting with the option

METHOD=initialize to initialize for TFORECAST. You can compare deviance values that were

obtained using marginal likelihood only for models with the same explanatory variables and the

same differencing structure in the error model.

Options: PRINT, LIKELIHOOD, CONSTANT, RECYCLE, WEIGHTS, MVREPLACE, FIX , METHOD,

MAXCYCLE, TOLERANCE, SAVE.

Parameters: SERIES, TSM, BOXCOXMETHOD, RESIDUALS.

Action with RESTRICT

The SERIES variate can be restricted, but this must be to a contiguous set of units.

518 Directives in Release 22

References

Box, G.E.P. & Jenkins, G.M. (1970). Time Series Analysis, Forecasting and Control. Holden-

Day, San Francisco.

Tunnicliffe Wilson, G. (1989). On the use of marginal likelihood in time-series model

estimation. Journal of the Royal Statistical Society, Series B, 51, 15-27.

See also

Directives: TSM, FTSM, TRANSFERFUNCTION, TDISPLAY, TFILTER, TFORECAST, TKEEP,

TSUMMARIZE, CORRELATE, FOURIER.

Procedures: BJESTIMATE, BJFORECAST, BJIDENTIFY, MOVINGAVERAGE, PERIODTEST,

PREWHITEN, REPPERIODOGRAM, SMOOTHSPECTRUM.

Genstat Reference Manual 1 Summary section on: Time series.

TFORECAST 519

TFORECAST

Forecasts future values of a time series.

Options

PRINT = string tokens What to print (forecasts, limits, setransform,

sfe); default fore,limi

CHANNEL = scalar Channel number for output; default * i.e. current output

channel

ORIGIN = scalar Number of known values to be incorporated; default 0

UPDATE = string token Whether to update the forecast origin to the end of the

new observations (yes, no); default no

NEWOBSERVATIONS = variate Variate of length 	 ORIGIN providing new values of the

time series to be incorporated (must be set if ORIGIN >

0)

SFE = variate Saves standardized forecast errors; default *

MAXLEAD = scalar Maximum lead time i.e number of forecasts to be made;

default * defines the number as the length of FORECAST

variate

FORECAST = variate Variate of length MAXLEAD to save forecasts of output

series; default *

SETRANSFORM = variate Saves standard errors of the forecasts (on transformed

scale, if defined); default *

LOWER = variate Saves lower confidence limits; default *

UPPER = variate Saves upper confidence limits; default *

PROBABILITY = scalar Probability level for confidence limits; default 0.9

COMPONENTS = pointer Contains variates (of length ORIGIN + MAXLEAD) to save

components of the forecast

SAVE = identifier Save structure to supply fitted model; default * i.e. that

from last model fitted

Parameters

FUTURE = variates Variates (of length ORIGIN + MAXLEAD) containing

future values of input series

METHOD = string tokens How to treat future values of input series

(observations, forecasts); default obse

Description

TFORECAST can be used after TFIT to forecast future values of a time series. TFORECAST was

originally called FORECAST, but was renamed in Release 14 to emphasize its status as a time-

series command. The earlier name (FORECAST) was retained to allow previous programs to

continue to run, but this may be removed in a future release.

In many applications of forecasting with univariate ARIMA models, you will need only a

simple form of the directive. For example

TFORECAST [MAXLEAD=10]

will cause Genstat to print forecasts for 10 lead times, that is, the next 10 time points after the

end of your data. However, you must already have used TFIT to specify the time series to be

forecast, and the model to be used for forecasting. This information is supplied by the SAVE

option; if SAVE is not specified, TFORECAST uses the information from the most recent TFIT

statement. Once you have used TFIT, you can give successive TFORECAST statements to

incorporate new observations of the time series, and to produce forecasts from the end of the new

data.

520 Directives in Release 22

If the time series is supplied with a known model (that is, one with all its orders and

parameters specified) you can use TFIT with option setting METHOD=initialize before you

use TFORECAST. This will carry out just sufficient calculations, in particular the regeneration

of the model residuals, for TFORECAST to be used. The model parameters will not be changed

� not even the innovation variance. This setting of METHOD restricts the structures, such as

parameter standard errors, that can be accessed using TDISPLAY and TKEEP after TFIT. The

SAVE structure created by using TFIT with METHOD=initialize thus requires less space than

that produced by the other settings.

The PRINT option controls the printed output, and the CHANNEL option allows this to be sent

to another output channel.

The ORIGIN option specifies the number of new values to be incorporated before forecasting

ahead from that point. Setting this to a positive value n indicates that n new observations are to

be added onto the end of the series. These new observations must be supplied in a variate using

the NEWOBSERVATIONS option, which must be of length 	n. The standardized forecast errors

for these new observations can be printed or saved in a variate of length n using the SFE option.

The UPDATE option specifies whether these new observations are to be incorporated internally

onto the end of the time series and the internal pointer moved to the end of the new observations.

If UPDATE=yes is used, then ORIGIN=0 in future calls to TFORECAST will point to the end of

the n new observations. If the default, UPDATE=no is used, then the internal pointer remains at

the end of the original series.

The number of future values to be forecast is set by option MAXLEAD. These new values can

be saved in a variate of length MAXLEAD using the FORECAST option.

The PROBABILITY option determines the width of the error limits on the forecast. It defines

the probability that the actual value will be contained within the limits at any particular lead

time. Note that the limits do not apply simultaneously over all lead times.

The SETRANSFORM option specifies a variate to store the standard errors that Genstat used in

calculating the error limits of the forecasts, starting at lead time 1. These are the standard errors

of the transformed series, according to the value of the Box-Cox transformation parameter; they

are functions of the model only, not of the data.

The LOWER option specifies a variate to store the lower limits of the forecasts. This must be

the same length as the FORECAST variate. The TFORECAST directive puts the values of the lower

limit into the variate, matching the forecasts in the FORECAST variate. The UPPER option

similarly allows the upper limits to be saved. Note that the limits are constructed as symmetric

percentiles, assuming Normality of the transformed time series. Similarly, the forecast is a

median value � not necessarily the mode or the mean, unless the transformation parameter is 1.0.

The SFE option specifies a variate to save the standardized errors of the forecasts. These are

the innovation values that are generated as each successive new observation is incorporated,

divided by the square root of the TSM innovation variance. They provide a useful check on the

continuing adequacy of the model. For example, excessively large values (compared to the

standard Normal distribution) may indicate that you should revise the model. The variate must

be the same length as the FORECAST variate. The TFORECAST directive places values of the

errors in the variate, matching the new observations in the FORECAST variate.

The parameters of TFORECAST are relevant only when the time-series model incorporates

explanatory variables, which requires a TRANSFERFUNCTION statement before the TFIT

statement. You use the FUTURE parameter to specify a list of variates, corresponding to the list

of variates specified by the SERIES parameter of TRANSFERFUNCTION. These variates must all

have the same length. They hold future values of the explanatory variables to be used either for

constructing forecasts of the response variable, or for incorporating new observations in order

to revise the forecasts. You can use the METHOD parameter when some or all of the future values

of the explanatory variables are forecasts obtained using univariate ARIMA models. You can

amend the error limits of the forecasts for the response variable to allow for the uncertainty in

TFORECAST 521

these future values, but you need to assume that there is no cross-correlation between the errors

in these predictions. The list of strings specified by the METHOD parameter indicates for each

explanatory variable whether such an allowance should be made. The future values of a series

are by default treated as known values if no corresponding ARIMA model is present, or if the

transformation parameter of the ARIMA model is not equal to the value used in the regression

model for that series. You can change the settings of the METHOD parameter in successive

TFORECAST statements.

The COMPONENTS option is also relevant only when the time-series model incorporates

explanatory variables, and can be used to specify a pointer to variates in which you can save

components of future values of the output series. There is a variate for each input component and

for the output noise component. These variates correspond exactly to the variates that were

specified by the FUTURE parameter for the input series, and by the FORECAST variate for the

output series; corresponding lengths must match. The values that the variates hold can therefore

be components of the forecasts of the output series, or can be new observations. The can be used

to investigate the structure of forecasts.

If the input series ARIMA model and the transfer-function model have differing

transformation parameters, then the METHOD option reverts to its default action of treating the

values of any future input series as known quantities rather than forecasts.

Options: PRINT, CHANNEL, ORIGIN, UPDATE, NEWOBSERVATIONS, SFE, MAXLEAD, FORECAST,

SETRANSFORM, LOWER, UPPER, PROBABILITY, COMPONENTS, SAVE.

Parameters: FUTURE, METHOD.

See also

Directives: TSM, FTSM, TRANSFERFUNCTION, TDISPLAY, TFILTER, TFIT, TKEEP,

TSUMMARIZE.

Procedures: BJESTIMATE, BJFORECAST, BJIDENTIFY.

Genstat Reference Manual 1 Summary section on: Time series.

522 Directives in Release 22

TKEEP

Saves results after an analysis by TFIT.

Option

SAVE = identifier Save structure to supply fitted model; default * i.e. that

from last model fitted

Parameters

OUTPUTSERIES = variate Output series to which model was fitted

RESIDUALS = variate Residual series

ESTIMATES = variate Estimates of parameters

SE = variate Standard errors of estimates

INVERSE = symmetric matrix Inverse matrix

VCOVARIANCE = symmetric matrix Variance-covariance matrix of parameters

DEVIANCE = scalar Residual deviance

DF = scalar Residual degrees of freedom

MVESTIMATES = variate Estimates of missing values in series

SEMV = variate Standard errors of estimates of missing values

COMPONENTS = pointer Variates to save components of output series

SCORES = variate To save scores (derivatives of the log-likelihood with

respect to the parameters)

Description

An TFIT statement produces many quantities that you may want to use to assess, interpret and

apply the fitted model. The TKEEP directive allows you to copy these quantities into Genstat data

structures. If the METHOD option of the TFIT statement was set to initialize, then the results

saved by the options SE, INVERSE, VCOVARIANCE and SCORE are unavailable. However, you

can save the estimates of the missing values and their standard errors. The residual degrees of

freedom in this case does not make allowance for the number of parameters in the model, but

does allow for the missing values that have been estimated.

The OUTPUTSERIES parameter specifies the variate that was supplied by the SERIES

parameter of the TFIT statement; this can be omitted.

You can use the RESIDUALS parameter to save the residuals in a variate, exactly as in the

TFIT directive.

The ESTIMATES parameter can supply a variate to store the estimated parameters of the TSM.

Each estimated parameter is represented once, but the innovation variance is omitted entirely.

Genstat includes only the first of any set of parameters constrained to be equal using the FIX

option of TFIT. The order of the parameters otherwise corresponds to their order in the variate

of parameters in TSM, and is unaffected by any numbering used in the FIX option.

The SE parameter allows you to specify a variate to save the standard errors of the estimated

parameters of the TSM. The values correspond exactly to those in the ESTIMATES variate.

Parameters in a time series model may be aliased. This is detected when the equations for the

estimates are being solved, and the message ALIASED is printed instead of the standard error

when the PRINT option of TFIT or TDISPLAY includes the setting estimates. The

corresponding units of the SE variate are set to missing values.

The INVERSE parameter can provide a symmetric matrix to save the product (X�X)�1, where

X is the most recent design matrix derived from the linearized least-squares regressions that were

used to minimize the deviance. The ordering of the rows and columns corresponds exactly to that

used for the ESTIMATES variate. The row of this matrix corresponding to any aliased parameter

is set to zero except that the diagonal element is set to the missing value.

The VCOVARIANCE parameter allows you to supply a symmetric matrix for the estimated

TKEEP 523

variance-covariance matrix, ó^ a
2(X�X)�1, of the TSM parameters. The ordering of the rows and

columns and the treatment of aliased parameters corresponds exactly to that used for the

ESTIMATES variate.

The DEVIANCE parameter specifies a scalar to hold the final value of the deviance criterion

defined by the LIKELIHOOD option of TFIT.

The DF parameter saves the residual number of degrees of freedom, defined for a simple

ARIMA model by N�d�(number of estimated parameters). If a seasonal model is used, this

number is further reduced by Ds.

The MVESTIMATES parameter specifies a variate to hold estimates of the missing values of the

series, in the order they appear in the series. You can thereby obtain forecasts of the series, by

extending the SERIES in TFIT with a set of missing values. This is less efficient than using the

TFORECAST directive, but it does have the advantage that the standard errors of the estimates

take into account the finite extent of the data, and also the fact that the model parameters are

estimated.

The SEMV parameter can supply a variate to hold the estimated standard errors of the missing

values of the series, in the order they appear in the series.

The COMPONENTS parameter can be used after a multi-input model has been fitted using TFIT

to access the components of the output series that are due to the various input series; you can

also access the output noise. In simple regression, the input components are proportional to the

input series. But the component resulting from a transfer-function model may be quite different

from this. You can examine these components separately, or sum them to show the total fit to

the output series that is explained by the input series. Note that the fitted values may appear to

be offset from that output series, because the constant term is part of the noise component, and

so is not included. You may want to examine the output noise component. For example, if you

thought that the ARIMA model for the output noise was inadequate, you could investigate the

noise component with univariate ARIMA modelling.

The SCORE parameter can specify a variate to hold the model scores. The scores are usually

defined as the first derivatives of the log likelihood with respect to the model parameters. To get

these, the scores supplied by TKEEP should be scaled by dividing by the estimated residual

variance and reversing its sign. The elements of the SCORE variate correspond exactly to the

parameters as they appear in the ESTIMATES variate. After using TFIT to fit a time series model,

the scores should in theory be zero provided the model parameters do not lie on the boundary

of their allowed range. The scores are used within TFIT to calculate the parameter changes at

each iteration.

You can use the SAVE option to specify the time-series save structure from which the output

is to be taken. By default TKEEP uses the structure from the most recent TFIT statement.

Option: SAVE.

Parameters: OUTPUTSERIES, RESIDUALS, ESTIMATES, SE, INVERSE, VCOVARIANCE,

DEVIANCE, DF, MVESTIMATES, SEMV, COMPONENTS, SCORES.

See also

Directives: TSM, FTSM, TDISPLAY, TFILTER, TFIT, TFORECAST, TRANSFERFUNCTION,

TSUMMARIZE.

Procedures: BJESTIMATE, BJFORECAST, BJIDENTIFY.

Genstat Reference Manual 1 Summary section on: Time series.

524 Directives in Release 22

TRANSFERFUNCTION

Specifies input series and transfer-function models for subsequent estimation of a model for

an output series.

Option

SAVE = identifier To name time-series save structure; default *

Parameters

SERIES = variates Input time series

TRANSFERFUNCTION = TSMs Transfer-function models; if omitted, model with 1

moving-average parameter, lag 0

BOXCOXMETHOD = string tokens How to treat transformation parameters (fix,

estimate); default fix

PRIORMETHOD = string tokens How to treat prior values (fix, estimate); default
fix

ARIMA = TSMs ARIMA models for input series

Description

TRANSFERFUNCTION can be used to define input series and transfer-function models to be used

by subsequent TFIT statements.

In its simplest form, when the TRANSFERFUNCTION and PRIORMETHOD parameters are unset,

TRANSFERFUNCTION can be used to specify the explanatory variables for a regression with

autocorrelated errors.

The first parameter, SERIES, specifies a list of variates holding the time series of explanatory

variables.

The BOXCOXMETHOD parameter allows you to estimate separate power transformations for the

explanatory variables: the variable xt is transformed to

xt
(ë) = (xt

ë � 1) / ë , ë � 0

xt
(0) = log(xt)

The default is no transformation, corresponding to xt
(ë) = xt. You can choose whether the

transformations are to be fixed or estimated, by specifying one string for each explanatory

variable.

The ARIMA parameter allows you to associate with each explanatory variable a univariate

ARIMA model for the time-series structure of that variable. If you think such a model is

inappropriate, then you should give a missing value in place of the TSM identifier, or leave this

parameter unset. You can use these models in any subsequent TFORECAST statement to

incorporate, into the error limits of the forecasts, an allowance for uncertainties in the predicted

explanatory variables; the allowance assumes that the future values of the explanatory variables

are forecasts obtained using these ARIMA models.

The TRANSFERFUNCTION and PRIORMETHOD parameters are used to define multi-input

transfer-function models.

The TRANSFERFUNCTION parameter specifies the transfer-function TSMs that are to be

associated with the input series. A missing value in place of a TSM identifier causes Genstat to

treat the corresponding input series as a simple explanatory variable, equivalent to a transfer-

function model with orders (0,0,0,0).

The PRIORMETHOD parameter specifies, for each input series, how Genstat is to treat the

transients associated with the early values of the transfer-function response. In calculating the

input component zt from the input xt, Genstat has to make assumptions about the unknown values

of xt which came before the observation period. The default is that xt (or generally xt
(ë)) is

assumed to be equal to the reference constant c of the transfer-function model. The pattern of

the transient can be controlled by introducing a number max(p+d,b+q) of nuisance parameters

TRANSFERFUNCTION 525

to represent the combined effects of all earlier input values on the observed output. Setting

PRIORMETHOD=estimate specifies that these nuisance parameters are estimated so as to

minimize the transients. You should, however, be careful in using this. Often all you will have

to do is make a sensible choice of the reference constant c. Estimating the transients is best done

as a final stage in refining the model; earlier, this may give poor numerical conditioning.

The SAVE option allows you to name the time-series save structure created by

TRANSFERFUNCTION. You can use this identifier in a later TFIT statement, and eventually in

a TFORECAST statement. If you do not name the save structure Genstat will use the most recent

save structure, which will be overwritten each time a new TRANSFERFUNCTION statement is

given.

Option: SAVE.

Parameters: SERIES, TRANSFERFUNCTION, BOXCOXMETHOD, PRIORMETHOD, ARIMA.

See also

Directives: TSM, FTSM, TDISPLAY, TFILTER, TFIT, TFORECAST, TKEEP, TSUMMARIZE.

Procedures: BJESTIMATE, BJFORECAST, BJIDENTIFY.

Genstat Reference Manual 1 Summary section on: Time series.

526 Directives in Release 22

TREATMENTSTRUCTURE

Specifies the treatment terms to be fitted by subsequent ANOVA statements.

No options

Parameter

formula Treatment formula, specifies the treatment model terms

to be fitted by subsequent ANOVAs

Description

The TREATMENTSTRUCTURE directive defines the treatment formula which specifies treatment,

or systematic, terms to be fitted in subsequent ANOVA statements. For a simple one-way analysis

of variance this has the form

TREATMENTSTRUCTURE Tfac

where Tfac is a factor which indicates which treatment was received by each unit in the design.

Most experiments, however, are devised to study several treatment factors. For these factorial

experiments TREATMENTSTRUCTURE specifies a model formula to define the model terms to be

fitted. Each model term will then have its own line in the analysis-of-variance table and, for

example, will have a table of means.

Initially in a job, there is no treatment formula. This situation can be restored by a

TREATMENTSTRUCTURE directive with a null setting:

TREATMENTSTRUCTURE

In its simplest form, a model formula is a list of model terms, linked by the operator "+". For

example,

A + B

is a formula containing two terms, A and B, representing the main effects of factors A and B

respectively. Higher-order terms (like interactions) are specified as series of factors separated

by dots, but their precise meaning depends on which other terms the formula contains, as we

explain below. The other operators provide ways of specifying a formula more succinctly, and

of representing its structure more clearly.

The crossing operator * is used to specify factorial structures. For example, the treatment

formula

TREATMENTSTRUCTURE Nitrogen * Sulphur

is expanded automatically by Genstat to become the formula

Nitrogen + Sulphur + Nitrogen.Sulphur

which has three terms: Nitrogen for the nitrogen main effect, Sulphur for the main effect of

sulphur, and Nitrogen.Sulphur for the nitrogen by sulphur interaction. Higher-order terms

like Nitrogen.Sulphur represent all the joint effects of the factors Nitrogen and Sulphur

that have not been removed by earlier terms in the formula. Thus here it represents the

interaction between nitrogen and sulphur as both main effects have been removed.

The other most-commonly used operator is the nesting operator (/). This occurs most often

in block models (specified by the BLOCKSTRUCTURE directive). For example, the formula

Litter / Rat

is expanded to become the formula

Litter + Litter.Rat

This could define the block model for a design in which there are several litters of rats. As the

formula contains no "main effect" for rat, the term Litter.Rat represents rat-within-litter

effects (that is the differences between individual rats after removing any overall similarity

between rats that belong to the same litter).

TREATMENTSTRUCTURE 527

A formula can contain more than one of these operators. The three-factor factorial model

A * B * C

becomes

A + B + C + A.B + A.C + B.C + A.B.C

and the nested structure

Block / Wplot / Subplot

which specifies the block model of a split-plot design becomes

Block + Block.Wplot + Block.Wplot.Subplot

The operators can also be mixed in the same formula. In general, if l and m are two model

formulae:

l * m = l + m + l.m

l / m = l + fac(l).m

(where l.m is the sum of all pairwise dot products of a term in l and a term in m, and fac(l)

is the dot product of all factors in l). For example:

(A + B) * (C + D) = (A + B) + (C + D) + (A + B).(C + D)

 = A + B + C + D + A.C + A.D + B.C + B.D

(A + B)/C = A + B + fac(A + B).C = A + B + A.B.C

The other important operator for ANOVA is the pseudo-factorial operator //. This allows you

to partition an unbalanced treatment term into pseudo-terms, which are each balanced.

Contrasts can be fitted by putting a function of a factor into the treatment formula, instead of

the factor itself. Polynomial contrasts can be specified using the POL or POLND functions. Other,

user-defined regression models can be defined using the REG or REGND functions. COMPARISON,

the other function relevant to ANOVA allows comparisons to be calculated between levels of the

factor.

Options: none.

Parameter: unnamed.

See also

Directives: ANOVA, BLOCKSTRUCTURE, COVARIATE, ADISPLAY, AKEEP.

Procedures: AFCOVARIATES, ASTATUS, AUNBALANCED.

Functions: COMPARISON, POL, POLND, REG, REGND.

Genstat Reference Manual 1 Summary section on: Analysis of variance.

528 Directives in Release 22

TREE

Declares one or more tree data structures and initializes each one to have a single node known

as its root.

No options

Parameter

IDENTIFIER = identifiers Identifiers of the trees

Description

TREE declares and initializes Genstat tree structures. These can be used to represent hierarchical

structures like classification trees, identification keys and regression trees. These types of tree

can be constructed by special-purpose procedures BCLASSIFICATION, BKEY and

BREGRESSION, respectively, and displayed by procedures BGRAPH and BPRINT. Most users will

use only these special-purpose procedures, and will not need to operate on trees directly, nor to

be aware of how they are formed, stored or manipulated. The procedures, however, are based

on a suite of directives, functions and procedures summarized below, which provide the tool kit

not only for the officially-supported tree facilities but also for user enhancements and extensions.

The tree structure is like a real tree, which starts from a root and then splits into branches,

except that it is usually viewed as growing downwards instead of upwards. The branch-points

in the tree are known as nodes, with the initial node being called the root (as in a real tree). There

is also a node at the end of each branch, known as its terminal node. In Genstat a tree is similar

to a pointer, with an element for each node. These elements are the identifiers of data structures

which can be used to store information about the nodes. Usually the data structures will be

pointers, so that several pieces of information can be stored for each node, but the precise

contents depend on the type of tree (see, for example, procedures BCLASSIFICATION, BKEY and

BREGRESSION).

Each node thus has a number, corresponding to the index of its element in the tree. The root

is always numbered one, and this is the only node that the tree contains when it is declared by

TREE. Further nodes can be added by the BGROW or BJOIN directives, which form branches from

a terminal node or join another tree to a terminal node, respectively. The converse process of

cutting a tree at a defined node and discarding the nodes and information below it is provided

by the BCUT directive.

The numbers of the subsequent nodes can be obtained from the functions that are provided to

navigate around a tree:

BNEXT provides the numbers of the nodes below a node;

BPREVIOUS provides the number of the node immediately above a

node;

BTERMINAL finds the next terminal node after a node;

BSCAN finds the number of the node immediately after a node in

a standard branch-by-branch order that visits each node

once.

Other useful functions include:

BNBRANCHES provides the number of branches below a node;

BDEPTH calculates the depth of a node (taking the root as being at

depth 1);

BPATH provides a variate containing the numbers of the nodes on

the branch to a node;

BBRANCHES provides a variate containing the numbers of the branches

taken on the path to a node;

BBELOW provides a variate containing numbers of all the nodes or

TREE 529

all the terminal nodes below a node;

BNNODES provides the number of nodes in a tree;

BMAXNODE provides the maximum node number in a tree.

There are also several utility procedures, which are used by the special-purpose tree

procedures.

BCONSTRUCT constructs a tree (using subsidiary procedure BSELECT,

which is customized according to the type of tree).

BGRAPH plots a tree.

BPRINT displays a tree.

BPRUNE prunes a tree using minimal cost complexity (assuming that

"accuracy" values have been stored at each node of the

tree, which can be done using customized procedure

BVALUES).

New tree-based analyses can thus be added by writing a main procedure (like

BCLASSIFICATION, BREGRESSION etc), and defining appropriate versions of BSELECT.

Options: none.

Parameter: IDENTIFIER.

See also

Directives: BASSESS, BCUT, BGROW, BJOIN, POINTER.

Procedures: BCONSTRUCT, BCLASSIFICATION, BGRAPH, BKEY, BPRINT, BPRUNE.

Functions: BBELOW, BBRANCHES, BDEPTH, BMAXNODE, BNBRANCHES, BNEXT, BNNODES,

BPATH, BPREVIOUS, BSCAN, BTERMINAL.

Genstat Reference Manual 1 Summary section on: Data structures.

530 Directives in Release 22

TRY

Displays results of single-term changes to a linear, generalized linear or generalized additive

model.

