Indicates the end of the contents of a loop.
No options or parameters
Description
Loops are introduced by the FOR
directive, where full details are given.
Options: none.
Parameters: none.
See also
Commands for: Program control.
Example
" Example 2:6.18.3 " " Abundances of 16 grass species on 9 plots of land: part of Table 1.1 in Digby & Kempton (1987)." UNITS [NVALUES=16] READ [SERIAL=yes] Abund[1...6] 15.5 2.5 7.2 0.2 1.0 0.0 2.2 33.2 0.0 0.3 6.1 0.0 6.9 0.7 0.0 0.1 : 4.0 1.0 13.1 6.1 1.6 0.0 1.5 11.7 3.6 12.0 9.5 0.0 0.0 2.5 0.3 0.4 : 1.0 28.8 6.1 37.6 0.0 0.0 7.8 1.0 0.0 0.6 2.9 0.0 0.0 5.3 1.0 1.4 : 0.0 36.8 0.3 37.0 0.0 1.3 2.7 0.0 0.0 0.0 0.0 0.0 0.0 0.7 1.5 4.5 : 19.6 0.0 9.5 0.0 0.0 0.0 0.0 48.7 0.0 0.0 4.8 0.1 0.3 1.0 2.7 0.7 : 82.7 0.0 17.2 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 : CALCULATE LogAbund[1...6] = LOG10(Abund[1...6] + 1) & PrsAbund[1...6] = Abund[1...6] > 0 " Form similarity matrices using 5 different methods on suitably transformed copies of the data." FSIMILARITY [SIMILARITY=Sjaccard] PrsAbund[]; Jaccard & [SIMILARITY=Ssmc] PrsAbund[]; simplematching & [SIMILARITY=Scity] LogAbund[]; cityblock & [SIMILARITY=Secol] LogAbund[]; ecological & [SIMILARITY=Spythag] LogAbund[]; Pythagorean POINTER [NVALUES=7] Config MATRIX [ROWS=16; COLUMNS=6] Config[] LRV [ROWS=16; COLUMNS=6] Pcol " Use PCO on each similarity matrix, to get 5 ordinations',\ of 16 points in 6 dimensions." FOR Dsim=Sjaccard,Ssmc,Scity,Secol,Spythag; Dcpco=Config[1...5] PCO Dsim; LRV=Pcol CALCULATE Dcpco = Pcol[1] ENDFOR " Use correspondence analysis on the data, and the data transformed to presence/absence, to get 2 more ordinations of 16 points in 6 dimensions." MATRIX [ROWS=16; COLUMNS=6] MatAbund CALCULATE MatAbund$[*; 1...6] = Abund[] CORANALYSIS [METHOD=digby] MatAbund; ROW=Config[6] CALCULATE MatAbund = MatAbund > 0 CORANALYSIS [METHOD=digby] MatAbund; ROW=Config[7] TEXT [VALUES=Jc,SM,CB,Ec,Py,CA,CP] Points SYMMETRICMATRIX [ROWS=Points] MPdist " Use multiple Procrustes analysis to compare the 7 different ordination methods." PCOPROCRUSTES Config; LRV=MPLRV; DISTANCE=MPdist PRINT MPdist; FIELD=8; DECIMALS=4 CALCULATE MPscore[1,2] = MPLRV[1]$[*; 1,2] FRAME 3; SCALING=xyequal XAXIS 3; TITLE='Dimension 1'; LOWER=-0.55; UPPER=0.55 YAXIS 3; TITLE='Dimension 2'; LOWER=-0.55; UPPER=0.55 PEN 1; SYMBOLS=0; LABELS=Points; SIZE=1.5; COLOUR='blue' DGRAPH [TITLE='Multiple Procrustes analysis: first two dimensions';\ WINDOW=3; KEY=0] MPscore[2]; MPscore[1] PRINT !T('The 7 methods are plotted as the points:',\ ' Jc Jaccard similarity coefficient;',\ ' SM simple-matching similarity coefficient;',\ ' CB city-block similarity coefficient;',\ ' Ec ecological similarity coefficient;',\ ' Py Pythagorean similarity coefficient;',\ ' CA correspondence analysis of data;',\ ' CP correspondence analysis of presence/absence.');\ JUSTIFICATION=left