Standardizes columns of a data matrix to have mean zero and variance one (S.A. Harding & D.A. Murray).

### No options

### Parameters

`OLD` = variates or matrices |
Structures containing data to be standardized |
---|---|

`NEW` = variates or matrices |
Structures to contain output; by default the `OLD` structures are overwritten |

### Description

The parameter `OLD`

lists the variates or matrices to be standardized, and the `NEW`

parameter specifies a list of variates or matrices to store the standardized values. If `NEW`

is not set, the transformed data values overwrite the contents of the `OLD`

structures. If `NEW`

is set, it should be to structures of the same type (variate or matrix) as the corresponding `OLD`

structures.

Options: none.

Parameters: `OLD`

, `NEW`

.

### Method

The standardized values are calculated as (*x*-mean(*x*)) / √(var(*x*)). If there are any missing values in the data these are omitted from the calculation.

### Action with `RESTRICT`

Restrict is irrelevant with matrix structures. It should work as expected with variates.

### See also

Function: `STANDARDIZE `

.

Commands for: Calculations and manipulation.

### Example

CAPTION 'STANDARDIZE example','1) Standardizing a list of variates.';\ STYLE=meta,plain CALCULATE V[1...5] = URAND(123,4(0);10) STANDARDIZE V[]; NEW=Z[1...5] PRINT V[] PRINT Z[] CALC [PRINT=summary] Z[]=Z[] CAPTION '2) Standardizing a matrix.' MATRIX [ROWS=10; COLUMNS=5] M CALCULATE M$[*;1...5] = V[] STANDARDIZE M; NEW=N PRINT M PRINT N