Options

PRINT = string tokens What to print (model, deviance, summary,

estimates, correlations, fittedvalues,

accumulated, monitoring, changes, confidence);

default chan

FACTORIAL = scalar Limit for expansion of model terms; default * i.e. that in

previous TERMS statement

POOL = string token Whether to pool ss in accumulated summary between all

terms fitted in a linear model (yes, no); default no

DENOMINATOR = string token Whether to base ratios in accumulated summary on rms

from model with smallest residual ss or smallest residual

ms (ss, ms); default ss

NOMESSAGE = string tokens Which warning messages to suppress (dispersion,

leverage, residual, aliasing, marginality,

vertical, df, inflation); default *

FPROBABILITY = string token Printing of probabilities for variance and deviance ratios

(yes, no); default no

TPROBABILITY = string token Printing of probabilities for t-statistics (yes, no);

default no

SELECTION = string tokens Statistics to be displayed in the summary of analysis

produced by PRINT=summary, seobservations is

relevant only for a Normally distributed response, and

%cv only for a gamma-distributed response

(%variance, %ss, adjustedr2, r2,

seobservations, dispersion, %cv,

%meandeviance, %deviance, aic, bic, sic); default

%var, seob if DIST=normal, %cv if DIST=gamma, and

disp for other distributions

PROBABILITY = scalar Probability level for confidence intervals for parameter

estimates; default 0.95

Parameter

formula List of explanatory variates and factors, or model

formula

Description

TRY investigates modifications to the current regression model, which may be linear, generalized

linear or generalized additive. Terms in the specified formula are dropped from the current

model if they are already there, or are added to it if they are not. It is best to give a TERMS

statement before using TRY to define a common set of units for the models to be investigated.

If no model is fitted after the TERMS statement, the current model is taken to be the null model.

The default setting, changes, of the PRINT option summarises the effects of the changes after

they have all been tried. Other settings request further details of the changed models. These are

printed after each change. Genstat then restores the original model before trying the next change.

The options of TRY are otherwise the same as those of the FIT directive, except that there is

no CONSTANT option. The accumulated setting of the PRINT option will show only one change

at a time. Accumulated summaries produced by later statements will not have any entries for a

TRY 531

TRY statement.

Options: PRINT, FACTORIAL, POOL, DENOMINATOR, NOMESSAGE, FPROBABILITY,

TPROBABILITY, SELECTION, PROBABILITY.

Parameter: unnamed.

Action with RESTRICT

If a TERMS statement was given before fitting the model, any restrictions on the variates or

factors in the model will have been implemented then. So any new restrictions on vectors

involved in the model specified by TRY will be ignored. If no TERMS statement has been given

and TRY involves new terms not already in the model, restrictions on the variates or factors in

these terms will be taken into account and may cause the units involved in the regression to be

redefined.

See also

Directives: MODEL, TERMS, FIT, ADD, DROP, SWITCH, STEP.

Procedures: RSCREEN, RSEARCH.

Genstat Reference Manual 1 Summary section on: Regression analysis.

532 Directives in Release 22

TSM

Declares one or more TSM data structures.

Option

MODELTYPE = string token Type of model (arima, transfer); default arim

Parameters

IDENTIFIER = identifiers Identifiers of the TSMs

ORDERS = variates Orders of the autoregressive, integrated and moving-

average parts of each TSM

PARAMETERS = variates Parameters of each TSM

LAGS = variates Lags, if not default

Description

The TSM structure stores a time-series model which you can use with directives such as TFIT

for Box-Jenkins modelling of time series. The information that you give to specify the model is

stored in two variates, called the orders and the parameters; an optional third variate contains

lags. The elements of a TSM are thus

[1] or ['Orders'];

[2] or ['Parameters'];

[3] or ['Lags'].

The labels of the TSM can be specified in either upper or lower case, or any mixture.

To declare a TSM you use the TSM directive. You set the type of model by the MODELTYPE

option. The default setting defines an ARIMA model. This is an equation relating the present

value yt of an observed time series to past values. The equation includes lagged values not only

of the series itself, but also of an unobserved series of innovations, at ; you can interpret the

innovations as the error in predicting yt from past values yt�1, yt�2 The usual statistical model
assumes that the innovations are a series of independent Normal deviates with mean zero and

constant variance. The residuals obtained from fitting the model can be used to estimate the

innovations.

Using the notation of Box & Jenkins (1970), the simple non-seasonal ARIMA model for the

time series yt is

ö(B) {�dyt
(ë) � c} = è(B)at

where B is the backward shift operator Bpyt =yt�p ,

� is the differencing operator �yt =yt�yt�1 , �
dyt =�

d-1 (yt�yt�1), and

ö(B) = 1 � ö1B � ... � öpB
p

è(B) = 1 � è1B � ... � èqB
q

The parameter ë specifies a Box-Cox power transformation defined by

yt
(ë) = (yt

ë � 1) / ë, ë � 0

yt
(0) = log(yt)

However, in the default case when ë is fixed and not estimated, the value ë=1 implies no

transformation and then yt
(1)=yt rather than yt�1. If ë�1 or if ë is to be estimated, then Genstat will

not let you have values of yt �0. The usual case however is that ë=1 and is not to be estimated,

so that yt may take any values.

The ORDERS parameter is a list of variates, one for each of the models. For each simple

ARIMA model, the variate contains the three values p, d and q.

The PARAMETERS parameter is a list of variates, one for each of the models. For each simple

ARIMA model, the variate contains (3+p+q) values: ë, c, óa
2, ö1...öp, è1...èq. You must always

include the first three parameters. The parameter óa
2 is the innovation variance.

Whenever a TSM is used, Genstat checks its values. The orders must all be non-negative. The

parameters ë and c can take any values, but óa
2 must be non-negative. The next p+q values

TSM 533

specify the autoregressive and moving-average parameters: they must satisfy the stationarity and

invertibility conditions for ARIMA models (see Box & Jenkins 1970). An exception is that

before estimation the model parameters may be unset, in which case Genstat sets them to default

values. You can omit the PARAMETERS parameter, in which case an unnamed structure is defined

to contain the default values. However, you should usually specify the variate of parameters, and

if possible assign good preliminary values before estimation (see FTSM) as this will speed up the

model fitting process.

The LAGS parameter is a list of variates, one for each of the models. For each simple ARIMA

model, this variate contains p+q values, one corresponding to each of the autoregressive and

moving-average parameters. Genstat then modifies the ARIMA model by defining

ö(B) = 1 � ö1 B**l1 � ... � öp B**lp

è(B) = 1 � è1 B**m1 � ... � èq B**mq

The LAGS parameter for this model contains l1...lp, m1...mq. The sequences of lags l1...lp must be

positive integers that are strictly increasing; the default values are 1...p if LAGS is not set. The

same rule applies to m1...mq.

The seasonal ARIMA model for the time series yt is an extension of the simple model, to the

form

ö(B) Ö(Bs) { �d�s
Dyt

(ë) � c } = è(B) È(Bs) at

where the extra, seasonal, operators associated with seasonal period s are of three types:

Ö(Bs) = 1 � Ö1 Bs � ... � ÖP B**Ps

which is seasonal autoregression of order P;

�s
D

which is seasonal differencing of order D; and

È(Bs) = 1 � È1 Bs � ... � ÈQ B**Qs

which is seasonal moving average of order Q.

When seasonal terms are to be included, you must extend the ORDERS parameter so that it

contains p, d, q, P, D, Q and s. Even if the non-seasonal part of the model has p=d=q=0, these

parameters must still be included at the beginning of the list. The seasonal orders must satisfy

P	0, D	0, Q	0 and s	1.

You must also extend the PARAMETERS parameter to contain:

ë, c, óa
2, ö1...öp, è1...èq, Ö1...ÖP, È1...ÈQ

You can modify the seasonal model to allow other lags:

Ö(Bs) = 1 � Ö1 B**L1 � ... � ÖP B**Lp

È(Bs) = 1 � È1 B**M1 � ... � ÈQ B**MQ

The sequence of lags L1...LP must be strictly increasing and must be positive-integer multiples

of the period s; the default values are s, 2s ... Ps. The same rules apply to M1...MQ. For any

seasonal model, you must extend the LAGS parameter, if supplied, so that it contains

l1 ... lp, m1 ... mq, L1 ... LP, M1 ... MQ.

You can use multiple seasonal periods, by extending the variate of ORDERS with further

seasonal orders P�, D�, Q� and s�. You must correspondingly extend the variates of PARAMETERS

and LAGS. It is also possible to set the seasonal periods to 1, which means you can estimate non-

seasonal models with factored operators.

You can declare an ORDERS variate to have more values than is necessary, provided that the

extra values are filled with zeroes, and that the number of values is 3+4k, k being the number of

seasonal periods. The same applies to PARAMETERS and LAGS variates, except that Genstat

ignores the extra values whatever they may be. Thus you can extend a simple model to a seasonal

model, simply by resetting the extra values.

Setting MODELTYPE=transferfunction defines a transfer-function model. The simple non-

seasonal transfer-function model relates a component zt of the output series to the corresponding

input series xt, by the equation

534 Directives in Release 22

ä(B) �d zt = ù(B) Bb {xt
(ë) � c}

where

ä(B) = 1 � ä1 B � ... � äp BP

ù(B) = ù0 � ù1 B � ... � ùq Bq .
The integer b>0 defines a pure delay, and the integer d>0 defines the order of differencing in the

transfer function.

The parameter ë specifies a Box-Cox power transformation for the input series, and the

parameter c specifies a reference level for the transformed input. There is no mean correction

of the input series when transfer-function models are estimated, and you should use a value of

c close to the series mean so as to improve the numerical conditioning of the estimation

procedure. However, if the input series xt is trend-like rather than stationary, you could

alternatively use a value for c close to the early series values, because this reduces the transient

errors that arise when the transfer function is applied. The PRIORMETHOD parameter of

TRANSFERFUNCTION, described below, provides further means of handling these transients.

The parameters ë and c are not estimated unless you specify otherwise by the BOXCOXMETHOD

parameter of TRANSFERFUNCTION or the FIX option of TFIT. Often c in the transfer-function

model is aliased with the constant term in the ARIMA errors, and so they should not both be

estimated. In some circumstances, however, they both could be estimated, for example in a

differenced transfer-function model with stationary noise.

The ORDERS parameter for the simple transfer-function model described above specifies a

variate containing the four values b, p, d and q.

The PARAMETERS parameter specifies a variate containing 3+p+q values: ë, c, ä1, ... äp, ù0, ù1

... ùq. You must always include the parameters ë, c and ù0. When you use a transfer-function

model, Genstat will check its parameter values. In particular the operator ä(B) must satisfy the

stability or stationarity condition.

The LAGS parameter is optional, and may be used to change the lags associated with the

parameters, from the default values of 1 ... p, 1 ... q. The variate of lags contains values

corresponding to the parameters ä1 ... äp, ù1 ... ùq. They have the same interpretation as the lags
in ARIMA models, and must satisfy the same conditions. Note that there is no lag associated

with ù0, because the delay b provides the necessary flexibility for this.

You can also have seasonal extensions of transfer-function models:

ä(B)Ä(Bs)�d�s
Dzt = ù(B)Ù(Bs)Bb{xt

(ë) � c}
Ä(Bs) = 1 � Ä1 Bs � ... � ÄP BPs

Ù(Bs) = 1 � Ù1 Bs � ... � ÙQ BQs

Note that there is no Ù0 coefficient, because ù0 is always present in the model and provides

sufficient flexibility.

The ORDERS parameter here contains b, p, d, q, P, D, Q and s, and the PARAMETERS parameter

contains ë, c, ä1 ... äp, ù0 ... ùq, Ä1 ... ÄP, Ù1 ... ÙQ. You can analogously extend the LAGS

parameter. You can also have extensions to multiple seasonal periods, as for ARIMA models.

Option: MODELTYPE.

Parameters: IDENTIFIER, ORDERS, PARAMETERS, LAGS.

Reference

Box, G.E.P. & Jenkins, G.M. (1970). Time Series Analysis, Forecasting and Control. Holden-

Day, San Francisco.

TSM 535

See also

Directives: FTSM, TDISPLAY, TFILTER, TFIT, TFORECAST, TKEEP, TRANSFERFUNCTION,

TSUMMARIZE, CORRELATE, FOURIER, POINTER.

Procedures: BJESTIMATE, BJFORECAST, BJIDENTIFY, MOVINGAVERAGE, PERIODTEST,

PREWHITEN, REPPERIODOGRAM, SMOOTHSPECTRUM.

Genstat Reference Manual 1 Summary sections on: Data structures, Time series.

536 Directives in Release 22

TSUMMARIZE

Displays characteristics of time series models.

Options

PRINT = string tokens What to print (autocorrelations, expansion,

impulse, piweight, psiweight); default *

GRAPH = string tokens What to display with graphs (autocorrelations,

impulse, piweight, psiweight); default *

MAXLAG = scalar Maximum lag for results; default 30

Parameters

TSM = TSMs Models to be displayed

AUTOCORRELATIONS = variates To save theoretical autocorrelations

IMPULSERESPONSE = variates To save impulse-response function

STEPFUNCTION = variates To save step function from impulse

PIWEIGHTS = variates To save pi-weights

PSIWEIGHTS = variates To save psi-weights

EXPANSION = TSMs To save expanded models

VARIANCE = scalars To save variance of each TSM

Description

The TSUMMARIZE directive helps you investigate time-series models by displaying or saving

various characteristics. These are the theoretical autocorrelation function of an ARIMA model,

and the pi-weights and psi-weights; also the impulse-response function of a transfer-function

model. TSUMMARIZE can derive the expanded form of a model, in which all seasonal terms are

combined with the non-seasonal term.

For an ARIMA model in the TSM parameter, you can set only the AUTOCORRELATIONS,

PSIWEIGHTS and PIWEIGHTS parameters. Also, you can set the IMPULSERESPONSE parameter

only for a transfer-function model. You can set the EXPAND parameter for either type of model.

The TSMs in any TSUMMARIZE statement must be completely defined; that is, you must have set

the orders and parameters, and the lags if you are using them. The only exceptions are that

Genstat takes the transformation parameter to be 1.0 if it is missing, and that the innovation

variance of an ARIMA model need not be set.

The MAXLAG option specifies the maximum lag to which Genstat is to do calculations: this

applies to autocorrelations, psi-weights, pi-weights and impulse responses. If MAXLAG is unset,

the maximum lag is defined implicitly as the length of the first variate in the parameters.

However, if the length of this variate is also undefined, the maximum lag cannot be defined and

Genstat reports a fault.

You can set the PRINT and GRAPH options independently of the parameters: these store

results, and display the various characteristics of models.

The AUTOCORRELATIONS parameter allows you to store the theoretical autocorrelation

function of an ARIMA model. Such a model uniquely defines an autocorrelation function whose

values r0 ... rm are assigned by Genstat to the variate R, where m is the maximum lag. If the model

has differencing parameters d=D=0, then the autocorrelation function is that of a series yt that

follows this model.

If either d>0 or D>0, then the theoretical autocorrelations are calculated as if d=D=0, and so

they correspond to those of the differenced yt series. This is because the autocorrelations of yt

are undefined for non-stationary models.

The PSIWEIGHTS parameter allows you to store the theoretical psi-weights ø0 ... øm of an

ARIMA model. These are used internally by Genstat when error limits are calculated for

forecasts obtained using the model. You will need them for example if you want to calculate the

TSUMMARIZE 537

variance of the total of the forecast values up to some specified maximum lead time. They are

defined for a non-seasonal model by

1 + ø1B + ø2B
2 + ... = è(B) / { ö(B)�d }

The PIWEIGHTS parameter allows you to store the theoretical pi-weights ð0 ... ðm of an

ARIMA model: these show explicitly how past values contribute to a forecast. The weights are

defined by:

1 � ð1B � ð2B
2 � ... = { ö(B)�d } / è(B)

The IMPULSERESPONSE parameter allows you to store the theoretical impulse-response

function, v0 ... vm, of a transfer-function model. This function can help you interpret the model.

The sequence is defined for a non-seasonal transfer-function model by:

í0 + í1B + í2B
2 + ... = ù(B)Bb / { ä(B)�d }

For an ARIMA model you can combine into one generalized autoregressive operator all the

differencing operators, the non-seasonal autoregressive operators, and the seasonal

autoregressive operators. The non-seasonal and seasonal moving-average operators may similarly

be combined. This expanded model can be printed using the expansion setting of PRINT and

saved using the EXPANSION parameter. It can be used to help you understand a series. But you

might also want to re-estimate the parameters in the expanded model, to test whether the

differencing operators or seasonal factors unnecessarily constrain the structure of the original

model. If you have not previously defined one of the identifiers supplied by the EXPANSION

parameter, Genstat will automatically define it to be a TSM, and its component variates will be

set up to have the length defined by the corresponding model in the TSM parameter. The

expansion does not change the transformation parameter of the model, nor the constant term, nor

the innovation variance. If the model that you have supplied contains non-zero differencing

orders, then the generalized model does not satisfy the stationarity constraint on the parameters;

neither does the constant term have the same interpretation as it had in the supplied model. The

expansion of transfer-function models exactly parallels that of ARIMA models.

Options: PRINT, GRAPH, MAXLAG.

Parameters: TSM, AUTOCORRELATIONS, IMPULSERESPONSE, STEPFUNCTION, PIWEIGHTS,

PSIWEIGHTS, EXPANSION, VARIANCE.

See also

Directives: TSM, FTSM, TDISPLAY, TFILTER, TFIT, TFORECAST, TKEEP,

TRANSFERFUNCTION, CORRELATE.

Procedures: BJESTIMATE, BJFORECAST, BJIDENTIFY.

Genstat Reference Manual 1 Summary section on: Time series.

538 Directives in Release 22

TXBREAK

Breaks up a text structure into individual words.

Option

SEPARATOR = text Defines the characters separating the words in the

original text; default ' ,;:.'

Parameters

TEXT = texts Text to break into words

WORDS = texts Saves the words contained in each text (in the order in

which they occur)

COLUMNS = variates Saves the number of the column in the TEXT where each

word began

LINES = variates Saves the number of the line where each word was found

PLACESINLINES = variates Saves the place of each word (first, second &c) within

the line where it was found

Description

The TXBREAK directive forms a text containing all the words (including duplicates) found in a

text. The original text to break up is supplied by the TEXT parameter, and the WORDS parameter

saves a text storing the words that it contains. The words are stored in the order in which they

occur in the original text (but, for example, you could use the SORT directive to sort them into

alphabetic order). The LINES parameter can save a variate recording the line in the original text

where each one was found. The COLUMNS parameter can save a variate recording the column

where each word began, and the PLACESINLINES parameter can save a variate giving the place

of each word (first, second &c) within the line where it was found.

By default, the words are assumed to be separated from one another by spaces or by any of

the standard punctuation characters (comma, semi-colon, colon, full stop). However, you can use

the SEPARATOR option to specify some other characters. For example, you could put

SEPARATOR=' ,;:.?' to allow question marks as well. These characters are all removed from

the words when they are stored.

Option: SEPARATOR.

Parameters: TEXT, WORDS, COLUMNS, LINES, PLACESINLINES.

Action with RESTRICT

TXBREAK takes account of any restrictions on the original text, and omits the words in the

restricted lines.

See also

Directives: TEXT, CONCATENATE, EDIT, TXCONSTRUCT, TXFIND, TXPOSITION,

TXREPLACE.

Procedure: TXSPLIT.

Functions: CHARACTERS, GETFIRST, GETLAST, GETPOSITION, POSITION.

Genstat Reference Manual 1 Summary section on: Calculations and manipulation.

TXCONSTRUCT 539

TXCONSTRUCT

Forms a text structure by appending or concatenating values of scalars, variates, texts, factors

pointers or formulae; allows the case of letters to be changed or values to be truncated and

reversed.

Options

TEXT = text Stores the text that is formed

CASE = string token Case to use for letters (given, lower, upper,

changed, sentence, title); default give leaves the

case of each letter as given in the original texts

METHOD = string token Whether to append or concatenate the values of the

structures (append, concatenate) default conc

SEPARATOR = string Characters to separate all except last two strings in each

line when concatenating; default '' (i.e. none)

LASTSEPARATOR = string Characters to separate last two strings in each line when

concatenating; default uses the characters defined by
SEPARATOR

PREFIX = string Characters to put at the start of each line when

concatenating; default '' (i.e. none)

END = string Characters to put at the end of each line when

concatenating; default '' (i.e. none)

SIGNIFICANTFIGURES = scalar Specifies the number of significant figures to include for

numerical data; default 4

Parameters

STRUCTURE = scalars, variates, factors, texts, pointers or formulae

Structures whose values are to be appended or

concatenated

WIDTH = scalars or variates Number of characters to take from the strings formed

from the units of each STRUCTURE, a negative value

takes all the (unskipped) characters other than trailing

spaces; if omitted or set to a missing value, all the

(unskipped) characters are taken

DECIMALS = scalars or variates Number of decimal places to use for numerical

structures; if omitted or set to a missing value, a default

is used which aims to print the value to the precision

defined by the SIGNIFICANTFIGURES option

SKIP = scalars or variates Number of characters to skip at the left-hand side of the

strings formed from the units of each STRUCTURE, a

negative value skips all initial spaces; if omitted or set to

a missing value, no characters are skipped

FREPRESENTATION = string tokens How to represent factor values (labels, levels,

ordinals); default is to use labels if available,

otherwise levels

DREPRESENTATION = scalars or texts

Format to use for dates and times (stored in numerical

structures)

REVERSE = string tokens Whether to reverse the strings of characters formed from

the units of each structure (yes, no); default no

MISSING = texts String to use to represent missing values of numerical

structures; default '*'

540 Directives in Release 22

Description

The TXCONSTRUCT directive forms a text from the values of scalars, variates, texts, factors or

pointers. The new text is saved using the TEXT option, and the structures from which it is to be

formed are listed using the STRUCTURE parameter.

By default the values of the structures are concatenated alongside each other (as with the

CONCATENATE directive); alternatively you can set option METHOD=append to append them

below each other. When you are concatenating, the structures in the STRUCTURE list must

generally contain the same number of values (and this then defines the number of lines in the

new text). The exception is that the STRUCTURE list can include scalars or texts containing a

single string if you want to put the same numbers or strings into every line of the new text.

Numerical values (from scalars, variates or factors) are converted into strings of characters

before they are used. As in the PRINT directive, you can use the DREPRESENTATION parameter

to indicate whether these are to be treated as dates. Alternatively, if they are to remain as

numbers, the DECIMALS parameter specifies the number of decimal places to use. DECIMALS can

be set to a scalar if all the values of the structure are to be printed with the same number of

decimals, or to a variate if you want to represent different units of a variate or factor structure

with different numbers of decimals. The SIGNIFICANTFIGURES option specifies the number

of significant figures to aim for if DECIMALS is not set, or if it contains missing values (default

4). A numerical value will then be converted as though it had been printed with the number of

decimals required to give SIGNIFICANTFIGURES significant figures, and any trailing zero

decimal values had then been removed. Missing numerical values are represented by the asterisk

character (*) by default, in the usual way, but you can specify another string of characters using

the MISSING parameter.

 A formula is converted to a text before being concatenated. The maximum width is defined

as 200. So this will be a text with one line, unless the result is more than 200 characters wide.

The SKIP parameter allows you to skip characters at the start of the s trings provided by each

structure. You can supply a scalar to skip the same number of characters in every string, or a

variate if you want to make different skips in every string. Similarly the WIDTH parameter

specifies how many characters are to be taken, after omitting any initial characters as specified

by SKIP. The strings formed from scalars, variates, factors and pointers do not contain any initial

or trailing spaces. You can set a negative skip to ignore all the initial spaces in a string taken

from a text structure, and set a negative width to ignore all its trailing spaces. The REVERSE

parameter allows you to reverse the strings from any of the structures.

The CASE option enables you to change the case of letters in the strings. The available settings

are:

given to leave the case of each letter exactly as given in the

string;

upper to change all letters to upper case (or capitals);

lower to change all letters to lower case;

changed to put lower-case letters into upper case, and upper-case

letters into lower case;

sentence to put the first character in the text (if a letter) into upper

case, then to use upper case only at the start of each new

sentence;

title to begin each new word with a capital letter, but otherwise

to use lower case.

When METHOD=concatenate you can use the SEPARATOR, LASTSEPARATOR, PREFIX and

END options to insert characters automatically between the adjacent pairs of strings in each line.

LASTSEPARATOR supplies a string of characters to insert between the last pair of strings,

SEPARATOR supplies characters to insert between all the other pairs of strings, PREFIX supplies

TXCONSTRUCT 541

characters to put at the start of each line, and END supplies characters to put at the end of each

line. The defaults for SEPARATOR, PREFIX and END are the empty string '', while

LASTSEPARATOR uses the characters defined by SEPARATOR as its default. So by default no

characters are inserted.

Options: TEXT, CASE, METHOD, SEPARATOR, LASTSEPARATOR, PREFIX, END,

SIGNIFICANTFIGURES.

Parameters: STRUCTURE, WIDTH, DECIMALS, SKIP, FREPRESENTATION, DREPRESENTATION,

REVERSE, MISSING.

Action with RESTRICT

TXCONSTRUCT takes account of restrictions on any of the vectors that occur in the statement. If

more than one vector is restricted, then each such restriction must be the same. The values of the

units in the new text that are excluded by the restriction are left unchanged.

See also

Directives: TEXT, CONCATENATE, EDIT, EQUATE, TXBREAK, TXFIND, TXPOSITION,

TXREPLACE.

Procedures: APPEND, FVSTRING, SUBSET, STACK, TXPROGRESSION, UNSTACK.

Functions: CHARACTERS, GETFIRST, GETLAST, GETPOSITION, POSITION.

Genstat Reference Manual 1 Summary section on: Calculations and manipulation.

542 Directives in Release 22

TXFIND

Finds a subtext within a text structure.

Options

CASE = string token Whether to treat the case of letters (small or capital) as

significant when searching for the SUBTEXT within the

TEXT (significant, ignored); default sign

REVERSE = string token Whether to reverse the search to work from the end of

the TEXT (yes, no); default no

MULTISPACES = string token Whether to treat differences between multiple spaces

and single spaces as significant, or to treat them all like a

single space (significant, ignored); default sign

DISTINCT = string tokens Whether to require the SUBTEXT to have one or more

separators to its left or right within the TEXT (left,

right); default *

SEPARATOR = string Characters to use as separators; default ' ,;:.'

SAMELINE = string token Whether to ignore matches in the TEXT where the

SUBTEXT is not all on the same line (yes, no); default
no

Parameters

TEXT = texts Texts to be searched

SUBTEXT = texts Text to look for in each TEXT

COLUMN = scalars Position of the column within TEXT where the first

character of SUBTEXT has been found

LINE = scalars Number of the line within TEXT where the first character

of SUBTEXT has been found

ICOLUMN = scalars Column within TEXT at which to start the search

ILINE = scalars Line within TEXT at which to start the search

ENDCOLUMN = scalars Position of the column within TEXT where the last

character of SUBTEXT has been found

ENDLINE = scalars Number of the line within TEXT where the last character

of SUBTEXT has been found

Description

The TXFIND directive looks for a Genstat text structure within another text structure. The text

to search is specified by the TEXT parameter, and the SUBTEXT parameter specifies the text to

be found. The search treats the two texts as if they were paragraphs of characters: that is, it takes

no account of the line breaks within the two text structures, replacing each one with a space. The

COLUMN parameter saves the column within the TEXT where the first character of the SUBTEXT

is found, and the LINE parameter saves its line within the TEXT. These are both set to zero if

SUBTEXT is not found. Similarly the ENDCOLUMN and ENDLINE parameters save the position of

the last character of the SUBTEXT. You can use the ICOLUMN and ILINE parameters to specify

a starting column and line for the search. So you can search for the next occurrence of SUBTEXT

by setting ILINE to the saved value of LINE, and ICOLUMN to the saved value of COLUMN plus

one.

TXFIND usually takes account of the case of letters (small or capital) when looking for the

SUBTEXT within the TEXT. So for example 'Genstat' would not match with 'Genstat'.

However, you can set option CASE=ignored to ignore differences in case. It will usually also

treat multiple spaces as significant, but you can set option MULTISPACE=ignored to treat them

all like a single space.

TXFIND 543

Option DISTINCT is useful if you are looking for distinct words or phrases. The left setting

requires the SUBTEXT to begin either at the start of the TEXT, or to be preceded in the TEXT by

a separator (such as a space or comma). Similarly, the right setting requires the SUBTEXT to

end within the TEXT with a separator (or to be at the end of the TEXT). The separators are

specified by the SEPARATOR option.

By default, the SUBTEXT can be split over several lines of the TEXT, but you can set option

SAMELINE=yes to ensure that it will be recognised only if it is all on a single line.

Options: CASE, REVERSE, MULTISPACES, DISTINCT, SEPARATOR, SAMELINE.

Parameters: TEXT, SUBTEXT, COLUMN, LINE, ICOLUMN, ILINE, ENDCOLUMN, ENDLINE.

Action with RESTRICT

Any restrictions are ignored.

See also

Directives: TEXT, CONCATENATE, EDIT, GETLOCATIONS, TXBREAK, TXCONSTRUCT,

TXPOSITION, TXREPLACE.

Functions: CHARACTERS, GETFIRST, GETLAST, GETPOSITION, POSITION.

Genstat Reference Manual 1 Summary section on: Calculations and manipulation.

544 Directives in Release 22

TXINTEGERCODES

Converts textual characters to and from their corresponding integer codes.

Options

CONVERTTO = string token Whether to convert from text characters to integer codes

or integer codes to text characters (codes, text) ;

default code

REPRESENT = string token How to treat code values 128-255 (extendedascii,

utf8); default exte if CODES defines no characters that

can be represented only in UTF-8, otherwise utf8

Parameters

TEXT = texts Text structures (each with a single line only)

CODES = variates or scalars Integer codes corresponding to the characters in each

text

Description

Textual characters all have corresponding integer code values (see http://unicode.org/charts/).

For example, the characters in the basic ASCII character set have codes running from 0 to 127.

The letters a-z have codes 97-122, the capital letters have codes 65-90, and the digits 0-9 have

codes 48-57. These characters can all be represented by a single "byte" of computer storage,

consisting of eight "bits" each able to store either one or zero. Genstat stores other characters,

such as those in the Chinese, Korean or Thai languages, in the UTF-8 format which uses up to

four bytes per character.

By default, TXINTEGERCODES takes as input a text supplied by the TEXT parameter, which

must contain only one line. The codes corresponding to the characters in the line are saved in a

variate, supplied by the CODES parameter. Alternatively, if you set option CONVERTTO = text,

the codes are taken as input, and TEXT saves the corresponding line of characters. Missing or

zero codes are ignored, and invalid codes (for example, negative numbers) are faulted.

Codes 128-255 can be represented either by characters in the extended ASCII character set,

or by 2-byte UTF-8 characters. These represent the same actual characters, but you may find one

representation more convenient than the other, depending on how you want to use any output

involving the text in future. If you have a preference, you can control this by setting the

REPRESENT option. Otherwise, TXINTEGERCODES uses extended ASCII characters, unless the

variate contains codes that can be represented only in UTF-8.

Options: CONVERTTO, REPRESENT.

Parameters: TEXT, CODES.

Action with RESTRICT

TXINTEGERCODES ignores any restrictions on the parameters.

See also

Directive: TEXT.

Genstat Reference Manual 1 Summary section on: Calculations and manipulation.

TXPOSITION 545

TXPOSITION

Locates strings within the lines of a text structure.

Options

CASE = string token Whether to treat the case of letters as significant when

searching for lines of the SUBTEXT within the TEXT

(significant, ignored); default sign

REVERSE = string token Whether to reverse the search to work from the end of

the lines of the TEXT (yes, no); default no

MULTISPACES = string token Whether to treat differences between multiple spaces

and single spaces as significant, or to treat them all like a

single space (significant, ignored); default sign

DISTINCT = string tokens Whether to require the SUBTEXT to have one or more

separators to its left or right within the TEXT (left,

right); default *

SEPARATOR = text Characters to use as separators; default ' ,;:.'

Parameters

TEXT = texts Texts whose strings are to be searched

SUBTEXT = texts Specifies a string or strings to find in each TEXT

POSITION = variates Position of the SUBTEXT strings within the TEXT

WIDTH = scalars or variates Right-most character(s) to search in the lines of each

TEXT; default * searches up to the end of each line

SKIP = scalars or variates Number of characters to skip at the left-hand side of the

lines of each TEXT; default 0

Description

The TXPOSITION directive allows you to search for strings of characters within the lines of a

Genstat text structure. The text to search is specified by the TEXT parameter, and the SUBTEXT

parameter specifies the strings that are to be found. You can set SUBTEXT to a single string (or

to a text with just one line), if you want to search for the same string of characters within every

line of the TEXT. You can set SUBTEXT to a text with as many lines as TEXT, if you want to

search for different characters in each line of the TEXT. Finally, you can set TEXT to a single

string, and SUBTEXT to a text with several lines, if you want to search the same string to see

which of several strings might occur there. The POSITION parameter can save a variate storing

the position of the first character of the SUBTEXT string(s) in each of the TEXT lines, or zero if

the string has not been found.

TXPOSITION usually takes account of the case of letters (small or capital) in the strings when

comparing SUBTEXT with TEXT. So for example 'GenStat' would not match with 'Genstat'.

However, you can set option CASE=ignored to ignore differences in case. It will usually also

treat multiple spaces as significant, but you can set option MULTISPACE=ignored to treat them

all like a single space. By default, the search is from left to right (i.e. from the start to the end

of each line of TEXT), but you can set option REVERSE=yes to search from right to left.

The SKIP parameter allows you to skip characters at the start of the lines of TEXT. You can

supply a scalar to skip the same number of characters in every line, or a variate if you want to

make different skips in each line. (So, once you have found a SUBTEXT string, you can set SKIP

to its position and check whether it occurs again.) Similarly the WIDTH parameter specifies the

right-most character(s) of the TEXT lines to search.

Option DISTINCT is useful if you are looking for distinct words or phrases. The left setting

requires each SUBTEXT string to begin either at the start of the relevant line of TEXT, or to be

preceded in that line by a separator (such as a space or comma). Similarly, the right setting

546 Directives in Release 22

requires the SUBTEXT to end within the line of TEXT with a separator (or to be at the end of the

line). The separators are specified by the SEPARATOR option.

Options: CASE, REVERSE, MULTISPACES, DISTINCT, SEPARATOR.

Parameters: TEXT, SUBTEXT, POSITION, WIDTH, SKIP.

Action with RESTRICT

TXPOSITION takes account of restrictions on any of the TEXT or SUBTEXT texts, and will search

only the lines that are not excluded by the restriction. The values of the POSITION variate in the

restricted units are left unchanged.

See also

Directives: TEXT, CONCATENATE, EDIT, GETLOCATIONS, TXBREAK, TXCONSTRUCT,

TXFIND, TXREPLACE.

Functions: CHARACTERS, GETFIRST, GETLAST, GETPOSITION, POSITION.

Genstat Reference Manual 1 Summary section on: Calculations and manipulation.

TXREPLACE 547

TXREPLACE

Replaces a subtext within a text structure.

Options

NTIMES = scalar Number of times to search for the OLDSUBTEXT and

replace it; default 1

CASE = string token Whether to treat the case of letters (small or capital) as

significant when searching for the OLDSUBTEXT within

the OLDTEXT (significant, ignored); default sign

MULTISPACES = string token Whether to treat differences between multiple spaces

and single spaces as significant when locating the

OLDSUBTEXT within the OLDTEXT, or to treat them all

like a single space (significant, ignored); default
sign

DISTINCT = string tokens Whether to require the OLDSUBTEXT to have one or

more separators to its left or right within the OLDTEXT

(left, right); default *

SEPARATOR = string Characters to use as separators; default ' ,;:.'

SAMELINE = string token Whether to ignore matches in the OLDTEXT where the

OLDSUBTEXT is not all on the same line (yes, no);

default no

Parameters

OLDTEXT = texts Texts to be edited

NEWTEXT = texts Texts with OLDSUBTEXT replaced by NEWSUBTEXT; if no

NEWTEXT is supplied, the new values replace those in the

corresponding OLDTEXT

OLDSUBTEXT = texts Text to look for in each OLDTEXT

NEWSUBTEXT = texts Text to replace OLDSUBTEXT

COLUMN = scalars Position of the column within OLDTEXT where the first

character of NEWSUBTEXT has been placed

LINE = scalars Number of the line within OLDTEXT where the first

character of NEWSUBTEXT has been placed

ICOLUMN = scalars Column within OLDTEXT at which to start the search

ILINE = scalars Line within OLDTEXT at which to start the search

ENDCOLUMN = scalars Position of the column within OLDTEXT where the last

character of NEWSUBTEXT has been placed

ENDLINE = scalars Number of the line within OLDTEXT where the last

character of NEWSUBTEXT has been placed

NREPLACED = scalars Number of subtexts replaced

Description

The TXREPLACE directive replaces a subtext within a Genstat text structure. The text containing

the subtext is specified by the OLDTEXT parameter. The OLDSUBTEXT parameter specifies the

subtext to be replaced, and the NEWSUBTEXT parameter specifies the subtext to replace it. By

default a single occurrence of the subtext is replaced, but you can use the NTIMES option to

replace several. It you set NTIMES to a negative value, all occurrences are replaced. The

NREPLACED parameter can save the number of replacements that were actually made (which may

be less than NTIMES if fewer were found in the OLDTEXT). The new text (after the replacements)

can be saved using the NEWTEXT parameter; if this is not set, the values of the OLDTEXT are

replaced by the new text.

548 Directives in Release 22

By default, the search treats the OLDTEXT and OLDSUBTEXT as if they were paragraphs of

characters: that is, it takes no account of the line breaks within the two text structures, regarding

each one as equivalent to a space. However, you can set option SAMELINE=yes to treat line

breaks differently from spaces. Matches are then recognised only if they are all on a single line.

TXREPLACE usually takes account of the case of letters (small or capital) when looking for the

OLDSUBTEXT within the OLDTEXT. So for example 'GenStat' would not match with

'Genstat'. However, you can set option CASE=ignored to ignore differences in case. It will

usually also treat multiple spaces as significant, but you can set option MULTISPACE=ignored

to treat them all like a single space.

Option DISTINCT is useful if you are looking for distinct words or phrases. The left setting

requires the OLDSUBTEXT to begin either at the start of the OLDTEXT, or to be preceded in the

OLDTEXT by a separator (such as a space or comma). Similarly, the right setting requires the

OLDSUBTEXT to end within the OLDTEXT with a separator (or to be at the end of the OLDTEXT).

The separators are specified by the SEPARATOR option.

The ICOLUMN and ILINE parameters can specify a starting column and line for the search. So

you can leave an initial section of the OLDTEXT unchanged.

You can use the COLUMN parameter to save the column within the OLDTEXT where the first

character of the NEWSUBTEXT has been inserted, and the LINE parameter to save its line within

the OLDTEXT. These are both set to zero if the OLDSUBTEXT was not found. If NTIMES is greater

than one, they save the location of the final replacement. Similarly the ENDCOLUMN and ENDLINE

parameters can save the position of the last character of the NEWSUBTEXT within the OLDTEXT.

Options: NTIMES, CASE, MULTISPACES, DISTINCT, SEPARATOR, SAMELINE.

Parameters: OLDTEXT, NEWTEXT, OLDSUBTEXT, NEWSUBTEXT, COLUMN, LINE, ICOLUMN,

ILINE, ENDCOLUMN, ENDLINE, NREPLACED.

Action with RESTRICT

Any restrictions are ignored.

See also

Directives: TEXT, CONCATENATE, EDIT, EQUATE, TXBREAK, TXCONSTRUCT, TXFIND,

TXPOSITION.

Functions: CHARACTERS, GETFIRST, GETLAST, GETPOSITION, POSITION.

Genstat Reference Manual 1 Summary section on: Calculations and manipulation.

TX2VARIATE 549

TX2VARIATE

Converts text structures to variates.

Options

PRINT = string token Controls printed output (conversions) ; default * (i.e.

none)

NONNUMERIC = string token How to treat non-numeric values (bestmatch,

missing) default miss

YEAR = scalar Year to use when calculating the day within year for the

date formats that specify only months and days; default

is to assume that this is any year that is not a leap year

REDEFINE = string token Whether to allow a structure in the VARIATE list that has

already been declared (e.g. as a text) to be redefined

(yes, no); default no

Parameters

TEXT = texts Text structures to convert

VARIATE = variates Variate for each text, containing the numbers in each of

its lines

DREPRESENTATION = scalars Format to use for dates and times (stored in numerical

structures)

MISSING = texts Strings used to represent missing values in each text;

default '*'

STATUS = variates Code to indicate whether the number in each unit was

read successfully (1), or with conversions (2), or

unsuccessfully (0)

Description

The TX2VARIATE directive converts texts to vaiates. The texts are specified by the TEXT

parameter, and are assumed to contain a single number in each of their strings. The variates are

specified by the VARIATE parameter.

The DREPRESENTATION parameter specifies the format that has been used for texts that

contain dates. For details, see the PRINT directive. With the formats that specify only months

and days, TX2VARIATE gives the number of the day within the year. However, it needs to know

whether or not the year is a leap year. You can use the YEAR option to supply the year. If this is

not set, TX2VARIATE assumes that it is not a leap year.

The MISSING parameter specifies a text for each text and variate, containing the string or

strings that should be treated as missing values in the conversion; by default this is the string

containing a single asterisk. Blank and null lines are always treated as missing.

By default, any non-numeric strings generate a missing value in the variate. However, you can

set option NONNUMERIC=bestmatch to ignore commas, and to allow for the common typing

errors that the letters i or l may have been typed instead of i, or that the letters o or O may have

been typed instead of 0. You can set option PRINT=conversions to print a list of the values

that have been converted. Also, the STATUS parameter can save a variate with a code for each

number to show whether it was read successfully with no conversions (1), or only with

conversions (2), or whether it could not be read successfully (0).

If you set option REDEFINE=yes, any data structure specified by the VARIATE parameter that

is not a variate will be redefined (to be a variate). Also, VARIATE then takes the setting of the

TEXT parameter as its default, i.e. it will redefine that text to be a variate.

Options: PRINT, NONNUMERIC, YEAR, REDEFINE.

550 Directives in Release 22

Parameters: TEXT, VARIATE, MISSING, STATUS.

Action with RESTRICT

TX2VARIATE takes account of restrictions on each TEXT or VARIATE. The values of the

VARIATE in the units excluded by the restriction are left unchanged.

See also

Directives: TEXT, READ.

Genstat Reference Manual 1 Summary section on: Calculations and manipulation.

UNITS 551

UNITS

Defines an auxiliary vector of labels and/or the length of any vector whose length is not

defined when a statement needing it is executed.

Option

NVALUES = scalar Default length for vectors

Parameter

variate or text Vector of labels

Description

The UNITS directive can be used to define a default length which will then be used, if necessary,

for any new vectors encountered later in the job. For example, in the statements

UNITS [NVALUES=20]
TEXT Subject
VARIATE [VALUES=0,1,2,4,8] Dlev
FACTOR [LEVELS=Dlev] Drug
VARIATE Age,Response; DECIMALS=0,2

the text Subject, the factor Drug, and the variates Age and Response are all defined to be of

length 20. However, the length of the variate Dlev does not need to be set by default, but is

deduced to be five from the number of values that have been specified by the VALUES option.

The READ directive will use UNITS if values are to be read into a previously undeclared

vector, as will the RESTRICT directive if you use it to restrict a structure that has not yet been

declared. The UNITS setting is also used by the CALCULATE directive with the EXPAND and

URAND functions if their secondary argument is not specified.

The parameter of the UNITS directive allows you to specify the units structure, which is a

variate or a text whose values will then be used as labels for output from regression or time-

series directives, provided the vectors in the analysis have the same length as the units structure

and provided also that these vectors do not have labels associated with them already.

The length of the units structure must match the value set by the NVALUES option if both are

set. However, either one can be used to define the other. Thus, either

TEXT [VALUES=Sun,Mon,Tue,Wed,Thur,Fri,Sat] Day
UNITS Day

or

TEXT Day
UNITS [NVALUES=7] Day

would specify the default length for vectors to be seven. In the second example this default

would be applied to Day too but, of course, its (seven) values would need to be read or defined

in some other way before it could be used for labelling. If the type of the units structure has not

been declared, UNITS will define it as a variate.

You can cancel the effect of a UNITS statement by

UNITS [NVALUES=*]

This means that statements that require a units structure will fail, which is the situation at the

start of each job in a program. Similarly, the statement

UNITS *

cancels any reference to a units structure, but retains the default length if that has already been

defined.

Option: NVALUES.

Parameter: unnamed.

552 Directives in Release 22

See also

Directives: FACTOR, TEXT, VARIATE.

Genstat Reference Manual 1 Summary section on: Data structures.

VARIATE 553

VARIATE

Declares one or more variate data structures.

Options

NVALUES = scalar or vector Number of units, or vector of labels; default * takes the

setting from the preceding UNITS statement, if any

VALUES = numbers Values for all the variates; default *

MODIFY = string token Whether to modify (instead of redefining) existing

structures (yes, no); default no

IPRINT = string tokens Information to be used by default to identify the variates

in output (identifier, extra); if this is not set, they

will be identified in the standard way for each type of

output

Parameters

IDENTIFIER = identifiers Identifiers of the variates

VALUES = identifiers Values for each variate

DECIMALS = scalars Number of decimal places for output

EXTRA = texts Extra text associated with each identifier

MINIMUM = scalars Minimum value for the contents of each structure

MAXIMUM = scalars Maximum value for the contents of each structure

DREPRESENTATION = scalars or texts

Default format to use when the contents represent dates

and times

Description

The variate is probably the structure that you will use most often in Genstat. You can think of

this as being just a list of numbers � a vector, in mathematical language. Variates occur for

example as the response and explanatory variables in regression, as covariates and y-variables

in analysis of variance, and can be used to form the matrices of correlations, similarities or sums

of squares and products required for multivariate analyses.

The IDENTIFIER parameter lists the variates that are to be declared. Values can be assigned

by either the VALUES option or the VALUES parameter. The option defines a common value for

all the variates in the declaration, while the parameter allows them each to be given a different

value. If both the option and the parameter are specified, the parameter takes precedence.

The NVALUES option allows the number of values in the variates to be defined. If this is not

set, the lengths of the variates are defined from the numbers that are supplied by the VALUES

option or parameter. If these too are unset, Genstat takes the length specified by the preceding

UNITS statement, if any.

The DECIMALS parameter allows you to define a number of decimal places to be used by

default when each variate is printed. You can associate a text of extra annotation with each

variate using the EXTRA parameter. The MINIMUM and MAXIMUM parameters allow you to define

lower and upper limits on the values in each variate. Genstat then prints warnings if any values

outside that range are allocated to the variate. The DREPRESENTATION parameter allows a scalar

or a single-valued text to be specified for each variate to indicate that the variate stores dates and

times, and to define a format to be used for these, by default, when they are printed; details are

given in the description of the PRINT directive.

If the MODIFY option is set to yes any existing attributes and values of the variates are

retained (if still appropriate); otherwise these are lost. The IPRINT option can be set to specify

how the variates will be identified in output. If IPRINT is not set, they will be identified in

whatever way is usual for the section of output concerned. For example, the PRINT directive

554 Directives in Release 22

generally uses their identifiers (although this can be changed using the IPRINT option of PRINT

itself), while the ANOVA directive will print the identifier and the extra text for each y-variate.

Options: NVALUES, VALUES, MODIFY, IPRINT.

Parameters: IDENTIFIER, VALUES, DECIMALS, EXTRA, MINIMUM, MAXIMUM,

DREPRESENTATION.

See also

Directives: FACTOR, TEXT, UNITS.

Procedure: TX2VARIATE.

Genstat Reference Manual 1 Summary section on: Data structures.

VCOMPONENTS 555

VCOMPONENTS

Defines the variance-components model for REML.

Options

FIXED = formula Fixed model terms; default *

ABSORB = factor Defines the absorbing factor (appropriate only when

REML option METHOD=Fisher); default * i.e. none

CONSTANT = string token How to treat the constant term (estimate, omit);

default esti

FACTORIAL = scalar Limit on the number of factors or covariates in each

fixed term; default 3

CADJUST = string token What adjustment to make to covariates before analysis

(mean, none); default mean

RELATIONSHIP = matrix Defines relationships constraining the values of the

components; default *

SPLINE = formula Defines random cubic spline terms to be generated: each

term must contain only one variate, if there is more than

one factor in a term, separate splines are calculated for

each combination of levels of the factors

EXPERIMENTS = factor Factor defining the different experiments in a multi-

experiment (meta-) analysis

Parameters

RANDOM = formula Random model terms and the residual variance

INITIAL = scalars Initial values for each component

CONSTRAINTS = string tokens How to constrain each variance component and the

residual variance (none, positive, fixrelative,

fixabsolute); default none

Description

The VCOMPONENTS directive specifies the linear mixed model to be fitted by subsequent REML

statements. There are usually two parts of the mixed model to be defined, namely the fixed and

random model terms. In addition, it is possible to specify terms to generate cubic splines.

Random effects are used to describe the effects of factors where the values present in the

experiment can be considered as a random selection of values from some large homogeneous

population. Inference about this population can then be made, for example estimation of its

variance. Predictions of random effects may also be of interest. Fixed effects are used to describe

treatments imposed in an experiment where the effect of those specific choices of treatment are

of interest. Cubic spline terms can be included to investigate smooth non-linear departures from

the model specified.

For example, consider a split-plot experiment used to assess the effects on yield of three oat

varieties with four levels of nitrogen application. Here specific levels of nitrogen application

have been used and the aim is to estimate the effects of these levels; so they would be considered

as fixed effects in the model, as would the three oat varieties. However, the effects of the actual

blocks and plots in the experiment are not of interest in themselves, but they do provide a means

of estimating the variability of the more general population of blocks and plots in order to get

an estimate of background variation against which to compare the fixed effects. Blocks and plots

would therefore be defined as random effects. In this case, the fixed effects correspond to the

effects used as treatments in ANOVA and the random effects would correspond to the blocking

factors in ANOVA.

In general, both the fixed and random parts of the model are constructed from several factors

556 Directives in Release 22

or variates. The structure of both parts is specified using model formulae and can contain both

factors and variates with the usual adding, crossing or nesting operators.

The fixed terms in the model are defined by a model formula supplied using the FIXED option,

and the random model terms are defined by a model formula supplied by the RANDOM parameter.

Thus, for example, the model for the split-plot experiment described above would be specified

by

VCOMPONENTS [FIXED=Nitrogen*Variety] \
 RANDOM=Block/Wplot/Subplot

where Nitrogen and Variety are factors indicating the treatments applied to each unit, and

Block, Wplot and Subplot are factors indicating the block, wholeplot (within block) and

subplot (within wholeplot) to which each unit belongs.

The default fixed model consists of just the constant term, which then becomes the grand

mean. The constant term can be omitted by setting option CONSTANT=omit, provided a fixed

model has been specified. If the random model is unset, only a single source of variation (the

residual component called *units*) is used.

When covariates are included in the fixed or random models, by default they are automatically

centred before analysis. However, you can set option CADJUST=none to specify that the

uncentred covariates are to be used instead.

The FACTORIAL option is used to set a limit on the number of factors and variates allowed in

each fixed term; any term containing more than that number is deleted from the model.

The SPLINE option can be used to generate cubic spline terms to be fitted as part of the

random model. The smoothing parameter is estimated by REML and the fitted spline is

interpreted as a BLUP (best linear unbiased predictor). If a term consists of a single variate, for

example SPLINE=X, a cubic spline will be generated using all distinct covariate values present

as knots, with weighting for replicate points. If factors are included, for example SPLINE=N.V.X

where N and V are factors, separate cubic splines will be generated for each level of the combined

factor N.V. The knot points for the splines will be generated as the set of distinct values in X, and

the same knot points will be used at each level of N.V.

The EXPERIMENTS option is used when a combined (or meta-) analysis is being defined over

several experiments. The setting is a factor identifying the experiment to which each unit

belonged. When this option has been set, a different residual term will be set up for each level

of the EXPERIMENTS factor. In the simplest case, this means that a different residual variance

will be used for each experiment. For more complex cases, different correlated error models can

be applied to separate experiments using the VRESIDUAL directive. In either case, the factors and

variates for the separate experiments should be concatenated into structures which run over all

the experiments. For example, consider an experiment set up at two sites to compare a set of 24

varieties in four replicates. In one site the experiment was laid out as a grid of eight rows by 12

columns, in the other a grid of 16 rows by six columns was used. In these circumstances, a single

set of factors (of length 192) can be used to specify the design, using factors to describe variety,

rows and columns, plus a factor expt defining the allocation of units to experiments. Note that

the factor row will have 16 levels and col will have 12 levels. The restriction of site 1 to 8 rows

and site 2 to 6 columns is specified using the VRESIDUAL directive. Where some factors differ

between experiments, these should be defined on the units relevant to the appropriate

experiment(s) and missing elsewhere.

For random terms, initial values for the ratio of variance components to the error variance (the

gamma ratios) are supplied using the INITIAL parameter, and you can impose general

constraints on the variance components using the CONSTRAINTS parameter, or equality

constraints between components using the RELATIONSHIP option. By default, all the gamma

ratios have initial values of one. The CONSTRAINTS parameter can request that any variance

component should be held positive or fixed at its initial value. The default setting, none, allows

the variance components to become negative, provided the overall estimated variance-covariance

VCOMPONENTS 557

matrix for the data remains positive definite. The RELATIONSHIP option can be used to define

linear relationships between the variance components, for example that component A should be

constrained to be twice component B.

Covariance models for random terms, including unknown parameters to be estimated, can be

specified using the VSTRUCTURE directive.

The ABSORB option allows you to specify a factor from either the fixed or the random model

to act as an absorbing factor for the model. Note that the absorbing factor is ignored for the AI

algorithm with sparse matrix methods: that is, this option is relevant only when the METHOD

option of REML is set to Fisher. The absorbing factor is used to divide the model terms into two

groups; this partition is then used in calculations during the fitting process to reduce the size of

the matrices that have to be inverted and stored. Use of an absorbing factor can therefore save

computing time and data space. However, although exactly the same model is fitted when an

absorbing factor is used, some of the standard errors are unavailable. A good choice of absorbing

factor might be a factor with a large number of levels, or any factor whose effects and standard

errors are not of interest.

Options: FIXED, ABSORB, CONSTANT, FACTORIAL, CADJUST, RELATIONSHIP, SPLINE,

EXPERIMENTS.

Parameters: RANDOM, INITIAL, CONSTRAINTS.

Action with RESTRICT

You can restrict the set of units to be included in the analysis by restricting any of the factors or

variates in the fixed and random models defined by VCOMPONENTS, or by restricting any of the

y-variates in the subsequent REML statement. However, if more than one of these vectors is

restricted, all must be restricted to the same set of units.

See also

Directives: REML, VSTRUCTURE, VRESIDUAL, VPEDIGREE, VSTATUS.

Procedures: FCONTRASTS, FDIALLEL, VFMODEL, VRACCUMULATE, VRMETAMODEL.

Genstat Reference Manual 1 Summary section on: REML analysis of linear mixed models.

558 Directives in Release 22

VCYCLE

Controls the operation of the REML algorithm.

Options

CONVERGENCE = string token Type of criterion for assessing convergence (deviance,

parameter); default * uses the deviance with the

average-information algorithm, and the variance

parameter values for the Fisher scoring algorithm

CRITERIONVALUE = scalar Sets the convergence criterion value; default * i.e.

determined automatically

STEPLENGTH = scalar Sets the default relative step size for the average-

information algorithm; default * i.e. determined

automatically

NDENSE = scalar Number of equations to use as dense in the average-

information algorithm; default * uses all fixed model

terms as dense

EQORDER = string token Method to use to reorder the mixed model equations for

fitting (none, a, b); default b

No parameters

Description

VCYCLE allows you to modify various aspects of the REML algorithm. The CONVERGENCE option

specifies the type of criterion to use to assess convergence. There are two possibilities, each of

which is used as the default for one of the fitting algorithms. For the average-information

algorithm the default is to check for convergence in deviance, whereas the Fisher method checks

the variance parameter values. The criterion value can be specified by the CRITERIONVALUE

option. The defaults differ according to the type of criterion. For assessing changes in variance

parameter values a multiplier of 0.005 is used. So, for convergence, the change in every variance

parameter s must be less than 0.005 × s. When assessing change in deviance, convergence occurs

when the absolute change in the deviance is less than 0.0001.

The STEPLENGTH option allows you to change the default step size for the average-

information algorithm. Valid values are between zero and one, and the value is the proportion

of the average-information step taken. The default is to start with small steps and work up to full

steps.

The NDENSE option allows you to manipulate the number of equations used as dense in the

average-information algorithm. The default includes all the fixed model terms. This option is

likely to be used only by advanced users. If NDENSE is set, the value may be modified by the

algorithm so that model terms are not split between the dense and sparse sections. Note that

Wald tests (dropping terms) are not available for terms in the sparse section.

The EQORDER option controls the order in which the mixed model equations are solved, with

settings:

none processes the equations in the order in which they are

specified in the model;

a method A; and

b method B (default).

This option needs to be set only rarely as method B, which corresponds to the ASReml option

setting !EQORDER 3 (introduced to become the default in ASReml Release 2), is generally the

best. Method A corresponds to the ASReml option setting !EQORDER 1 (which was the default

in ASReml Release 1). For further details, see ASReml User Guide Release 2.

VCYCLE 559

Options: CONVERGENCE, CRITERIONVALUE, STEPLENGTH, NDENSE, EQORDER.

Parameters: none.

See also

Directive: REML.

Genstat Reference Manual 1 Summary section on: REML analysis of linear mixed models.

560 Directives in Release 22

VDISPLAY

Displays further output from a REML analysis.

Options

PRINT = string tokens What output to present (model, components,
effects, means, stratumvariances,
monitoring, vcovariance, deviance,

Waldtests, missingvalues, covariancemodels);

default mode, comp, Wald, cova

CHANNEL = identifier Channel number of file, or identifier of a text to store

output; default current output file

PTERMS = formula Terms (fixed or random) for which effects or means are

to be printed; default * implies all the fixed terms

PSE = string token Standard errors to be printed with tables of effects and

means (differences, estimates, alldifferences,

allestimates, none); default diff

CFORMAT = string token Whether printed output for covariance models gives the

variance matrices or the parameters

(variancematrices, parameters); default vari

FMETHOD = string token Controls whether and how to calculate F-statistics for

fixed terms (automatic, none, algebraic,

numerical); default auto

Parameter

REML save structures Save structure containing the details of each analysis;

default is to take the save structure from the latest REML

analysis

Description

The VDISPLAY directive allows further output to be produced from one or more REML analyses

without having to repeat all the calculations.

Information from a REML analysis can be stored using the parameter SAVE in the REML

statement for use in the SAVE parameter of VDISPLAY. Several SAVE structures can be specified,

corresponding to the analyses of several different variates. By default, the save structure for the

last y-variate analysed is saved automatically and used by VDISPLAY.

The options of VDISPLAY are the same as those that control output from REML: PRINT,

PTERMS, PSE, CFORMAT and FMETHOD, plus the CHANNEL option which allows output to be

directed to another output channel or into a text structure. The available settings of PRINT are

identical to those in REML. For example, the commands

VCOMPONENTS [FIXED=Nitrogen*Variety] RANDOM=Block/Wplot/Splot
REML [PRINT=model,wald,components] Yield
VDISPLAY [PRINT=effects]

print the effects for the fixed terms after the analysis, without having to re-run the algorithm.

Options: PRINT, CHANNEL, PTERMS, PSE, CFORMAT, FMETHOD.

Parameter: unnamed.

VDISPLAY 561

See also

Directives: REML, VCOMPONENTS, VSTRUCTURE, VRESIDUAL, VPREDICT, VKEEP, VSTATUS.

Procedures: VAIC, VCHECK, VGRAPH, VPLOT, VDFIELDRESIDUALS, VFUNCTION,

VHERITABILITY, VLSD, VMCOMPARISON, VRCHECK, VTCOMPARISONS.

Genstat Reference Manual 1 Summary section on: REML analysis of linear mixed models.

562 Directives in Release 22

VKEEP

Copies information from a REML analysis into Genstat data structures.

Options

RESIDUALS = variate Residuals from the analysis

FITTEDVALUES = variate Fitted values from the analysis

SIGMA2 = scalar Variance component for the lowest stratum

VCOVARIANCE = symmetric matrix Variance-covariance matrix for the estimates of the

variance components

VESTIMATES = variate Saves a vector of all parameters in the variance model

VARESTIMATES = symmetric matrix

Variance-covariance matrix for the parameters in the

variance model (as saved by VESTIMATES)

VLABELS = text Vector of text labels for the VESTIMATES and

VARESTIMATES structures

MVESTIMATES = variate Estimates of missing values

MVSE = variate Standard errors of missing-value estimates

MVUNITS = variate Unit numbers of missing values

ALLEFFECTS = variate Full set of estimated fixed and random effects

ALLVCOVARIANCE = symmetric matrix

Variance-covariance matrix for the full set of fixed and

random effects not associated with the absorbing factor

DEVIANCE = scalar Residual deviance from fitting the full fixed model

DF = scalar Residual degrees of freedom after fitting the full fixed

model

SUBDEVIANCE = scalar Residual deviance after fitting the submodel of the fixed

model

SUBDF = scalar Residual degrees of freedom after fitting the submodel

of the fixed model

RSS = scalar Residual sum of squares from fitting the FIXED model

by general least squares with a covariance matrix

derived from the estimated variance components

INDEX = variate Index of units included in the analysis

MODELS = pointer Pointer to formulae giving the fixed, random, spline and

residual terms fitted

RMATRIX = pointer Saves details of the covariance model fitted to the

residual

RMETHOD = string token Which random terms to use when calculating

RESIDUALS (final, all, notspline); default uses the

setting from the REML statement

CFORMAT = string token Whether the covariance matrices or the parameters are

saved for a COVARIANCEMODEL (variancematrices,

parameters); default vari

UVCOVARIANCE = symmetric matrix

Unit-by-unit variance-covariance matrix

DFFIXED = scalar Number of degrees of freedom in the fixed model

DFRANDOM = scalar Number of degrees of freedom in the random model

FMETHOD = string token Controls how to calculate F-statistics for fixed terms

(automatic, none, algebraic, numerical); default
auto

WMETHOD = string token Controls which Wald statistics are saved (add, drop);

VKEEP 563

default drop

WORKSPACE = scalar Saves the workspace setting that was used in the REML

command

YVARIATE = dummy Dummy to be set to the y-variate of the analysis

EXIT = scalar Exit status of the fit (0 if successful)

SAVE = REML save structure Save structure from the required analysis; default * takes

the save structure from the latest REML statement

Parameters

TERMS = formula Terms for which information is to be saved

COMPONENTS = scalars Estimated variance components

COVARIANCEMODEL = pointers Saves details of the covariance model fitted to a random

term

MEANS = tables Table of predicted means for each term

SEDMEANS = symmetric matrices Standard errors of differences between the predicted

means

VARMEANS = symmetric matrices Variance-covariance matrix of the means

EFFECTS = tables Table of estimated regression coefficients for each term

SEDEFFECTS = symmetric matrices Standard errors of differences between the estimated

parameters of each term

VAREFFECTS = symmetric matrices Variance-covariance matrix of the effects of a term

DESIGNMATRIX = matrices Saves the design matrix for the term

SPLBLUP = pointers Best linear unbiased predictors for spline terms, saved in

a pointer with a variate for each combination of the

levels of the factors in the term

SPLDESIGN = pointers Design matrices (Z) for spline terms, saved in a pointer

with a matrix for each combination of the levels of the

factors in the term

SPLX = pointers Knot points for spline terms, saved in a pointer with a

variate for each combination of the levels of the factors

in the term

SPLSMOOTH = pointers Smoothing parameters estimated for spline terms, saved

in a pointer with a scalar for each combination of the

levels of the factors in the term

CADJUSTMENT = scalars For a term involving covariates, saves the adjustment

made to its values during the analysis

WALD = scalars Wald statistic (fixed terms only)

FSTATISTIC = scalars F statistics (fixed terms only)

NDF = scalars Numerator d.f. (fixed terms only)

DDF = scalars Denominator d.f. (fixed terms only)

Description

The VKEEP directive is used to copy results from a REML analysis into Genstat data structures.

Genstat automatically stores the save structure for the last y-variate that was analysed using

REML, and by default this save structure provides the information for VKEEP. Alternatively, you

can save the information from a REML analysis in a save structure using the SAVE parameter in

the REML directive, then access the information by specifying the same structure in the SAVE

option of VKEEP.

Overall information from the analysis is saved using the options of VKEEP, while the

parameters are used to save information for specific model terms. The terms (fixed, random or

a mixture) for which you require information are defined by a formula using the TERMS

564 Directives in Release 22

parameter. The other parameters can then be used to specify structures for saving information

for each of the model terms.

Options RESIDUALS and FITTEDVALUES are used to specify variates to hold the residuals and

fitted values, which are defined according to the setting of the RMETHOD option, as for the REML

directive. The residual variance can be stored in a scalar using option SIGMA2.

The variance-covariance matrix for the estimates of the variance component can be saved

using the VCOVARIANCE option. (The estimates themselves are saved using the COMPONENTS

parameter, as described below.)

The VESTIMATES option is used to save a variate containing all the variance parameters

estimated in the model. The VARESTIMATES option can supply a symmetric matrix to save the

variance-covariance matrix for the estimates of the variance parameters, matching the ordering

and contents of VESTIMATES. The vector of labels for these parameters can be saved the

VLABELS option. The ALLEFFECTS option allows you to save the full set of fixed and random

effects, excluding those in the absorbing factor model, and the ALLVCOVARIANCE option can be

used to store their variance-covariance matrix. This matrix will often be very large, and is useful

only for looking at covariances between effects associated with different model terms, since the

variance-covariance matrices for individual model terms can be stored using the VAREFFECTS

parameter. The unit-by-unit variance-covariance matrix can be saved using the UVCOVARIANCE

option (and this may be even larger). This uses the random and residual terms, but not spline

terms. It cannot be formed if the model contains sparse inverse covariance matrices, for example

from VPEDIGREE.

The MVESTIMATES option can save a variate containing estimates of the missing values, the

MVSE option saves their standard errors, and the MVUNITS option saves a list of the units that are

missing.

The residual deviance from fitting the full fixed model or the submodel can be saved using

options DEVIANCE and SUBDEVIANCE respectively, and the associated residual degrees of

freedom can be saved using options DF and SUBDF. The degrees of freedom fitted by the (full)

fixed model can be saved by the DFFIXED option, and the degrees of freedom in the random

model can be saved by the DFRANDOM option. The RSS option can save the residual sum of

squares from fitting the fixed model by generalized least squares.

The INDEX option saves an index of the units that were included in the the analysis. (This will

depend on the patterns of missing values, if any, and the setting of the MVINCLUDE option of

REML.)

The MODELS option can be used to save a pointer, with labels 'Fixed', 'Spline',

'Random' and 'Residual', containing formulae for the model terms fitted as fixed, spline,

random or residual terms. The labels can be specified in either lower or upper case, or any

mixture. The YVARIATE option can be set to a dummy to point to the variate that was analysed

(i.e. the variate defined by the Y parameter of REML).

The formula specified by the TERMS parameter is expanded to give a series of model terms.

The other parameters of VKEEP are taken in parallel with these terms. The string 'Constant'

can be used within the formula to save structures associated with the constant term.

The COMPONENTS parameter allows you to save the estimated variance component for each

random term in the TERMS list. Details of the covariance model fitted to each random term can

be saved using the COVARIANCEMODEL parameter. The information is saved in a pointer. The

contents of the pointer depend upon the complexity of the covariance model fitted and the setting

of the CFORMAT parameter. First we consider the default setting:

CFORMAT=variancematrices. If no covariance model has been fitted, the pointer will have

two elements for the scalar (variance component) and the covariance matrix (identity � a

diagonal matrix with number of rows equal to the number of levels of the term). If a covariance

model has been fitted, the component matrices used to construct the model will be saved. The

full covariance matrix can then be generated by taking a direct product of the component

VKEEP 565

matrices and multiplying by the scalar. Alternatively, if CFORMAT=parameters, the pointer

contains the component parameters of the model. The RMATRIX option provides an alternative

way of saving the covariance model fitted to the residual term.

Tables of means for each term can be saved using the MEANS parameter, and standard errors

of differences between the means are saved by SEDMEANS. You can also save the estimated

variance-covariance matrix for the means of each term using parameter VARMEANS.

For example, you can save table of means and variance-covariance matrices of the means for

terms A and B, by the command

VKEEP A+B; MEANS=MeanA,MeanB; VARMEANS=VarmeanA,VarmeanB

MeanA and MeanB will then be tables containing predicted means for factors A and B, and

VarmeanA and VarmeanB will be symmetric matrices containing the variances and covariances

between the table cells.

The EFFECTS parameter is used to save tables of estimated parameters. A symmetric matrix

of the standard errors of differences between the effects of each term can be saved using

parameter SEDEFFECTS, and the estimated variance-covariance matrix for the parameters can

be saved using parameter VAREFFECTS. The DESIGNMATRIX parameter saves the design matrix

used to fit the effects of each term.

You can save details of splines that have been fitted for each term using the SPLBLUP,

SPLDESIGN, SPLX and SPLSMOOTH parameters. The information is saved in pointers with an

element for each combination of the levels of the factors in the term (i.e. for each spline that has

been fitted). The pointers elements are variates for SPLBLUP (best linear unbiased predictors)

and SPLX (knot points), matrices for SPLDESIGN (design matrices), and scalars for SPLSMOOTH

(smoothing parameters).

If the term involves a covariate, the CADJUSTMENT parameter can save the adjustment that will

have been made to its values during the analysis. This will be zero if option CADJUST was set

to none when the fixed and random models were defined by VCOMPONENTS. Alternatively, if

CADJUST had its default setting of mean, each covariate will have been centred by subtracting

its (weighted) mean.

The Wald statistic for a fixed term can be saved using the WALD parameter. The WMETHOD

option controls whether these are from the table where terms are added sequentially to the model,

or that where terms are dropped from the full fixed model. The associated F statistic, and its

numerator and denominator numbers of degrees of freedom, can be saved by the FSTATISTIC,

NDF and DDF parameters, respectively. The FMETHOD option specifies which algorithm to use to

calculate the denominator numbers of degrees of freedom. The default, automatic, will use any

stored values that have been calculated for this analysis by earlier REML, VDISPLAY or VKEEP

statements; otherwise it will choose automatically between the two available methods. (See REML

for more details.)

The WORKSPACE option can save the workspace setting that was used in the REML command

that performed the analysis, and the EXIT option can save a code defining the exit status of the

analysis. The codes (which are also used in the EXIT parameter of REML) are as follows:

0 analysis was completed successfully;

1 analysis did not converge within the specified number of iterations (but no fault occurred);

2 the fit was halted because no progress could be made;

3 the fit was halted the log-likelihood was diverging;

4 a parameter has gone out of bounds;

5 insufficient workspace;

6 no save structure is available (no REML command or a fault occurred (may be set by

VKEEP but not by REML);

7 value of deviance at final iteration larger than at previous iteration(s);

�1 the algorithm performed an iteration but failed for an indeterminate reason before the exit

status was established;

566 Directives in Release 22

�2 a failure occurred prior to calling the fitting algorithm.

Options: RESIDUALS, FITTEDVALUES, SIGMA2, VCOVARIANCE, VESTIMATES,

VARESTIMATES, VLABELS, MVESTIMATES, MVUNITS, ALLEFFECTS, ALLVCOVARIANCE,

DEVIANCE, DF, SUBDEVIANCE, SUBDF, RSS, INDEX, MODELS, RMATRIX, RMETHOD, CFORMAT,

UVCOVARIANCE, DFFIXED, DFRANDOM, FMETHOD, WMETHOD, WORKSPACE, YVARIATE, EXIT,

SAVE.

Parameters: TERMS, COMPONENTS, COVARIANCEMODEL, MEANS, SEDMEANS, VARMEANS,

EFFECTS, SEDEFFECTS, VAREFFECTS, DESIGNMATRIX, SPLBLUP, SPLDESIGN, SPLX,

SPLSMOOTH, CADJUSTMENT, WALD, FSTATISTIC, NDF, DDF.

See also

Directives: REML, VCOMPONENTS, VSTRUCTURE, VDISPLAY, VPREDICT, VSTATUS.

Procedures: VAIC, VCHECK, VFRESIDUALS, VFIXEDTESTS, VFUNCTION, VHERITABILITY,

VLSD, VMCOMPARISON, VSPREADSHEET, VUVCOVARIANCE.

Genstat Reference Manual 1 Summary section on: REML analysis of linear mixed models.

VPEDIGREE 567

VPEDIGREE

Generates an inverse relationship matrix for use when fitting animal or plant breeding models

by REML.

Options

SEX = string token Possible sex categories of parents (fixed, either);

default fixe

UNKNOWN = scalar Value to be treated as unknown

Parameters

INDIVIDUALS = factors Individuals on which data has been measured

MALEPARENTS = factors Male parents of the progeny

FEMALEPARENTS = factors Female parents of the progeny

INVERSE = pointer Inverse relationship matrix in sparse matrix form

POPULATION = variates Full list of identifiers generated from the individuals and

parents

Description

VPEDIGREE is used to generate a sparse inverse relationship matrix for use when fitting animal

(or plant) breeding models by REML. The algorithm requires three parallel factors as input. The

numerical levels of these factors must give identifiers for the individuals from which data are

available (INDIVIDUALS) and the identifiers for the male and female parents for each individual

(MALEPARENTS and FEMALEPARENTS). Note that an individual may appear as both progeny and

a parent (for example, when data has been taken from several generations) and conversely, that

if an identifier appears in more than one list then it is assumed to refer to a single individual.

Also, the algorithm does not take account of labels, so where textual labels are used the labels

vectors of the three factors should be identical in order to generate matching levels vectors and

thus avoid errors. A complete list of all individuals in the three factors is compiled and can be

saved using the POPULATION option, and on output, the three factors will be redefined with this

list as their levels vector.

The inverse relationship matrix that is generated is held in a special sparse matrix form (that

is, only non-zero values are stored), using a pointer. This is usable in the VSTRUCTURE directive

but not, currently, elsewhere in Genstat. The second element of the pointer is a variate storing

the non-zero values of the inverse matrix in lower-triangular order. The first element of the

pointer is an integer index vector. This vector is not a standard Genstat data structure, and so

cannot be used except by VSTRUCTURE.

By default, it is assumed that an individual can act as either a male or female parent but not

both. Option SEX=either can be used to specify that individuals can act as both male and

female parents. This may be useful, for example, in plant breeding analyses.

Missing values in any of the factors will be treated as coding for unknown individuals. Option

UNKNOWN allows you to specify an additional scalar value used to represent unknown individuals.

Options: SEX, UNKNOWN.

Parameters: INDIVIDUALS, MALEPARENTS, FEMALEPARENTS, INVERSE, POPULATION.

Action with RESTRICT

VPEDIGREE ignores any restrictions on the factors.

568 Directives in Release 22

See also

Directives: REML, VCOMPONENTS, VSTRUCTURE, VRESIDUAL, VSTATUS.

Procedure: VFPEDIGREE.

Genstat Reference Manual 1 Summary section on: REML analysis of linear mixed models.

VPREDICT 569

VPREDICT

Forms predictions from a REML model.

Options

PRINT = string tokens What to print (description, predictions, se, sed,

avesed, vcovariance); default desc, pred, se, aves

CHANNEL = scalar Channel number for output; default * i.e. current output

channel

MODEL = formula Indicates which model terms (fixed and/or random) are

to be used in forming the predictions; default * includes

all the fixed terms and relevant random terms

OMITTERMS = formula Specifies terms to be excluded from the MODEL; default

* i.e. none

FACTORIAL = scalar Limit on the number of factors or variates in each term

in the models specified by MODEL or OMITTERMS;

default 3

PRESENTCOMBINATIONS = identifiers

Lists factors for which averages should be taken across

combinations that are present

WEIGHTS = tables One-way tables of weights classified by factors in the

model; default *

PREDICTIONS = table or scalar To save the predictions; default *

SE = table or scalar To save standard errors of predictions; default *

SED = symmetric matrix To save standard errors of differences between

predictions; default *

VCOVARIANCE = symmetric matrix To save variances and covariances of predictions;

default *

SAVE = REML save structure Specifies the save structure from which to predict;

default * i.e. that from most recent REML

Parameters

CLASSIFY = vectors Variates and/or factors to classify table of predictions

LEVELS = variates, scalars or texts To specify values of variates and/or levels of factors for

which predictions are calculated

PARALLEL = identifiers For each vector in the CLASSIFY list, allows you to

specify another vector in the CLASSIFY list with which

the values of this vector should change in parallel (you

then obtain just one dimension in the table of predictions

for these vectors)

NEWFACTOR = identifiers Identifiers for new factors that are defined when LEVELS

are specified

Description

The VPREDICT directive can be used after the REML directive to produce predictions of the

values of the response variate at particular values of the variables in the fixed or random models.

By default the predictions are from the most recent REML analysis, but you can use another

analysis by supplying its save structure using the SAVE option.

The CLASSIFY parameter specifies those variates or factors to be included in the table of

predictions, and the LEVELS parameter supplies the values at which the predictions are to be

made. For a factor, you can select some or all of the levels, while for a variate you can specify

any set of values. A single level or value is represented by a scalar; several levels or values must

570 Directives in Release 22

be combined into a variate (which may of course be unnamed). Alternatively, if the factor has

labels, you can use these to select the levels for prediction by setting LEVELS to a text. A missing

value in the LEVELS parameter is taken to stand for all the levels of a factor, or the mean value

of a variate.

The PARALLEL parameter allows you to indicate that a factor or variate should change in

parallel with another factor or variate. Both of these should have the same number of values

specified for it by the LEVELS parameter of VPREDICT. The predictions are then formed for each

set of corresponding values rather than for every combination of these values. For example,

suppose we had fitted a fixed model containing a factor Treatment, a variate Time representing

the times when measurements were made, and a variate Timesqrd containing the squares of the

times. We could then put

VPREDICT Treatment,Timesqrd,Time; PARALLEL=*,Time,*;\
 LEVELS=*,!(0,1,9,25,49,81),!(0,1,3,5,7,9)

to produce predictions at times 0, 1, 3, 5, 7 and 9 for the treatments. The PARALLEL parameter

specifies that Timesqrd should change in parallel to Time, so that we obtain predictions only

for matching values of Time and Timesqrd.

When you specify LEVELS, VPREDICT needs to define a new factor to classify that dimension

of the table. By default this will be an unnamed factor, but you can use the NEWFACTOR

parameter to give it an identifier. The EXTRA attribute of the factor is set to the name of the

corresponding factor or variate in the CLASSIFY list; this will then be used to label that

dimension of the table of predictions.

The prediction calculations consist of two steps. The first step is to calculate a table of fitted

values. The MODEL, OMITTERMS and FACTORIAL options specify the model to use for this. The

formula specified by MODEL is expanded into a list of model terms, deleting any that contain

more variates of factors than the limit specified by the FACTORIAL option. Then, any terms in

the formula specified by OMITTERMS are removed.

The second step averages the fitted values over the classifications that are not in the list that

was supplied by the CLASSIFY parameter. The WEIGHTS option can supply one-way tables

classified by any of the factors in the model. These are used to calculate the weight to be used

for each fitted value when calculating the averages. Equal weights are assumed for any factor

for which no table of weights has been supplied. (Note, this differs from the default in PREDICT,

which uses marginal weights; see the PREDICT option ADJUSTMENT for details.) In the

averaging all the fitted values are generally used. However, if you define a list of factors using

the PRESENTCOMBINATIONS option, any combination of levels of these factors that does not

occur in the data will be omitted from the averaging. Where a prediction is found to be

inestimable, i.e. not invariant to the model parameterization, a missing value is given.

Printed output is controlled by settings of the PRINT option with settings:

description describes the terms and standardization policies used when

forming the predictions,

predictions prints the predictions,

se produces predictions and standard errors,

sed prints standard errors for differences between the

predictions,

avesed prints the average standard error of difference of the

predictions, and

vcovariance prints the variance and covariances of the predictions.

By default descriptions, predictions, standard errors and an average standard error of differences

are printed. You can also save the results, using the PREDICTIONS, SE, SED and VCOVARIANCE

options. You can send the output to another channel, or to a text structure, by setting the

CHANNEL option.

VPREDICT 571

Options: PRINT, CHANNEL, MODEL, OMITTERMS, FACTORIAL, PRESENTCOMBINATIONS,

WEIGHTS, PREDICTIONS, SE, SED, VCOVARIANCE, SAVE.

Parameters: CLASSIFY, LEVELS, PARALLEL.

See also

Directives: REML, VCOMPONENTS, VDISPLAY, VKEEP, PREDICT.

Procedures: VFUNCTION, VLSD, VMCOMPARISON, HGPREDICT.

Genstat Reference Manual 1 Summary section on: REML analysis of linear mixed models.

572 Directives in Release 22

VRESIDUAL

Defines the residual term for a REML analysis, or the residual term for an experiment within

a meta-analysis (combined analysis of several experiments).

Options

EXPERIMENT = scalar Level of the EXPERIMENTS factor for which the residual

is being defined

TERM = formula Model term to be used as the residual

FORMATION = string token Whether the structure is formed by direct product

construction or by definition of the whole matrix

(direct, whole); default dire

VARIANCE = scalar Allows an initial estimate to be provided for the residual

variance of the experiment

CONSTRAINT = string token Allows the residual variance to be fixed at its initial

value (fix, positive) default posi

COORDINATES = matrix or variates Coordinates of the data points to be used in calculating

distance-based models

Parameters

MODELTYPE = string tokens Type of covariance model associated with the term(s), or

with individual factors in the term(s) if

FORMATION=direct (identity, fixed, AR, MA,

ARMA, power, boundedlinear, circular,

spherical, linearvariance, banded,

correlation, antedependence, unstructured,

diagonal, uniform, FA, FAequal) default iden

ORDER = scalar Order of model

HETEROGENEITY = string token Heterogeneity for correlation matrices (none,

outside); default none

METRIC = string token How to calculate distances when MODEL=power

(cityblock, squared, euclidean); default city

FACTOR = factors Factors over which to form direct products

MATRIX = identifiers To define matrix values for the term or the factors when
MODEL=fixed

INVERSE = identifiers To define values for matrix inverses (instead of the fixed

matrices themselves) when MODEL=fixed

INITIAL = identifiers Initial parameter values for each correlation matrix

CONSTRAINTS = texts Texts containing strings none, fix or positive to

define constraints for the parameters in each model

EQUALITYCONSTRAINTS = variates

Non-zero values in the variate indicate groups of

parameters whose values are to be constrained to be

equal

Description

VRESIDUAL is used to define the residual term for a REML analysis or to define separate residual

terms for different experiments within a multi-experiment (or meta-) analysis. The TERM option

is used to specify the formula for the residual term. This term need not have been specified

previously by the VCOMPONENTS statement.

For a single experiment, VRESIDUAL can be used to impose a covariance structure on the

residual term. This could also be done by specifying the covariance structure using

VRESIDUAL 573

VSTRUCTURE, but VRESIDUAL has the advantage that the algorithm then checks that the correct

residual term is used.

In a multi-site experiment, VRESIDUAL can be used to specify a different residual model for

each separate experiment. The EXPERIMENT option is used to define the experiment(s) for which

the model is to be used.

The VARIANCE option is used to give an initial value for the residual variance in the current

experiment(s). You can set option CONSTRAINT=fix to fix the residual variance at the initial

value rather than estimating it (as a positive value).

The definition of the residual terms then follows mainly as for the definition of correlated

error terms through VSTRUCTURE The exception is that power models can be defined only in

terms of the coordinates of the data points, not by specifying coordinates for the factor levels.

(So the DISTANCES and COORDINATES parameters of VSTRUCTURE are not present in

VRESIDUAL.)

For a multi-experiment analysis, the factors and variates for the separate experiments should

be concatenated into structures which run over all the experiments. For example, consider an

experiment set up at two sites to compare a set of 24 varieties in four replicates. In one site the

experiment was laid out as a grid of eight rows by 12 columns, in the other a grid of 16 rows by

six columns was used. In these circumstances, a single set of factors (of length 192) can be used

to specify the design, using factors to describe variety, rows and columns, plus a factor expt

defining the allocation of units to experiments.

VCOMPONENTS [FIXED=Variety; EXPERIMENTS=Expt]
VRESIDUAL [EXPERIMENT=1; TERM=Row.Col] MODEL=AR,AR; \
 ORDER=1,1; FACTOR=Row,Col
VRESIDUAL [EXPERIMENT=2; TERM=Row.Col] MODEL=AR,AR; \
 ORDER=1,1; FACTOR=Row,Col

Where some factors differ between experiments, these should be defined on the units relevant

to the appropriate experiment(s) and missing elsewhere. When an EXPERIMENTS factor has been

defined, the default action of the MVINCLUDE option of REML is changed to include units with

missing y-values and missing factor levels.

Options: EXPERIMENT, TERM, FORMATION, VARIANCE, CONSTRAINT, COORDINATES

Parameters: MODEL, ORDER, HETEROGENEITY, METRIC, FACTOR, MATRIX, INVERSE, INITIAL,

CONSTRAINTS, EQUALITYCONSTRAINTS.

See also

Directives: REML, VCOMPONENTS, VSTRUCTURE, VPEDIGREE, VSTATUS.

Procedures: VAMETA, VRMETAMODEL.

Genstat Reference Manual 1 Summary section on: REML analysis of linear mixed models.

574 Directives in Release 22

VSTATUS

Prints the current model settings for REML.

Option

PRINT = string tokens What to print (model); default mode

No parameters

Description

VSTATUS can be used to print out and hence check the fixed and random models and covariance

structures as set up by the VCOMPONENTS and VSTRUCTURE directives, prior to using REML to

run an analysis.

Option: PRINT.

Parameters: none.

See also

Directives: REML, VCOMPONENTS, VSTRUCTURE, VRESIDUAL.

Genstat Reference Manual 1 Summary section on: REML analysis of linear mixed models.

VSTRUCTURE 575

VSTRUCTURE

Defines a variance structure for random effects in a REML model.

Options

TERMS = formula Model terms for which the covariance structure is to be

defined

FORMATION = string token Whether the structure is formed by direct product

construction or by definition of the whole matrix

(direct, whole); default dire

CORRELATE = string token Whether to impose correlation across the model terms if

several are specified (none, positivedefinite,

unrestricted); default none

CINITIAL = scalars Initial values for covariance matrix across terms

COORDINATES = matrix or variates Coordinates of the data points to be used in calculating

distance-based models

Parameters

MODELTYPE = string tokens Type of covariance model associated with the term(s), or

with individual factors in the term(s) if

FORMATION=direct (identity, fixed, AR, MA,

ARMA, power, boundedlinear, circular,

spherical, linearvariance, banded,

correlation, antedependence, unstructured,

diagonal, uniform, FA, FAequal) default iden

ORDER = scalar Order of model

HETEROGENEITY = string token Heterogeneity for correlation matrices (none,

outside); default none

METRIC = string token How to calculate distances when MODELTYPE=power

(cityblock, squared, euclidean); default city

FACTOR = factors Factors over which to form direct products

MATRIX = symmetric matrices, diagonal matrices or pointers

Defines matrix values for a term or the factors when
MODELTYPE=fixed

INVERSE = symmetric matrices, diagonal matrices or pointers

Define values for matrix inverses (instead of the fixed

matrices themselves) when MODELTYPE=fixed

DISTANCES = symmetric matrices Symmetric matrix of pre-formed distances to be used in

distance-based models of order one

COORDINATES = matrices, variates or pointers

Specifies coordinates of each factor level to be used in

calculating distance-based models

INITIAL = scalars, variates, matrices, symmetric matrices or pointers

Initial parameter values for each correlation matrix

(supplied in the structures appropriate for the model

concerned)

CONSTRAINTS = texts Texts containing strings none, fix or positive to

define constraints for the parameters in each model

EQUALITYCONSTRAINTS = variates

Non-zero values in the variate indicate groups of

parameters whose values are to be constrained to be

equal

576 Directives in Release 22

Description

VSTRUCTURE can be used to define the form of covariance structure for any term in the random

model defined for REML by VCOMPONENTS. By default, the effects for each random term are

assumed to be independent with common variance ój
2 for term j, that is, the random term has

covariance matrix ój
2I. VSTRUCTURE is used to define correlation between random effects within

terms, to allow a changing variance within a term, and to define correlations between different

random terms. These models are particularly useful when fitting linear models to repeated

measurements or spatial data and for random coefficient regression.

VSTRUCTURE can only be used after VCOMPONENTS has been used to define the fixed and

random models. It can be used more than once to define different structures for different random

terms. The information is accumulated within Genstat, and it will all be used by subsequent

REML commands. You can check on the model and covariance structures defined at any time by

using the VSTATUS directive. To cancel a covariance structure for a term you simply need to use

VSTRUCTURE to change the model back to the scaled identity matrix ój
2I. To cancel all

covariance structures you can give a new VCOMPONENTS command.

For a random term constructed from more than one factor, the covariance matrix can be

formed either as a single matrix for the whole term, or as the direct product of several matrices

corresponding to the factors. Consider an analysis of repeated measurements where data has been

taken weekly from each subject, and one of several different treatments has been applied to each

subject. It is likely that data taken from the same subject will be correlated, with correlation

decreasing over time, but that subjects will be independent. This corresponds to an I C

covariance structure, where the identity matrix I corresponds to the independent subjects, and

the covariance matrix C corresponds to the correlated measurements over time within subjects.

If we take C to be an auto-regressive process of order 1, this can be defined and fitted as follows:

VCOMPONENTS [FIXED=Tmt] RANDOM=Subject.Week
VSTRUCTURE [TERM=Subject.Week] MODELTYPE=I,AR; ORDER=1; \
 FACTOR=Subject,Week
REML Y

The TERM option is used to specify the term to which the covariance structure is to be applied.

For each factor in the term you can then specify the covariance model to be applied (see below

for list of available models). However, it is not necessary to specify factors for which the default

identity model is required, so the following is an equivalent specification:

VCOMPONENTS [FIXED=Tmt] RANDOM=Subject.Week
VSTRUCTURE [TERM=Subject.Week] MODELTYPE=AR; ORDER=1; FACTOR=Week

To cancel the covariance structure for the term, a null setting is sufficient:

VSTRUCTURE [TERM=Subject.Week]

Although the covariance structure for each term here is of the form Gj = I, the variance matrix

for the data is of the form

V = ó2 (Ój ãjZjGjZj� + I)

In this case the random subject term generates correlations that are equal across all the times

within subjects. It is important to remember that including a random term in the model will

generate uniform correlations between units with the same values of the random factor(s).

Retaining these terms in the model as well as specifying a correlated structure may be

appropriate for some data sets, but can sometimes lead to difficulties in parameter estimation.

The possible settings for the MODELTYPE parameter, generating symmetric covariance

matrices C (Ci, j = Cj, i for all i, j), are listed below. Where more than one model order can be

used, the default is shown in bold and can be changed by using the ORDER option. For the AR,

MA, ARMA, power and banded models, the order is the same as the number of parameters to be

fitted. For the banded, correlation, ante-dependence and unstructured models, the

order is the number of non-zero off-diagonal bands in the matrix. For the FAequal and FA

VSTRUCTURE 577

models, the order is the number of columns in the matrix Ë.

identity identity matrix Ci, i = 1, Ci,j = 0, for i�j

fixed fixed matrix Ci, j specified

AR auto-regressive

order 1 or 2

(ö2=0 for order 1)

Ci, i = 1

Ci+1, i = ö1 / (1�ö2)

Ci, j = ö1 Ci�1, j + ö2 Ci�2, j,

i > j+1, �1 < ö1, ö2 < 1,

|ö1+ö2|<1, ö2�ö1<1, ö2>�1

MA moving average

order 1 or 2

(è2=0 for order 1)

Ci, i = 1

Ci+1, i = �è1(1�è2)/(1+è1
2+è2

2)

Ci+2, i = �è2 / (1+è1
2+è2

2)

Ci, j = 0, i>j+2

�1 < è1, è2 < 1, è2±è1 < 1

ARMA auto-regressive

moving-average

order 1

Ci, i = 1

Ci+1, i = (è�ö)(1�öè)/(1+è2-2öè)

Ci, j = öCi�1, j , i>j+1

�1 < ö, è < 1
power based on distance

order 1 or 2

(ö1 = ö2 for order

1)

Ci, i = 1

Ci, j = ö1
d1ö2

d2

d1, d2 = distance in 1st and 2nd dimensions

0 < ö1, ö2 < 1
boundedlinear based on distance

order 1

Ci, j = 1 � d/ö for d � ö,

Ci, j = 0 for d > ö

0 < ö
circular based on distance

order 1

Ci, j = 1 � (2/ð) {(d/ö)�(1�(d/ö)2) +

sin�1(d/ö)} for d � ö,

Ci, j = 0 for d > ö

0 < ö
spherical based on distance

order 1

Ci, j = 1 � 1.5 (d/ö) + 0.5 (d/ö)3 for d � ö,

Ci, j = 0 for d > ö

0 < ö
linearvariance based on distance

order 1

Ci, j = 1 � 2ö d / max(d)

0 < ö < 1

banded equal bands

1 < order <

nrows�1

Ci, i = 1

Ci+k, i = èk , 1 < k < order

�1 < èk < 1

Ci+k, i = 0, otherwise

correlation general correlation

matrix

1 < order <

nrows�1

Ci, i = 1

Ci, j = èij ,

1 < |i�j| � order

Ci, j = 0, |i�j| > order

�1 < èij < 1

uniform uniform matrix Ci, j = è for all i,j

diagonal diagonal matrix Ci, i = èi

Ci, j = 0, i�j

578 Directives in Release 22

antedependence ante-dependence

model

1 < order <

nrows�1

C�1 = UD�1U�
Di, i

�1 = di
�1,

Di, j = 0 for i�j

Ui, i = 1,

Ui, j = uij ,

1 � j�i � order

Ui, j = 0, for i>j

unstructured general covariance

matrix

1<order< nrows�1

Ci, j = èij ,

0 < |i�j| � order

Ci, j = 0, |i�j| > order

FA factor analytic

order = 1 or 2

C = ËË� + Ø

Ë is an nrows × q matrix

order=q

Øi = øi for i=1...nrows

FAequal factor analytic with

common variance

order = 1 or 2

C = ËË� + Ø

Ë is an nrows × q matrix

order=q

Øi = ø for i=1...nrows

Initial parameter values can be specified using the INITIAL parameter. For most models, the

number of initial values required is the number of parameters, and default values will be

generated. However, for unstructured models, a full covariance matrix of initial values must

be given, and for the correlation model a full correlation matrix must be provided. For the

ante-dependence model, either a full covariance matrix can be provided, or a pointer to a U

and a D�1 matrix of the correct forms. For the FA and FAequal models, a pointer must be used

to give the initial Ë and Ø matrices, otherwise default initial values are generated. The FAequal

model can be used to get initial values for the FA model. Initial values are required for these

models because the algorithm may not converge when many parameters are fitted if the starting

values are not realistic. Initial values might be generated from covariance matrices estimated by

fitting simpler models, or from residuals from a null variance model. A missing value in the

initial values is taken to mean that the value is inestimable and it will be fixed at a small value

for the analysis. Alternatively, a parameter can be fixed at its initial value using the

CONSTRAINTS parameter. The codes (not case sensitive and able to be abbreviated) may take

value fix to indicate the parameter is to be fixed at its initial value, positive to indicate it is

to remain positive or none to indicate no constraints. The default is a positive constraint or no

constraint depending on context; for example scaling parameters are always constrained to

remain positive. The EQUALITYCONSTRAINTS parameter allows you to constrain some of the

parameters to have the same value. The variate that it specifies contains a zero value if there is

no constraint, and an identical integer value for any set of parameters whose values are to be

equal. So, a variate containing the values (0,1,2,1,2) would constrain the second parameter to be

equal to the fourth parameter, and the third parameter to be equal to the fifth parameter.

It may sometimes be desirable to allow for unequal variances for the models defined in terms

of correlation matrices: that is, for the AR, MA, ARMA, uniform, power, boundedlinear,

circular, spherical, linearvariance, banded and correlation models. This can be

done by setting option HETEROGENEITY=outside. This means a diagonal matrix D of standard

errors will be applied to the correlation matrix C to generate a matrix D½CD½. In this case, a

number of extra parameters (equal to the number of effects in the factor or term) should be added

to the vector of initial values. These models allow investigation of a structured correlation

pattern for changing variances and are particularly useful in the analysis of repeated

measurements data when variance increases over time. For example, to allow for changing

variance over time in our example above, we can specify

VSTRUCTURE 579

VCOMPONENTS [FIXED=Tmt] RANDOM=Subject.Week
VSTRUCTURE [TERM=Subject.Week] MODELTYPE=AR; ORDER=1;\
 FACTOR=Week; HETEROGENEITY=outside
REML Y

In some circumstances, you may wish to define a single model to apply to the whole term,

instead of using the direct product form illustrated above. In this case, you should set option

FORM=whole. Note that, when a term consists of a single factor, it is not necessary to set the

FACTOR option.

With MODELTYPE=fixed, you must either use the MATRIX option to specify the values of the

covariance matrix C, or the INVERSE option to specify the inverse matrix. The values of the

matrix or its inverse can be supplied as diagonal matrices or symmetric matrices. In addition,

values for the inverse matrix can be supplied in sparse form as a pointer. The output from

VPEDIGREE is designed for input here, but you can also define the inverse matrix explicitly. The

second element of the pointer should then be a variate containing the non-zero values of the

inverse in lower triangular order. The first element should be a factor, with number of levels

equal to the number of rows n(n+1)/2 of the matrix. This has firstly a block of n values giving

the position in the variate of the first value stored for each row. There is then a block of values

for each row in turn, giving the columns in which each non-zero value appears.

When MODELTYPE=power is used to define a distance-based model, the model can be of order

1 (isotropic) or 2 (anisotropic). For models with ORDER=1, a single set of distances must be

formed. The necessary information can be supplied using either the COORDINATES option, or

the COORDINATES parameter, or the DISTANCES parameter. With the COORDINATES option you

can specify either a matrix, or a list of variates, to define multi-dimensional coordinates for each

unit of the data. The length of the variates, or the number of rows of the matrix, must be equal

to the number of data values. The number of variates, or the number of columns of the matrix,

is equal to the number of dimensions. The coordinates for the levels of each FACTOR are then

calculated as the mean values of the coordinates of the units included in the analysis with those

levels. Alternatively, you can use the COORDINATES parameter to specify a single variate, a

pointer to several variates or a matrix to define multi-dimensional coordinates for each level of

the FACTOR. This parameter takes precedence over the COORDINATES option. The length of the

variates, or the number of rows of the matrix, must be equal to the number of levels of the

FACTOR. The number of variates, or the number of columns of the matrix, is again equal to the

number of dimensions.

The distance calculation is defined by the METRIC option. For levels i and j with

n-dimensional coordinates {cik: k=1...n} and {cjk: k=1...n} the distance dij is defined as

dij = Ók |cik � cjk| for METRIC=cityblock (the default);

dij = Ók (cik � cjk)
2 for METRIC=squared; and

dij = {Ók (cik � cjk)
2}1/2 for METRIC=euclidean.

Finally, you can supply a symmetric matrix of pre-calculated distances, using the DISTANCES

parameter, and this takes precedence over the COORDINATES parameter and option. The number

of rows of the DISTANCES matrix must be equal to the number of levels of the FACTOR.

When MODELTYPE=power and ORDER=2, the DISTANCES parameter cannot be used, and only

two-dimensional coordinates are allowed. The coordinates must be specified using either the

COORDINATES option or parameter, as described above. The distances are calculated within each

dimension separately, according to the setting of the METRIC option. In this case the Euclidean

and city-block distances are equivalent.

The spherical family of geostatistical models correspond to the MODELTYPE settings

boundedlinear (for one-dimensional distances), circular (for one or two dimensions) and

spherical (for one or two dimensions). For further details, see Webster & Oliver (2007).

These models are based on distances, and require coordinates to be supplied using either the

COORDINATES option (to give coordinates for each data value), or the COORDINATES parameter

580 Directives in Release 22

(to give coordinates for each factor level), as described for MODELTYPE=power above. The

parameter ö is interpreted as the range at which the correlation is considered to have decayed to

zero. A small value therefore indicates weak correlation, and a large value indicates stronger

correlation. These models do not have continuous second derivatives, and their log-likelihood

may be multi-modal. To detect this potential problem, it is therefore important to start their

estimation from several different initial values; this can be done using the INITIAL parameter

as described above. To ensure that the estimated correlation matrix differs from the identity

matrix, it is necessary for the range parameter to be larger than the minimum distance specified

by the coordinates; any initial value smaller than this will be adjusted.

The setting MODELTYPE=linearvariance specifies the linear variance model of Williams

(1986), extended by Piepho & Williams (2010). This model is parameterized so that the

parameter ö lies in the range [0,1], which allows correlations in the range [-1,1]. Values of ö

close to one indicate weak correlation and values close to zero indicate strong correlation

between neighbouring observations.

The CORRELATE option allows you to specify correlations between model terms which have

equal numbers of effects. A common correlation will then be fitted between parallel effects. For

example, consider a random coefficient regression model where the fixed model contains

common response to covariate X and the random model allows for deviations in the intercept and

slope about this line for each subject. The random intercept and slope for each subject may be

correlated, but subjects are independent. This correlation across terms is defined using the

CORRELATE option as follows:

VCOMPONENTS [FIXED=X] RANDOM=SUBJECT+SUBJECT.X
VSTRUCTURE [SUBJECT+SUBJECT.X; CORRELATE=positivedefinite;\
 CINITIAL=!(1,0.1,0.3); FORM=whole]

The CORRELATE option setting positivedefinite is used to ensure that the correlation matrix

between the terms remains positive definite. This constraint can be relaxed using the setting

unrestricted (an unstructured covariance matrix is then used to describe covariance across

the terms). The model fitting is done here in terms of a covariance matrix, where the diagonal

elements are the gammas for the correlated terms. The CINITIAL option is used to give initial

values for this matrix. If no initial values are given, the initial values are taken from initial

gamma values given in VCOMPONENTS when the model is declared. When correlations are

declared between terms, you must set FORMATION=whole. In the random coefficient regression

model above, no correlation structure is declared within terms since the subjects are independent.

However, it is possible to declare correlation/covariance models within terms as usual. For

example, an animal breeding model might use VPEDIGREE to set up covariances within terms

as follows:

VPEDIGREE animal; FEMALE=dam; MALE=sire; INVERSE=Ainv
VCOMPONENTS [FIXED=Trt] RANDOM=animal+dam+env
VSTRUCTURE [animal+dam; CORRELATE=unr; FORM=whole] \
 MODELTYPE=fixed; INVERSE=Ainv

These declarations set up random terms with covariance structures of the form:

cov(animal) = óa
2 A, cov(dam) = ód

2 A, cov(animal, dam) = óad A.

Direct Products

Although the direct product construction used to build the covariance structures does not

generally constrain the models that can be fitted to any data set, you should be aware of the

implications that arise when defining covariance structures for the residual term. The REML

algorithm used by Genstat detects the presence of the residual term in the model by searching

for terms with number of levels equal to the number of data values, n. When no covariance

structures are specified, the first term with number of levels > n is used as the residual. However,

when covariance structures are defined, the form of the variance model is

VSTRUCTURE 581

V = ó2 (Ój ãjZjGjZj� + R)

where matrix R corresponds to the residual term and has n rows. For this reason, any term found

with > n rows will not be used as the residual if it has a covariance matrix. If no valid residual

term is found, a residual term will automatically be added to the model. This may result in an

extra error term being fitted unintentionally. An example where this may happen is in repeated

measurements data where unequal numbers of measurements have been taken on subjects. If

direct product construction is used, the matrix generated will have more rows than the data and

cannot be used as R. A work-around is to put missing values in the data set to give equal

replication and use REML option MVINCLUDE=yvariate to retain the missing values in the

analysis. Alternatively, you could fix the residual component at a small value.

Note that in the repeated measurements example above, if measurements are taken at different

times for each subject, the direct product structure is not appropriate. In this case, a power model

may be fitted over the whole term, constraining the between subject correlation to zero:

VSTRUCTURE [TERM=Subject.Week; FORM=whole;\
 COORD=subject,week] MODELTYPE=power; ORDER=2;\
 INITIAL=!(0,0.1); CONSTRAIN=!T(Fix,None)

Note that the parameters run in the order of the coordinates vectors (which are variate forms of

the model factors).

Options: TERMS, FORMATION, CORRELATE, CINITIAL, COORDINATES.

Parameters: MODELTYPE, ORDER, HETEROGENEITY, METRIC, FACTOR, MATRIX, INVERSE,

DISTANCES, COORDINATES, INITIAL, CONSTRAINTS, EQUALITYCONSTRAINTS.

References

Piepho, H.P. & Williams, E.R. (2010). Linear variance models for plant breeding trials. Plant

Breeding, 129, 1-8.

Webster, R. & Oliver, M.A. (2007). Geostatistics for Environmental Scientists, 2nd edition.

Wiley, Chichester.

Williams, E.R. (1986). A neighbour model for field experiments. Biometrika, 73, 279-87.

See also

Directives: REML, VCOMPONENTS, VRESIDUAL, VSTATUS.

Procedure: VFSTRUCTURE, VNEARESTNEIGHBOUR.

Genstat Reference Manual 1 Summary sections on: REML analysis of linear mixed models,

Repeated measurements.

582 Directives in Release 22

WORKSPACE

Accesses private data structures for use in procedures.

No options

Parameters

NAME = texts Texts, each containing a single line, to give the names

used to identify the private data structures

DUMMY = identifiers Dummy structure to be used to refer to each private data

structure

Description

The WORKSPACE directive is intended particularly for writers of procedures. It allows data to be

accessed within a number of procedures, and in the main program if needed. You merely need

to decide how to label your workspace "areas". Genstat reserves a data structure for each one,

and WORKSPACE allows you to link this to a dummy (of your choice) within any procedure or in

the outer program itself. For example

WORKSPACE 'AUNBALANCED work'; Wspace
TEXT [VALUES=Yvar,Factopt] Wlabels
POINTER [NVALUES=Wlabels] Wspace
VARIATE Wspace['Yvar']
SCALAR Wspace['Factopt']

names the area 'AUNBALANCED work' and sets the dummy Wspace to the associated data

structure. The data structure is then defined to be a pointer with two values, the variate

Wspace['Yvar'] and the scalar Wspace['Factopt']. A similar WORKSPACE statement can

then be used later on (in another procedure) to access the same information. For example

WORKSPACE 'AUNBALANCED work'; Abwork

links the dummy Abwork to the pointer, allowing us to refer to Abwork['Yvar'] and

Abwork['Factopt']. This will be used particularly within the Genstat Procedure Library, to

link suites of associated procedures so, for safety, you should avoid prefixing the name of any

workspace of your own by G5PL.

Options: none.

Parameters: NAME, DUMMY.

See also

Directives: PROCEDURE, DUMMY, POINTER.

Genstat Reference Manual 1 Summary section on: Program control.

XAXIS 583

XAXIS

Defines the x-axis in each window for high-resolution graphics.

Option

RESET = string token Whether to reset the axis definition to the default values

(yes, no); default no

Parameters

WINDOW = scalars Numbers of the windows

TITLE = texts Title for the axis

TPOSITION = string tokens Position of title (middle, end)

TDIRECTION = string tokens Direction of title (parallel, perpendicular)

LOWER = scalars Lower bound for axis

UPPER = scalars Upper bound for axis

MARKS = scalars or variates Distance between each tick mark (scalar) or positions of

the marks along the axis (variate)

MPOSITION = string tokens Positioning of the tick marks on the axis (inside,

outside, across)

LABELS = texts or variates Labels at each major tick mark

LPOSITION = string tokens Position of the axis labels (inside, outside)

LDIRECTION = string tokens Direction of the axis labels (parallel,

perpendicular)

LROTATION = scalars or variates Rotation of the axis labels

NSUBTICKS = scalars Number of subticks per interval (ignored if MARKS is a

variate)

YORIGIN = scalars Position on y-axis at which the axis is drawn

ZORIGIN = scalars Position on z-axis at which the axis is drawn

PENTITLE = scalars Pen to use to write the axis title

PENAXIS = scalars Pen to use to draw the axis

PENLABELS = scalars Pen to use to write the axis labels

ARROWHEAD = string tokens Whether the axis should have an arrowhead (include,

omit)

ACTION = string tokens Whether to display or hide the axis (display, hide)

TRANSFORM = string tokens Transformed scale for the axis (identity, log, log10,

logit, probit, cloglog, square, exp, exp10,

ilogit, iprobit, icloglog, root); default iden

LINKED = scalars Linked axis whose definitions should be used for this

axis in 2-dimensional graphs; default * i.e. none

MLOWER% = scalars How large a margin to set between the lowest x-value

and the lower value of the axis, if not set explicitly by

LOWER (expressed as a percentage of the range of the x-

values)

MUPPER% = scalars How large a margin to set between the largest x-value

and the upper value of the axis, if not set explicitly by

UPPER (expressed as a percentage of the range of the x-

values)

DECIMALS = scalars or variates Number of decimal places to use for numbers printed at

the marks

DREPRESENTATION = scalars, variates or texts

Format to use for dates and times printed at the marks

VREPRESENTATION = string tokens Format to use for numbers printed at the marks

584 Directives in Release 22

(decimal, engineering, scientific); default deci

YOMETHOD = string tokens Method to use to set the position of the origin on the y-

axis if not set explicitly by YORIGIN (upper, lower,

center, centre)

ZOMETHOD = string tokens Method to use to set the position of the origin on the z-

axis if not set explicitly by ZORIGIN (upper, lower,

center, centre)

REVERSE = string tokens Whether to reverse the axis direction to run from upper

to lower instead of the default lower to upper (yes, no);

default no

SAVE = pointers Saves details of the current settings for the axis

concerned

Description

There is a definition for the x-axis associated with each Genstat graphics window. This specifies

how the x-axis is to be drawn when graphical output is produced in that window. The default

definition for each axis requires some of the features to be determined from the data, as

described below. Others have fixed defaults that are independent of the data. The XAXIS

directive can be used to override the default action and specify particular aspects of the x-axis

explicitly. (Similarly, directives YAXIS and ZAXIS modify the y- and z-axis definitions,

respectively.) All the parameters of XAXIS are relevant when using DGRAPH, but for other

directives only some of the parameters are used.

The WINDOW parameter specifies the window whose axis definition is to be altered. WINDOW

can be set to a list of window numbers, in which case the other parameter lists are cycled in

parallel, in the usual way. By default, only those aspects specified by subsequent parameter lists

are modified; any parameters that are not set will retain their current settings. Alternatively, you

can specify option RESET=yes to reset the values of any parameters that are not set for each

window, back to the default values that are set up by Genstat at the start of a job.

The LOWER and UPPER parameters specify the lower and upper bounds for the axis. By default,

Genstat derives suitable axis bounds from the data, as described for the appropriate directive.

You can obtain an inverted scale by setting parameter REVERSE=yes. The values specified with

these parameters are on the scale of the data values that are plotted, and are independent of the

normalized device coordinates used to define the window size in FRAME. The MLOWER%

parameter controls the size of margin that is provided between the lower value of the axis and

the smallest x-value, if the lower axis value is not set explicitly by LOWER. This is expressed as

a percentage of the range of the x-values, and has the initial default of 5%. Similarly the

MUPPER% parameter controls the size of the upper margin.

The YORIGIN parameter determines the value on the y-axis through which the axis is drawn.

If its value is outside the y-axis bounds, the upper or lower bound is adjusted so that the axis will

extend up to the specified origin. This applies whether you have set the bounds explicitly or have

left Genstat to calculate them from the data. If YORIGIN is not set, the YOMETHOD parameter can

specify how the position should be determined: either at the upper value on the y-axis, or the

lower value, or in the centre. The initial default (if neither of these parameters has been

specified) is to put the axis at the bottom of the y-axis, which will be the lower value unless the

scale is reversed. The ZORIGIN and ZOMETHOD parameters set the position of the origin on the

z-axis in a similar way.

You can specify a title for the axis using the TITLE parameter. This is limited to a single line

of characters. The TPOSITION parameter controls whether the title is placed in the middle or at

the end of the axis, and the TDIRECTION parameter controls whether it is written parallel or

perpendicular to the axis.

The axis is marked with a scale, determined automatically so that tick marks are evenly spaced

XAXIS 585

and positioned to give "round" numbers for the scale values. You can set the MARKS parameter

to a scalar to define the increment between tick marks. For example, setting MARKS=1.5 with

bounds 10 and 2 causes tick marks to appear at 2, 3.5, 5, 6.5, 8 and 9.5. The interval must be a

positive number, irrespective of the values of the bounds. Alternatively, you can set MARKS to

a variate (with more than one value) to specify the actual positions of the tick marks on the axis.

Any values that lie outside the axis bounds are ignored. The scale values printed next to the tick

marks use a format that is determined automatically from the values, but if you set MARKS to a

variate it will use the number of decimals specified in the variate declaration. If MARKS is unset

or set to a scalar, you can use the NSUBTICKS parameter to specify a number of "subticks" to be

drawn between each of the (major) tick marks.

When you set MARKS, you can also use the LABELS parameter to specify a set of labels to print

at the (major) axis marks, instead of the numbers. For example,

TEXT [VALUES=Mon,Tues,Wed,Thur,Fri,Sat,Sun] Day
VARIATE [VALUES=1...31] Month
XAXIS 1; MARKS=Month; LABELS=Day

The strings within the text are cycled if necessary, so the number of strings can be less than the

number of tick marks. The DECIMALS parameter can set the number of decimal places to use if

you are printing numbers at the marks. If the numbers represent dates or times, you can specify

their formats using the DREPRESENTATION parameter (see the PRINT directive for details). By

default, numbers are printed in decimal form. If you would prefer scientific format you can set

parameter VREPRESENTATION=scientific; numbers are then printed as a decimal number

with absolute value less than 10, followed by an exponent (e.g. 3.4567 E4 for 34567).

Alternatively, you can set VREPRESENTATION=engineering to use engineering format; the

decimal number then has an absolute value less than 10000, so the exponent is a multiple of 3

(e.g. 34.567 E3 for 34567). With scientific or engineering formats, the DECIMALS parameter sets

the number of significant figures to use rather than the number of decimal places.

The MPOSITION parameter controls the positioning of the tick marks, which can be drawn on

the inside or the outside of the axis, or can be drawn across the axis. With the outside setting,

the tick marks are drawn towards the outside of the plot; that is below the axis if the axis is in

the lower half of the plot, or above the axis if it is in the top half of the plot. The aim is then to

position the tick marks away from the main part of the plot, so that they interfere with the plotted

points as little as possible. With the inside setting, the marks are drawn on the opposite side

(that is, to the inside of the plot), while the across setting draws them across the axis. Similarly,

the positioning of the scale markings or labels is controlled by the LPOSITION parameter, with

settings inside or outside. The LDIRECTION parameter controls whether the scale markings

or labels are written parallel or perpendicular to the axis. Alternatively, you can use the

LROTATION parameter to specify the direction of the labels more precisely, as a rotation in

degrees from the horizontal (i.e. parallel) direction. If LROTATION is specified, any setting of

LDIRECTION is ignored.

Setting MARKS=* will return to the default positioning of the tick marks. Setting LABELS=*

will switch off any labels previously specified. Setting MPOSITION=* will switch off any tick

marks, and setting LPOSITION=* or LDIRECTION=* will switch off any labels.

The TRANSFORM parameter allows you to transform the scale of the axis. The tick marks are

still defined and labelled according to the original scale, but their physical positions on the graph

are transformed. So, for example, with TRANSFORM=log10, the equal physical distance between

1 and 10 would be the same as the distance between 10 and 100. The settings are the same as the

names of the equivalent Genstat functions, with the addition of exp10 for the antilog

transformation (i.e. 10x), and square for x2.

There are three parameters to control the pens to be used to draw the axis. These are

PENTITLE, PENAXIS and PENLABEL, specifying the pen for the title, the axis and the labelling,

respectively. The initial default is to use pens �1, �2 and �3 in every window. These pens are

586 Directives in Release 22

given negative numbers to allow them to be distinguished from the pens used for the contents

of the plot. They are initially set up to use colour 1, line style 1, thickness 1, size 1 and font 1.

You can thus control which pens are used for drawing the axis in each window, and the attributes

of those pens. For example, if no XAXIS statement has yet been given,

PEN �1; LINESTYLE=4; COLOUR=2

will request that the titles in every window should be written in line style 4 and colour 2; while

PEN 29; LINESTYLE=3; COLOUR=4
XAXIS 1; PENAXIS=29

will change the appearance of just the x-axis in window 1, as pen 29 is not used for the other

windows. You should of course be careful of side-effects when changing the pen numbers. For

example, pen 29 may also have been modified for use in a DGRAPH statement and other attributes

may have been set that are not wanted when drawing the axis. You must use the RESET option

if you want to restore these pen numbers to the initial defaults. (Genstat does not allow you to

set negative pen numbers explicitly.)

The ARROWHEAD parameter controls whether the axis is drawn with an arrowhead at the end.

You may sometimes wish to use the axis definitions merely to control the positioning of the

plot in the x-direction (using the UPPER and LOWER parameters), or you may wish to hide the axis

temporarily in case it is obscuring information in the plot. You can do this by setting parameter

ACTION=hide.

Axis annotation is plotted in the margins specified by the FRAME directive. You may wish to

reduce the size of these margins if you have defined axes that use less space, for example by

keeping within the area of the graph itself, or by omitting titles or labels. Space can thus be

regained and used for plotting data. However, if the margins are too small the axis annotation

may be "clipped" at the boundaries of the margins; if this happens, you can use FRAME to

increase the margin size. The margins are used by DGRAPH, DHISTOGRAM and DCONTOUR, but

they are ignored by other directives.

The LINKED parameter is useful when you have several related plots in different windows

within the frame. If, for example, you set LINKED=n, the attributes of the current x-axis will all

be taken (at the time of plotting) from the definition of the x-axis for any 2-dimensional graph

in window n. Also, you can edit the attributes of all the linked axes simultaneously in the

graphics viewer in Genstat for Windows.

The current settings of the axis for a particular window can be saved in a pointer supplied by

the SAVE parameter. The elements of the pointer are labelled to identify the components. The

settings are those for the axis itself, so you should check that the axis is not linked to one in

another window. (The 'linked' element contains the window number, or a missing value there

is no link.) The SAVE parameter is of most use within procedures, where it may be necessary to

check or modify particular XAXIS settings before constructing complicated graphs. Also, the

DKEEP directive allows you to extract the actual bounds used when plotting; these will be the

bounds determined from the data if none have been defined explicitly by XAXIS.

Option: RESET.

Parameters: WINDOW, TITLE, TPOSITION, TDIRECTION, LOWER, UPPER, MARKS, MPOSITION,

LABELS, LPOSITION, LDIRECTION, LROTATION, NSUBTICKS, YORIGIN, ZORIGIN,

PENTITLE, PENAXIS, PENLABELS, ARROWHEAD, ACTION, TRANSFORM, LINKED, MLOWER%,

MUPPER%, DECIMALS, DREPRESENTATION, VREPRESENTATION, YOMETHOD, ZOMETHOD,

SAVE.

XAXIS 587

See also

Directives: YAXIS, ZAXIS, AXIS, FRAME.

Procedure: DHELP.

Genstat Reference Manual 1 Summary section on: Graphics.

588 Directives in Release 22

YAXIS

Defines the y-axis in each window for high-resolution graphics.

Option

RESET = string token Whether to reset the axis definition to the default values

(yes, no); default no

Parameters

WINDOW = scalars Numbers of the windows

TITLE = texts Title for the axis

TPOSITION = string tokens Position of title (middle, end)

TDIRECTION = string tokens Direction of title (parallel, perpendicular)

LOWER = scalars Lower bound for axis

UPPER = scalars Upper bound for axis

MARKS = scalars or variates Distance between each tick mark (scalar) or positions of

the marks along the axis (variate)

MPOSITION = string tokens Positioning of the tick marks on the axis (inside,

outside, across)

LABELS = texts or variates Labels at each major tick mark

LPOSITION = string tokens Position of the axis labels (inside, outside)

LDIRECTION = string tokens Direction of the axis labels (parallel,

perpendicular)

LROTATION = scalars or variates Rotation of the axis labels

NSUBTICKS = scalars Number of subticks per interval (ignored if MARKS is a

variate)

XORIGIN = scalars Position on x-axis at which the axis is drawn

ZORIGIN = scalars Position on z-axis at which the axis is drawn

PENTITLE = scalars Pen to use to write the axis title

PENAXIS = scalars Pen to use to draw the axis

PENLABELS = scalars Pen to use to write the axis labels

ARROWHEAD = string tokens Whether the axis should have an arrowhead (include,

omit)

ACTION = string tokens Whether to display or hide the axis (display, hide)

TRANSFORM = string tokens Transformed scale for the axis (identity, log, log10,

logit, probit, cloglog, square, exp, exp10,

ilogit, iprobit, icloglog, root); default iden

LINKED = scalars Linked axis whose definitions should be used for this

axis in 2-dimensional graphs; default * i.e. none

MLOWER% = scalars How large a margin to set between the lowest y-value

and the lower value of the axis, if not set explicitly by

LOWER (expressed as a percentage of the range of the y-

values)

MUPPER% = scalars How large a margin to set between the largest y-value

and the upper value of the axis, if not set explicitly by

UPPER (expressed as a percentage of the range of the y-

values)

DECIMALS = scalars or variates Number of decimal places to use for numbers printed at

the marks

DREPRESENTATION = scalars, variates or texts

Format to use for dates and times printed at the marks

VREPRESENTATION = string tokens Format to use for numbers printed at the marks

YAXIS 589

(decimal, engineering, scientific); default deci

XOMETHOD = string tokens Method to use to set the position of the origin on the x-

axis if not set explicitly by XORIGIN (upper, lower,

center, centre)

ZOMETHOD = string tokens Method to use to set the position of the origin on the z-

axis if not set explicitly by ZORIGIN (upper, lower,

center, centre)

REVERSE = string tokens Whether to reverse the axis direction to run from upper

to lower instead of the default lower to upper (yes, no);

default no

SAVE = pointers Saves details of the current settings for the axis

concerned

Description

There is a definition for the y-axis associated with each Genstat graphics window. This specifies

how the y-axis is to be drawn when graphical output is produced in that window. The default

definition for each axis requires some of the features to be determined from the data. Others have

fixed defaults that are independent of the data. The YAXIS directive can be used to override the

default action and specify particular aspects of the y-axis explicitly. (Similarly, directives XAXIS

and ZAXIS modify the x- and z-axis definitions, respectively.) All the parameters of YAXIS are

relevant when using DGRAPH, but for other directives only some of the parameters are used. The

syntax of YAXIS is identical to that of XAXIS, except that YAXIS has an XORIGIN parameter

which replaces the YORIGIN parameter of XAXIS.

The WINDOW parameter specifies the window whose axis definition is to be altered. WINDOW

can be set to a list of window numbers, in which case the other parameter lists are cycled in

parallel, in the usual way. By default, only those aspects specified by subsequent parameter lists

are modified; any parameters that are not set will retain their current settings. Alternatively, you

can specify option RESET=yes to reset the values of any parameters that are not set for each

window, back to the default values that are set up by Genstat at the start of a job.

As in XAXIS, the LOWER, UPPER, MLOWER% and MUPPER% parameters can specify the lower

and upper bounds for the axis, the REVERSE parameter can reverse the axis, and the TITLE,

TPOSITION and TDIRECTION parameter can define a title for the axis.

The XORIGIN parameter determines the value on the x-axis through which the axis is drawn.

If its value is outside the x-axis bounds, the upper or lower bound is adjusted so that the axis will

extend up to the specified origin. This applies whether you have set the bounds explicitly or have

left Genstat to calculate them from the data. If XORIGIN is not set, the XOMETHOD parameter can

specify how the position should be determined: either at the upper value on the x-axis, or the

lower value, or in the centre. The initial default (if neither of these parameters has been

specified) is to put the axis at the left-hand end, which will be the lower value unless the scale

is reversed. The ZORIGIN and ZOMETHOD parameters set the position of the origin on the z-axis

in a similar way, with the initial default that the axis is at the bottom of the z-axis.

The MARKS, NSUBTICKS, LABELS, DECIMALS, DREPRESENTATION and VREPRESENTATION

parameters also operate as in XAXIS, to specify the markings on the axis, and their associated

labels. The MPOSITION, LPOSITION, LDIRECTION and LROTATION parameters again control

the positioning of the tick marks and labels. For a y-axis, the outside setting implies that the

tick marks are drawn to the left of the axis if the axis is on the left-half side of the plot, or to the

right of the axis if it is on the right-hand side. As in XAXIS, the TRANSFORM parameter allows

you to transform the physical scale of the axis on the graph.

The ARROWHEAD parameter again controls whether the axis is drawn with an arrowhead at the

end, and parameters PENTITLE, PENAXIS and PENLABEL specify the pen to be used for the title,

the axis and the labelling, respectively. ACTION allows you to hide the axis, LINKED allows you

590 Directives in Release 22

to take all the axis settings from a (linked) axis in another window, and SAVE allows you to save

the current settings defined for the axis. Further details are given in the description of XAXIS.

Option: RESET.

Parameters: WINDOW, TITLE, TPOSITION, TDIRECTION, LOWER, UPPER, MARKS, MPOSITION,

LABELS, LPOSITION, LDIRECTION, LROTATION, NSUBTICKS, XORIGIN, ZORIGIN,

PENTITLE, PENAXIS, PENLABELS, ARROWHEAD, ACTION, TRANSFORM, LINKED, MLOWER%,

MUPPER%, DECIMALS, DREPRESENTATION, VREPRESENTATION, XOMETHOD, ZOMETHOD,

SAVE.

See also

Directives: XAXIS, ZAXIS, AXIS, FRAME.

Procedure: DHELP.

Genstat Reference Manual 1 Summary section on: Graphics.

ZAXIS 591

ZAXIS

Defines the z-axis in each window for high-resolution graphics.

Option

RESET = string token Whether to reset the axis definition to the default values

(yes, no); default no

Parameters

WINDOW = scalars Numbers of the windows

TITLE = texts Title for the axis

TPOSITION = string tokens Position of title (middle, end)

TDIRECTION = string tokens Direction of title (parallel, perpendicular)

LOWER = scalars Lower bound for axis

UPPER = scalars Upper bound for axis

MARKS = scalars or variates Distance between each tick mark (scalar) or positions of

the marks along the axis (variate)

MPOSITION = string tokens Positioning of the tick marks on the axis (inside,

outside, across)

LABELS = texts or variates Labels at each major tick mark

LPOSITION = string tokens Position of the axis labels (inside, outside)

LDIRECTION = string tokens Direction of the axis labels (parallel,

perpendicular)

LROTATION = scalars or variates Rotation of the axis labels

NSUBTICKS = scalars Number of subticks per interval (ignored if MARKS is a

variate)

XORIGIN = scalars Position on x-axis at which the axis is drawn

YORIGIN = scalars Position on y-axis at which the axis is drawn

PENTITLE = scalars Pen to use to write the axis title

PENAXIS = scalars Pen to use to draw the axis

PENLABELS = scalars Pen to use to write the axis labels

ARROWHEAD = string tokens Whether the axis should have an arrowhead (include,

omit)

ACTION = string tokens Whether to display or hide the axis (display, hide)

MLOWER% = scalars How large a margin to set between the lowest z-value

and the lower value of the axis, if not set explicitly by

LOWER (expressed as a percentage of the range of the z-

values)

MUPPER% = scalars How large a margin to set between the largest z-value

and the upper value of the axis, if not set explicitly by

UPPER (expressed as a percentage of the range of the z-

values)

DECIMALS = scalars or variates Number of decimal places to use for numbers printed at

the marks

DREPRESENTATION = scalars, variates or texts

Format to use for dates and times printed at the marks

VREPRESENTATION = string tokens Format to use for numbers printed at the marks

(decimal, engineering, scientific); default deci

XOMETHOD = string tokens Method to use to set the position of the origin on the x-

axis if not set explicitly by XORIGIN (upper, lower,

center, centre)

YOMETHOD = string tokens Method to use to set the position of the origin on the y-

592 Directives in Release 22

axis if not set explicitly by YORIGIN (upper, lower,

center, centre)

REVERSE = string tokens Whether to reverse the axis direction to run from upper

to lower instead of the default lower to upper (yes, no);

default no

SAVE = pointers Saves details of the current settings for the axis

concerned

Description

There is a definition for the z-axis associated with each Genstat graphics window. This specifies

how the z-axis is to be drawn when three-dimensional graphical output is produced in that

window. The default definition for each axis requires some of the features to be determined from

the data. Others have fixed defaults that are independent of the data. The ZAXIS directive can

be used to override the default action and specify particular aspects of the z-axis explicitly.

(Similarly, directives XAXIS and YAXIS modify the x- and y-axis definitions, respectively.) All

parameters of ZAXIS are relevant when using D3GRAPH, but for other directives only some of

the parameters are used. The syntax of ZAXIS is identical to that of XAXIS, except that ZAXIS

has an XORIGIN parameter instead of the ZORIGIN parameter of XAXIS.

The WINDOW parameter specifies the window whose axis definition is to be altered. WINDOW

can be set to a list of window numbers, in which case the other parameter lists are cycled in

parallel, in the usual way. By default, only those aspects specified by subsequent parameter lists

are modified; any parameters that are not set will retain their current settings. Alternatively, you

can specify option RESET=yes to reset the values of any parameters that are not set for each

window, back to the default values that are set up by Genstat at the start of a job.

As in XAXIS, the LOWER, UPPER, MLOWER% and MUPPER% parameters can specify the lower

and upper bounds for the axis, the REVERSE parameter can reverse the axis, and the TITLE,

TPOSITION and TDIRECTION parameter can define a title for the axis.

The XORIGIN parameter determines the value on the x-axis through which the axis is drawn.

If its value is outside the x-axis bounds, the upper or lower bound is adjusted so that the axis will

extend up to the specified origin. This applies whether you have set the bounds explicitly or have

left Genstat to calculate them from the data. If XORIGIN is not set, the XOMETHOD parameter can

specify how the position should be determined: either at the upper value on the x-axis, or the

lower value, or in the centre. The initial default (if neither of these parameters has been

specified) is to put the axis at the lower end, which will be the lower value unless the scale is

reversed. The YORIGIN and YOMETHOD parameters set the position of the origin on the y-axis

in a similar way, with the initial default that the axis is at the bottom of the y-axis.

As in XAXIS, the MARKS, NSUBTICKS, LABELS, DECIMALS, DREPRESENTATION and

VREPRESENTATION parameters specify the markings on the axis, and their associated labels. The

MPOSITION, LPOSITION, LDIRECTION and LROTATION parameters control the positioning of

the tick marks and labels. The ARROWHEAD parameter again controls whether the axis is drawn

with an arrowhead at the end, and parameters PENTITLE, PENAXIS and PENLABEL specify the

pen to be used for the title, the axis and the labelling, respectively. ACTION allows you to hide

the axis, and SAVE allows you to save the current settings defined for the axis. Full details of all

these parameters are given in the description of XAXIS.

Option: RESET.

Parameters: WINDOW, TITLE, TPOSITION, TDIRECTION, LOWER, UPPER, MARKS, MPOSITION,

LABELS, LPOSITION, LDIRECTION, LROTATION, NSUBTICKS, XORIGIN, YORIGIN,

PENTITLE, PENAXIS, PENLABELS, ARROWHEAD, ACTION, MLOWER%, MUPPER%,

DECIMALS, DREPRESENTATION, VREPRESENTATION, XOMETHOD, YOMETHOD, SAVE.

ZAXIS 593

See also

Directives: XAXIS, YAXIS, AXIS, FRAME.

Procedure: DHELP.

Genstat Reference Manual 1 Summary section on: Graphics.

594 Directives in Release 22

%CD

Changes current directory, PC Windows only.

No options

Parameters

DIRECTORY = text Directory to change to

CURRENT = text Saves new directory

Description

The %CD directive can be used to change directory under Windows or DOS. The DIRECTORY

specifies the directory as a text containing either the absolute or relative pathname, for example

'C:/CONSULT/DATA' or '../../PROJECT'.

Note that a forward slash (/) may be used as a directory separator character, as the backwards

slash (\) is the Genstat continuation character and would have to be doubled up. Environment

variables may be used in the path name, for example '%TEMP%/temp.out', and %GENDIR% can

be used to specify the Genstat root directory (eg. C:).

The CURRENT parameter saves the new directory name. You can obtain the name of the

current directory by typing the command

%CD '.'; CURRENT=curdir

which will set up curdir as a text containing the current directory name.

See also

Directive: SUSPEND.

Procedure: DIRECTORY.

%OPEN 595

%OPEN

Open a binary file for use with %WRITE.

No options

Parameter

NAME = text Name of file to be opened for binary output using
%WRITE

Description

%OPEN has a single parameter, NAME, which specifies the name of a file to be opened in binary

mode for output by the %WRITE command. If the file already exists, it is deleted, and then

reopened as a new file. The file can be used to communicate data to other programs that read in

data in binary form. For example, it is used by FSPREADSHEET to write spreadsheet files.

The file should be closed by the %CLOSE directive when output has been completed. The

%FPOSITION command can be used to query the current position in the file.

Options: none.

Parameter: NAME.

See also

Directives: %CLOSE, %FPOSITION, %WRITE.

Genstat Reference Manual 1 Summary section on: Input and output.

596 Directives in Release 22

%FPOSITION

Returns the current position in the binary file opened by %OPEN.

No options

Parameter

scalar Number of bytes of the current position from the start of

the file

Description

%FPOSITION has a single unnamed parameter, which saves the current write position in the

binary file opened by %OPEN. This can be used to relocate the %WRITE directive to that position

in the file. For example, if you wanted to change a value in the file later during its use, you could

save the position of that value, and then use %WRITE to write the new value into the file.

For example:

%FPOSITION file_length_position
%WRITE 0 "Write a dummy value to hold the position"
"... more %WRITE commands"
%FPOSITION file_length "Get current position = file length"
%WRITE [POSITION=file_length_position] file_length

Options: none.

Parameter: unnamed.

See also

Directives: %CLOSE, %OPEN, %WRITE.

Genstat Reference Manual 1 Summary section on: Input and output.

%LOG 597

%LOG

Adds text into the Input Log window in the Genstat client.

No options

Parameter

text Text to display in the Input Log window

Description

%LOG has a single unnamed parameter, which provides a text to be inserted at the end of the Input

Log window in the Genstat client. This can be used to include commands or comments. For

example,

%LOG '""Calculate the logs of the yields""'
%LOG 'CALCULATE logYield = LOG(Yield)'

You might want to do this to provide information about the actions of menu or an interactive

procedure. For example, the STATEMENT parameter of the DESIGN procedure can save a

command that could be used to form the design that has been generated. You might want to use

%LOG to record this in the Input Log.

%LOG has no effect when used in GenBatch, and is available only in Windows versions of

Genstat.

Options: none.

Parameter: unnamed.

See also

Directive: %MESSAGEBOX.

Genstat Reference Manual 1 Summary section on: Input and output.

598 Directives in Release 22

%MESSAGEBOX

Display text in a dialog in the Genstat client.

Options

TITLE = text Title for the dialog; default 'Genstat'

ICON = string token Icon to display in the dialog (information, warning,

error, question); default info

Parameter

text text to display in the dialog

Description

%MESSAGEBOX has a single unnamed parameter, which provides a text to be displayed in a client

dialog. The dialog remains on the screen until the user clicks its OK button. For example,

%MESSAGEBOX 'Some analyses were unable to calculate F statistics.'

This provides a good way to communicate warnings or notes to the user. For example, if faults

or warnings have been disabled, it can be used to display just those faults or warnings that you

want the user to see. It has no effect when used in GenBatch, and is available only in Windows

versions of Genstat.

The TITLE option provides the title for the dialog. The default is to display Genstat. The

ICON option specifies the icon to display on the left-hand side. The default is to display the

information icon (i).

Options: TITLE, ICON.

Parameter: unnamed.

See also

Directive: %LOG.

Genstat Reference Manual 1 Summary section on: Input and output.

%OPEN 599

%OPEN

Open a binary file for use with %WRITE.

No options

Parameter

NAME = text Name of file to be opened for binary output using
%WRITE

Description

%OPEN has a single parameter, NAME, which specifies the name of a file to be opened in binary

mode for output by the %WRITE command. If the file already exists, it is deleted, and then

reopened as a new file. The file can be used to communicate data to other programs that read in

data in binary form. For example, it is used by FSPREADSHEET to write spreadsheet files.

The file should be closed by the %CLOSE directive when output has been completed. The

%FPOSITION command can be used to query the current position in the file.

Options: none.

Parameter: NAME.

See also

Directives: %CLOSE, %FPOSITION, %WRITE.

Genstat Reference Manual 1 Summary section on: Input and output.

600 Directives in Release 22

%SLEEP

Pauses execution of the server for a time specified in seconds.

No options

Parameter

scalar specifies the time in seconds to pause

Description

%SLEEP has a single, unnamed, parameter, which is a scalar giving the number of seconds for

the server to halt processing. The current set of commands continues after this period of time.

For example,

%SLEEP 2

stops the server processing for two seconds. This can be used to allow other processes to

complete before the server resumes execution. For example, the saving of graphs to PNG files

using the OPEN and DEVICE commands runs asynchronously to the server process that generates

them. You may therefore need to wait for these to be created if they are to be used in another part

of the program.

Options: none.

Parameter: unnamed.

%TEMPFILE 601

%TEMPFILE

Creates a unique temporary file in the Genstat temporary folder.

No options

Parameters

PREFIX = string Prefix for the filename

FILENAME = text Saves the filename

INDEX = scalar Saves the index number that follows the prefix in the

filename

Description

%TEMPFILE creates a unique file in the Genstat temporary folder. The location of the temporary

folder can be obtained by the GETTEMPFOLDER procedure, and is set by the %TMP% or %TEMP%

environment variables on your computer. An empty file is created, so that other programs will

not use the same name.

The PREFIX parameter provides the text to be used at the start of the filename. The extension

of the filename is always .tmp. The unique filename is returned by the FILENAME parameter,

and the INDEX parameter saves its index number. Note, the filename has the index value written

in hexadecimal format, but the index is saved as an ordinary number. For example:

%TEMPFILE PREFIX='Out'; FILENAME=TFile; INDEX=filenumber

could return TFile as 'C:/Temp/Genstat/Out1F.tmp' and INDEX as 31 (31 in hexadecimal

= 1F).

The file is not deleted automatically at the end of the Genstat run. So, when you have finished

using it, you need to delete it yourself (for example, with the FDELETE directive).

Options: none.

Parameter: PREFIX, FILENAME, INDEX.

See also

Directives: CLOSE, FDELETE, OPEN.

Procedure: GETTEMPFOLDER.

Genstat Reference Manual 1 Summary section on: Input and output.

602 Directives in Release 22

%WRITE

Writes values of data structures to a binary file opened by %OPEN.

Options

SEPARATOR = scalar or text Separator character as a literal character or a scalar

giving an ASCII code (0-255); default * i.e. none

TERMINATOR = string token Terminator to use at the end of a text (null, newline)

default null

POSITION = scalar File position at which to write the data; default 0 writes

at the current position

Parameters

DATA = texts, scalars, variates or matrices

Data structures to write to the file

FORMATTED = string tokens Output format to use when writing the structures (bit,

byte, shortint, longint, real, double, string,

text, rawtext, factor); default depends on the type

of data structure

NBYTES = scalars Saves the number of bytes written to the file

Description

%WRITE writes values of data structures to the binary file opened by %OPEN. The data structures

are specified by the DATA parameter.

The FORMATTED parameter specifies the format to be used to write the structures to the file.

The available formats are:

bit the numbers (0,1) in the structure are combined as single

bits into bytes (e.g. 1,0,0,1,0,1,0,1,0,1,0,0,1,1,1,1 would

give the two bytes 0x41CF)

byte the numbers are written as a single byte (0 to 255)

shortint the numbers are written as a 2-byte signed integer (-31767

to 32767)

longint the numbers are written as 4-byte signed integer; default

for a scalar

real the numbers are written as single precision (REAL*4)

values (missing value = �1e37)

double the numbers are written as double precision (REAL*8)

values (missing value = �1e307); default for a variate or

matrix

string the texts are written with a single byte giving the length,

followed by the ASCII bytes in UTF8 format

text the texts are written with 4 bytes giving the length,

followed by the ASCII bytes in UTF8 format, default for

a text

rawtext the texts are written as ASCII bytes in UTF8 format

factor the values are compressed into as few bytes as possible;

the default for a factor

The factor format can be used only by factors. The number of bytes per item depends on the

number of levels in the factor. For 1-3 levels, 4 items are combined per byte, for 4-15 levels, 2

items are combined per byte, for 16-255 levels, each item is written in a single byte, for 256-

65535 levels, each item is written in a two bytes, otherwise each item is written in 4 bytes. A

value of 0 is used to represent a missing value in the factor. The formats string, text and

%WRITE 603

rawtext can be used only by texts.

The SEPARATOR and TERMINATOR options are used only for FORMAT=rawtext. The

SEPARATOR option can specify a single ASCII character to be used between items. By default

there is no separator. The TERMINATOR option specifies what to write after each string. The

default setting null uses a null character (byte 0 as in C strings). With the newline setting, the

two newline characters (bytes 13 and 10) are use to terminate strings.

The POSITION option can be used to reset the position where the values are written. The

default of 0 writes the values at the current position in the file.

 The NBYTES option saves the number of bytes that have been written to the file.

Options: SEPARATOR, TERMINATOR, POSITION.

Parameters: DATA, FORMATTED, NBYTES.

Action with RESTRICT

%WRITE ignores restrictions on DATA.

See also

Directives: %OPEN, %CLOSE, %FPOSITION.

Genstat Reference Manual 1 Summary section on: Input and output.

Index

units factor 25, 57

Abbreviating output 468

Absorbing factor 557

Absorption in regression 330

Accumulation of SSPM 507

Added factor 221, 223

Additive model 207

Adequacy of a model 208

Adjusted analysis 92

Adjusted R2 statistic 208

Adjusted response variate

saving 449

Agglomerative method 275

AI algorithm 557

AIREML 432

Akaike information criterion 208, 313

Algorithm for nonlinear regression 216

Aliasing 221, 239, 507

in ANOVA 29, 31

in prediction 381

relationships 240

All subsets of a set of objects 464

Analysis of covariance 29, 91

Analysis of deviance 207

Analysis of variance 27

block structure 55

further output 10

in regression 207

one-way 526

saving information 20

table 29

table, saving 22

treatment model 526

Animal breeding model 580

Anisotropic variation 302

Annotation 122

of graph 309

ANOVA save structure 462

Ante-dependence

in REML 578

Antecedent set

for association rule 33

Anti-end-cut factor 49

Appending

into a text 539

texts side by side 82, 540

ARIMA model 173, 532

back-forecasts 516

bias 516, 517

Box-Cox power transformation 532

changing values 533

default parameter values 514

definition 532

exact likelihood 516

initial parameter estimates 252

invertibility 514, 533

lags 533

least-squares likelihood 516

likelihood 516

marginal likelihood 517

multiple seasonal 533

non-seasonal 532

orders 532

parameters 532

seasonal 533

starting-value problem 516

stationarity 514, 533

tests of nested models 517

Arithmetic operator 59

Arrowhead on axis 43, 586, 589, 592

ASCII character set 544

Associated identifier of table 392

Associated structures 483

Association rules 33

Asymptote of curve 212-214

Asymptotic regression 212

Attribute of data structure

accessing 266

displaying 147

duplicating 149

listing structures and attributes 304

Auto-regressive model for REML 577

Auto-regressive moving average model for REML

577

Autocorrelation 87, 88

function 536

sample 88

Average Information algorithm 432

Average similarity of a group 277

Average-linkage clustering 276

Averaging of effects 381

Axis 37

bounds 42, 101, 113, 152, 310, 584, 589, 592

hiding 586, 589, 592

labels 42, 585, 589, 592

linked 586, 590

oblique 41, 42, 243

scale 42, 584

scaling 310

title 42, 584

transformed 43, 585, 589

Background colour 242

Backing store

associated structures 439, 483

catalogue 68, 326, 483

complete set of structures 439

merging files 326

opening files 342

overwriting 440

password 485

pointer 440, 484

procedure 483

Index 605

renaming structures 439, 440, 484

retrieving structures 439-441

storing procedures 484, 485

storing structures 483

subfile name 483

suffixed identifier 440, 484

Backslash 461

Backward shift operator 532

Balanced confounding 28

Balanced design 28

Balanced incomplete block design 28

Banded covariance model for REML 577

Bar chart 44, 117, 118

Base vector 258

Basic contrast 223

Basic factor 221, 223

Batch mode 461

Batch run 340

Bayesian information criterion 208

Best linear unbiased predictor 556, 565

Between-group similarities 278

Between-group similarity coefficient 249

Bias in maximum likelihood estimate 430

Binary file 503

current position 596

open 595, 599

write data to 602

Bit map 97

Bivariate histogram 154

Blank data field 417

Block design 222

Block factor 221

Block formula 222

for randomization 402

Block model 55

Block structure 22, 28, 55, 222, 261

Block-if structure 166, 288

else condition 160

else-if condition 161

exit from 180

BLUP 556

Boolean algebra 466, 470

Bounds in nonlinear regression 217

Box-Cox power transformation 532

estimation 514, 516

in transfer-function models 524

Box-Jenkins modelling 173, 513, 532

Brackets in expressions 60

Calculation 59

Canonical variates analysis 94, 357

factor rotation 187

Captions 65

control of printing 261

controllinf which are printed 462

Carriage-return key 461

CART 52

Case

of identifier 461

of pointer labels 376

Catalogue 483

of a backing-store file 326

Cell of a table 497

Change current directory 594

Channel 69, 169, 340

Chi-square statistic in regression 449

City block coefficient 249

Classification into groups 497

Classification set 196

Classification tree 47, 52, 528

Clearing graphics screen 99

Clipping of graph 114, 152

Closing files 442

Cluster analysis

hierarchical 275, 277, 283, 287

non-hierarchical 70

Coefficient of variation 29

Cokriging 73

Colour 77, 242, 366

map 77

of background of graph 242

pre-defined for graph 367, 371

RGB 97

RGB definition for graph 367

Columns of a symmetric matrix 493

Combined estimates 22

Combining information 24, 29

Command

checking for availability 81

information about 81

syntax 495

Communalities 187

Complete-link clustering 276

Complex latent root 226

Complex matrix 486

Complex number 105

Component of variance 380

Compound data structure 105, 486

reading 416

Confidence

for association rule 33

Confidence limit

for regression estimate 448

Confounding 221, 222, 239

Conical projection 143

Consequent item

from association rule 33

Constant

ignoring in regression 209

in nonlinear model 218

in regression 7, 209, 214

Constrained curve through origin 214

Constraining a curve 214

Constraint in nonlinear regression 217

Continuation symbol 461

606 Index

Continuous probability distribution 124, 126

Contour 144

Contour plot 84, 100, 306

Contrast 24, 29

in regression 207

Convergence 409

in nonlinear modelling 217

of iterative algorithm 262

Correlated data 430

Correlated error term 573

Correlation 87

between parameters in nonlinear model 216

between regression variables 507

between REML model terms 580

Cosine transformation

inverse 237

of time series 235

Count 501

Cov. ef. 91

Covariance efficiency factor 23, 91

Covariance model 431

Covariance structure 576

Covariate 28, 91

adjustment in REML 556

in REML 556

regression coefficient 22, 24, 29

Covariogram

forming 200

modelling 320

Critical exponential curve 212

Cross-correlation 87, 89

sample 89

Cross-spectral analysis 237

Cross-variogram 200

modelling 320

Crossing operator

in randomization 402

Cubic interpolation 292

Cumulative totals

forming in READ 420

Curve fitting 206, 211, 328, 506

adding and dropping terms 7, 491

control of algorithm 409

dropping terms 137

function of parameters 444

further output 411

saving results 446

Curve through points on graph 369

Curved line graph 113

Custom formats for dates and times 388

Customized data structure 105, 486

Data matrix

printed by clusters 283

Data mining

association rules 33

Data structure

customized 105

deletion 106

displaying attributes and values 147

duplicating 149

listing those in Genstat 304

private 582

redeclaring 106

redefining 106, 149

renaming 434

renaming in backing store 484

saving the identifiers of structures of specific

types 304

transferring values 171

Date 122, 190, 456, 494, 498, 553

printing 388

Debugging a program 58, 104, 162, 164

Decimal places 122, 190

default for PRINT 461

Default font for graphics 111

Default length for vectors 551

Degrees of freedom 23

in regression 208, 450

of an SSPM 478

of REML fixed model 564

of REML random model 564

saving from regression 448

saving from time series 523

Delete values of a data structure 106

Deleting files 442

Dendrogram 275, 276

Derivative

in nonlinear regression 217

of fitted values 449

of function 219

of link function 330

Design

minimum aberration 12

Design key 12, 221, 222, 239, 258

repertoire 258

Design matrix 507

for splines in REML 565

in regression 448

saving from regression 449

Design of experiments

doubly resolvable row-column design 17

DESIGN structure in ANOVA 28, 30

Designed experiment

randomization 402

Deviance 209

in regression 216, 330

in REML 564

in time series 516, 517, 523

residuals 331

saving from regression 448

Deviations from fitted contrasts 30

Device 340

Diagnostic

control of printing 299

Index 607

control of reporting 299

issuing 192

level of reporting 460

reprinting 123

setting indicator 460

Diagnostic table 294

Diagonal matrix 121

Differencing operator 532

Diffusion model 218

Direct product construction of covariance models

580

Directive

default settings 468, 469

name, checking 299

Discrete probability distribution 124, 126

Distinct values in a variate or text 272

Distribution

fitting 219

of response 330

of response in nonlinear model 218

Dots separating output 299, 460

Double exponential curve 212

Double Fourier curve 212, 213

Double Gaussian curve 212, 213

Dummy 345

assigning values 35

data structure 146

Dummy analysis 30, 31

Duplicating a data structure 149

Echoing of input 290, 298, 460

Ecological coefficient 249

Editing a text 156

Editing commands 157

Efficiency factor 23

Elimination of effects 330

Emax function 212

Ending a Genstat program 482

Ending a Genstat run 482

Environment 260, 396

setting 458

Equal weights in prediction 381

Error bars 114

Error term 55

in ANOVA 28

Errors in data values in READ 421

Euclidean coefficient 249

Executing

a text 179

commands from an external file 290

external DLLs 185

external programs 354, 488

operating-system commands 488

Exit code after regression 217, 449

Exit from control structure 180

Experimental variogram 255

Explanatory variable 207

Explanatory variate 207, 331, 507

Exponential curve 212

Exponential family 216

Expression 59

arguments 191

data structure 183

reading 416

reformulate for another set of data structures

426

Extending a design 223

F-statistic

in regression 481

Factor

declaration 189

default length 551

forming from variate or text 272

from a cluster analysis 275

generating values 257

in fixed format 418

in nonlinear model 218

list of, in formula 197

reading 415

representation of values in READ 415, 418

sorting 475

Factor analysis 193

Factor analytic model for REML 578

Factor rotation 187

Factorial design 258

Factorial experiment 526

Factorial limit 30

Factorial operator 526

Failure to fit regression model 449

Fault

control of reporting 460

issuing from a procedure 192

recovery from 461

suppressing 299

Fieldwidth

default for PRINT 461

default for PRINT 262

when reading data 417

File 442, 443, 474

closing 69

copying 199

deletion 69, 203

discovering details of 169

opening 340

renaming 244

width 417

Filtering a time series 204, 511

Finding a text within another text 542

Finding strings within the lines of a text 545

First-order balance 28

Fisher scoring algorithm 432, 557

Fitted values

from REML 564

in ANOVA 22, 29

in nonlinear model 218

608 Index

in regression 209, 330, 507

in REML 432

initial for generalized linear model 409

saving from regression 448

saving in regression 329

saving in REML 430

Fitting a distribution 219

Fixed effect 55, 430, 555

Fixed format 416-419

Fixed term 556, 564

Fletcher-Powell algorithm 216

For loop 165, 228

Forecasting a time series 231, 519

Format for dates and times 388

Format variate in READ 419

Formula

construction from a set of factors and variates

472

data structure, declaring 234

expanding into model terms 196

factors in 196

for an SSPM 478

in regression 506

individual terms in 197

number of terms in 197

reading 416

reformulate for another set of data structures

426

Fortran 503

Forward selection 481

Fourier curve 212, 213

Fourier transformation 235

defininition 237

definition 236, 237

fast algorithm 235

frequencies 235

inverse 237

lag window 236

missing values 235

of complex series 236

of conjugate series 237

of real series 236

order 236, 237

order and speed 235

restriction on units 235

smooth spectrum 236

to calculate convolutions 237

Fractional factorial 240, 258

Frame definition for graphics 241

Free format 416, 419

Function in nonlinear regression 218

Function name, checking 299

Function of parameters 444

Function optimization 215, 219

Furthest-neighbour clustering 276

G5XZXO subroutine 218

Gauss-Newton algorithm 216

Gaussian curve 212, 213

Generalized additive model 206, 207, 328, 506

adding and dropping terms 7, 491

control of algorithm 409

dropping terms 137

function of parameters 444

further output 411

saving results 446

stepwise 480

try changes 530

Generalized emax curve 212

Generalized inverse 489

Generalized linear model 206, 328, 506

adding and dropping terms 7, 491

control of algorithm 409

dropping terms 137

function of parameters 444

further output 411

saving estimates 452

saving results 446

stepwise 480

try changes 530

Generalized logistic curve 212, 213

Generalized nonlinear model 207, 209

Genstat environment 298

accessing details 260

setting 458

Genstat Procedure Library 395

private data structures 582

Genstat spreadsheet

reading 476

Geostatistics

cokriging 73

Gini information 48

Gompertz curve 212-214

Goodness of fit 449

Gradient of curve 449

Graeco-Latin square 258

Graph 112, 268, 308

Graphics

clearing 99

default font 111

device 77, 108

reading locations of points 134

reloading environment settings 131

save structure 462

saving environment settings 139

saving information 129

Greater-than character 461

Grid evaluation of likelihood 217

Gridlines on graphs 243

Group-average clustering 276

Grouping factor in regression 330, 507

Groups of units 189

Growth curve 213

Help information 279

Hierarchical cluster analysis 275, 277, 287

Index 609

printed by clusters 283

Higher-order term 526

Histogram 117, 118, 280, 312

three dimensional 154

Hot points on graph 115

Householder transformation 226

Hyperbola 213

Identification 293

using a tree 52

Identification key 52, 528

Identifier

case of 461

changing 434

locations within a pointer 264

suffixed 376

to use in output 122, 183, 190, 234, 319, 456,

494, 509, 554

Identity matrix 121

If control structure 288

Impulse-response function 537

Indentation of output 342

Influence in regression 449

Information summary 29, 262

Initial

calculations for regression 506

default 460

value for parameter 409

value for parameter in nonlinear model 217

value for REML covariance model 578

Innovations as prediction errors 532

Input

channel 290, 442

echoing of 460

file 290

from a Genstat spreadsheet file 476

of data 415

skipping unwanted lines 474

stack 442, 443

Input Log

adding information there 597

Interaction 526

in additive models 207

in nonlinear model 218

in regression 207

Interactive mode 461

Interactive reading of data 415

Interactive run 340

Intercept 209

Interpolation 291

Interrupting output 460

Invalid calculation 62

Inverse

interpolation 291

matrix from regression 448

polynomial 213

relationship matrix 567

Irredundant test set 293

Isotropic variation 302

Iterative fitting

of curves 212

of nonlinear model 216

Iterative scaling 323

Iterative weights

saving 449

Jaccard coefficient 248

Job 298

ending 167

exit from 180

number of 262

Key for graphics 45, 46, 100, 114, 118, 119, 141,

144, 153, 154, 242

Keyboard 69

Knot 556, 565

Kriging 300

cokriging 73

forming a covariogram 200

modelling a covariogram 320

Kurtosis 126, 502

Label

axis 42, 585, 589, 592

for graph 368

for pointer element 376

for regression estimate 448

of factor 189

Labelling

of output 551

rows and columns of a symmetric matrix 493

Lags in a time-series model 532

Large data set 507

tabulation 502

Large residual 30, 209

Latent root 94, 225, 315, 357, 363

scree diagram 95

Latent variable

in factor analysis 193

Latent vector 95, 225, 315

Latin square 28, 56, 57, 258

with split plots 57

Lattice design 28, 258

Launch executables 473

Law of diminishing returns 212

Least significant difference 23, 29

Least-squares approximation of rank r to a matrix

489

Least-squares scaling 454

Level 189

Leverage 208, 209, 507

saving from regression 448

Likelihood

in nonlinear modelling 216

in time-series modelling 516

Likelihood-based test of fixed effects in REML

432

Limit on order of contrast 30

610 Index

Line number of statement 460

Line plot 113, 151, 268, 308, 369

Line style for graphics 369

Line-plus-exponential curve 212

Line-printer graphics 306, 308, 312

Linear interpolation 291

Linear mixed model 430, 555

Linear parameter in nonlinear regression 218

Linear predictor 330, 381

saving 448

Linear-divided-by-linear curve 212, 213

Locally weighted regression 207

Locating units with particular properties 437

Locations

of a string within a text or factor 264

of an identifier within a pointer 264

of numbers 264

Loess 207

Log of statements 460

Log-likelihood ratio 216, 219

Log-linear model 381

Logical expression 436, 442

Logical operator 60

Logistic curve 212, 213

Loop 165, 228

exit from 181

line numbers within 460

Lower limit 122

Lower triangle 493

LRV structure 95

declaring 315

forming values 225

in principal components analysis 363

Macro 443

echoing of contents 460

Mahalanobis distance 71, 95, 358

Manhattan coefficient 249

Margin of table 498

calculaing 317

calculating 500

printing 391

when sprinted 392

Margin round graph 242

Marginal weights 381

Marginality

in regression 209

Matrix 318

combining and omitting slices 80

declaring 318

shaded display 140

Maximal model 506, 507

Maximal predictive classification 71

Maximum 501

Maximum likelihood 216

Mean 126, 501

in ANOVA 23

of variate in an SSPM 478

Mean posterior improvement 48

Median 501

Median sorting clustering 276

Menu 398

Message

control of reporting 460

display in dialog 598

in ANOVA 30

in prediction 382

suppressing 299

suppressing in regression 208, 209

Meta-analysis 556, 572

Metric scaling 323

Michaelis-Menten law 213

Minimizing a function 219

Minimum 501

Minimum aberration design 12

Minimum spanning tree 276, 278

Missing factor combination 380, 381

Missing value 456

in ANOVA 28, 29, 31

in autocorrelation 89

in CALCULATE 62

in classifying factor of table 498

in factor when forming table 501

in Fourier analysis 235

in graph 113

in graphics 152

in regression 507

in REML 431, 567

in time series 89, 204, 205, 511, 512, 514, 523

when reading data 416, 417

when reading strings 418

Mitscherlich curve 212

Mixed model 430

Mixture design 15

Model formula 526, 527

for an SSPM 478

Model term 526

Model terms in a formula 197

Modifying a regression model 7, 480, 491, 530

Moment estimator

for ARIMA model 252

Monitoring of iterative model 412

Monochrome graphics device 77

Monotonic regression 332

Moore-Penrose inverse 489

Moving average model for REML 577

Multi-digit counter 90

Multi-experiment analysis 573

Multi-layer perceptron 335, 336, 339

Multi-site experiment 573

Multi-stratum design 221

Multidimensional scaling 323

non-metric 323, 332

Multinomial response model 329

Multiple-selection structure 66, 163, 347

Index 611

else condition 160

exit from 180

NAG Library 333

Nearest neighbours 277

Nearest-neighbour clustering 276

Nesting operator 526

in randomization 402

Neural network

displaying output 335

fitting 336

prediction 339

New line 461

New page 299, 351

in output 460

Newton algorithm 216

Newton method 410

Node of a tree 528

Non-constant variance 330

Non-hierarchical clustering 70

Non-metric multidimensional scaling 332

Non-metric scaling 323

Non-orthogonality 29-31

Nonlinear model

adding and dropping terms 491

dropping terms 137

Nonlinear modelling 206, 328, 506

adding and dropping terms 7

control of algorithm 409

function of parameters 444

further output 411

saving results 446

Nonlinear parameter 8, 212

Nonlinear regression 211, 215, 216

Normal distribution in regression 218

Normal probability density 213

Normalized device coordinates 241, 584

Null model in regression 207

Number 456

of terms in a formula 197

Number of units

used to form an SSPM 478

Numerican Algorithms Group 333

Oblique axis 42, 243

Offset variate 214, 218, 507

On-line help 279

One-way analysis of variance 526

Open file in another application 473

Optimization 216, 409

Option

checking 345

modifying default settings 468

name, checking 299

of a procedure 344

Order

of a time-series model 532

of Fourier transformation 236, 237

Orthogonal contrasts 240

Orthogonal design 28, 31

Orthogonal factor rotation 187

Outlines

of bar chart 45

of histogram 119

of pie chart 132

Output

channel 348

inserting blank lines 474

to an external file 348, 385

Own code for nonlinear models 218

Own source code 349

Page 299, 351

break in output 460

size of output 342

Parallel curves 8, 211, 214

Parallel nonlinear regression 218

Parameter

checking 353

constraints in curve fitting 213

constraints in nonlinear model 217

estimate, saving from regression 448

modifying default settings 469

name, checking 299

of a procedure 352

of a time-series model 532

Partial autocorrelation 87, 88

Partial confounding 239

Partial replicate 222

Partially aliasing 239

Partially balanced designs 258

Password for backing-store files 485

Pause execution 600

Pause in output 460

Pearson chi-square statistic 449

Pearson residuals 331, 449

Pedigree 567, 579

Pen 43, 113, 115, 119, 140, 144, 152, 154, 365,

585, 589, 592

defining 366

saving settings 370

Percentage variance accounted for 208

Periodic behaviour 213

Periodogram 236

Perspective plot 143

Pi weights 537

Pie chart 132

Plot factor 258

Point plot 113, 151, 268, 308, 369

Point selection from graph 116, 153

Pointer 345

assigning values 35

automatic definition 376

declaring 375

extending 376

reading 416

substitution 375

612 Index

Poisson distribution in regression 218

Polygon

in graph 113, 152, 369

Polynomial

in regression 207

inverse 213

ratio 213

Power distance model for REML 577

Precedence of operators 60

Precedence rules of operators 60

Precision of computer 262

Predicted mean 565

Prediction 380

from regression model 378

from REML 569

Prime number 222

Principal components analysis 357, 362

factor rotation 187

Principal coordinates analysis 357

adding points 9

relating observed data to results 360, 427

PRINT option

in ANOVA 29

in regression 207

in REML 430

Printing data 383

format 385

inserting blank lines 474

matrices 391, 392

representation of factors 390

symmetric matrices 392

tables 391, 392

to a text 391

to an external file 391

Private data structure 582

Probability distribution

continuous 124, 126

discrete 124, 126

estimating parameters 124

Procedure 582

called by another procedure 64

channel of library 81

default settings 468, 469

defining options 344

defining parameters 352

definition 64, 344, 395, 396

echoing when executed 460

end of definition 168

exit from 180

giving a diagnostic 192

library 440, 468, 484

name 396

name, checking 299

redefining 397

source code 495

subfile 483

Procrustes rotation 454

Program

resuming 438

saving to resume later 423

Prompt 461

when reading data interactively 415

Pseudo-factor 222, 527

forming 258

forming from design key 239

omit pseudo-terms from model 197

Pseudo-factorial operator 527

Pseudo-inverse 489

Punctual kriging 301

Pythagorean coefficient 249

QR decomposition 401

Quadratic-divided-by-linear curve 212, 213

Quadratic-divided-by-quadratic curve 212, 213

Quantile 501

regression 245

Quartimax rotation 187

R2 statistic 208

Radial basis function

display 404

estimation 405

prediction 408

Random effect 55, 555, 575

Random numbers 62

Random order 402

Random term 564, 576

Randomization 55, 92, 402

Randomized block design 28, 55, 56

randomization 402

Ratio of polynomials 213

Rational function 212, 213

Reading data 413

blank fields 417

compound data structures 416

end of data terminator 416, 417

errors in data values 421

factors 415, 418

factors in fixed format 418

fieldwidth 417

forming cumulative totals 420

from a Genstat spreadsheet file 476

in fixed format 416-418

in free format 416

in parallel 414

in sequential batches 419

in series 414, 415

in variable format 419

interactively 415

justification in fixed format 417

missing values 416, 417

pointers 416

rescaling values 418

separator 416, 419

skipping values 416, 418

text 415

Index 613

text in fixed format 418

Record of statements 460

Recovery from fault 461

Rectangular hyperbola 213

Rectangular matrix 318

Redeclare a data structure 106

Redefining a data structure 106, 149

Redraw a graph 103

Reduced similarity matrix 285

Reference level 190

REG function 527

Regression 206, 328, 506

abbreviated summary 209

adding and dropping terms 7, 491

control of algorithm 409

dropping terms 137

function of parameters 444

further output 411

missing values 507

model, saving 450

monotonic 332

quantile 245

save structure 331, 381, 412, 462

saving estimates 452

saving results 446, 452

stepwise 480

try changes 530

weight 507

Regression tree 47, 52, 528

Relational test 60

Relationship matrix 567

REML

absorbing factor 557

adjustment of covariates 556

algorithm 558

control of algorithm 558

equation ordering 558

fitting the model 429

further output 560

model settings 574

prediction from 569

save structure 462

saving results 562

variance structure 575

Renaming a data structure 434

Reparameterization of nonlinear model 217

Repeated measurements 576, 581

Repertoire of designs 221

Replication

in regression 380

Residual maximum likelihood 429, 430, 555, 560,

562, 567, 572, 574

Residual mean square 23

Residual sum of squares 448

Residual term

in REML 572, 580

Residual variance 573

for different experiments in REML 556

Residuals

as estimated innovations 532

from canonical variates analysis 94, 95

from principal components analysis 364

from principal coordinates analysis 358

from REML 430, 564

from time series 522

in ANOVA 22, 28-30

in regression 208, 209, 329, 331, 507

in REML 432

saving from regression 448

saving from time series 514

Resolution number 240

Resolvable design 17

Response surface design 14

Response to a treatment 30

Response variate 209, 216, 219, 507

defining 328

Restricted maximum likelihood 429, 555, 560,

562, 567, 572, 574, 575

Restriction on units 436

cancelling 437

in ANOVA 28, 31

in correlations 89

in curve fitting 214

in Fourier analysis 235, 237

in nonlinear model 219

in regression 209, 331, 507

in time series 89

saving 437

Return key 461

Return to previous input channel 442

Rewinding an input file 290

RGB 97

Ridge regression 507

Root of a tree 528

Rows of a symmetric matrix 493

Sample autocorrelation 88

Sample cross-correlation 89

Sample statistics 126

Save structure 261

for time series 515, 525

from REML 563

in ANOVA 10, 22, 29

setting 462

Saving a program to resume later 423

Saving results from regression 448, 452

Scalar 456

declaring 456

Scaling in curve fitting 212

Scaling of axes 243

Schwarz information criterion 208

Scientific format 385

Scree diagram of latent roots 95, 363

Screen 69

Seasonal ARIMA model 533

614 Index

Seasonal autoregression 533

Seasonal differencing 533

Seasonal moving average 533

Seasonal period 533

Seasonal transfer-function model 534

Seed

for random number generation 62, 262

for random number generator 461

Sense of curve 212, 213

Separator

when reading data 416, 419

Sequence of graphs 110, 142

Sequences of models in regression 7, 480, 491,

506, 530

Sequential formation of SSPM 507

Sequential input of data 419

Sequential tabulation 502

Set calculations 466

Set comparisons 470

Shade diagram 140

Shading of areas in graphics 370

Sigmoid curve 213

Similarity matrix

forming 247

reduced 285, 424

shade diagram 140

shaded display 140

Simple matching coefficient 248

Sine curve 213

Single-linkage cluster analysis 275

Singular value decomposition 489

Site procedure library 396, 468

Skeleton analysis-of-variance table 28

Skew-symmetry 455

Skewness 126, 502

Skipping data values 416, 418

Smoothed effects

list of 450

nonlinear component 450

Smoothing in time series 511

Smoothing parameter 565

Smoothing spline 207, 556

through points in a graph 369

Sorting data 475

Source code of a procedure 495

Spectography 213

Spectral decomposition 225, 226

Spline 207, 556, 564, 565

through points in a graph 369

Split-plot design 28, 56, 527, 555

randomization 402

Spreadsheet

reading 476

Square matrix 493

SSPM structure 194, 363, 478, 507

declaring 478

forming 251

in principal components analysis 362

sequential formation 507

within-groups 358, 478

Stagewise regression 481

Standard deviation

of Gaussian curve 213

Standard error

in nonlinear model 218, 219

in regression 208

of effects 92

of mean 23

of means 29

of observation in regression 208

of prediction 380, 381

saving from regression 448

within-cell 501

Standard order 257

Standardization

of effects 379

of matrix 454

of residuals 331

Standardized residual 209

Start-up file 298, 340, 468, 469

Statement

echoing of 460

Steepest descent 324

Step length 217

Stepwise regression 480

Stratum 55, 56, 222, 223

Stratum variance 29, 431

Stress function 324

String

locations within a text or factor 264

reading 415

reading in fixed format 418

String token 345

Sub-plot 56

Sub-pointer 376

Subfile 68, 483, 485

for procedures 483

Submodel of fixed model in REML 432

Subsets of a set of objects 464

Substitution symbol 375

Suffix 375

Suffixed identifier 376

in backing store 484

when structure belongs to several pointers 377

Sum of squares 23

Sum of squares and products 251, 478

between covariates 24

Summaries

from CALCULATE 62

Summarizing regression 379

Summary statistics 126

from a cluster analysis 287

Summary table 500

Summation of effects 381

Index 615

Support

for association rule 33

Surface plot 143

Suspending GenStat 104

Symbol for graph 309, 367

Symbol size for graphics 370

Symmetric matrix 493

Syntax of a command 495

System information 147

Systematic order of factor values 257

Systematic term 526

t-statistic

in regression 208

Table

combining and omitting slices 79

declaring 497

of counts 501

of effects 23, 29

of effects from REML 565

of kurtosis statistics 502

of maximum values 501

of means 23, 29, 501, 565

of medians 501

of minimum values 501

of quantiles 501

of residuals 29

of skewness statistics 502

of totals 501

of variances 501

reclassifying 79

unknown cell 498

Taxon 294

Temporary file 601

Terminal node of a tree 528

Terminator

of statement 461

of string 461

Text 509

breaking up into words 538

changing case 82, 539

concatenation 82, 539, 544, 549

default length 551

editing 156

executing 179

finding a subtext 542

finding strings 545

forming from scalars, variates, texts, factors or

pointers 539

integer codes 544

output to 11

reading 415

reading in fixed format 418

removing spaces 82

replacing a subtext 547

sorting 475

truncation 82

Thickness of lines in graphics 370

Three-dimensional graph 151

Three-dimensional shape 151

Tick mark 42, 585

Time 122, 190, 456, 494, 498, 553

printing 388

Time series

autocorrelation 87

autocorrelation function 536

bias 517

Box-Cox power transformation 524

constraining parameters 515

convergence criterion 515

cosine transformation 235

cross-correlation 87

deviance 515-517, 523

display characteristics of models 536

exact likelihood 516

filtering 204, 511

forecasting 231, 519

further output 505

generalized form of model 537

impulse-response function 537

initialization for forecasting 515, 520

least-squares likelihood 516

likelihood 516

marginal likelihood 517

missing values 89, 511, 512, 514, 523

model checking 520

moment estimators 252

one-step estimation 515

output 514

parameter reference numbers 515

pi weights 537

preliminary estimates 252

PRINT option 514

recycled estimation 514

save structure 462, 515, 525

saving results 522

scores 523

smoothing 511

standardized errors of forecasts 520

tests of model parameters 515

TSM structure 532

weighted estimation 514

zero-step estimation 515

Title for graph 115

Title for output 65

Tolerance

for collinearity 507

in ANOVA 31

in time series 515

Total 501

Trace 225, 315, 357

Transaction data 33

Transcript file 86

Transcript of output 340

Transfer-function model 524

616 Index

delay parameter 534

errors for explanatory variates 524

lags 534

minimizing transients 524

non-seasonal 533

orders 534

parameters 534

seasonal 534

Transferring values between data structures 171

Transformation 59

of parameters in nonlinear model 216

of prediction 381

Treatment factor 222, 258

generating 221

Treatment formula 526

Treatment structure 22, 261

Treatment term 28, 526

Tree structure

construction 47

cutting 50

declaring 528

defining 528

functions 528

growing 51

joining another tree 54

node 528

root 528

terminal node 528

utility directives 528

utility procedures 529

Trees of pointers 377

Trigonometric function 213

TSM structure 532

declaring 532

forming 252

in filtering 204

Two-matrix eigenvalue problem 226

Type of data structure

internal code 266

Unadjusted analysis 92

Unbalanced design 28, 430

Underlying structure of a design 28

Underscore character

as prefix to structure name 304

Unequal variances in REML 578

Unformatted file 342, 392, 503

Unformatted workfile 393

Uniform correlation structure 576

Unit variance 23

Units

in a REML analysis 564

structure 261, 461, 551

used in regression 506

UNITS statement 551

Unknown cell of table 498, 501

printing 392

Unnamed structure 147

Unrandomized factors 403

Upper limit 122

UTF-8 544

Values

of a symmetric matrix 493

Variance 126, 501

Variance component 429, 431, 555, 564

initial value 556

Variance function 330

Variance inflation factor 209, 448

Variance of response 330

in prediction 380

Variance ratio 56

Variance structure 575

Variance-component 560

Variance-covariance matrix

for regression estimates 448

Variate 553

declaring 553

default length 551

sorting 475

Varimax rotation 187

Variogram 301, 302

forming 255

Vector

default length 551

Wald test 431

Warning

control of reporting 460

suppressing 299

Wavelength 213

Weight

in ANOVA 22, 30

in prediction 381

in regression 330, 507

in REML 431

in time series 514

Weighted tabulation 502

Whole-plot 56

Width

of file 417

Window in graphics 241

Within-group means in an SSPM 478

Within-group similarities 278

Within-group SSPM 358, 478

Within-group sums of squares and products 478

Within-groups analysis 507

Wordlength 352, 396, 462

in a procedure 344

of system words 299

Workfile 326, 340, 439, 484

Workspace 147, 582

X Module 503

X-axis 583

Y-axis 588, 589

Yates definition of response 30

Z-axis 591, 592

Index 617

Zero divided by zero 62

Zigzag method 285

	Contents
	List of directives in Release 22
	ADD
	ADDPOINTS
	ADISPLAY
	AFMINABERRATION
	AFRESPONSESURFACE
	AGRCRESOLVABLE
	AKEEP
	ANOVA
	ASRULES
	ASSIGN
	AXES
	AXIS
	BARCHART
	BASSESS
	BCUT
	BGROW
	BIDENTIFY
	BJOIN
	BLOCKSTRUCTURE
	BREAK
	CALCULATE
	CALLS
	CAPTION
	CASE
	CATALOGUE
	CLOSE
	CLUSTER
	COKRIGE
	COLOUR
	COMBINE
	COMMANDINFORMATION
	CONCATENATE
	CONTOUR
	COPY
	CORRELATE
	COUNTER
	COVARIATE
	CVA
	DBITMAP
	DCLEAR
	DCONTOUR
	DDISPLAY
	DEBUG
	DECLARE
	DELETE
	DEVICE
	DFINISH
	DFONT
	DGRAPH
	DHISTOGRAM
	DIAGONALMATRIX
	DISPLAY
	DISTRIBUTION
	DKEEP
	DLOAD
	DPIE
	DREAD
	DROP
	DSAVE
	DSHADE
	DSTART
	DSURFACE
	DUMMY
	DUMP
	DUPLICATE
	D3GRAPH
	D3HISTOGRAM
	EDIT
	ELSE
	ELSIF
	ENDBREAK
	ENDCASE
	ENDDEBUG
	ENDFOR
	ENDIF
	ENDJOB
	ENDPROCEDURE
	ENQUIRE
	EQUATE
	ESTIMATE
	EXECUTE
	EXIT
	EXPRESSION
	EXTERNAL
	FACROTATE
	FACTOR
	FARGUMENTS
	FAULT
	FCA
	FCLASSIFICATION
	FCOPY
	FCOVARIOGRAM
	FDELETE
	FILTER
	FIT
	FITCURVE
	FITNONLINEAR
	FKEY
	FLRV
	FOR
	FORECAST
	FORMULA
	FOURIER
	FPSEUDOFACTORS
	FRAME
	FRENAME
	FRQUANTILES
	FSIMILARITY
	FSSPM
	FTSM
	FVARIOGRAM
	GENERATE
	GET
	GETLOCATIONS
	GETATTRIBUTE
	GRAPH
	GROUPS
	HCLUSTER
	HDISPLAY
	HELP
	HISTOGRAM
	HLIST
	HREDUCE
	HSUMMARIZE
	IF
	INPUT
	INTERPOLATE
	IRREDUNDANT
	JOB
	KRIGE
	LIST
	LPCONTOUR
	LPGRAPH
	LPHISTOGRAM
	LRV
	MARGIN
	MATRIX
	MCOVARIOGRAM
	MDS
	MERGE
	MODEL
	MONOTONIC
	NAG
	NNDISPLAY
	NNFIT
	NNPREDICT
	OPEN
	OPTION
	OR
	OUTPUT
	OWN
	PAGE
	PARAMETER
	PASS
	PCO
	PCORELATE
	PCP
	PEN
	POINTER
	PREDICT
	PRINT
	PROCEDURE
	QDIALOG
	QRD
	RANDOMIZE
	RBDISPLAY
	RBFIT
	RBPREDICT
	RCYCLE
	RDISPLAY
	READ
	RECORD
	REDUCE
	REFORMULATE
	RELATE
	REML
	RENAME
	RESTRICT
	RESUME
	RETRIEVE
	RETURN
	RFUNCTION
	RKEEP
	RKESTIMATES
	ROTATE
	SCALAR
	SET
	SETALLOCATIONS
	SETCALCULATE
	SETOPTION
	SETPARAMETER
	SETRELATE
	SET2FORMULA
	SHELLEXECUTE
	SKIP
	SORT
	SPLOAD
	SSPM
	STEP
	STOP
	STORE
	STRUCTURE
	SUSPEND
	SVD
	SWITCH
	SYMMETRICMATRIX
	SYNTAX
	TABLE
	TABULATE
	TDISPLAY
	TERMS
	TEXT
	TFILTER
	TFIT
	TFORECAST
	TKEEP
	TRANSFERFUNCTION
	TREATMENTSTRUCTURE
	TREE
	TRY
	TSM
	TSUMMARIZE
	TXBREAK
	TXCONSTRUCT
	TXFIND
	TXINTEGERCODES
	TXPOSITION
	TXREPLACE
	TX2VARIATE
	UNITS
	VARIATE
	VCOMPONENTS
	VCYCLE
	VDISPLAY
	VKEEP
	VPEDIGREE
	VPREDICT
	VRESIDUAL
	VSTATUS
	VSTRUCTURE
	WORKSPACE
	XAXIS
	YAXIS
	ZAXIS
	%CD
	%OPEN
	%FPOSITION
	%LOG
	%MESSAGEBOX
	%OPEN
	%SLEEP
	%TEMPFILE
	%WRITE
	Index

